
Hyperion: A Generic and Distributed Mobile Offloading
Framework on OpenCL

Ziyan Fu1, Ju Ren1,5,∗, Yunxin Liu2,6, Ting Cao3, Deyu Zhang4, Yuezhi Zhou1,5, Yaoxue Zhang1,5
1Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing, China

2Institute for AI Industry Research (AIR), Tsinghua University, Beijing, China, 3Microsoft Research, China
4School of Computer Science and Engineering, Central South University, Changsha, China

5Zhongguancun Laboratory, Beijing, China, 6Shanghai Artificial Intelligence Laboratory, Shanghai, China

Email: 1{fuzy17@mails., renju@, zhouyz@, zhangyx@}tsinghua.edu.cn, 2liuyunxin@air.tsinghua.edu.cn,
3ting.cao@microsoft.com, 4zdy876@csu.edu.cn

ABSTRACT

Despite the significant development of mobile device SoCs, they

are still inefficient in computing computation-intensive workloads,

such as high-resolution image processing and AR/VR applications.

Offloading offers a promising way to leverage cloud or edge servers

for acceleration, but existing offloading is limited to specific tasks

or specific hardware/software platforms, resulting in significant

engineering overhead. To address this problem, we focus on the

underlying layer of these applications (i.e., OpenCL) and propose

Hyperion, a generic and distributed mobile offloading framework

built on OpenCL. To achieve high-performance distributed execu-

tion for Hyperion, we first take a deep insight into the OpenCL data

structures and design regularity-aware kernel analyzer to analyze

the data dependency of work-groups and identify the essential data

to offload. Then, context-aware execution time predictor is proposed

to estimate the computing time of a given partitioned kernel work-

load that is highly impacted by many runtime factors. These tech-

niques are integrated into pipeline-enabled and network-adaptive

scheduler to make scheduling decisions, which coordinates the ker-

nel partition and workload scheduling to form pipeline processing

between data transmission and distributed execution with flexible

adaptability to network dynamics. Extensive experimental results

demonstrate that Hyperion achieves superior performance with

an average 3.80× speedup compared with the best baseline and

flexible adaptation to dynamic network conditions and available

computing resources.

CCS CONCEPTS

·Human-centered computing→Ubiquitous andmobile com-

puting systems and tools.

KEYWORDS

Mobile offloading, edge computing, distributed computing, OpenCL,

online scheduling.

∗Ju Ren is the corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SenSys ’22, November 6ś9, 2022, Boston, MA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9886-2/22/11.
https://doi.org/10.1145/3560905.3568511

ACM Reference Format:

Ziyan Fu1, Ju Ren1,5,∗, Yunxin Liu2,6, Ting Cao3, Deyu Zhang4, Yuezhi

Zhou1,5, Yaoxue Zhang1,5. 2022. Hyperion: A Generic and Distributed Mo-

bile Offloading Framework on OpenCL. In ACM Conference on Embedded

Networked Sensor Systems (SenSys ’22), November 6ś9, 2022, Boston, MA, USA.

ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3560905.3568511

1 INTRODUCTION

With the rapid development and high penetration of mobile devices,

increasing modern applications are relying on resource-constrained

mobile devices to perform computation-intensive and real-time task

processing, such as high resolution image processing, AR/VR and

3D reconstruction, etc. For example, 4K image photography is sup-

ported in mainstream devices, leading to high image processing

burden on mobile devices. Although the computing capability of

mobile SoCs has dramatically improved in recent years, they are

still inefficient for high-quality image processing, the high com-

putational latency of which seriously affects the user experience.

Even with the state-of-the-art algorithms, it takes 4.39 s to perform

4K panoramic picture stitching and 67.4 s for 4K image recogni-

tion (YOLOv4-tiny [6] model used) on Xiaomi BlackShark2, which

is unacceptable for mobile users. A compromised solution is to

compress the input images to reduce the computation complexity.

For example, image recognition usually resizes an input image to

416 × 416 resolution. However, these applications may suffer low

accuracy or low quality of output images due to information loss.

To empower the modern applications, a few existing works focus

on designing new algorithms with low complexity or compressing

DNN models to reduce the amount of calculation [23, 32, 36]. But

it is still very difficult, even impossible, to balance the accuracy

and computation efficiency for many applications with rigorous

performance requirements. Offloading is another way to release

the computation burden of mobile devices [33, 36, 55]. It aims to

partition the computation task and offload the computationally

intensive parts to the cloud or edge servers for performance en-

hancement. However, most of the existing solutions are proposed

for specific tasks or targeted at specific software/hardware plat-

forms. For example, Li et al. [36] proposed a partition scheme for

image stitching tasks but it is not applicable to DNN-based tasks,

while DeepThings [55] can only be applicable to DNN-based ap-

plications but not be directly adapted to others, such as image

denoising, transformation, and stitching. Moreover, the majority

of DNN partition methods are based on specific usage scenario or

hardware, for example, the work [18] is applicable for video object

https://doi.org/10.1145/3560905.3568511
https://doi.org/10.1145/3560905.3568511

SenSys ’22, November 6ś9, 2022, Boston, MA, USA Ziyan Fu, Ju Ren, Yunxin Liu, Ting Cao, Deyu Zhang, Yuezhi Zhou, and Yaoxue Zhang

detection, and the work [51] for wearable devices. Consequently,

in practical deployment, developers need to design optimization

methods case by case, resulting in significant engineering overhead.

Facing the above challenges, it is necessary to seek a more funda-

mental and generic solution for handling the heterogeneous tasks

on different platforms. This motivates us to focus on OpenCL [1],

which is an open standard programming model for developing data-

parallel applications in heterogeneous multicore architectures (e.g.,

CPU, GPU, and FPGA). In addition to the compatibility of heteroge-

neous hardware, it has been widely utilized in different application

frameworks, such as OpenCV [9] and Tensorflow-Lite [5], as the

backend for supporting parallel execution on heterogeneous plat-

forms. The dual-compatibility for application and hardware, as well

as the design principle for general-purpose of computation, make

OpenCL a desired framework for coping with task offloading.

However, enabling efficient task partitioning and offloading at

the OpenCL level has to address the following challenges. Firstly,

the data transmission cost on mobile network is usually high in

task offloading. But different from the application-level offloading

where the data dependency among different computation parts can

be easily identified, OpenCL offers a low-level and more general ab-

straction on computation without a clear clue on data dependency.

Transmitting the whole input data is a straightforward approach

but incurs huge transmission overhead. Thus, it is challenging to

identify the minimum required data for each computation part and

design a delicate computation partitioning and scheduling strat-

egy on OpenCL to reduce the data transmission cost. Secondly,

computing time prediction is very important for making offload-

ing decisions, but it is difficult to predict because many complex

factors influence computing time. For application-level offloading

(like DNN partition), the partitioned computation consists of a

number of specific operators that have explored performance on

different computation units, while for OpenCL-level offloading,

the computing time has irregular relationship with the amount of

partitioned tasks. Moreover, the runtime of the computation de-

vice (e.g., available resources, concurrent executing tasks) and the

unknown concurrent offloading requests from other devices both

have significant impacts on the execution of a specific task, posing

a further challenge on the accuracy of computing time prediction.

Lastly, the dynamic network condition requires the offloading sys-

tem adaptively changing the partitioning and scheduling decisions

to achieve better performance. This is a common but nontrivial

challenge in practical offloading systems.

In this paper, we propose Hyperion, a generic mobile offloading

framework built on OpenCL, to achieve high-performance tasks

offloading among distributed edge servers. The generality of Hy-

perion is manifested in two folds, a wide support for a large range

of applications and for heterogeneous computation units. In Hy-

perion, each OpenCL kernel1, such as convolution operations in

DNN inference and image format conversion in image processing,

is regarded as an independent execution unit on a device. To enable

fine-grained computation offloading, Hyperion performs kernel-

level partitioning and scheduling by dividing an OpenCL kernel

into a number of slices, where each slice consists of a number of

work-groups in this kernel.

1These terms will be further explained in Table 1 and Section 2.

Hyperion achieves generality and improves the performance

through three key technical components. (1) When Hyperion re-

ceives an offloading request for an application, it first adopts the

regularity-aware kernel analyzer to identify the data dependencies

of different work-groups, which can be leveraged to direct kernel

partition, i.e., deciding how many work-groups in a slice to mini-

mize the transmission overhead. This analyzer provides a generic

analysis method for data dependencies to reduce the developers’

engineering efforts. (2) Then, before making offloading decisions,

Hyperion uses the dedicated context-aware computing time predic-

tor to estimate the computing time of a given slice. Obtaining the

application-level information (e.g., the resource usage of other ap-

plications running in the background and concurrent offloading

requests) is simple for application-level offloading but is a challenge

in OpenCL-level. The proposed predictor can significantly improve

prediction accuracy through an offline-trained predictor to capture

the runtime impact and an online calibrator to reflect the impacts

of concurrent offloading requests. (3) Finally, Hyperion employs

the pipeline-enabled and network-adaptive scheduler to make sched-

uling decisions, including the work-group number of each slice and

how many slices to be offloaded for each computation unit. The

key idea of the scheduling algorithm is to form pipeline processing

between data transmission and distributed execution with flexible

adaptability to network dynamics. However, for multi-kernel ap-

plications, OpenCL-level scheduling lacks a global perspective of

kernel structure, which is a challenge for Hyperion to decide the

data placement for the intermediate kernels. To address this issue,

we have proposed a lazy-transmission mechanism to transmit data

on demand and thus improve pipeline parallelism.

To validate the performance of Hyperion, we build a prototype

system of Hyperion and take evaluation under different types of

applications including traditional image processing and DNN-based

applications. Compared with a few baseline solutions, Hyperion

shows superior performance with average 3.80× speedup com-

pared with the best baseline and 4.75× speedup among all baselines.

Meanwhile, Hyperion can flexibly schedule the workload assigned

to the local and edge servers under dynamic network conditions

and high system loads, and even achieves average 2.53× and 1.69×

speedups, respectively, in terms of end-to-end execution delay. The

main contributions of this paper are summarized as follows.

• To the best of our knowledge, Hyperion is the first generic and

distributed mobile offloading framework on OpenCL that can

support diverse applications and heterogeneous hardware.

• To address the challenges in OpenCL-level offloading, Hyper-

ion devises three novel techniques: 1) regularity-aware kernel

analyzer to achieve transmission-efficient kernel partition with

minimum required data, 2) context-aware computing time predic-

tor to estimate the execution time of a partitionedworkload under

the runtime of a computation unit, and 3) pipeline-enabled and

network-adaptive scheduler to form pipeline processing among

distributed computation units with network adaptability.

• We implement Hyperion as a library in OpenCL and build a

prototype system. Extensive experimental results demonstrate

that Hyperion achieves superior performance and flexible adap-

tation on dynamic network conditions and available computing

resources.

Hyperion: A Generic and Distributed Mobile Offloading Framework on OpenCL SenSys ’22, November 6ś9, 2022, Boston, MA, USA

Table 1: Terms frequently used in this paper.

Term Explanation

Kernel An OpenCL function executed in the backend device.

Work-Item An OpenCL thread executed on a single computing unit.

Work-Group (a.k.a WG) A collection of work-items. They execute

the same codes and share local memory.

NDRange An NDRange is an N-dimensional index space. It

indicates the spatial relationship of WGs in OpenCL.

Slice A set of WGs transferred or calculated in a single

operation during pipeline processing of Hyperion.

NDRange (N=2)

Work-Group

NDRange Size 𝐺!

N
D
R
an
g
e
S
iz
e
𝐺
" Work-

Item

Work-

Item

Work-

Item

Work-

Item

Work-

Item

Work-

Item

Work-

Item

Work-

Item

Work-

Item

Work-Group Size 𝑆!

W
o
rk
-G
ro
u
p
S
iz
e
𝑆
"

Figure 1: The relationship of NDRange, Work-Group, and

Work-Item in OpenCL.

2 BACKGROUND AND MOTIVATION

The rationale of building the offloading framework on OpenCL

comes from that it is a cross-platform, parallel programming frame-

work for general-purpose computation and is widely supported

by diverse applications and hardware. In OpenCL, each applica-

tion includes host and kernel codes. Kernel codes are compiled at

runtime and executed by the target computation unit [37], while

host codes are responsible for transmitting data and control com-

mands to the device. When launching a new kernel, OpenCL emits

a bunch of work-items on the device, and some work-items are

further combined into a work-group (a.k.a WG). Each work-item

in the same WG shares local memory as cache and can conduct

concurrent control (e.g., barrier and memory fence). Moreover, all

WGs form a 1-dim to 3-dim NDRange, which indicates the spatial

relationship ofWGs. For example, in the matrix multiplication, each

WG is responsible for the result of a sub-matrix, and the hole 2-dim

NDRange generates the complete result matrix. Figure 1 shows the

relationship of NDRange, WG, and work-items, and we summarize

the frequently used terms in Table 1. The OpenCL kernels sup-

port not only mobile SoCs but also high-performance computation

units on servers, such as CPUs, GPUs, DSPs, thus offloading at the

OpenCL kernel level can well fit the mobile scenario where the

high-performance and diverse accelerators on edge/cloud servers

can be leveraged for computation acceleration.

The basic idea of Hyperion is to partition the OpenCL kernels

of each task and offload part of the WGs to nearby edge servers,

aiming to achieve distributed computing and thus maximize com-

puting efficiency by fully utilizing both local and edge servers.

However, to enhance the performance of such a generic offloading

framework, we are facing significant challenges not only from the

highly-dynamic mobile scenario, but also from the complex kernel

characteristics of OpenCL. Based on our empirical studies, we find

and summarize three key challenges as follows.

CC WA AW SW GE YO
Application Name

0

40

80

120

160

200

Ti
m

e
(s

)

Transfer Time
Total Time

Figure 2: Comparison of data

transfer time and total of-

floading time across differ-

ent applications.

1 4 16 64 256 1024
Slice Number

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 T
im

e Adreno640
i7-3615QM
GTX1080

Figure 3: Computing time

of CvtColor under different

slice number and computa-

tion units.

Challenge 1: High data transmission cost for kernel-level

offloading.

A typical offloading process includes three steps: uploading data

to one of the edge servers, executing, and downloading results

from the server. However, in most cases, this approach is even less

efficient than computing entirely locally. This is because of the

non-negligible data transfer overhead. We conduct an experiment

to compare the data transfer time and the corresponding total of-

floading time of this typical offloading method. In this experiment,

we use six widely used applications, the specifications of which

are shown in Table 2 (Section 5). The Xiaomi Blackshark2 which

deploys these applications transmits data through 100 Mbps Wi-Fi

to an edge server with Intel i7-3615QM CPU. The experimental re-

sult shows in Figure 2, where the data transfer time takes up 10.7%

to 74.1% of the total time of the whole offloading process, which

indicates the high transmission cost for kernel-level offloading.

An intuitive solution for reducing the overall data transmission

cost is to build a pipeline to parallelize computation and data trans-

mission during the whole offloading process. It means that when

the server executes a part of a specific kernel, the data of the next

parts and the results of previous executions should be transmitted

simultaneously. We use the term slice to denote each part for con-

venience. However, it is non-trivial and challenging to design an

efficient pipeline along with kernel partition mechanism for diverse

OpenCL kernels. In OpenCL, the WG number in a kernel is a fixed

value once the kernel starts execution. If we partition the kernel

into fewer slices, the average number of WGs per slice will be larger.

Considering that the data uploading of the first slice and the result

downloading of the last slice cannot be parallelized with computa-

tions, low pipeline performance will occur if they contain excessive

WGs. On the contrary, if the number of partitioned slices is too

large, tremendous computational overhead occurs on this occasion.

Figures 3 and 4 show the relationship between kernel computing

time and slice number under different backend devices and kernel

types, respectively. The computing time increases dramatically as

the slice number increases. In the worst case shown in Figure 3,

when using GTX 1080 GPU as the backend computation unit and

breaking the kernel into 1024 slices, the computing time increases

by 143× compared with that of full offloading (i.e., only one slice),

which is unacceptable in most cases. The inefficiency is because a

small workload in each slice results in a very low utilization rate of

hardware resources [12].

In addition, this inefficiency differs among diverse kernels and

computation units, making the challenge more complicated. For

example, if we partition the kernel into 64 slices, only 2.3% overhead

SenSys ’22, November 6ś9, 2022, Boston, MA, USA Ziyan Fu, Ju Ren, Yunxin Liu, Ting Cao, Deyu Zhang, Yuezhi Zhou, and Yaoxue Zhang

1 4 16 64 256 1024
Slice Number

0

200

400

600

Ti
m

e
(C

om
pa

re
d

w
ith

 th
e

tim
e

of
 1

 s
lic

e) CvtColor
WarpAffine
Remap

Figure 4: Computing time of

GTX 1080 under diverse slice

number and kernel types.

0 1000 2000 3000
WG Number

0

20

40

60

Ex
ec

ut
io

n
Ti

m
e

(m
s) Predicted

Real Data (low load)
Real Data (high load)

Figure 5: Exist solutions fail

to predict the execution time

due to ignoring system load.

occurs in i7-3615QM CPU while 11.3× overhead in GTX 1080 GPU.

Another example is that when we partition the kernel into 16 slices,

2.8× overhead occurs in the CvtColor kernel while 10.8× overhead

occurs in the Remap kernel. In summary, the high data transmis-

sion cost calls for a sophisticated kernel partition and pipeline

mechanism to enhance the performance of offloading.

Challenge 2: Inconsistent kernel execution time under

dynamic realtime workloads.

As we aim to low-delay computation, the scheduling decisions

require a constant evaluation of the execution time based on device

performance. Hyperion will assist the scheduler with this predicted

time to achieve performance gain in offloading, and avoid the con-

ditions that some devices become the performance bottleneck due

to excessive computation. However, the kernel execution time is

affected by many factors such as kernel implementation, cache con-

tention, memory coalescing, device load, and workload scheduling

in backend device driver [12]. Unfortunately, many of them are

closed-sourced (e.g., drivers) or invisible to developers (e.g., cache

contention), making the prediction complicated and challenging.

Existing solutions [35, 54] usually adopt offline training, for ex-

ample, sampling the performance data with different workloads,

building a regression model, and at runtime, querying the model

with a given workload. These solutions usually fail to predict the

execution time. This is caused by ignoring the runtime status, espe-

cially the realtime load, on different computation units. Since the

mainstream computation units (i.e., the CPU and GPU) use tem-

poral multiplexing to concurrently execute multiple services [2],

the computing resources allocated on a specific application are

impacted by the concurrent services in an uncertain way, leading to

ever-shifting execution time. We have conducted an experiment to

show this gap by using nn-Meter[54], and the experimental results

are shown in Figure 5. We use WarpAffine kernel and GTX 1080

GPU as the case study in this experiment. We first train the model

offline with sampled data, while the server is still concurrently pro-

cessing other requests. At runtime, these requests may differ from

those at the training stage, thus resulting in different computational

resources allocated to our target kernel. The light-blue and blue

curves shown in Figure 5 represent the real data under low and

high system load, respectively, which shows up to 48.6% error.

Challenge 3: Highly-dynamic network conditions.

This challenge comes from the practical mobile offloading sce-

nario, which is a classic problem for task scheduling and has severe

impacts on the system performance. We measured the network

dynamics under different scenarios in Figure 6. We found dramatic

network throughput fluctuations for both indoor and outdoor cases.

This fluctuation is more dramatic outdoor, which is due to many

0 50 100 150 200
Wall Clock Time (s)

0

200

400

600

Th
ro

ug
hp

ut
 (M

bp
s) Indoor Wi-Fi

Outdoor Wi-Fi

(a) Wi-Fi

0 50 100 150 200
Wall Clock Time (s)

0

50

100

150

200

Th
ro

ug
hp

ut
 (M

bp
s) Indoor Cellular

Outdoor Cellular

(b) Cellular
Figure 6: Network throughput between the mobile device

and edge server. It changes dramatically over time.

factors such as variation of signal strength and the network con-

gestion [52]. Sometimes it even happens with network outages.

Although it is possible to simply use the recent throughput data

(e.g., the data transmitted in the last second) and change the work-

load assigned to each device adaptively [13], this does not apply to

the case when the throughput fluctuates dramatically. That is, when

Hyperion has decided the size of a new slice, the data transmission

time may still differ from predicted value due to the throughput has

changed at runtime. This inconsistency makes it more challenging

for the scheduler to make decisions. Thus, we need to consider the

risk of network fluctuations when making scheduling decisions

and reduce the negative impact of such risk.

3 HYPERION SYSTEM OVERVIEW

To address the aforementioned challenges, we proposed Hyperion,

which offers a generic and distributed offloading framework for

various applications and works as a library in OpenCL. When a new

kernel arrives, Hyperion automatically makes scheduling decisions

and offloads parts of the workload to multiple edge servers.

Figure 7 shows the system overview of Hyperion. We consider a

general edge computing scenario, where a number of mobile devices

connect to a cluster of edge servers through a wireless access point.

For each mobile device, the directly connected edge server acts

as its primary edge server, which is responsible for receiving the

offloading requests and coordinating the nearby edge servers for

distributed execution. Since the cluster of edge servers is usually

built on a high-speed wired network, the transmission cost among

them is far less than the communication between mobile device

and the primary server. Enabled by the characteristics of OpenCL,

the heterogeneous computation units in each edge server, such as

CPU, GPU, and FPGA, are regarded as independent computation

devices by Hyperion for workload offloading.

The workflow of Hyperion is as follows. ① When a new ker-

nel with its corresponding input data arrives, the regularity-aware

kernel analyzer parses the data dependency of WGs and identifies

the essential data to offload with objective of minimizing the data

transmission cost. This analysis is performed for new kernels. If

a kernel has been executed before, we can skip the analysis and

directly take the result. ② Next, the context-aware computing time

predictor estimates the execution time of a given slice on a specific

computation unit according to the runtime conditions. ③ Then,

with the kernel analytical information and the predicted execution

time, the pipeline-enabled and network-adaptive scheduler calculates

the WG number in the slice for each computation unit according

to the network dynamics. The slice will be scheduled for either

local execution or offloading through pipeline processing (④) that

Hyperion: A Generic and Distributed Mobile Offloading Framework on OpenCL SenSys ’22, November 6ś9, 2022, Boston, MA, USA

③ Online Scheduler

WG

WG

WG

WG

WG

Mobile Device

Primary Edge Server

Nearby Edge servers

Input Data

① Kernel Analyzer

WGWG WG ...

② Online Predictor

Local GPU

Computing Units

CPU GPU

Distributed Execution

Offloading

Server A

CPU

Server B

CPU GPU

Server C

CPU FPGA
…

④ Pipeline Processing

Local Execution

WG

Trained

Prediction Model

Online Status

Figure 7: System overview of Hyperion.

enables the parallel processing of transmissions and computation

to save time. Finally, each offloading slice will be sent to the target

server for distributed computing.

4 SYSTEM DESIGN

4.1 Regularity-Aware Kernel Analyzer

Original OpenCL kernels are designed to be executed in a single

device where the corresponding data are stored in the dedicated

memory or cache. If we implement distributed computing on two

or more devices at different geographic positions, these distributed

devices cannot efficiently share a global memory, resulting in a

huge cost for data transmission. A primitive method is to transmit

the whole input data to all devices, and thus each device can effi-

ciently obtain the required data from local memory when needed.

However, this approach incurs a huge transmission overhead. An-

other way is asynchronous transmission [50]. When a device needs

some data for computing, but the corresponding data do not exist

in the local memory, the operating system generates a page fault,

suspends the computing, and sends requests to other devices for

data transmission. However, excessive page faults will be gener-

ated at the beginning of the kernel execution, as no data exists

in the edge server at this time. Meanwhile, a waste of computing

resources occurs because the computation is suspended, waiting

for data transmission. Thus, the principle for kernel analyzer de-

sign in Hyperion is to identify the data dependency of different

WGs, simultaneously reducing the data transmission overhead and

avoiding excessive computing suspension.

In Hyperion, we classify the memory data of a kernel into two

types: common data and exclusive data. Common data are frequently

accessed by the kernel at runtime, and each device involved in the

kernel’s distributed computing should keep a copy. Thus, common

data is transferred first at the beginning of kernel execution to

avoid excessive network overhead caused by frequent page faults.

Exclusive data is WG specific in OpenCL, which is only used by one

(a) 3-dim NDRange

H

W
D W×D W×D W×D W×D

(b) Flattened Work Groups

D D D D

Figure 8: 3D NDRange to flattened WGs

20% 30% 50%

Input Array

Flattened

Work Groups

Output Array

(a) Regular Data Access

20% 30% 50%

(b) Irregular Data Access

Figure 9: Regular and irregular data access patterns

WG exclusively. In this way, we can only transmit the exclusive data

to one of the devices to reduce the network overhead. Therefore,

the problem is how to identify the common and exclusive data.

To address this, we propose a regularity-aware kernel analysis

method for Hyperion, which is inspired by SKMD [35]. Different

from kernel-level analysis in SKMD, Hyperion classifies each data

according to its data access pattern and further partitions and trans-

mits parts of regular data to reduce network cost. The data access

pattern includes regular and irregular ways. As Figure 9 shows,

each WG only reads or writes data to the contiguous locations in

the regular access pattern while discontiguous locations in the ir-

regular access pattern. This data access pattern is determined by the

functionality of the application. For example, the regular data ac-

cess pattern is common in image processing applications, where the

pixel-by-pixel processing ensures each data can be equally accessed.

On the other hand, in the linear algebra domain, most kernels need

to determine data access according to the input, which is irregular

data access in these kernels. To design the regularity-aware kernel

analyzer, we first flatten the 3-dimensional NDRange to form a WG

sequence, as shown in Figure 8. Then, for each input and output

array in this kernel, we detect their data access patterns and regard

the regular access data as exclusive data. For irregular access pat-

tern data, there is still no effective and general partition scheme for

all kinds of kernels. Keeping complete copies to other devices is still

the most efficient solution chosen in existing research, for example,

SKMD [35] and SunCL [30]. Thus, we regard all of these data as

common data. Similarly, if the kernel has an irregular data access

pattern for output arrays, we transmit a full copy of output arrays

back to the local, and merge different versions of these arrays from

multiple devices by using the method proposed in SKMD [35].

To implement this data access pattern detection, we have devel-

oped an analysis pass parseKernel by leveraging LLVM SDK [34].

First, we decide the partition granularity 𝐺 , the size selected from

element numbers by partitioning the NDRange along one or several

dimensions. For example, rows of the 2D NDRange, or planes of the

3D NDRange. Then, WGs are partitioned to 𝐵 =
𝑀
𝐺 blocks, where

𝑀 is the number of WGs in the NDRange. Each memory object is

also divided into 𝐵 sub-objects with equal size. After that, for WGs

in a block with index BID, we check whether addresses of I/O oper-

ations for each memory object are bounded within the sub-object

with index BID. This check is conducted by using LLVM Scalar

SenSys ’22, November 6ś9, 2022, Boston, MA, USA Ziyan Fu, Ju Ren, Yunxin Liu, Ting Cao, Deyu Zhang, Yuezhi Zhou, and Yaoxue Zhang

w!
", 𝑤#

", …𝑡!
", 𝑡#

", …

Input Samples

Predictor

Training

Offline Training Online Prediction

Predictor

w!
$, 𝑤#

$, … 𝑡!
$, 𝑡#

$, …

Recent Slice Data

𝑤%

Request

Slice

𝑝%

Preliminary Time
𝑑!
", 𝑑#

", …

Kernel Parameters

𝑑%

Kernel

Parameters

Calibration
𝑡%

Estimated Time

𝑝!
$, 𝑝#

$, …

𝑘!
", 𝑘#

", …

Runtime Status

𝑘%

Online

Status

Figure 10: Data flow of context-aware computing time prediction

Evolution (SCEV) [48]. A memory object is regarded as exclusive

data if it passes this check, otherwise as common data. We check all

possible partition granularities and select the granularity that can

partition the most memory objects. We take matrix multiplication

as an example, which implements the function𝐶 = 𝐴 × 𝐵. Matrices

𝐴 and 𝐵 are the input, and the matrix𝐶 is the output. We assume all

matrices with the size of 4000 × 4000 and focus on the data access

pattern of matrix 𝐴 in this example. If a WG is responsible for a

single value in 𝐶 , then 𝐺 = 1 and 𝐵 = 4000 × 4000 in this case. In

fact, the WG usually works on a tile (e.g., 8 × 8 sub-matrix). As we

have flattened the matrix data to a single-dimensional array, the

data access locations of a WG are discontiguous as the tile requires

data from different rows. In this case, if we set 𝐺 = 8 × 4000 and

𝐵 = 500, the matrix 𝐴 is the regular pattern because the data access

of the WG is restricted in the corresponding block.

All the common data are transferred at the beginning of the task.

Instead of being transmitted to each server separately, common

data are transmitted to the primary server while this server will

further send the data to other servers asynchronously to save time.

4.2 Context-Aware Computing Time Predictor

Before making the scheduling decision, Hyperion uses a dedicated

context-aware computing time predictor to estimate the computing

time of a given slice on a specific computation unit under the

runtime status. As Figure 10 shows, the predictor consists of two

stages: offline training and online prediction.

4.2.1 Offline Training. During the offline training, we see the ker-

nel execution on a specific computation unit as a black-box matter.

Hyperion samples data under different configurations and runtime

status, and records its corresponding computing time. A config-

uration includes the WG number 𝑤𝑠
𝑖 and the parameters of the

kernel 𝑘𝑠𝑖 (𝑖 = 1, 2, . . . , 𝑀), e.g., the filter size, stride, and pad size

for convolution operation kernel, and input image size for an image

format conversion kernel. The runtime status includes the number

and the type of existing concurrent tasks, as well as the utilization

ratio of the computation unit. Since different kinds of tasks usually

cause different impacts on resource competition, we can roughly

divide the representative tasks into a few types, such as DNN infer-

ence, image transformation, and linear algebra. Then, we train a

lightweight prediction model for each device using random forest

regression, with the configurations and runtime status as the input

and the corresponding computing time as the output. Such that,

Hyperion can gradually learn the complex relationship between

the execution time of a given slice and computation context.

Since the model training is lightweight and related to specific

hardware, each edge server maintains such a model for each com-

putation unit in an offline way. These trained models can serve as

a prediction service in each edge server for mobile devices to call.

4.2.2 Online Prediction. When a mobile device initializes a new

prediction request, it first calls the model to calculate a preliminary

predicted time 𝑝𝑟 . However, this predicted time is still not suffi-

ciently accurate. This is because the concurrent services impact

the computing resources allocated on a current application in an

uncertain way. Although we have considered the system runtime

status in offline training, during the online prediction, the server

may be executing other applications which are different from those

during offline training. For example, offline training was performed

long ago, and new services were deployed on this server after the

training. These new services may require inconsistent computing

resources. Meanwhile, other mobile devices may concurrently of-

fload workload to the computation unit. The problem is that when

a mobile device predicts the execution time for a specific kernel

and makes scheduling in a distributed way, it cannot accurately

know how many and what types of workloads will be scheduled

on the same computing unit.

To address this issue, we propose a calibration method for the

preliminary predicted time, which fills the gap between offline

sampling and online actual data. First, we collect historical slice

execution data in the recent 30 seconds, including WG numbers

𝑤ℎ
𝑖 and the corresponding computing times 𝑡ℎ𝑖 . These computing

times are recorded at runtime. We also collect the preliminary

predicted time for each slice, denoting it as 𝑝ℎ𝑖 . Then, we build a

linear regression model from these data. The usage of the linear

regressionmodel is based on two considerations: (1) it is lightweight,

and (2) the computing time of a specific slice has a linear relationship

with the number of concurrent offloading tasks [33]. Based on above

analysis, we use 𝑡ℎ𝑖 = 𝑥0𝑝
ℎ
𝑖 +𝑥1 to fit all these data, where 𝑥0 and 𝑥1

is the parameters to be learned from these data. Finally, Hyperion

calibrate preliminary predicted time through 𝑡𝑟 = 𝑥0𝑝
𝑟 + 𝑥1. When

there is no historical data at the beginning of the kernel execution,

we use the value of 𝑥0 and 𝑥1 from other kernels as a substitute if

available. Otherwise, we can directly utilize the preliminary time

as the estimated time to solve the cold start problem.

4.3 Pipeline-enabled and Network-adaptive
Scheduler

The scheduler decides the WG number of each slice and how many

slices to be offloaded for each computation unit at runtime. Mean-

while, it can achieve pipeline processing and adapt to network

Hyperion: A Generic and Distributed Mobile Offloading Framework on OpenCL SenSys ’22, November 6ś9, 2022, Boston, MA, USA

(1) Single-Kernel Application (2) Multi-Kernel Application

TimelinePrimary Server

Mobile

Timeline Timeline

Fetch

Data

Distributed

Execution

Fetch

Data

Local

Execution

Fetch Input Fetch Result Data

Primary Server

Mobile

Primary Server

Mobile

Fetch Input From Server

Kernel(c) Kernel(d)Kernel(b)Kernel(a)

Execute with buffered data

Execute with buffered data

Execute with buffered data

Execute with buffered data

𝑆!
"
𝑆!
#
𝑆!
$
𝑆!
% 𝑆!

&

𝑆!
"
𝑆!
#
𝑆!
$
𝑆!
% 𝑆!

&

𝑆!
"
𝑆!
#
𝑆!
$
𝑆!
% 𝑆!

&

𝐿!
" 𝐿!

#
𝐿!
$

𝐿!
%

𝑆'
%
𝑆'
& 𝑆'

(
𝑆'
)

𝑆'
%
𝑆'
& 𝑆'

(
𝑆'
)𝑆'

"
𝑆'
𝑆'

$

𝐿'
$

𝐿'
%

𝐿'
$

𝐿'
%𝐿'

"
𝐿'
#

𝑆*
$

𝑆*
"

𝑆*
#

𝑆*
$

𝑆*
"

𝑆*
#

𝑆*
$

𝐿*
$

𝐿*
%

𝐿*
"

𝐿*
#

𝐿*
$

𝐿*
%

Figure 11: Examples of pipeline processing. 𝑆 and 𝐿 are slices assigned to the edge server and mobile, respectively.

dynamics in online scheduling. Before we introduce the scheduling

strategy, we first explain the main idea of pipeline processing.

4.3.1 Pipeline Processing. As we have mentioned in the system

overview, the data transmission overhead for Hyperion is mainly

caused by the wireless communication between the mobile device

and the primary server. The key to reduce the data transmission

cost during the whole offloading process is to make the data trans-

mission and distributed computing form a pipeline. The pipeline

design is simple for single-kernel applications but is a challenge for

multi-kernel applications because OpenCL-level scheduling lacks a

global perspective of structures of kernels. Thus, without knowing

the future kernel to be executed, it prevents the scheduler from

better deciding the data placement and achieving more efficient

computing. To address this, we propose a lazy-transmission mecha-

nism to transmit data on demand for better pipeline parallelism.

We use examples to illustrate the pipeline processing idea in

Hyperion. Figure 11(a) shows an example of the single-kernel ap-

plication, where 𝐿𝑖𝑎, 𝑖 ∈ {1, 2, 3, 4} denote the slices allocated to

local device (namely, local slice), and 𝑆𝑖𝑎, 𝑖 ∈ {1, 2, . . . , 5} denote the

slices allocated to the edge server (namely, server slice). The pipeline

is easy to form in this case. When executing slices in servers, the

primary server can organize data upload of the next slice and re-

sult download for the previous slice. For example, when executing

𝑆3𝑎 , the upload of 𝑆4𝑎 and the download of 𝑆2𝑎 can be processed in

parallel. The devices achieve balanced loads if the last execution

of local slice (i.e., 𝐿4𝑎) and last download of server slice (i.e., 𝑆5𝑎) are

simultaneously finished. However, the situation becomes complex

in multi-kernel applications, as shown in Figure 11(b). In this case,

to avoid unnecessary data transmissions, when a server completes

a slice, we do not immediately transfer the result data back to the

local device, but check if only edge servers will use these data in

subsequent computations. If true, these data will be buffered in the

primary edge server to reduce network overhead. Similarly, the

local device also maintains a buffer to store the result data of local

slices. However, it is a challenge to know the subsequent computa-

tions because conditional branches may occur. To address this, we

propose a lazy-transmission mechanism: except for the last kernel,

the result data are temporarily stored in the corresponding buffer

and are not transmitted through the network. When executing a

subsequent kernel, we first decide the workload assigned to the

local and edge servers, and check whether the buffer contains all in-

put data. If not, Hyperion sends a request to fetch missing data and

starts the execution with available data in the buffer. For example,

after kernel(c) in Figure 11(b) is launched, Hyperion first executes

the WGs using the available input data from the buffer, such as

local slice 𝐿1𝑐 and 𝐿2𝑐 , and server slice 𝑆1𝑐 , 𝑆
2
𝑐 , and 𝑆3𝑐 . At the same

time, Hyperion transmits essential data to ensure the completion

of other slices, i.e., upload data of 𝑆4𝑐 to 𝑆7𝑐 , and download data for

𝐿3𝑐 and 𝐿4𝑐 . Similarly, for the kernel(d), Hyperion first checks the

buffer and directly executes the slice with the buffer data: local slice

𝐿1
𝑑
, 𝐿2

𝑑
and server slice 𝑆1

𝑑
, 𝑆2

𝑑
. Meanwhile, the edge server obtains

the essential data for 𝑆3
𝑑
, and the mobile obtains the data of 𝐿3

𝑑
, 𝐿4

𝑑
.

The process of data transmission and computing can form pipeline

parallelism. As kernel(d) is the last kernel of the application, the

edge server should transmit the result data (i.e., 𝑆1
𝑑
, 𝑆2

𝑑
, and 𝑆3

𝑑
) to

the mobile device and empties its buffer. In kernel(c), Hyperion

achieves load balance when both the computation of the server

and mobile finish at the same time, conducing to high resource

utilization. For kernel(d), we should consider the network overhead

of result data transmission. In this case, load balance is achieved if

the download of the last server slice and the execution of the last

execution of local slice simultaneously finish.

Guided by the pipeline processing idea mentioned above, we

introduce the scheduling strategy in Hyperion in the following.

Before kernel execution, we need to complete the preparatory work,

including kernel analysis and offline training. After the kernel

execution starts, the scheduler first makes scheduling decisions for

mobile and the primary edge server. A scheduling decision includes

how many WGs the device should execute in the next period of

time and how much data should be fetched. The primary edge

server is responsible for managing the data received from mobile.

This server will send data to the target edge for execution when it

receives an execution command from the scheduler. The scheduler

will make the next decision after completing the last execution or

transmission. The workflow of the scheduler is as follows: (1) First,

we evaluate the performance of distributed computing, and (2) set

an upper bound of WG number in each slice to cope with dynamic

network conditions. (3) During runtime, the scheduler decides the

SenSys ’22, November 6ś9, 2022, Boston, MA, USA Ziyan Fu, Ju Ren, Yunxin Liu, Ting Cao, Deyu Zhang, Yuezhi Zhou, and Yaoxue Zhang

ideal WG number in each slice for pipeline processing with the

latest network conditions. (4) With the derived information in the

previous two steps, we can determine the WG number of the next

slice and adjust the workload assigned to the local and edge servers,

respectively.

4.3.2 Computing Time Predictor for Multiple Edge Servers. In the

scheduling process, it is common for Hyperion to predict the com-

puting time of distributed computing across multiple edge servers

and then determine whether the offloading is worthwhile. Specifi-

cally, assuming that 𝑁 servers provide computing services to the

mobile user, based on the prediction result in Section 4.2.2, we can

calculate the computing time 𝑡 = 𝑇𝑖 (𝑤) of𝑤 WGs in server 𝑖 . Mean-

while, we can also decide the number WGs that each server can

complete in a give time, which denote as𝑤 = 𝑇−1𝑖 (𝑡). Thus, in this

given time 𝑡 , these servers can finish𝑤 ′WGs through distributed

computing, where

𝑤 ′ = 𝑇−1
1
(𝑡) +𝑇−1

2
(𝑡) + . . . +𝑇−1𝑁 (𝑡) . (1)

We use 𝑇−1𝑠 (𝑡) = Σ
𝑁
𝑖=1𝑇

−1
𝑖 (𝑡) to abbreviate Eq. (1), and 𝑡 = 𝑇𝑠 (𝑤) is

the time of distributed computing.

4.3.3 Getting the Upper Bound of WG number. Then, we determine

the upper bound of the WG number in a single slice. This upper

bound is set mainly due to the dynamic network conditions. If a slice

has excessive WGs and the network condition changes at runtime,

the computing time and network transmission overhead will differ

from the predicted value, which harms overall performance. For

example, when a slice is executed by the server, and the network

throughput goes down at this time, the time for the mobile device to

obtain the result data will be extended. The local has nothing to do

except wait for the data. Actually, it is better to assign less workload

to edge servers and more to the mobile for better-balanced loads.

A possible solution is to minimize the workload in the slice, i.e.,

only one WG in each slice, where Hyperion adjust the workload for

each backend device for better-balanced load according to the latest

network conditions. However, this solution degrades the compu-

tation efficiency due to the low occupancy of hardware resources.

Contrarily, assigning a large workload improves the computation

efficiency but also incurs low responsiveness due to long execution

and transmission time. As a result, it is more susceptible to dynamic

networks that the time is inconsistent with that of the scheduling

predicted, and thus it difficult to achieve balanced loads. Thus, we

appropriately allow a small amount of computational overhead

and choose the smallest WG number within the overhead limit to

cope with the dynamic network conditions. We use 𝑐 to denote this

overhead.

Specifically, we first find the minimum computing time across

all possible partition plans:

𝑇𝑘
𝑐 =𝑚𝑖𝑛𝑤 (⌈

𝑀

𝑤
⌉𝑇𝑘 (𝑤)) 𝑘 ∈ {𝑙, 𝑠}, (2)

where𝑀 is the total number of WGs in the kernel, and the𝑇𝑙 (𝑤) is

the computing time of local execution with a slice of𝑤 WGs. Then,

we find the minimum WG number with at most 𝑐 overhead:

𝑤𝑘
max =𝑚𝑖𝑛{𝑤 | ⌈

𝑀

𝑤
⌉𝑇𝑘 (𝑤) ≤ (𝑐 + 1)𝑇

𝑘
𝑐 } 𝑘 ∈ {𝑙, 𝑠}, (3)

where𝑤𝑘
max is the upper bound of WG number in each slice for the

local and edge, respectively.

4.3.4 Deciding the WG Number for Pipeline Processing. With the

upper bound, the scheduler then needs to decide the WG number

in each slice to maximize the pipeline parallelism. In the ideal case,

the computational overhead of each slice can just cover the data

transmission overhead. Specifically, for the edge servers, we find

the minimum WG number𝑤𝑠
0
that satisfies:

𝑤𝑠
0
=𝑚𝑖𝑛{𝑤 | max{

𝑤𝑠𝑖

𝑏𝑢
,
𝑤𝑠𝑜

𝑏𝑑
} = 𝑇𝑠 (𝑤)}. (4)

Hyperion uses 𝑠𝑖 and 𝑠𝑜 to denote average input and output data

size perWG, and𝑏𝑢 and𝑏𝑑 to denote network upload and download

throughput. As we only perform result data transmissions for the

last kernel of the application, 𝑠𝑜 = 0 if the kernel is not the last. We

select the minimum WG number to react to the dynamic network

conditions quickly. We only consider the overhead of input data

transmissions for the local device if local data is incomplete. On

this occasion, we find the minimum WG number𝑤𝑙
0
that satisfies:

𝑤𝑙
0
=𝑚𝑖𝑛{𝑤 |

𝑤𝑠𝑖

𝑏𝑑
= 𝑇𝑙 (𝑤)}. (5)

If the computing time is always larger than the data transmis-

sion time, we choose the largest possible WG number (i.e., 𝑤𝑘
0
=

𝑤𝑘
max, 𝑘 ∈ {𝑙, 𝑠}) to reduce computational overhead. Conversely, if

the computing time is always less than the data transmission time,

we choose the smallest possible WG number to react to dynamic

network conditions quickly.

4.3.5 Workload Scheduling. Algorithm 1 shows the process of our

scheduling algorithm. Hyperion first decides the remaining work-

load assigned to the local and edge servers, respectively (Lines 1-11).

This information is used by the lazy-transmission mechanism to

decide necessary input data to be transmitted. At the same time,

we detect whether the next slice is the last one, and if so, we need

to treat it specially to ensure balanced loads. The second part is

to decide the next WG numbers for requesting input data, execut-

ing, and sending output data (Lines 12-23). This decision should

consider several conditions to maintain high pipeline parallelism.

For example, some input data have been buffered in devices for

multi-kernel applications, and meanwhile, the value of 𝑤𝑘
0
is in

constant change due to dynamic network conditions.

Specifically, Hyperion enumerates all possible schedule plans

(Lines 2-3) and estimates the finish time of the kernel (Lines 4-

10). This estimation includes analysis of computational overhead

and data transmission overhead. The computational overhead is

estimated based on the computing efficiency (Line 1), which is

the WG execution speed with 𝑤𝑘
max (𝑘 ∈ {𝑙, 𝑠}) WGs in slices.

Meanwhile, the data transmission overhead is estimated by the size

of data and the latest network throughput. In particular, we need to

check whether the current kernel is the last one of the application,

and if so, we need to consider the result data transmission to local

(Line 5). Finally, we select the schedule plan with the shortest finish

time as the target plan (Lines 10-11).

In the second part, Hyperion first checks available WGs (𝑤𝑘
𝑎)

whose data is already received by the local or edge but not yet exe-

cuted (Line 12). Then, Hyperion adopt different scheduling policies

based on the relationship between𝑤𝑘
𝑎 ,𝑤

𝑘
0
, and𝑤𝑘

𝑡 (𝑘 ∈ {𝑙, 𝑠}). We

first check if all input data is ready for the current device, and no

data transmission is required in this case (Lines 13-14). Then, if the

Hyperion: A Generic and Distributed Mobile Offloading Framework on OpenCL SenSys ’22, November 6ś9, 2022, Boston, MA, USA

Algorithm 1: Scheduling Algorithm

Input :Latest execution or transmission finish time for local

and server: 𝑓𝑙 , 𝑓𝑠
The number of WGs of which data is ready:𝑤𝑙

𝑟 ,𝑤
𝑠
𝑟

The number of WGs exeucted:𝑤𝑙
𝑒 ,𝑤

𝑠
𝑒

Upper bound of WG number in a slice:𝑤𝑙
max,𝑤

𝑠
max

Ideal WG numbrer for pipeline processing:𝑤𝑙
0
,𝑤𝑠

0

Total WGs currently unexecuted:𝑤𝑢

The number of WGs of which result data have

transmitted to local:𝑤𝑠
𝑑

Output :𝑤𝑒 ,𝑤𝑖 ,𝑤𝑜 : executing𝑤𝑒 WGs for next slice, and

requiring input of𝑤𝑖 WGs and output of𝑤𝑜 WGs.

1 𝐸𝑙𝑐 ←
𝑇𝑙 (𝑤

𝑙
max)

𝑤𝑙
max

, 𝐸𝑠𝑐 ←
𝑇𝑠 (𝑤

𝑠
max)

𝑤𝑠
max

, 𝐹0 ←∞

2 for 𝑖 = 0→ 𝑤𝑟 do

3 𝑤𝑙 ← 𝑖 +𝑤𝑙
𝑒 ,𝑤𝑠 ← 𝑤𝑟 − 𝑖 +𝑤

𝑠
𝑒

4 if the kernel is the last kernel in the application then

5 𝐶𝑙
𝑑
← (𝑤𝑙 −𝑤

𝑙
𝑟)

𝑠𝑖
𝑏𝑑
+ (𝑤𝑠 −𝑤

𝑠
𝑑
)
𝑠𝑜
𝑏𝑑

6 else

7 𝐶𝑙
𝑑
← (𝑤𝑙 −𝑤

𝑙
𝑟)

𝑠𝑖
𝑏𝑑

8 𝐹𝑙 ← 𝑓𝑙 +𝑚𝑎𝑥{𝐶𝑙
𝑑
, (𝑤𝑙 −𝑤

𝑙
𝑒)𝐸

𝑙
𝑐 }

9 𝐹𝑠 ← 𝑓𝑠 +𝑚𝑎𝑥{(𝑤𝑠 −𝑤
𝑠
𝑟)

𝑠𝑖
𝑏𝑢

, (𝑤𝑠 −𝑤
𝑠
𝑒)𝐸

𝑠
𝑐 }

10 if 𝑚𝑎𝑥{𝐹𝑙 , 𝐹𝑠 } < 𝐹0 then

11 𝐹0 ←𝑚𝑎𝑥{𝐹𝑙 , 𝐹𝑠 },𝑤
𝑙
𝑡 ← 𝑤𝑙 ,𝑤

𝑠
𝑡 ← 𝑤𝑠

12 𝑤𝑘
𝑎 ← 𝑤𝑘

𝑟 −𝑤
𝑘
𝑒 (𝑘 = 𝑙 if scheduling for the local, or 𝑘 = 𝑠)

13 if 𝑤𝑘
𝑡 ≤ 𝑤𝑘

𝑎 then

14 𝑤𝑒 ← min(𝑤𝑘
𝑡 ,𝑤

𝑘
max)

15 else if 𝑤𝑘
𝑎 < 𝑤𝑘

0
then

16 𝑤𝑖 ← min(𝑤𝑘
0
−𝑤𝑘

𝑎 ,𝑤
𝑘
𝑡 −𝑤

𝑘
𝑎)

17 else if 𝑤𝑘
0
<= 𝑤𝑘

𝑎 then

18 𝑤𝑒 ← min(𝑤𝑘
𝑎 ,𝑤

𝑘
max)

19 if scheduling for local device then

20 𝑤𝑖 ← min(
𝑏𝑑𝑇𝑙 (𝑤𝑒)

𝑠𝑖
,𝑤𝑙

𝑡 −𝑤
𝑙
𝑎)

21 else

22 𝑤𝑖 ← min(
𝑏𝑢𝑇𝑠 (𝑤𝑒)

𝑠𝑖
,𝑤𝑠

𝑡 −𝑤
𝑠
𝑎), 𝑤𝑜 ←

𝑏𝑑𝑇𝑠 (𝑤𝑒)
𝑠𝑜

23 Return𝑤𝑖 , 𝑤𝑒 , 𝑤𝑜

available WGs cannot meet ideal pipeline parallelism, we continue

to transmit the input data until𝑤𝑘
𝑎 = 𝑤𝑘

0
and do not allocate slice

execution on edge servers (Lines 15-16). This policy will improve

the pipeline parallelism of the next slice. The most complicated

condition is when more than𝑤𝑘
0
WGs are available, we allocate the

maximum feasible WGs𝑤 for execution and, meanwhile, progress

the data transmissions within the predicted execution time (i.e.,

𝑇𝑘 (𝑤)) (Lines 17-22).

In addition, Hyperion estimates the remaining number of slices

to finish the kernel computation based on the scheduling algorithm.

If there are only two slices left, we decide whether to merge these

slices. This is because the last slice may have small workloads,

which leads to high overhead. Finally, Hyperion predicts the finish

time of these two plans and selects the efficient one to execute.

4.4 Overhead Analysis

The overall complexity is 𝑂 (𝑁𝑀 + 𝑀𝑓), 𝑂 (𝑁𝑀) for predicting

distributed computing performance and 𝑂 (𝑀𝑓) for the scheduler.

𝑁 is the number of servers, 𝑀 is the total number of WGs, and

𝑓 is the scheduling frequency, which equals the number of slices

generated during online scheduling. This scheduling frequency

equals the total WG number in the worst and rare cases. Meanwhile,

𝑀 can be thousands to millions level in some kernels. To address

this issue, if a kernel has excessive WGs, we adopt a coarse-grained

scheduling approach, which further merges some WGs into chunks,

and perform the scheduling algorithm at chunk granularity instead

of WG granularity. We limit the total number of chunks which

satisfies that each schedule latency is less than the execution time

of a single WG on the mobile. Thus, the scheduling latency can be

overlapped by the kernel execution in the worst case.

5 IMPLEMENTATION AND EVALUATION

5.1 Implementation

We have implemented a prototype of Hyperion, which consists of

client side on Android and edge server side on Ubuntu 20.04 LTS.

The testbed in our evaluations consists of two edge servers and ten

mobile phones. These device numbers can be adjusted according to

actual conditions. For the edge servers, one with Intel i7-3615QM

CPU acts as the primary edge server and the other provides two

NVIDIA GTX 1080 GPU. They receive requests and directly call

the native OpenCL library for computing. For the mobiles, we

mainly use a XiaoMi BlackShark 2 for evaluation, and the others

concurrently request services to change the load of servers. We

have implemented Hyperion with C++ codes such that developers

can easily access it through Android Java Native Interface [3]. We

use gRPC [4] as the tool for communication between servers and

clients, which is a high-performance and lightweight RPC frame-

work developed by Google. The mobile phones communicate with

servers through an IEEE 802.11ac Wi-Fi connection.

5.2 Methodology

Applications:We select 5 representative image processing appli-

cations that are OpenCV-based single kernel applications [9] which

are widely deployed in modern mobile phones, and two multiple-

kernel applications, YOLOv4-tiny [6] and ResNet-50 [20] which are

DNN inference applications widely used in image object detection

and classification. Table 2 shows the application specifications, in-

cluding input configurations and function notes. We use default

data in OpenCV profiling tool as the input.

Baselines: Some baselines are implemented for comparison.

• SKMD [35]: SKMD is a task scheduling framework on OpenCL

for high-performance computing platforms, which implements

distributed computing across multiple servers. Before executing

a new kernel, the scheduler of SKMD figures out the workload

for each server targeting load balance. Each server is executed

only once (i.e., one slice).

• Greed [42]: The Greed algorithm is based on the task scheduling

method proposed in [42]. It breaks the task into several slices

(e.g., 64 slices in our experiments), each of which has the same

SenSys ’22, November 6ś9, 2022, Boston, MA, USA Ziyan Fu, Ju Ren, Yunxin Liu, Ting Cao, Deyu Zhang, Yuezhi Zhou, and Yaoxue Zhang

Table 2: Application specifications

Applications Abbr. Input Parameters Function

CvtColor CC 3840 × 2160 image, code=COLOR_Lab2BGR, scn=3, dcn=4 Color Space Conversion

WarpAffine WA 3840 × 2160 image, type=8UC3, interpolation=INTER_CUBIC Affine Transformation

AddWeighted AW 3840 × 2160 images, depth=8UC4 Blending Two Images

StitchingWarper SW 3840 × 2160 image, warper=PlaneWarperType Image Mapping

GEMM GE 4096 × 4096 matrices, type=CV_32FC1 Generialized Matrix Multiplication

YOLOv4-tiny YO 4000 × 4000 image Image Detection

ResNet-50 RS 2000 × 2000 image Image Classification

0 50 100 150 200
Wall clock time (s)

0

50

100

150

N
et

w
or

k
Th

ro
ug

hp
ut

 (M
bp

s)

Figure 12: Network throughput varia-

tion during our walk.

CC WA AW SW GE YO RS

1

2

4

8

Sp
ee
du
p

Hyperion
SKMD

Greed
SIGMOID

Figure 13: Speedup comparison under

network dynamics (higher is better).

CC WA AW SW GE YO RS
0.1

1

10

50
100

Ba
la

nc
e

di
ffe

re
nc

e
(s

) Hyperion
SKMD

Greed
SIGMOID

Figure 14: Balance difference compari-

son under network dynamics.

workload. The scheduler monitors each device and allocates a

new slice if one device completes the previous slice.

• SIGMOID [43]: SIGMOID proposes a progressive method, which

assigns large slices at the beginning of the kernel execution, and

then gradually decreases the workload to ensure load balance.

• Full-offloading: It means that all input data is sent to one of the

edge servers. This server executes all the workload and returns

the result to the local. We use Full-CPU and Full-GPU to denote

the full offloading using the Intel i7-3615QM CPU and NVIDIA

GTX 1080 GPU as the computation unit, respectively.

• No-offloading: All workloads are executed in the mobile device

without offloading.

The SKMD, Greed, and Hyperion have implemented distributed

computing for multiple servers. Besides these baselines, we also

implemented a DNN custom offloader, SPINN [33], for performance

comparison, which will be described in the following subsection.

Metric: We calculate the speedup values of these methods by

comparing their overall time with the no-offloading scheme to

present the performance gains among baselines.

5.3 Experimental Results

5.3.1 Evaluation under Dynamic Network Conditions.

Setups: We walk around our building on the campus. Our walk-

ing is performed at the speed of 5.0 km/h by taking the Xiaomi

Blackshark 2. This mobile consecutively communicates with edge

servers we have deployed in this building through Wi-Fi connec-

tions. We have recorded network throughput values for each po-

sition, which are shown in Figure 12. The average latency to our

server is 14.5ms. Then we conduct trace-driven experiments by

replaying the network throughput sequence, which is implemented

by using the TC command [7], a widely used network traffic control

tool. For each test case, this replay is recycled for 24 hours.

Experimental Results: Figures 13 and 14 show these results.

The results contain the average system speedup values and balance

difference. We define the balance difference that𝑚𝑎𝑥 (F)−𝑚𝑖𝑛(F),

where F is the vector containing the execution completion time

of the last slice for each device. We find that Hyperion can flexi-

bly adapt to dynamic conditions and achieve average 2.28×, 2.26×,

2.27×, and 3.32× speedup (2.53× on average) compared with no-

offloading, SKMD, Greed, and SIGMOID, respectively. The SKMD

cannot cope with runtime network changes because it makes sched-

uling decisions before execution and cannot adjust workloads for

each backend device at runtime. Thus, it has high balance differ-

ence values. The Greed works better in some cases (e.g., GEMM)

and worse in others (e.g., AddWeighted). This is because of dif-

ferent computational overheads for kernels. The SIGMOID does

not consider the network transmission costs. In contrast, Hyperion

maintains the balanced loads between the local and edge servers,

and thus achieves high performance and low balance difference.

5.3.2 Performance under different network throughput.

Setups: In this section, we take the network throughput as

the case study to show the performance of Hyperion without

the interference of dynamic network conditions. Figure 15 shows

the experimental results, where network throughput is limited to

50 − 300Mbps with 10ms latency by using the TC command.

System Performance of Hyperion: Hyperion has the best per-

formance among baselines, which can outperform no-offloading,

SKMD, Greed, and SIGMOID with average 5.80×, 3.80×, 4.36×,

and5.05× speedup, respectively (4.75× speedup on average for this

three baselines). Intuitively, the improvement of Hyperion is not

much relative to the sub-optimal method, which is 10.7% on aver-

age. However, this sub-optimal method is different across network

throughputs and kernel types, and this sub-optimal method may

turn into the worst case in the other conditions. For example, the

sub-optimal method of CvtColor at 50Mbps is SKMD, but as the

network throughput increase, the sub-optimal method turns to the

Greed method. Hyperion can achieve the best performance under

all network throughput and kernel types. In addition, the speedup of

Hyperion differs across kernels and network throughput. For exam-

ple, under 100Mbps, Hyperion achieves 3.80× speedup compared

Hyperion: A Generic and Distributed Mobile Offloading Framework on OpenCL SenSys ’22, November 6ś9, 2022, Boston, MA, USA

50 100 150 200 250 300
Network Throughput (Mbps)

0

1

2

3

Sp
ee

du
p

Full-GPU
Full-CPU
Greed

SKMD
SIGMOID
Hyperion

(a) CvtColor

50 100 150 200 250 300
Network Throughput (Mbps)

0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

Full-GPU
Full-CPU
Greed

SKMD
SIGMOID
Hyperion

(b) WarpAffine

50 100 150 200 250 300
Network Throughput (Mbps)

0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

Full-GPU
Full-CPU
Greed

SKMD
SIGMOID
Hyperion

(c) AddWeighted

50 100 150 200 250 300
Network Throughput (Mbps)

0

1

2

3

4

Sp
ee

du
p

Full-GPU
Full-CPU
Greed

SKMD
SIGMOID
Hyperion

(d) StitchingWarper

50 100 150 200 250 300
Network Throughput (Mbps)

0

2

4

6

Sp
ee

du
p

Full-GPU
Full-CPU
Greed

SKMD
SIGMOID
Hyperion

(e) GEMM

50 100 150 200 250 300
Network Throughput (Mbps)

0

2

4

6

8

10

Sp
ee

du
p

Full-GPU
Full-CPU
Greed

SKMD
SIGMOID
Hyperion

(f) YOLOv4-tiny

50 100 150 200 250 300
Network Throughput (Mbps)

0

10

20

30

40

Sp
ee

du
p

Full-GPU
Full-CPU
Greed

SKMD
SIGMOID
Hyperion

(g) ResNet-50

Figure 15: Evaluation results of speedup of local GPU (higher is better) with respect to different network throughput.

with the no-offloading method in YOLOv4-tiny while no speedup

occurs in WarpAffine. This is because WarpAffine requires large

data transmissions (94.9MB of common data). On this occasion,

the local GPU completes all workloads before Hyperion finishes

common data transmission. As the increase of network through-

put, Hyperion will gradually assign more workload to edge servers

for better performance. For example, 1.23× speedup occurs in the

WarpAffine under 300Mbps. In ResNet-50, the performance of Hy-

perion is not so good as full-GPU. This is because Hyperion lacks

the global perspective of kernel structures in multi-kernel applica-

tions. As Hyperion focuses on OpenCL-level scheduling, it tends

to fall into the local optimal for the current kernel, ignoring trans-

mission scheduling for future kernels. Thus, the performance may

degrade compared with application-specific methods (e.g., SPINN

in section 5.3.5) and full offloading under some conditions.

Comparing other baselines: (1) Full-offloading method trans-

mits all input data to the backend device, which suffers high network

overhead. In most cases, the performance even cannot outperform

the no-offloading method. In contrast, Hyperion can flexibly adjust

the workloads assigned to each device to fully utilize the resources

of network and computing units, and thus outperforms this method.

(2) Compared with SKMD, Hyperion implements pipeline process-

ing, where data transmissions and execution can be parallelized

for better performance. A concern may be raised that Hyperion

partition the kernel into several small workloads and thus intro-

duce substantial computational overhead. Hyperion can control

and offset this overhead in pipeline processing, thus achieving high

performance. (3) Greed method partitions the kernel into the same

number of slices (i.e., 64 in our experiment) and organizes pipeline

processing. This slice number is suitable for some kernels (i.e.,

StitchingWarper), which incurs less computational overhead and

high pipeline parallelism but cannot fit all kernels. For example, in

AddWeighted, the substantial computational overhead makes the

Greed method even cannot outperform the no-offloading method.

(4) Although SIGMOID targets high load balance, it does not con-

sider the data transmission costs and thus suffers high latency.

5.3.3 Performance of Distributed Computing. In this experiment,

we evaluate the performance of Hyperion with the different number

of servers. We employ five edge servers, each using Intel i9-10940X

CPU as the backend device. Furthermore, we use GEMM as a case

study, and the results are summarized in Figure 16. When the server

number is small, the performance increases as the server number

increases. But when a specific value is reached, the performance

arrives at the peak and cannot increase further. In this case, the

network throughput becomes the performance bottleneck. For ex-

ample, at 50Mbps, all workloads are executed locally, regardless of

the server number, as throughput is the bottleneck. At 150Mbps,

the performance increases when using 1 to 3 servers, and the perfor-

mance no longer increases when using more than 3 servers because

the network throughput becomes the bottleneck.

5.3.4 Component-wise evaluations.

Kernel Analyzer: We have evaluated the performance of Hy-

perion with or without the kernel analyzer, and Figure 17 shows

the result. The network throughput is 200Mbps in this evaluation.

The analyzer partitions the kernel data and enables the partial data

transmission feature to reduce network costs. Without the analyzer,

the performance of Hyperion has an average 35.3% reduction in our

evaluation. We also find that some applications (e.g., WA and SW)

have no performance gain. This is because the analyzer considers

that all data in these kernels are common data and cannot partition.

Lazy-Transmission Pipeline: This evaluation shows the per-

formance gains in the lazy-transmission pipeline. To achieve this,

we first design a multi-kernel application that consists of several

convolution kernels. We can manually adjust the kernel number.

Then, the execution times with and without the lazy-transmission

pipeline are obtained and summarized in Figure 18. The network

throughput is 200Mbps. Without the lazy-transmission pipeline,

all data need to transmit through the network, causing the delay.

Predictor: First, we evaluate the accuracy of the predictor and

some other methods (i.e., LGBM [29], XGBoost[11]) with offline

SenSys ’22, November 6ś9, 2022, Boston, MA, USA Ziyan Fu, Ju Ren, Yunxin Liu, Ting Cao, Deyu Zhang, Yuezhi Zhou, and Yaoxue Zhang

1 2 3 4 5
Server Number

1

2

3

4

5

6

7

Sp
ee

du
p

50 Mbps
100 Mbps
150 Mbps

200 Mbps
250 Mbps
300 Mbps

Figure 16: Impact of the

server number and network

throughput.

CC WA AW SW GE YO RS

1

5

10

20
30

Sp
ee

du
p

1.9
1.4

1.1 1.1 1.2 1.1

2.1 2.1

3.9

2.6

5.9

1.1

21.8

1.1

w/ kernel analyzer
w/o kernel analyzer

Figure 17: Performance of

Hyperion with and without

the kernel analyzer.

1 2 3 4 5 6 7 8 9 10
Number of layers

0

1

2

3

4

5

Ex
ec

ut
io

n
Ti

m
e

(s
)

with Lazy-Transmission
w/o Lazy-Transmission

Figure 18: Performance of

Hyperionwith orwithout the

lazy-transmission pipeline.

0 200 400 600 800 1000
Wall clock time (s)

0

1

2

Ti
m

e
(s

)

actual execution time
preliminary time (MSE: 0.023)
calibrated time (MSE:0.007)

Figure 19: The predicted time

under dynamic system loads

(lower MSE is better)

50 100 150 200 250 300
Network Throughput

1

3

5

7

9

Sp
ee

du
p

Hyperion (mAP: 35.23%)
SPINN early-exit 1 (mAP: 1.09%)
SPINN early-exit 2 (mAP: 12.37%)
SPINN no early-exit (mAP: 35.23%)

(a) YOLOv4-tiny

50 100 150 200 250 300
Network Throughput

0

20

40

60

80

100

Sp
ee

du
p

Hyperion (Acc. 89.2%)
SPINN early-exit 1 (Acc. 73.1%)
SPINN early-exit 2 (Acc. 79.3%)
SPINN early-exit 3 (Acc. 78.7%)
SPINN no early-exit (Acc. 89.2%)

(b) ResNet-50

Figure 20: Performance of Hyperion and SPINN. The mAP

and Acc. is the accuracy (higher is better)

data, which have 0.061, 0.078, 0.083 in mean square error, respec-

tively. Hyperion is more accurate in offline training. Second, we

conduct an online evaluation to show online accuracy. We take

GEMM as a case study and record the prediction results under

dynamic system loads. The dynamic system loads are simulated

through the way that other mobiles concurrently send computing

requests to the server, and we randomly change the loads every

minute. Figure 19 shows the result. The preliminary time only

considers concurrent task numbers and types, ignoring the actual

resource status at runtime. Thus, after the calibration of Hyperion,

the accuracy can be greatly improved.

5.3.5 Comparison with the DNN Offloading Method.

Setups: Hyperion is applicable to general OpenCL applications,

including DNN inference. In this experiment, we take YOLOv4-

tiny and Resnet-50 as the case study and compare Hyperion with

SPINN [33], the state-of-the-art offloading framework for DNN

inference. SPINN proposed a progressive inference strategy that

selected the early-exit point and offloading point according to the

timeliness requirement and network conditions. Early-exit means

skipping some DNN layers according to the timeliness requirement

and feeds the intermediate results into the classifier to get a coarse

result. Although the performance is improved, the result is less

accurate than that of the original model. The offloading point par-

titions the DNN network into two parts: the first part is executed

locally, then SPINN transmits the intermediate data to the server,

and finally, the server executes the remaining part. As SPINN did

not implement distributed computing across backend devices, we

use a single edge server (i.e., GTX 1080) for fair comparisons. The

YOLOv4-tiny has two early-exit points at layers 10 and 18, respec-

tively, and Resnet-50 has three early-exit points at layers 11, 23,

and 41, respectively. To have a better comparison between these

early-exit policies and Hyperion, we test each of them and the no

early-exit point cases, respectively. Figure 20 shows the results.

Experimental Results: In YOLOv4-tiny, Hyperion outperforms

SPINN in all conditions except when SPINN takes early-exit point

1 at 50Mbps. In this case, Hyperion still outperforms SPINN in

terms of accuracy because we do not modify the model. How-

ever, in Resnet-50, SPINN outperforms Hyperion at all times. This

is because Hyperion tends to fall into the local optimal in multi-

kernel applications, which we have discussed in Section 5.3.2. The

application-specific method can obtain more information about the

structures, and thus can have better performance.

6 DISCUSSION

Applicable scenarios and applications. Hyperion is a generic

framework for mobile offloading. Developers do not have to design

application-specific scheduling algorithms for every application

to achieve high-performance offloading, which can save develop-

ers’ engineering efforts. In terms of applicable application types,

Hyperion shows performance advantages in computing-intensive

applications. Thus, the processing of high-resolution images is a

typical application scenario. Apart from this, Hyperion is also suit-

able for linear algebraic algorithms, such as correlation coefficients

and matrix multiplication. Although audio processing and NLP

applications are also computing-intensive, the data size of audio

streams or texts is usually small. Thus, full offloading to the server

is a good choice. In this condition, the performance of Hyperion is

similar to that of full offloading because Hyperion also offloads all

workloads to the edge server. Before using Hyperion, developers

can roughly estimate performance gain through the execution time

on each device and the data transmission time, thus determining

whether it is worth using Hyperion.

Advantages. Hyperion is designed with the goal of high perfor-

mance and heterogeneity-compatible. It comprehensively judges

the impact of network conditions, device computing capability, and

kernel characteristics on performance, and chooses the ideal of-

floading strategy. Thus, performance improvement is affected by a

variety of factors. Generally speaking, Hyperion has higher perfor-

mance when it has better network conditions, higher computing

capacity of edge devices, fewer data amounts, and more compu-

tation amounts of the kernel. Under the inferior cases, Hyperion

computes tasks in the mobile GPU. Some existing methods can be

used to mitigate the burden of GPU, such as input compressing for

image processing applications and model compression or early-exit

technique for DNN-based applications.

Hyperion: A Generic and Distributed Mobile Offloading Framework on OpenCL SenSys ’22, November 6ś9, 2022, Boston, MA, USA

Limitations. Hyperion is unsuitable for irregular OpenCL ker-

nels, where WGs have inconsistent workloads. For example, in ray

tracing, the workload of each WG depends on the reflection and

refraction times. Meanwhile, it is still a challenge to predict the

computing time of such kernels at low overhead. In addition, ker-

nels with global barriers or atomic operations are not recommended

in Hyperion. For the global barrier, kernels should be organized

into Bulk Synchronous Parallel (BSP) form [10]. Specifically, the

kernel is split into two kernels with a synchronization point in the

middle. Synchronization of data is required when all devices reach

this point before continuing to the other kernel. For the atomic op-

eration, the modification of local memory from one device cannot

immediately be seen by another device, given that our WGs are

distributed across different devices. Developers need to know the

reason for atomic operations and transfer the kernel to BSP form.

Requirements for developers. Compatibility is one of design

principles of Hyperion, i.e., developers can use Hyperion without

modifying the kernel codes. When designing new applications,

developers need to follow the official manual of OpenCL, know

the basic principle of designing OpenCL kernels, and exploit the

massive parallelism of multi-core computing devices. After that,

developers need to conduct offline training of Hyperion to have a

better prediction performance during task scheduling. Hyperion can

automatically make scheduling decisions during online execution.

7 RELATED WORK

Scheduling strategy for data parallelism. Several works were

devoted to scheduling the data-parallel kernel to other devices to

alleviate exhausted GPU [8, 41, 44, 53]. These devices are generally

with inconsistent computing capacity. Pandit et al. [41] proposed

a dynamic method in which work-groups were flatted into a one-

dimension vector, and then, CPU and GPU started their work from

two ends of the vector. For integrated CPU/GPU architectures,

Zhang et al. [53] proposed a static and machine learning-based

method to distribute tasks to themost suitable device. For embedded

FPGA, Rodrıguez et al. [44] designed a shared memory architecture

and unified access to mitigate the transmission overhead. However,

all of them are designed for offloading to specific devices, which is

not generic enough and unsuitable for mobile offloading scenarios.

Heterogeneity-adaptive offloading mechanism. Optimizing

the performance under heterogeneous conditions was also studied

by many works. Zhou et al. [56] classified heterogeneous networks

into three types: cloud, cloudlet, and mobile ad-hoc cloud. Offload-

ing strategies could be automatically selected based on the resources

of different types of networks. Wang et al. [49] proposed an offload-

ing method for video object detection, which could dynamically

adjust video configurations according to real-time network con-

ditions. Hao et al. [19] studied the heterogeneities of computing

capacity and storage capacity on edge server and proposed an of-

floading mechanism to reduce system delay. However, these works

are not designed for data-parallel applications, which can be further

partitioned and optimized for collaborative computing.

Performance Prediction. Performance prediction plays an im-

portant role in task scheduling to ensure timeliness. Some works

simply use FLOPs or MAC values to predict[21, 47], which are in-

accurate because they ignore the actual runtime state of devices.

Some other works are application-specific, including the prediction

for data analytics tasks [17, 40] and neural network tasks [54, 57].

Similar to Hyperion, some works [28, 31, 54] use historical data and

build a regression model to predict the performance. However, they

do not consider the system load variation during the prediction,

which may incur errors in the result.

Pipeline optimization. Pipeline optimization is a classicmethod

and is extensively used in many areas. Streaming applications are

the typical usage scenarios [14, 16, 26], and the pipeline technique is

used to overlap the data transmission costs among computing nodes.

For DNN inference tasks, pipeline technique mitigates the insuffi-

cient hardware resources of resource-constrained devices[22, 27],

for example, executing large-size model that exceeds the memory

limit[22]. In the domain of neural network training, two kinds of

pipeline techniques implement efficient distributed training. Layer-

wise pipeline [38, 46] assigns different sub-sequences of layers on

separate computing nodes, while distributed tensor pipeline[25, 45]

focuses on a single tensor partition and assignment. In our work,

we have improved the pipeline technique (i.e., the lazy-transmission

pipeline) to better work with multi-kernel applications.

Distributed offloading mechanism. Offloading workloads to

distributed edge devices can also be frequently found in the litera-

ture. Gong [15] improved the performance by finding an optimal

workload allocation and communication order. Im et al. [24] pro-

posed a new scheduler for non-preemption workloads. Ning et al.

[39] enabled multi-edge cooperation by jointly considering con-

straints of storage capacity and execution delay. However, they are

all application-level scheduling solutions, which cannot be directly

applied to optimize a single inefficient data-parallel kernel.

8 CONCLUSION

In this paper, we propose Hyperion, which takes the first step

towards generic and distributed mobile offloading. To achieve high-

performance distributed computing, Hyperion integrates three tech-

niques of addressing the challenges in workload partition and sched-

uling at the OpenCL layer. Specifically, the regular-aware kernel

analyzer can identify the data dependency of WGs and discover

the necessary data to offload, while the context-aware predictor is

capable of perceiving the dynamic runtime status to predict the com-

puting time of a given slice. Based on them, the pipeline-enabled

and network-adaptive scheduler is designed to make offloading

decisions with the aim of forming pipeline processing and adapting

to network dynamic. Experimental results show that Hyperion can

achieve an average 3.80× speedup compared with baselines and is

highly adaptive to dynamic network conditions and system loads.

ACKNOWLEDGMENT

This research was supported in part by the National Key R&D

Program of China under Grant No. 2022YFF0604502, the National

Natural Science Foundation of China under Grant No. 62122095,

62072472, U19A2067, and 62172439, the Guoqiang Institute, Ts-

inghua University and the Natural Science Foundation of Hunan

Province, China under Grant No. 2020JJ2050, Tsinghua University

- AsiaInfo Technologies (China) Inc. Joint Research Center under

Grant No. 20203910074, the Key-Area Research and Development

Program of Guangdong Province under Grant No. 2019B010137005.

SenSys ’22, November 6ś9, 2022, Boston, MA, USA Ziyan Fu, Ju Ren, Yunxin Liu, Ting Cao, Deyu Zhang, Yuezhi Zhou, and Yaoxue Zhang

REFERENCES
[1] 2013. OpenCL - The Open Standard for Parallel Programming of Heterogeneous

Systems. https://www.khronos.org/opencl/.
[2] 2021. Multi-Process Service. https://docs.nvidia.com/deploy/pdf/CUDA_Multi_

Process_Service_Overview.pdf
[3] 2022. Android NDK | Android Developers. https://developer.android.com/ndk.
[4] 2022. gRPC. https://grpc.io/.
[5] 2022. TensorFlow Lite. https://www.tensorflow.org/lite?hl=zh-cn.
[6] Alexey. 2022. Darknet: Open Source Neural Networks in Python.

https://github.com/AlexeyAB/darknet.
[7] Werner Almesberger. 1999. Linux Network Traffic ControlÐImplementation

Overview.
[8] Mehmet E. Belviranli, Laxmi N. Bhuyan, and Rajiv Gupta. 2013. A Dynamic

Self-Scheduling Scheme for Heterogeneous Multiprocessor Architectures. ACM
Transactions on Architecture and Code Optimization 9, 4 (Jan. 2013), 1ś20. https:
//doi.org/10.1145/2400682.2400716

[9] G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal: Software Tools for the
Professional Programmer 25, 11 (2000).

[10] Thomas Cheatham, Amr Fahmy, Dan Stefanescu, and Leslie Valiant. 1996. Bulk
Synchronous Parallel Computing Ð A Paradigm for Transportable Software. In
Tools and Environments for Parallel and Distributed Systems, Amr Zaky and Ted
Lewis (Eds.). Springer US, Boston, MA, 61ś76.

[11] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’16). Association for Computing Ma-
chinery, New York, NY, USA, 785ś794. https://doi.org/10.1145/2939672.2939785

[12] Thanh Tuan Dao and Jaejin Lee. 2018. An Auto-Tuner for OpenCL Work-Group
Size on GPUs. IEEE Transactions on Parallel and Distributed Systems 29, 2 (Feb.
2018), 283ś296. https://doi.org/10.1109/TPDS.2017.2755657

[13] Ziyan Fu, Yuezhi Zhou, Chao Wu, and Yaoxue Zhang. 2021. Joint Optimization
of Data Transfer and Co-Execution for DNN in Edge Computing. In ICC 2021 -
IEEE International Conference on Communications. 1ś6. https://doi.org/10.1109/
ICC42927.2021.9500513

[14] Buğra Gedik, Scott Schneider, Martin Hirzel, and Kun-Lung Wu. 2014. Elastic
Scaling for Data Stream Processing. IEEE Transactions on Parallel and Distributed
Systems 25, 6 (June 2014), 1447ś1463. https://doi.org/10.1109/TPDS.2013.295

[15] Xiaowen Gong. 2020. Delay-Optimal Distributed Edge Computing in Wireless
Edge Networks. In IEEE INFOCOM 2020 - IEEE Conference on Computer Commu-
nications. 2629ś2638. https://doi.org/10.1109/INFOCOM41043.2020.9155272

[16] Michael I. Gordon, William Thies, and Saman Amarasinghe. 2006. Exploiting
Coarse-Grained Task, Data, and Pipeline Parallelism in Stream Programs. ACM
SIGOPS Operating Systems Review 40, 5 (Oct. 2006), 151ś162. https://doi.org/10.
1145/1168917.1168877

[17] Andrea Gulino, Arif Canakoglu, Stefano Ceri, and Danilo Ardagna. 2020. Per-
formance Prediction for Data-driven Workflows on Apache Spark. In 2020
28th International Symposium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems (MASCOTS). 1ś8. https://doi.org/10.1109/
MASCOTS50786.2020.9285944

[18] Mengxi Hanyao, Yibo Jin, Zhuzhong Qian, Sheng Zhang, and Sanglu Lu. 2021.
Edge-Assisted Online On-device Object Detection for Real-time Video Analytics.
In IEEE INFOCOM 2021 - IEEE Conference on Computer Communications. 1ś10.
https://doi.org/10.1109/INFOCOM42981.2021.9488741

[19] Hao Hao, Changqiao Xu, Lujie Zhong, and Gabriel-Miro Muntean. 2020. A Multi-
update Deep Reinforcement Learning Algorithm for Edge Computing Service
Offloading. In Proceedings of the 28th ACM International Conference on Multimedia
(MM ’20). Association for Computing Machinery, New York, NY, USA, 3256ś3264.
https://doi.org/10.1145/3394171.3413702

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, Las Vegas, NV, USA, 770ś778. https:
//doi.org/10.1109/CVPR.2016.90

[21] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. 2018. AMC:
AutoML for Model Compression and Acceleration on Mobile Devices. In Proceed-
ings of the European Conference on Computer Vision (ECCV). 784ś800.

[22] Xueyu Hou, Yongjie Guan, Tao Han, and Ning Zhang. 2022. DistrEdge: Speeding
up Convolutional Neural Network Inference on Distributed Edge Devices. In
2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
1097ś1107. https://doi.org/10.1109/IPDPS53621.2022.00110

[23] Loc N. Huynh, Youngki Lee, and Rajesh Krishna Balan. 2017. DeepMon: Mobile
GPU-based Deep Learning Framework for Continuous Vision Applications. In
Proceedings of the 15th Annual International Conference on Mobile Systems, Ap-
plications, and Services - MobiSys ’17. ACM Press, Niagara Falls, New York, USA,
82ś95. https://doi.org/10.1145/3081333.3081360

[24] S. Im, M. Naghshnejad, and M. Singhal. 2016. Scheduling Jobs with Non-Uniform
Demands on Multiple Servers without Interruption. In IEEE INFOCOM 2016 - The
35th Annual IEEE International Conference on Computer Communications. 1ś9.
https://doi.org/10.1109/INFOCOM.2016.7524417

[25] Zhihao Jia, Matei Zaharia, and Alex Aiken. 2019. Beyond Data and Model
Parallelism for Deep Neural Networks. Proceedings of Machine Learning and
Systems 1 (April 2019), 1ś13.

[26] Basri Kahveci and Buğra Gedik. 2020. Joker: Elastic Stream Processing with
Organic Adaptation. J. Parallel and Distrib. Comput. 137 (March 2020), 205ś223.
https://doi.org/10.1016/j.jpdc.2019.10.012

[27] Daniel Kang, Ankit Mathur, Teja Veeramacheneni, Peter Bailis, and Matei Zaharia.
2020. Jointly Optimizing Preprocessing and Inference for DNN-based Visual
Analytics. arXiv:2007.13005 [cs]

[28] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason
Mars, and Lingjia Tang. 2017. Neurosurgeon: Collaborative Intelligence Between
the Cloud and Mobile Edge. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, Xi’an China, 615ś629. https://doi.org/10.1145/3037697.3037698

[29] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boosting
Decision Tree. In Advances in Neural Information Processing Systems, Vol. 30.
Curran Associates, Inc.

[30] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo, and Jaejin Lee.
2012. SnuCL: An OpenCL Framework for Heterogeneous CPU/GPU Clusters. In
Proceedings of the 26th ACM International Conference on Supercomputing - ICS
’12. ACM Press, San Servolo Island, Venice, Italy, 341. https://doi.org/10.1145/
2304576.2304623

[31] Youngsok Kim, Joonsung Kim, Dongju Chae, Daehyun Kim, and Jangwoo Kim.
2019. 𝜇Layer: Low Latency On-Device Inference Using Cooperative Single-
Layer Acceleration and Processor-Friendly Quantization. In Proceedings of the
Fourteenth EuroSys Conference 2019. ACM, Dresden Germany, 1ś15. https://doi.
org/10.1145/3302424.3303950

[32] Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei
Jiao, Lorena Qendro, and Fahim Kawsar. 2016. DeepX: A Software Accelerator for
Low-Power Deep Learning Inference on Mobile Devices. In 2016 15th ACM/IEEE
International Conference on Information Processing in Sensor Networks (IPSN). 1ś12.
https://doi.org/10.1109/IPSN.2016.7460664

[33] Stefanos Laskaridis, Stylianos I. Venieris, Mario Almeida, Ilias Leontiadis, and
Nicholas D. Lane. 2020. SPINN: Synergistic Progressive Inference of Neural
Networks over Device and Cloud. In Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking (MobiCom ’20). Association
for Computing Machinery, New York, NY, USA, 1ś15. https://doi.org/10.1145/
3372224.3419194

[34] C. Lattner and V. Adve. 2004. LLVM: A Compilation Framework for Lifelong
Program Analysis Transformation. In International Symposium on Code Genera-
tion and Optimization, 2004. CGO 2004. 75ś86. https://doi.org/10.1109/CGO.2004.
1281665

[35] Janghaeng Lee, Mehrzad Samadi, Yongjun Park, and Scott Mahlke. 2015. SKMD:
Single Kernel onMultiple Devices for Transparent CPU-GPU Collaboration. ACM
Transactions on Computer Systems 33, 3 (Aug. 2015), 1ś27. https://doi.org/10.
1145/2798725

[36] Jing Li, Wei Xu, Jianguo Zhang, Maojun Zhang, Zhengming Wang, and Xuelong
Li. 2015. Efficient Video Stitching Based on Fast Structure Deformation. IEEE
Transactions on Cybernetics 45, 12 (2015), 2707ś2719. https://doi.org/10.1109/
TCYB.2014.2381774

[37] Sparsh Mittal and Jeffrey S. Vetter. 2015. A Survey of CPU-GPU Heterogeneous
Computing Techniques. Comput. Surveys 47, 4 (July 2015), 1ś35. https://doi.org/
10.1145/2788396

[38] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R.
Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. 2019.
PipeDream: Generalized Pipeline Parallelism for DNN Training. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles. ACM, Huntsville
Ontario Canada, 1ś15. https://doi.org/10.1145/3341301.3359646

[39] Z. Ning, P. Dong, X. Wang, S. Wang, X. Hu, S. Guo, T. Qiu, B. Hu, and R. Y. K.
Kwok. 2021. Distributed and Dynamic Service Placement in Pervasive Edge
Computing Networks. IEEE Transactions on Parallel and Distributed Systems 32,
6 (June 2021), 1277ś1292. https://doi.org/10.1109/TPDS.2020.3046000

[40] Kay Ousterhout, Christopher Canel, Sylvia Ratnasamy, and Scott Shenker. 2017.
Monotasks: Architecting for Performance Clarity in Data Analytics Frameworks.
In Proceedings of the 26th Symposium on Operating Systems Principles (SOSP ’17).
Association for Computing Machinery, New York, NY, USA, 184ś200. https:
//doi.org/10.1145/3132747.3132766

[41] Prasanna Pandit and R. Govindarajan. 2014. Fluidic Kernels: Cooperative
Execution of OpenCL Programs on Multiple Heterogeneous Devices. In Pro-
ceedings of Annual IEEE/ACM International Symposium on Code Generation
and Optimization - CGO ’14. ACM Press, Orlando, FL, USA, 273ś283. https:
//doi.org/10.1145/2581122.2544163

[42] Borja Pérez, José Luis Bosque, and Ramón Beivide. 2016. Simplifying Program-
ming and Load Balancing of Data Parallel Applications on Heterogeneous Sys-
tems. In Proceedings of the 9th Annual Workshop on General Purpose Processing
Using Graphics Processing Unit - GPGPU ’16. ACM Press, Barcelona, Spain, 42ś51.
https://doi.org/10.1145/2884045.2884051

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://doi.org/10.1145/2400682.2400716
https://doi.org/10.1145/2400682.2400716
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/TPDS.2017.2755657
https://doi.org/10.1109/ICC42927.2021.9500513
https://doi.org/10.1109/ICC42927.2021.9500513
https://doi.org/10.1109/TPDS.2013.295
https://doi.org/10.1109/INFOCOM41043.2020.9155272
https://doi.org/10.1145/1168917.1168877
https://doi.org/10.1145/1168917.1168877
https://doi.org/10.1109/MASCOTS50786.2020.9285944
https://doi.org/10.1109/MASCOTS50786.2020.9285944
https://doi.org/10.1109/INFOCOM42981.2021.9488741
https://doi.org/10.1145/3394171.3413702
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/IPDPS53621.2022.00110
https://doi.org/10.1145/3081333.3081360
https://doi.org/10.1109/INFOCOM.2016.7524417
https://doi.org/10.1016/j.jpdc.2019.10.012
https://arxiv.org/abs/2007.13005
https://doi.org/10.1145/3037697.3037698
https://doi.org/10.1145/2304576.2304623
https://doi.org/10.1145/2304576.2304623
https://doi.org/10.1145/3302424.3303950
https://doi.org/10.1145/3302424.3303950
https://doi.org/10.1109/IPSN.2016.7460664
https://doi.org/10.1145/3372224.3419194
https://doi.org/10.1145/3372224.3419194
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/2798725
https://doi.org/10.1145/2798725
https://doi.org/10.1109/TCYB.2014.2381774
https://doi.org/10.1109/TCYB.2014.2381774
https://doi.org/10.1145/2788396
https://doi.org/10.1145/2788396
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1109/TPDS.2020.3046000
https://doi.org/10.1145/3132747.3132766
https://doi.org/10.1145/3132747.3132766
https://doi.org/10.1145/2581122.2544163
https://doi.org/10.1145/2581122.2544163
https://doi.org/10.1145/2884045.2884051

Hyperion: A Generic and Distributed Mobile Offloading Framework on OpenCL SenSys ’22, November 6ś9, 2022, Boston, MA, USA

[43] Borja Pérez, E. Stafford, J.L. Bosque, and R. Beivide. 2021. Sigmoid: An Auto-Tuned
Load Balancing Algorithm for Heterogeneous Systems. J. Parallel and Distrib.
Comput. 157 (Nov. 2021), 30ś42. https://doi.org/10.1016/j.jpdc.2021.06.003

[44] Alfonso Rodrıguez, Juan Valverde, and Eduardo de la Torre. 2015. Design
of OpenCL-compatible Multithreaded Hardware Accelerators with Dynamic
Support for Embedded FPGAs. In 2015 International Conference on ReConFig-
urable Computing and FPGAs (ReConFig). IEEE, Riviera Maya, Mexico, 1ś7.
https://doi.org/10.1109/ReConFig.2015.7393297

[45] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Pen-
porn Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, Ryan Sepassi, and Blake Hechtman. 2018. Mesh-TensorFlow: Deep Learn-
ing for Supercomputers. In Advances in Neural Information Processing Systems,
Vol. 31. Curran Associates, Inc.

[46] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2020. Megatron-LM: Training Multi-Billion Parameter
Language Models Using Model Parallelism. arXiv:1909.08053 [cs]

[47] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew
Howard, and Quoc V. Le. 2019. MnasNet: Platform-Aware Neural Architecture
Search for Mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2820ś2828.

[48] Robert A. van Engelen. 2001. Efficient Symbolic Analysis for Optimizing Com-
pilers. In Compiler Construction (Lecture Notes in Computer Science), Reinhard
Wilhelm (Ed.). Springer, Berlin, Heidelberg, 118ś132. https://doi.org/10.1007/3-
540-45306-7_9

[49] C.Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, andM. Xiao. 2020. Joint Configuration
Adaptation and Bandwidth Allocation for Edge-based Real-time Video Analytics.
In IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. 257ś266.
https://doi.org/10.1109/INFOCOM41043.2020.9155524

[50] Wenwen Wang, Pen-Chung Yew, Antonia Zhai, Stephen McCamant, Youfeng
Wu, and Jayaram Bobba. 2017. Enabling Cross-ISA Offloading for COTS Binaries.
In Proceedings of the 15th Annual International Conference on Mobile Systems,

Applications, and Services - MobiSys ’17. ACM Press, Niagara Falls, New York,
USA, 319ś331. https://doi.org/10.1145/3081333.3081337

[51] Mengwei Xu, FengQian,Mengze Zhu, FeifanHuang, Saumay Pushp, andXuanzhe
Liu. 2020. DeepWear: Adaptive Local Offloading for On-Wearable Deep Learning.
IEEE Transactions on Mobile Computing 19, 2 (2020), 314ś330. https://doi.org/10.
1109/TMC.2019.2893250

[52] Lei Yang, Jiannong Cao, Shaojie Tang, Di Han, and Neeraj Suri. 2016. Run
Time Application Repartitioning in Dynamic Mobile Cloud Environments. IEEE
Transactions on Cloud Computing 4, 3 (July 2016), 336ś348. https://doi.org/10.
1109/TCC.2014.2358239

[53] Feng Zhang, Jidong Zhai, Bingsheng He, Shuhao Zhang, and Wenguang Chen.
2017. Understanding Co-Running Behaviors on Integrated CPU/GPU Architec-
tures. IEEE Transactions on Parallel and Distributed Systems 28, 3 (March 2017),
905ś918. https://doi.org/10.1109/TPDS.2016.2586074

[54] Li Lyna Zhang, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting Cao, Yuqing Yang,
and Yunxin Liu. 2021. Nn-Meter: Towards Accurate Latency Prediction of Deep-
Learning Model Inference on Diverse Edge Devices. In Proceedings of the 19th
Annual International Conference on Mobile Systems, Applications, and Services.
Association for Computing Machinery, New York, NY, USA, 81ś93.

[55] Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer. 2018.
DeepThings: Distributed Adaptive Deep Learning Inference on Resource-
Constrained IoT Edge Clusters. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 37, 11 (2018), 2348ś2359. https://doi.org/10.1109/
TCAD.2018.2858384

[56] Bowen Zhou, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, Satish Narayana
Srirama, and Rajkumar Buyya. 2017. mCloud: A Context-Aware Offloading
Framework for Heterogeneous Mobile Cloud. IEEE Transactions on Services
Computing 10, 5 (Sept. 2017), 797ś810. https://doi.org/10.1109/TSC.2015.2511002

[57] Hongyu Zhu, Amar Phanishayee, and Gennady Pekhimenko. 2020. Daydream:
Accurately Estimating the Efficacy of Optimizations for {DNN} Training. In 2020
USENIX Annual Technical Conference (USENIX ATC 20). 337ś352.

https://doi.org/10.1016/j.jpdc.2021.06.003
https://doi.org/10.1109/ReConFig.2015.7393297
https://arxiv.org/abs/1909.08053
https://doi.org/10.1007/3-540-45306-7_9
https://doi.org/10.1007/3-540-45306-7_9
https://doi.org/10.1109/INFOCOM41043.2020.9155524
https://doi.org/10.1145/3081333.3081337
https://doi.org/10.1109/TMC.2019.2893250
https://doi.org/10.1109/TMC.2019.2893250
https://doi.org/10.1109/TCC.2014.2358239
https://doi.org/10.1109/TCC.2014.2358239
https://doi.org/10.1109/TPDS.2016.2586074
https://doi.org/10.1109/TCAD.2018.2858384
https://doi.org/10.1109/TCAD.2018.2858384
https://doi.org/10.1109/TSC.2015.2511002

	Abstract
	1 introduction
	2 Background and Motivation
	3 Hyperion System Overview
	4 System Design
	4.1 Regularity-Aware Kernel Analyzer
	4.2 Context-Aware Computing Time Predictor
	4.3 Pipeline-enabled and Network-adaptive Scheduler
	4.4 Overhead Analysis

	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Methodology
	5.3 Experimental Results

	6 Discussion
	7 Related Work
	8 Conclusion
	References

