

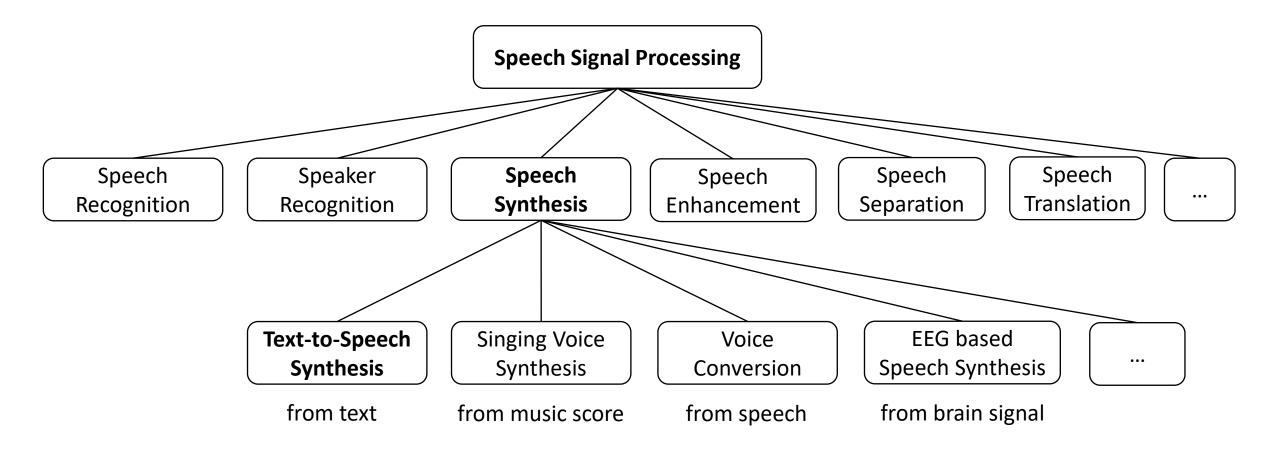
Deep Generative Models for Text-to-Speech Synthesis

Xu Tan/谭旭 Microsoft Research Asia Principal Research Manager <u>xuta@microsoft.com</u>

Deep Generative Models for TTS, Xu Tan

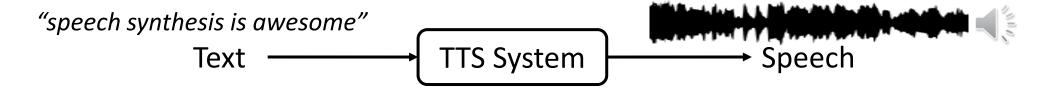
Outline

- Background
 - Text-to-Speech Synthesis
 - Deep Generative Models
- Deep Generative Models for TTS
 - AR/Flow/GAN/VAE/Diffusion based TTS Models
 - Comparisons and Analyses
- Summary and Outlook



Text-to-Speech Synthesis

• Text-to-speech (TTS): generate intelligible and natural speech from text



- Enabling machine to speak is an important part of AI
 - TTS (speaking) is as important as ASR (listening), NLU (reading), NLG (writing)
 - Human beings tried to build TTS systems dating back to the 12th century

					Neural TTS
1950s	1970s	199	90s	2010s	WaveNet (DeepMind) 2016
Articulatory Synthesis	Formant Synthesis	Concatenative Synthesis	Statistical Parametric Synthesis	Neural Speech Synthesis	(Deep) Neural Speech Synthesis

Text-to-Speech Mapping is One-to-Many

- Speech contains much information that not exists in text
 - What to say: content
 - Who to say: speaker/timbre
 - **How** to say: prosody/emotion/style
 - Where to say: noisy environment

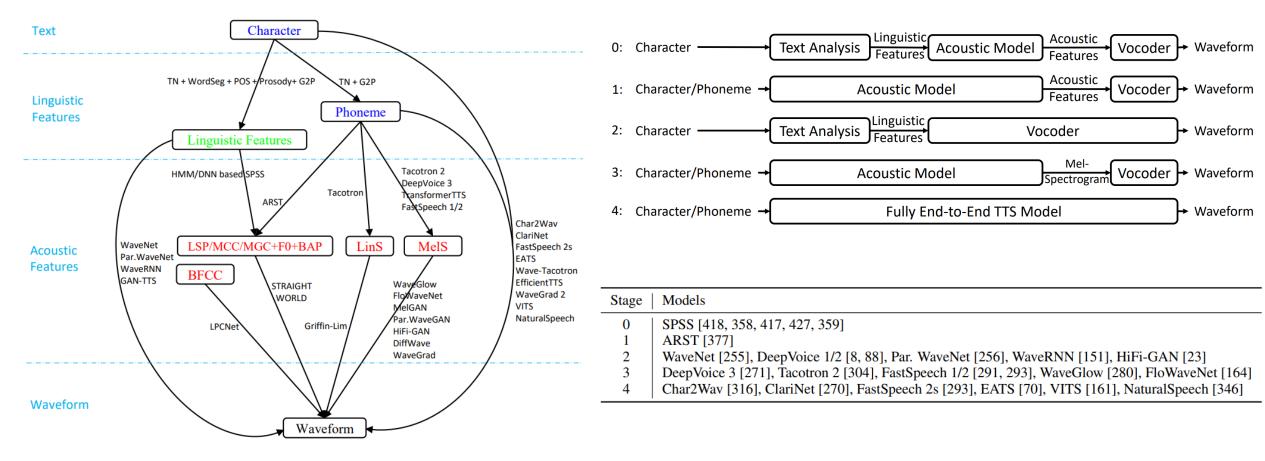
Text duration, pitch, sound volume, prosody, speaker, style, emotion, etc Speech

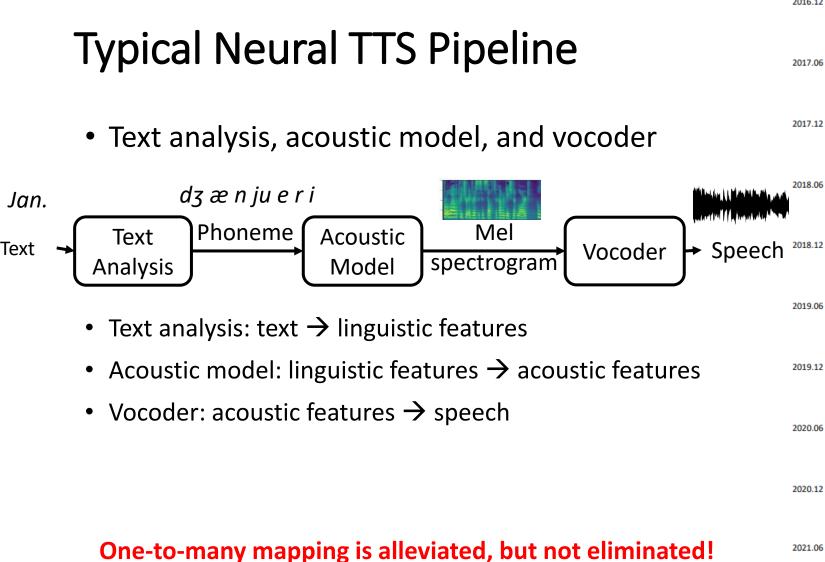
- Text-to-speech mapping
 - Not point-wise, but **distribution-wise**
 - Usually not single-modal, but **multi-modal**

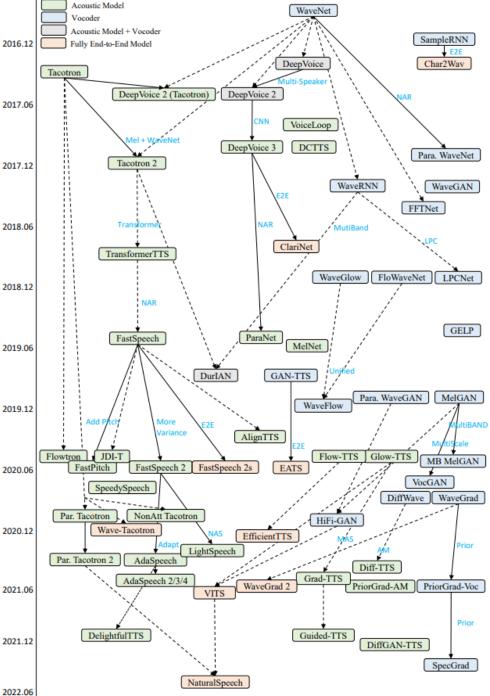
• ...

Typical Methods to Handle One-to-Many Mapping in TTS

• Split text-to-speech conversion into multiple stages

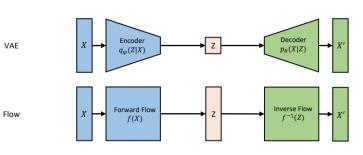




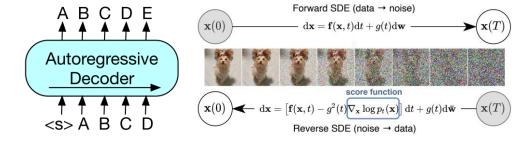


How to Model One-to-Many Mapping (Multimodal Distribution)

- Providing more variance information
 - Providing pitch/duration/speaker ID
 - → Autoregressive models $(x_0 \rightarrow x_{0:1} \rightarrow ... \rightarrow x_{0:t} \rightarrow ... \rightarrow x_{0:T})$
 - $\rightarrow \text{ Diffusion models } (x_T \rightarrow ... \rightarrow x_t \rightarrow x_{t-1} \rightarrow ... \rightarrow x_0)$
- Advanced loss function
 - L1/L2 loss
 - → Distribution-wise loss (e.g., SSIM, GMM)
 - → GAN loss (match any distribution)
- Synthesis-by-analysis
 - $x \rightarrow z \rightarrow x$
 - VAE, Flow, etc



Data L2 loss



11/27/2022

Outline

• Background

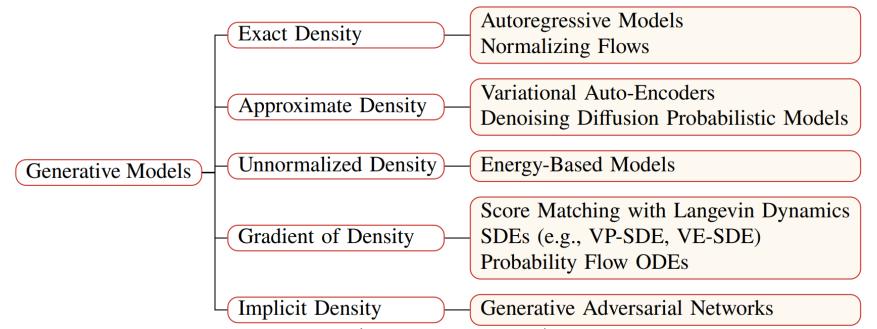
- Text-to-Speech Synthesis
- Deep Generative Models
- Deep Generative Models for TTS
 - AR/Flow/GAN/VAE/Diffusion based TTS Models
 - Comparisons and Analyses
- Summary and Outlook

Deep Learning and Generative Learning

2022				
CV/NLP/Speech/Machine Learning				
2022				
ng)				
2022				

Generative Models

- Generative models are learnt to estimate the likelihood of data P_{θ} to be close to the true data distribution P_D
 - **Data generation**: sample new data from P_{θ}
 - Density estimation: predict the density/probability of a data point
- Taxonomy of deep generative models



Deep Generative Models—GAN

• Generative Adversarial Networks

$$\min_{\theta} \max_{\phi} \mathbb{E}_{x \sim p_{\text{data}}} \log D(x; \phi) + \mathbb{E}_{x \sim p_z} \log(1 - D(G(z; \theta); \phi))$$

• Not to find a corresponding z for x, but to directly match the distribution of x

Deep Generative Models—Flow

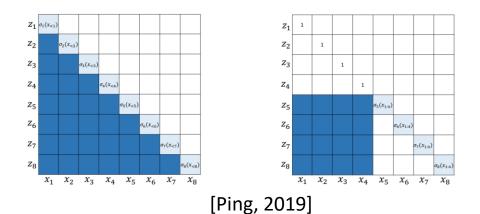
- Normalizing Flows: finding a z for x, and convert z back to x
 - $z = f_k^{-1} f_{k-1}^{-1} \dots f_0^{-1}(x)$
 - $x = f_0 f_1 \dots f_k(z), z \sim N(0, 1)$
- Training: maximizing the log likelihood p(x)
 - $\log p(x) = \log p(z) + \log \det \left(\frac{dz}{dx}\right) = \log p(z) + \sum_{i=1}^{k} \log |\det(J(f_i^{-1}(x)))|$
 - Flow can estimate the data likelihood exactly, as in autoregressive models
- The transformation function f should satisfy two requirements
 - It is **easily invertible**
 - Its Jacobian determinant is easy to compute

Deep Generative Models—Flow

• Two types: Coupling (bipartite) and Autoregressive (AR) technologies

Flow		Evaluation $z = f^{-1}(x)$	Synthesis $x = f(z)$
	AF [42]	$z_t = \frac{x_t - \mu_t(x_{< t})}{\sigma_t(x_{< t})}$	$\Big x_t = z_t \cdot \sigma_t(x_{< t}) + \mu_t(x_{< t})$
AR	IAF [38]	$\Big z_t = x_t \cdot \sigma_t(z_{< t}) + \mu_t(z_{< t})$	$x_t = \frac{z_t - \mu_t(z_{< t})}{\sigma_t(z_{< t})}$
	RealNVP [3	$6] z_a = x_a,$	$ x_a = z_a,$
Biparti	te Glow [39]	$z_b = x_b \cdot \sigma_b(x_a; \theta) + \mu_b(x_a; \theta)$	$\theta) \left x_b = \frac{z_b - \mu_b(x_a;\theta)}{\sigma_b(x_a;\theta)} \right $

- It is easily invertible
 - See table above
- Its Jacobian determinant is easy to compute
 - The invertible functions have triangular Jacobians
 - It's easy to calculate from the diagonal elements



Deep Generative Models for TTS, Xu Tan

Deep Generative Models—VAE

- Why Variational Autoencoders?
 - Naïve AE: $||x dec(enc(x))||^2$
 - No regularization: z is irregular and non-smoothing, generalization is poor
- Maximizing the log likelihood p(x)

$$\begin{split} \log p(x) &= \log \int p(x|z)p(z)dz = \log \int q(z|x) \frac{p(x|z)p(z)}{q(z|x)}dz \\ &= \log \mathbb{E}_{z \sim q(z|x)} \frac{p(x|z)p(z)}{q(z|x)} \ge \mathbb{E}_{z \sim q(z|x)} \log \frac{p(x|z)p(z)}{q(z|x)} \\ &= \mathbb{E}_{z \sim q(z|x)} \log p(x|z) - KL(q(z|x)||p(z)), \end{split}$$

• Maximize the ELBO

$$L(x;\theta,\phi) = -\mathbb{E}_{z \sim q(z|x;\phi)} \log p(x|z;\theta) + KL(q(z|x;\phi)||p(z))$$

Deep Generative Models—DDPM

• Denoising Diffusion Probabilistic Models

$$\underbrace{\mathbf{x}_{T} \longrightarrow \cdots \longrightarrow \mathbf{x}_{t}}_{\mathcal{K}_{t}} \xrightarrow[q(\mathbf{x}_{t} | \mathbf{x}_{t-1})]{\mathbf{x}_{t}}} \underbrace{\mathbf{x}_{t-1}}_{\mathcal{K}_{t-1}} \longrightarrow \cdots \longrightarrow \underbrace{\mathbf{x}_{0}}_{\mathcal{K}_{t}}$$

• Forward process

$$q(x_{1:T}|x_0) = \prod_{t=1}^T q(x_t|x_{t-1}), \quad q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t I)$$

• Backward process

$$p_{\theta}(x_{0:T}) = p(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1}|x_t), \quad p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1};\mu_{\theta}(x_t,t),\Sigma_{\theta}(x_t,t))$$

Deep Generative Models—DDPM

• Maximizing the log likelihood $p(x_0)$

$$\log p(x_0) = \log \int p(x_{0:T}) dx_{1:T} = \log \int q(x_{1:T}|x_0) \frac{p(x_{0:T})}{q(x_{1:T}|x_0)} dx_{1:T}$$
$$= \log \mathbb{E}_{x_{1:T} \sim q(x_{1:T}|x_0)} \frac{p(x_{0:T})}{q(x_{1:T}|x_0)} \ge \mathbb{E}_{x_{1:T} \sim q(x_{1:T}|x_0)} \log \frac{p(x_{0:T})}{q(x_{1:T}|x_0)} = ELBO$$

• Maximize the ELBO

$$ELBO = \mathbb{E}_{x_{1:T} \sim q(x_{1:T}|x_{0})} \log \frac{p(x_{0:T})}{q(x_{1:T}|x_{0})}$$

= $-\mathbb{E}_{q} \left[\underbrace{\frac{KL(q(x_{T}|x_{0})||p(x_{T}))}{L_{T}}}_{L_{T}} + \sum_{t=2}^{T} \underbrace{\frac{KL(q(x_{t-1}|x_{t},x_{0})||p_{\theta}(x_{t-1}|x_{t}))}{L_{t-1}}}_{L_{t-1}} - \underbrace{\log p_{\theta}(x_{0}|x_{1})}{L_{0}} \right]$
$$L_{simple}(\theta) := \mathbb{E}_{t,x_{0},\epsilon} \left[\|\epsilon - \epsilon_{\theta}(x_{t},t)\|^{2} \right]$$

Deep Generative Models—DDPM

• Training and inference pipeline

Algorithm 1 Training	Algorithm 2 Sampling
repeat	Sample $x_T \sim \mathcal{N}(0, I)$
Sample $x_0 \sim q_{data}, \epsilon \sim \mathcal{N}(0, I)$	for $t = T, T - 1, \cdots, 1$ do
Sample $t \sim \mathcal{U}(\{1, \cdots, T\})$	Sample $z \sim \mathcal{N}(0, I)$ if $t > 1$; else $z = 0$
$\mathcal{L} = \ \epsilon - \epsilon_{\theta}(\sqrt{\bar{\alpha}_t}x_0 + \sqrt{1 - \bar{\alpha}_t}\epsilon, t)\ ^2$	$x_{t-1} = \frac{1}{\sqrt{\alpha_t}} (x_t - \frac{1 - \alpha_t}{\sqrt{1 - \overline{\alpha_t}}} \epsilon_{\theta}(x_t, t)) + \sigma_t z$
Update θ with $\nabla_{\theta} \mathcal{L}$	end for
until converged	return x ₀

Deep Generative Models—SMLD

- Score Matching with Langevin Dynamics (SMLD) [Song, 2020]
 - Score: the score of a probability density p(x) is $\nabla x \log p(x)$
- Training: score matching for score estimation

$$\mathbb{E}_{p(\boldsymbol{x})} \left[\left\| \boldsymbol{s}_{\boldsymbol{\theta}}(\boldsymbol{x}) - \nabla \log p(\boldsymbol{x}) \right\|_{2}^{2} \right] \qquad \arg\min_{\boldsymbol{\theta}} \sum_{t=1}^{T} \lambda(t) \mathbb{E}_{p_{\sigma_{t}}(\boldsymbol{x}_{t})} \left[\left\| \boldsymbol{s}_{\boldsymbol{\theta}}(\boldsymbol{x}, t) - \nabla \log p_{\sigma_{t}}(\boldsymbol{x}_{t}) \right\|_{2}^{2} \right]$$

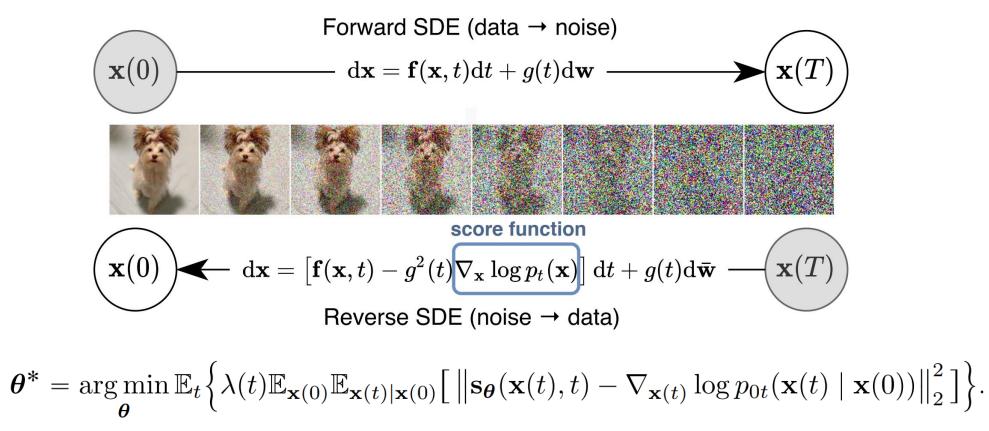
• Inference: sampling with Langevin dynamics

$$\boldsymbol{x}_{i+1} \leftarrow \boldsymbol{x}_i + c \nabla \log p(\boldsymbol{x}_i) + \sqrt{2c} \boldsymbol{\epsilon}, \quad i = 0, 1, ..., K$$

$$abla \log p(\boldsymbol{x}_t) = -\frac{1}{\sqrt{1-\bar{\alpha}_t}}\boldsymbol{\epsilon}$$

Deep Generative Models—SDE

- Stochastic Differential Equation (SDE) [Song, 2020]
 - Extend discrete time to continuous time



Deep Generative Models for TTS, Xu Tan

Deep Generative Models—VE-SDE, VP-SDE

• VE-SDE (Variance-Exploding Stochastic Differential Equation) and SMLD [Song, 2020]

$$\mathbf{x}_{i} = \mathbf{x}_{i-1} + \sqrt{\sigma_{i}^{2} - \sigma_{i-1}^{2}} \mathbf{z}_{i-1}, \quad i = 1, \cdots, N, \qquad \mathbf{d}\mathbf{x} = \sqrt{\frac{\mathbf{d}\left[\sigma^{2}(t)\right]}{\mathbf{d}t}} \mathbf{d}\mathbf{w}$$

• VP-SDE (Variance-Preserving Stochastic Differential Equation) and DDPM [Song, 2020]

$$\mathbf{x}_{i} = \sqrt{1 - \beta_{i}} \mathbf{x}_{i-1} + \sqrt{\beta_{i}} \mathbf{z}_{i-1}, \quad i = 1, \cdots, N. \qquad \mathbf{d}\mathbf{x} = -\frac{1}{2}\beta(t)\mathbf{x} \, \mathbf{d}t + \sqrt{\beta(t)} \, \mathbf{d}\mathbf{w}$$

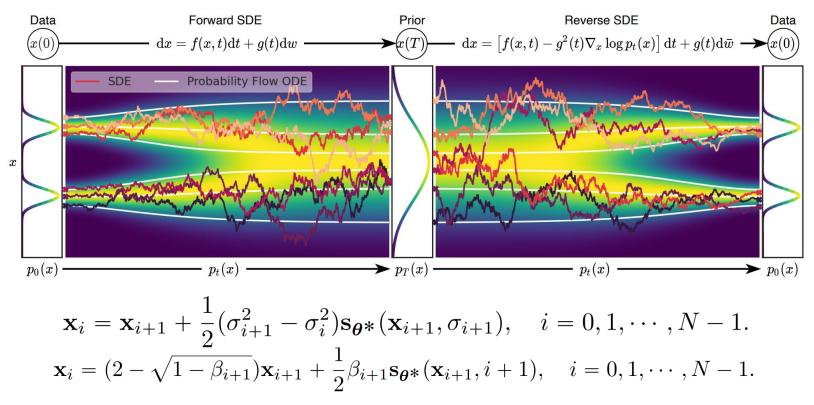
$$p_{0t}(\mathbf{x}(t) \mid \mathbf{x}(0)) = \begin{cases} \mathcal{N}(\mathbf{x}(t); \mathbf{x}(0), [\sigma^2(t) - \sigma^2(0)]\mathbf{I}), & (\text{VE SDE}) \\ \mathcal{N}(\mathbf{x}(t); \mathbf{x}(0)e^{-\frac{1}{2}\int_0^t \beta(s)ds}, \mathbf{I} - \mathbf{I}e^{-\int_0^t \beta(s)ds}) & (\text{VP SDE}) \\ \mathcal{N}(\mathbf{x}(t); \mathbf{x}(0)e^{-\frac{1}{2}\int_0^t \beta(s)ds}, [1 - e^{-\int_0^t \beta(s)ds}]^2\mathbf{I}) & (\text{sub-VP SDE}) \end{cases}.$$

Algorithm 2 PC sampling (VE SDE)	Algorithm 3 PC sampling (VP SDE)			
1: $\mathbf{x}_N \sim \mathcal{N}(0, \sigma_{\max}^2 \mathbf{I})$ 2: for $i = N - 1$ to 0 do	$ \frac{1: \mathbf{x}_N \sim \mathcal{N}(0, \mathbf{I})}{2: \text{ for } i = N - 1 \text{ to } 0 \text{ do}} $			
3: $\mathbf{x}'_{i} \leftarrow \mathbf{x}_{i+1} + (\sigma_{i+1}^{2} - \sigma_{i}^{2})\mathbf{s}_{\theta} * (\mathbf{x}_{i+1}, \sigma_{i+1})$ 4: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 5: $\mathbf{x}_{i} \leftarrow \mathbf{x}'_{i} + \sqrt{\sigma_{i+1}^{2} - \sigma_{i}^{2}}\mathbf{z}$	3: $\mathbf{x}'_{i} \leftarrow (2 - \sqrt{1 - \beta_{i+1}})\mathbf{x}_{i+1} + \beta_{i+1}\mathbf{s}_{\theta} * (\mathbf{x}_{i+1}, i+1)$ 4: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 5: $\mathbf{x}_{i} \leftarrow \mathbf{x}'_{i} + \sqrt{\beta_{i+1}}\mathbf{z}$ Predictor			
6: for $j = 1$ to M do 7: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 8: $\mathbf{x}_i \leftarrow \mathbf{x}_i + \epsilon_i \mathbf{s}_{\theta^*}(\mathbf{x}_i, \sigma_i) + \sqrt{2\epsilon_i} \mathbf{z}$	6: for $j = 1$ to M do 7: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 8: $\mathbf{x}_i \leftarrow \mathbf{x}_i + \epsilon_i \mathbf{s}_{\boldsymbol{\theta}} * (\mathbf{x}_i, i) + \sqrt{2\epsilon_i} \mathbf{z}$			
9: return \mathbf{x}_0	9: return x ₀			

11/27/2022

Deep Generative Models—Probability Flow ODE

• A corresponding deterministic process to SDE: ODE (Ordinary Differential Equation) [Song, 2020] $d\mathbf{x} = \left[\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x})\right] dt,$



11/27/2022

Deep Generative Models for TTS, Xu Tan

Outline

• Background

- Text-to-Speech Synthesis
- Deep Generative Models
- Deep Generative Models for TTS
 - AR/Flow/GAN/VAE/Diffusion based TTS Models
 - Comparisons and Analyses
- Summary and Outlook

Deep Generative Models—Examples in Acoustic Model

	Acoustic Model	Input→Output	AR/NAR	Modeling	Structure
 Autoregressive models Tacotron 1/2, DeepVoice 3, TransformerTTS 	Tacotron [382] Tacotron 2 [303] DurIAN [418] Non-Att Tacotron [304] MelNet [367]	$ \begin{array}{c} Ch \rightarrow LinS \\ Ch \rightarrow MelS \\ Ph \rightarrow MelS \\ Ph \rightarrow MelS \\ Ch \rightarrow MelS \end{array} $	AR AR AR AR AR	Seq2Seq Seq2Seq Seq2Seq / /	Hybrid/RNN RNN RNN Hybrid/CNN/RNN RNN
• Non-autoregressive models: FastSpeech 1/2	DeepVoice [8] DeepVoice 2 [87] DeepVoice 3 [270] ParaNet [268] DCTTS [332] SpeedySpeech [361] TalkNet 1/2 [19, 18]	$\begin{tabular}{cl} Ch/Ph \rightarrow MelS \\ Ch/Ph \rightarrow MelS \\ Ph \rightarrow MelS \\ Ch \rightarrow MelS \\ Ph \rightarrow MelS \\ Ph \rightarrow MelS \\ Ch \rightarrow MelS \\ Ch \rightarrow MelS \\ Ch \rightarrow MelS \\ \end{tabular}$	AR AR AR NAR AR NAR NAR	/ / Seq2Seq Seq2Seq Seq2Seq / /	CNN CNN CNN CNN CNN CNN CNN
• Flow	TransformerTTS [192] MultiSpeech [39]	Ph→MelS Ph→MelS	AR AR	Seq2Seq Seq2Seq	Self-Att Self-Att
Glow-TTS Transform	FastSpeech 1/2 [290, 292] AlignTTS [429] JDI-T [197] FastPitch [181]	$Ph \rightarrow MelS$ $Ch/Ph \rightarrow MelS$ $Ph \rightarrow MelS$ $Ph \rightarrow MelS$	NAR NAR NAR NAR	Seq2Seq Seq2Seq Seq2Seq Seq2Seq	Self-Att Self-Att Self-Att Self-Att
• VAE	AdaSpeech 1/2/3 [40, 403, 404 DenoiSpeech [434]] Ph→MelS Ph→MelS	NAR NAR	Seq2Seq Seq2Seq	Self-Att Self-Att
 Para. Tacotron 1/2 	DeviceTTS [126] LightSpeech [220]	Ph→MelS Ph→MelS	NAR NAR	/	Hybrid/DNN/RNN Hybrid/Self-Att/CNN
• GAN	Flow-TTS [234] Glow-TTS [159] Flowtron [366] EfficientTTS [235]	$Ch/Ph \rightarrow MelS$ $Ph \rightarrow MelS$ $Ph \rightarrow MelS$ $Ch \rightarrow MelS$	NAR* NAR AR NAR	Flow Flow Flow Flow	Hybrid/CNN/RNN Hybrid/Self-Att/CNN Hybrid/RNN Hybrid/CNN
• Diffusion VAE	GMVAE-Tacotron [119] VAE-TTS [443] BVAE-TTS [187] Para. Tacotron 1/2 [74, 75]	$\begin{array}{c c} Ph \rightarrow MelS \\ \end{array}$	AR AR NAR NAR	VAE VAE VAE VAE	Hybrid/RNN Hybrid/RNN CNN Hybrid/Self-Att/CNN
 Diff-TTS, Grad-TTS, DiffGAN-TTS, PriorGrad GAI 	GAN exposure [99] TTS-Stylization [224] Multi-SpectroGAN [186]	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$	AR AR NAR	GAN GAN GAN	Hybrid/RNN Hybrid/RNN Hybrid/Self-Att/CNN
11/27/2022 Diffus	Diff-TTS [141] Grad-TTS [276] PriorGrad [185]	$ \begin{array}{ } Ph \rightarrow MelS \\ Ph \rightarrow MelS \\ Ph \rightarrow MelS \end{array} $	NAR* NAR NAR	Diffusion Diffusion Diffusion	Hybrid/CNN Hybrid/Self-Att/CNN Hybrid/Self-Att/CNN

Deep Generative Models—Examples in Vocoder

AR/NAR Modeling Architecture Vocoder Input WaveNet [260] Linguistic Feature CNN AR Autoregressive models AR RNN SampleRNN [239] AR RNN WaveRNN [151] Linguistic Feature WaveNet, SampleRNN, WaveRNN BFCC AR RNN LPCNet [370] AR AR RNN Univ. WaveRNN [221] Mel-Spectrogram AR RNN SC-WaveRNN [271] Mel-Spectrogram • Flow MB WaveRNN [426] Mel-Spectrogram AR RNN FFTNet [146] AR CNN Cepstrum Par. WaveNet, WaveGlow, FloWaveNet • iSTFTNet [153] Mel-Spectrogram NAR CNN CNN Par. WaveNet [261] Linguistic Feature NAR Flow Mel-Spectrogram GAN WaveGlow [285] NAR Flow Hybrid/CNN Flow FloWaveNet [166] Mel-Spectrogram NAR Flow Hybrid/CNN Mel-Spectrogram AR Hybrid/CNN WaveFlow [277] Flow MelGAN, Para. WaveGAN, HiFiGAN SqueezeWave [441] Mel-Spectrogram NAR Flow CNN WaveGAN [69] NAR GAN CNN • VAE CNN GELP [150] Mel-Spectrogram NAR GAN GAN CNN GAN-TTS [23] Linguistic Feature NAR WaveVAE GAN CNN • MelGAN [182] Mel-Spectrogram NAR GAN Par. WaveGAN [410] Mel-Spectrogram NAR GAN CNN HiFi-GAN [178] Mel-Spectrogram NAR GAN Hybrid/CNN Diffusion GAN CNN VocGAN [416] Mel-Spectrogram NAR Linguistic Feature GAN GED [97] NAR CNN DiffWave, WaveGrad, PriorGrad, SpecGrad Mel-Spectrogram ٠ Fre-GAN [164] NAR GAN CNN Wave-VAE [274] NAR VAE CNN Mel-Spectrogram VAE WaveGrad [41] Mel-Spectrogram NAR Diffusion Hybrid/CNN DiffWave [180] Mel-Spectrogram NAR Diffusion Hybrid/CNN Diffusion PriorGrad [189] NAR Diffusion Hybrid/CNN Mel-Spectrogram 11/27/2022 NAR SpecGrad [176] Diffusion Hybrid/CNN Mel-Spectrogram

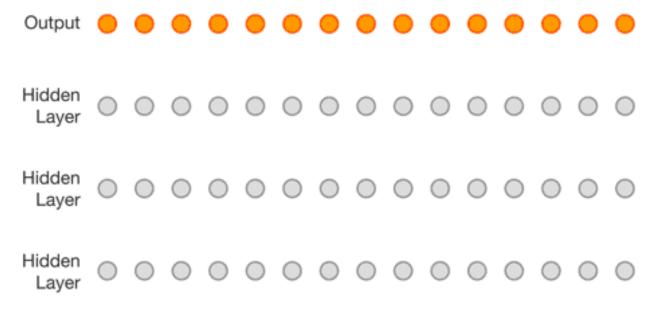
Deep Generative Models—Examples in End-to-End TTS

- Autoregressive models
 - Char2Wav
- Flow
 - ClariNet, Wave-Tacotron
- GAN
 - FastSpeech 2s, EATS
- Diffusion
 - WaveGrad 2
- VAE+Flow+GAN
 - VITS, NaturalSpeech

Model	One-Stage Training	AR/NAR	Modeling	Architecture
Char2Wav [321]	N	AR	Seq2Seq	RNN
ClariNet [275]	N	AR	Flow	CNN
FastSpeech 2s [298]	Y	NAR	GAN	Self-Att/CNN
EATS [70]	Y	NAR	GAN	CNN
Wave-Tacotron [392]	Y	AR	Flow	CNN/RNN/Hybrid
EfficientTTS-Wav [241]	Y	NAR	GAN	CNN
VITS [163]	Y	NAR	VAE+Flow+GAN	CNN/Self-Att/Hybrid
NaturalSpeech [351]	Y	NAR	VAE+Flow+GAN	CNN/Self-Att/Hybrid

Autoregressive Model for TTS

• WaveNet: autoregressive model with dilated causal convolution



- Other works
 - Acoustic model: Tacotron 1/2, DeepVoice 3, TransformerTTS
 - Vocoder: SampleRNN, WaveRNN

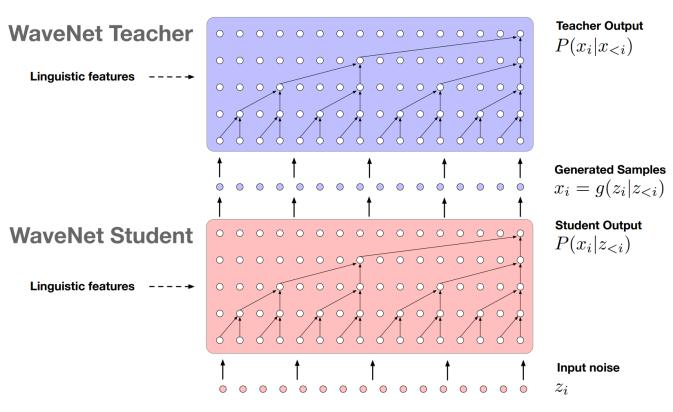
11/27/2022

Deep Generative Models for TTS, Xu Tan

Flow for TTS

- Parallel WaveNet (AR)
 - Knowledge distillation: Student (IAF), Teacher (AF)
 - Combine the best of both worlds
 - Parallel inference of IAF student
 - Parallel training of AF teacher

- Other works
 - ClariNet



Flow for TTS

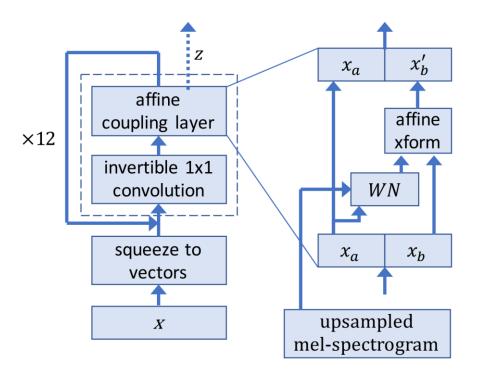
- WaveGlow (Bipartite)
 - Flow based transformation

$$\boldsymbol{z} = \boldsymbol{f}_k^{-1} \circ \boldsymbol{f}_{k-1}^{-1} \circ \dots \boldsymbol{f}_0^{-1}(\boldsymbol{x}) \quad \boldsymbol{x} = \boldsymbol{f}_0 \circ \boldsymbol{f}_1 \circ \dots \boldsymbol{f}_k(\boldsymbol{z}) \quad \boldsymbol{z} \sim \mathcal{N}(\boldsymbol{z}; 0, \boldsymbol{I})$$

• Affine Coupling Layer

 $egin{aligned} oldsymbol{x}_a, oldsymbol{x}_b &= split(oldsymbol{x})\ (\log oldsymbol{s}, oldsymbol{t}) &= WN(oldsymbol{x}_a, mel\text{-}spectrogram)\ oldsymbol{x}_b\prime &= oldsymbol{s}\odot oldsymbol{x}_b + oldsymbol{t}\ oldsymbol{f}_{coupling}^{-1}(oldsymbol{x}) &= concat(oldsymbol{x}_a, oldsymbol{x}_b\prime) \end{aligned}$

- Other works
 - FloWaveNet, WaveFlow



Flow for TTS

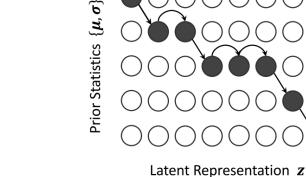
- Glow-TTS (Bipartite) for acoustic model
 - Log likelihood

$$\log P_X(x|c) = \log P_Z(z|c) + \log \left| \det \frac{\partial f_{dec}^{-1}(x)}{\partial x} \right|$$

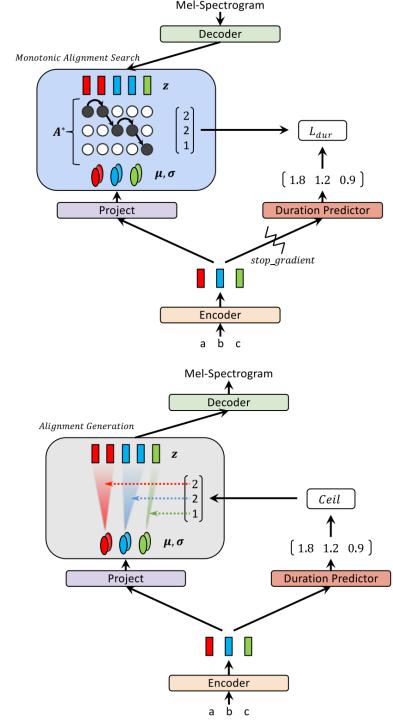
• Prior is learnt from phoneme text

$$\log P_Z(z|c;\theta,A) = \sum_{j=1}^{T_{mel}} \log \mathcal{N}(z_j;\mu_{A(j)},\sigma_{A(j)})$$

• Alignment A is obtained by monotonic alignment search



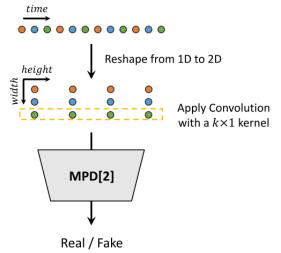
- Other works
 - FlowTTS, Flowtron



Deep Generative Models for TTS, Xu Tan

GAN for TTS

- With specific designs on generators, discriminators, and loss functions
 - Multi-scale discriminator in MelGAN
 - Multi-period discriminator in HiFiGAN



GAN	Generator	Discriminator	Loss
WaveGAN [68]	DCGAN [287]	/	WGAN-GP [97]
GAN-TTS [23]	/	Random Window D	Hinge-Loss GAN [198]
MelGAN [178]	/	Multi-Scale D	LS-GAN [231] Feature Matching Loss [182]
Par.WaveGAN [402]	WaveNet [254]	/	LS-GAN, Multi-STFT Loss
HiFi-GAN [174]	Multi-Receptive Field Fusion	Multi-Period D, Multi-Scale D	LS-GAN, STFT Loss, Feature Matching Loss
VocGAN [408]	Multi-Scale G	Hierarchical D	LS-GAN, Multi-STFT Loss, Feature Matching Loss
GED [96]	/	Random Window D	Hinge-Loss GAN, Repulsive loss
Discriminator Block	Feature maps + output		
Discriminator	Feature maps		

- Other works
 - Para. WaveGAN, BigVGAN
 - FastSpeech 2s, EATS

11/27/2022

Deep Generative Models for TTS, Xu Tan

Block

Discriminator

Block

+ output

Feature maps

+ output

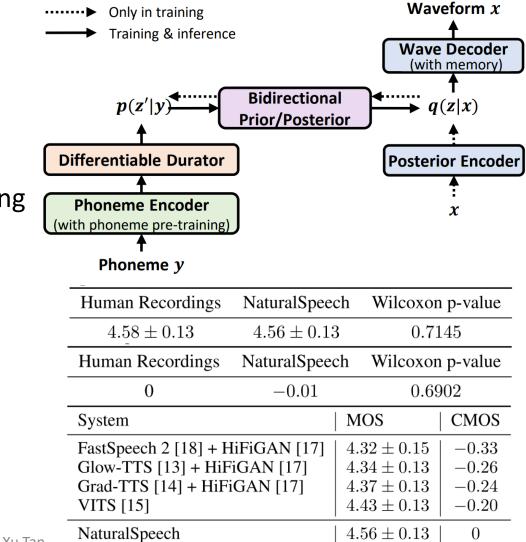
Raw Waveform —

Avg Pool

Avg Pool

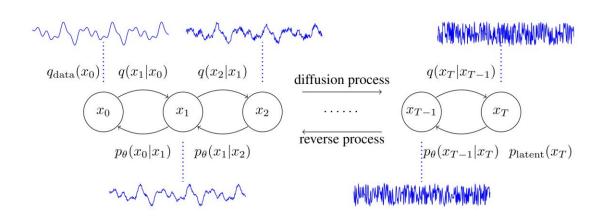
VAE + Flow + GAN for TTS

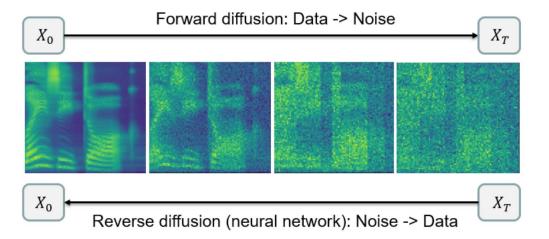
- NaturalSpeech for fully end-to-end TTS
 - Reconstruction: z~q(z|x), x~p(x|z)
 - Prior prediction: z~p(z|y)
 - Solutions in NaturalSpeech
 - Phoneme encoder with phoneme pre-training
 - Differentiable durator
 - Bidirectional prior/posterior
 - Memory based VAE
- Other works
 - VITS, Glow-WaveGAN



Diffusion for TTS

- Vocoder: DiffWave, WaveGrad
- Acoustic model: Diff-TTS, Grad-TTS





Diffusion—Speedup

• Sampling steps, latency

System	RTF
FastSpeech 2 [18] + HiFiGAN [17] Glow-TTS [13] + HiFiGAN [17] Grad-TTS [14] (1000) + HiFiGAN [17] Grad-TTS [14] (10) + HiFiGAN [17] VITS [15]	$\begin{array}{c} 0.011 \\ 0.021 \\ 4.120 \\ 0.082 \\ 0.014 \end{array}$
NaturalSpeech	0.013

 \mathbf{X}_t

 $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$

 \mathbf{x}_{t-1}

 \mathbf{X}_0

Grad-TTS, DDGM
 Forward process: fixed → learnable, e.g., Variational diffusion models

 \mathbf{x}_T

- Diffusion + X
 - Diffusion + GAN: e.g., DiffusionGAN
 - Diffusion + VAE: e.g., Latent Diffusion
 - Diffusion + KD: e.g., Progressive Distillation
- **Diffusion assumption**: Markovian → non-Markovian: e.g., DDIM
- Reverse process (noise levels, schedule, or variance): fixed → learnable, e.g., BDDM, Improved DDPM
- SDE/ODE solver: e.g., Euler-Maruyama, Runge-Kutta, adaptive-size SDE, PNDM, DPM-Solver, DPM-Solver++

Outline

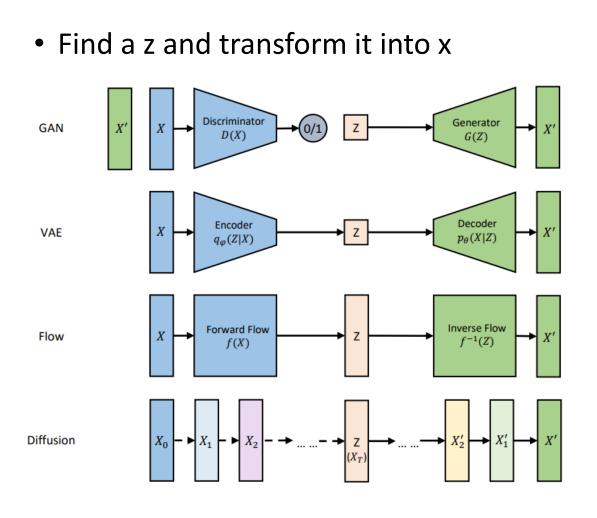
• Background

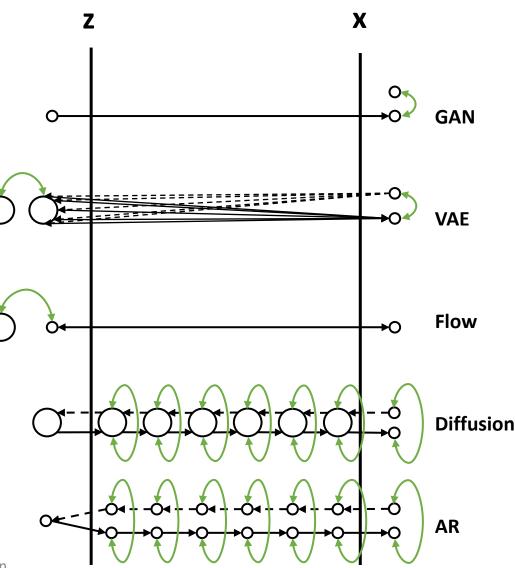
- Text-to-Speech Synthesis
- Deep Generative Models

Deep Generative Models for TTS

- AR/Flow/GAN/VAE/Diffusion based TTS Models
- Comparisons and Analyses
- Summary and Outlook

Deep Generative Models—Comparisons





Deep Generative Models for TTS, Xu Tan

Deep Generative Models—Comparisons

• Pros and cons

Generative Models AR Flow VAE Diffusion SMLD SDE ODE GAN							High		
High-Quality	Y	N	N	Y	Y	Y	Y	Y	Generative Adversarial Networks
Fast Sampling	N	Y*	Y	Ν	N	N	Ν	Y	
Mode Diversity	Y	Y	Y	Y	Y	Y	Y	N	Fast
Likelihood Estimation	Y	Y	Y*	Y*	N	N	Y	N	Sampling Coverage /
Latent Manipulation	N	Y	Y	Y*	Y*	Y*	Y*	Y*	
Error Propagation	Y	N*	N	Y	Y	Y	Y	N	Variational Autoencoders, Normalizing Flows
Stable Training	Y	Y	N*	Y	Y	Y	Y	N	[Xiao, 2021]

Denoising Diffusion Models

Outline

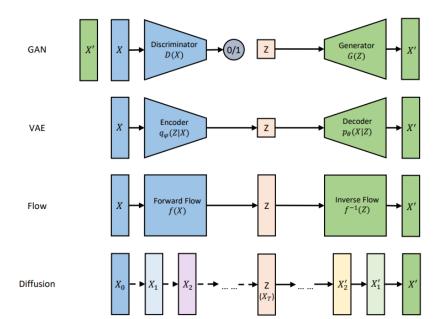
- Background
 - Text-to-Speech Synthesis
 - Deep Generative Models
- Deep Generative Models for TTS
 - AR/Flow/GAN/VAE/Diffusion based TTS Models
 - Comparisons and Analyses
- Summary and Outlook

Summary

- Text-to-speech synthesis is a typical conditional data generation task
 - Suffer from one-to-many mapping

Text duration, pitch, sound volume, prosody, speaker, style, emotion, etc Speech

- Usually handled by deep generative models
 - AR/Flow/GAN/VAE/Diffusion models



Outlook—Exploiting Generative Models

• Considering the pros and cons of deep generative models, can we fully exploit them in different scenarios?

Generative Models	AR	Flow	VAE	Diffusion	SMLD	SDE	ODE	GAN
High-Quality	Y	N	N	Y	Y	Y	Y	Y
Fast Sampling	N	Y*	Y	Ν	N	N	Ν	Y
Mode Diversity	Y	Y	Y	Y	Y	Y	Y	Ν
Likelihood Estimation	Y	Y	Y*	Y*	N	N	Y	Ν
Latent Manipulation	N	Y	Y	Y*	Y*	Y*	Y*	Y*
Error Propagation	Y	N*	N	Y	Y	Y	Y	Ν
Stable Training	Y	Y	N*	Y	Y	Y	Y	Ν

- Find a killer application for each generative model?
- Will a specific kind of generative model take all? e.g., diffusion model

Outlook—Exploiting Generative Models

- Understanding diffusion models
 - Why diffusion models are better than other models?
 - Difference between hierarchical VAEs and continuous normalizing flows
- Improving diffusion models
 - What is the limit of sampling steps? Is one step meaningful?
 - New diffusion or denoising process? e.g., non-diffusion
 - New training procedure?

Outlook—Exploring Generative Models

• Considering the pros and cons of deep generative models, can we design brand-new models that inherit the advantages and avoid the disadvantages?

Generative Models	AR	Flow	' VAE	E Diffusion	SMLD	SDE	C ODE	GAN
High-Quality	Y	Ν	N	Y	Y	Y	Y	Y
Fast Sampling	N	Y*	Y	Ν	N	N	Ν	Y
Mode Diversity	Y	Y	Y	Y	Y	Y	Y	N
Likelihood Estimation	Y	Y	Y*	Y*	N	N	Y	N
Latent Manipulation	N	Y	Y	Y*	Y*	Y*	Y*	Y*
Error Propagation	Y	N*	N	Y	Y	Y	Y	N
Stable Training	Y	Y	N*	Y	Y	Y	Y	N

- e.g., AR + Flow, VAE + GAN, VAE + Flow, Diffusion + GAN, Diffusion + VAE
- Can we stop borrowing models from computer vision, invent something new for speech?

The Landscape of Deep Generative Learning

Autoregressive Models Normalizing Flows

Variational Autoencoders

Generative Adversarial Networks

Energy-based Models Denoising Diffusion Models

https://cvpr2022-tutorial-diffusion-models.gi

Reference

See the references in:

A Survey on Neural Speech Synthesis

https://arxiv.org/pdf/2106.15561.pdf

A Survey on Neural Speech Synthesis

Xu Tan, Tao Qin, Frank Soong, Tie-Yan Liu {xuta,taoqin,frankkps,tyliu}@microsoft.com Microsoft Research Asia

https://speechresearch.github.io/

Speech Research

This page lists some speech related research at Microsoft Research Asia, conducted by the team led by <u>Xu Tan</u>. The research topics cover text to speech, singing voice synthesis, music generation, automatic speech recognition, etc. Some research are open-sourced via <u>NeuralSpeech</u> and <u>Muzic</u>.

We are hiring researchers on speech, NLP, and deep learning at Microsoft Research Asia. Please contact xuta@microsoft.com if you have interests.

Machine Translation with Speech-Aware Length Control for Video Dubbing

August 30, 2022

BinauralGrad: A Two-Stage Conditional Diffusion Probabilistic Model for Binaural Audio Synthesis May 29, 2022

NaturalSpeech: End-to-End Text to Speech Synthesis with Human-Level Quality May 03, 2022

Mixed-Phoneme BERT: Improving BERT with Mixed Phoneme and Sup-Phoneme Representations for Text to Speech

April 02, 2022

AdaSpeech 4: Adaptive Text to Speech in Zero-Shot Scenarios March 06, 2022

Speech-T: Transducer for Text to Speech and Beyond

October 06, 2021

TeleMelody: Lyric-to-Melody Generation with a Template-Based Two-Stage Method

A book on TTS

A book on "Neural Text-to-Speech Synthesis", by Xu Tan

will be published soon!

Watch this repo for update: https://github.com/tts-tutorial/book

We are hiring

- Research FTE (social/campus hire)
 - Speech/Audio/Music Generation, Machine Translation, etc
 - Digital Human Generation (Talking Face Generation, 3D Synthesis, etc)
 - Generative Models (AR, GAN, Flow, VAE, Diffusion, etc)
 - Machine Learning, Deep Learning
- Research Intern
 - Speech, Music, Machine Translation, Digital Human Generation, Machine Learning

Machine Learning Group, Microsoft Research Asia Xu Tan <u>xuta@microsoft.com</u>

Thank You!

Xu Tan/谭旭 Principal Research Manager @ Microsoft Research Asia <u>xuta@microsoft.com</u>

<u>tan-xu.github.io</u> <u>https://www.microsoft.com/en-us/research/people/xuta/</u> https://speechresearch.github.io/

Deep Generative Models for TTS, Xu Tan