
STREAMING, FAST AND ACCURATE ON-DEVICE INVERSE TEXT NORMALIZATION
FOR AUTOMATIC SPEECH RECOGNITION

Yashesh Gaur, Nick Kibre, Jian Xue, Kangyuan Shu, Yuhui Wang, Issac Alphanso, Jinyu Li, Yifan Gong

Microsoft Corp., U.S.A

ABSTRACT

Automatic Speech Recognition (ASR) systems typically
yield output in lexical form. However, humans prefer a writ-
ten form output. To bridge this gap, ASR systems usually
employ Inverse Text Normalization (ITN).

In previous works, Weighted Finite State Transducers
(WFST) have been employed to do ITN. WFSTs are nicely
suited to this task but their size and run-time costs can make
deployment on embedded applications challenging.

In this paper, we describe the development of an on-
device ITN system that is streaming, lightweight & accurate.
At the core of our system is a streaming transformer tagger,
that tags lexical tokens from ASR. The tag informs which
ITN category might be applied, if at all. Following that, we
apply an ITN-category-specific WFST, only on the tagged
text, to reliably perform the ITN conversion. We show that
the proposed ITN solution performs equivalent to strong base-
lines, while being significantly smaller in size and retaining
customization capabilities.

Index Terms— Inverse Text Normalization, Automatic
Speech Recognition, on-device, streaming.

1. INTRODUCTION

Inverse Text Normalization (ITN) [1] is an important com-
ponent of many speech recognition applications. It converts
the ASR output, which is usually in a lexical (or verbalized)
format, to display (or written) format. This makes the ASR
transcription much more suitable for human consumption and
downstream Natural Language Understanding (NLU) tasks.
For instance, the ASR output might say “that will be four
fifty”, but it would be preferable for it to read “that will be
450”. However, note that the lexical forms are generally more
ambiguous than their display-formats. In the above example,
depending on the context, “four fifty” could have been time
(“4:50”), currency (“$4.50”) or simply a number (“450”). It is
the job of the ITN model to study the context and resolve con-
flicts. The task of ITN is inherently ambiguous. In this work,
we aim to solve for a wide variety of ITN categories, includ-
ing but not limited to time, money, url, email, phone,
math, address, abbreviation, ordinal etc. In total,
we cater to 16 different ITN categories.

There have been relatively small number of works that ad-
dress the problem of ITN. In the context of a “hybrid” ASR,
[2] built a language model directly in the written domain. To
that end, they built a letter-to-sound model that could go from
display-format to lexical-format. A similar display-format
language model was built by [3] for voice search scenarios.
There have also been works published on Text Normaliza-
tion (TN), which is the opposite of ITN. Since the rules for
TN can be inverted and leveraged for the process of ITN, this
task is also of relevance. [4] formulates TN as a statistical
machine translation problem and [5] advances the same ap-
proach using recurrent neural networks and attention mech-
anisms. Along the same direction, more recently, [6] used
transformer-based seq2seq models to perform ITN. They also
used FSTs to recover from catastrophic errors in beam search.
Another type of modeling solution for ITN was proposed in
[7] where authors relied on grammar rules to generate multi-
ple display-format hypothesis, which were re-ranked using a
class-based language model. Building on this work, [8] also
proposed display-format candidate generation using rules en-
coded within a WFST and re-ranking them using Gradient
Boosted Decision Tree ensemble (GBDT). In our experience,
the framework of candidate generation and context-based re-
ranking is very effective. As described in Section 2.2 and
3.1.2, we use this framework as one of our baselines.

In this work, we adopt a different approach to ITN. We
break the problem of ITN down into 2 disjoint steps: Tag-
ging & Transduction. More concretely, our approach consists
of a new transformer-based tagger, which tags incoming lex-
ical tokens from ASR in a streaming manner. The tags con-
tain information about the ITN category that can be associ-
ated with any tagged span. Once, a tagged span is available,
an ITN-category-specific WFST performs the actual conver-
sion, only on the tagged part of a sentence. The proposed
approach has many advantages that are discussed in Section
2.4 and demonstrated in Section 4. The contributions in this
paper are as follows: (i) We propose a novel modeling so-
lution for ITN. It splits the task into tagging & transduction.
This allows us to get high quality, streaming and light-weight
models that can be deployed to on-device applications. (ii)
We design a chunk-based transformer tagger, which enables
streaming ITN. We show that this design can be configured
to trade-off between accuracy and latency. (iii) Our design

978-1-6654-7189-3/22/$31.00 ©2023 IEEE

proposes a tag to denote a particular ITN category. For each
ITN category, we have an FST that encodes the correspond-
ing the rules of conversion. The FST can be easily swapped
with an updated one. This enables much easier, on-the-fly
customization, without any retraining. (iv) We present an ex-
tensive empirical study on large-scale data. We benchmark
the proposed ITN solution and show that it’s quality is on par
with strong baselines, that are an order of magnitude larger in
size. We also demonstrate significant advantages in terms of
computational costs.

To the best of our knowledge, the closest related work
to our approach was in [9]. In [9], the authors train a bidi-
rectional LSTM that labels lexical text. These labels spec-
ify a sequence of edits and transformations to perform on the
lexical-format text. Our work differs from this work in many
aspects. Firstly, our chunk-based transformer design enables
our solution to work in streaming manner, with configurable
latency. In contrast, the solution in [9] is strictly offline. Sec-
ondly, our tags reflect ITN categories and not specific edits.
Since rule updates happen on the level of ITN-categories, it
makes customization very convenient, without retraining any
neural components. Lastly, on large scale-data, we show that
our method can outperform strong baselines that are many
times larger in size. In the next section, we discuss several
modeling solutions that were considered for on-device ITN.

2. ON-DEVICE INVERSE TEXT NORMALIZATION

2.1. Modeling ITN within E2E ASR

Conventionally, ITN has been a modeled as separate compo-
nent that resides in the post-processing pipeline of the ASR.
However, the end-to-end (E2E) training paradigm [10, 11] al-
lows us to train a model that goes from speech to display-
format text directly. This means that ITN is learnt implicitly
within the ASR model. This has several benefits. Firstly, ITN
tokens come out in a truly streaming fashion with no addi-
tional latency. Moreover, the memory footprint of the model
is reduced since there is no external ITN model to store. Beam
search during inference also becomes less complex if we do
not consider an external ITN system.

However, learning ITN within an E2E-trained ASR model
also has some drawbacks. Since speech recognition is tightly
coupled with ITN in this scenario, we lose all the flexibility
in ITN system configuration. This is important because writ-
ten form varies by domain and geography. In the absence of
external and configurable ITN, one would need to train a dif-
ferent E2E-ASR model for every domain. Updating any ITN
rules would also need retraining of the ASR model on all the
data, which is a very time and energy consuming task. More-
over, because speech to written-format mapping is more com-
plex than speech to verbalized text. Hence, an E2E speech-to-
display-format ASR can result in reduction of overall model
accuracy. Unlike tasks like punctuation, ITN does not have

any evidence in the acoustic signal. This suggests that mod-
eling ITN externally, makes more sense, even for E2E ASR.
Such a model will take lexical output of ASR as input and
convert that to display form. The following sections describe
the modeling solutions we tried to model ITN separately.

2.2. Weighted Finite State Transducers with rescoring

WFST [12] are very nicely suited to the task of ITN because
they allow application of arbitrary hand-crafted rules and, in
many scenarios, can perform the task in a compact and ro-
bust manner. Since spoken-forms are ambiguous, we use
the spoken-to-written FSTs to map them to multiple tagged
written-form candidates, and use a ranker to choose the opti-
mal one depending on the context. The ranker is utilized in
a simple log-linear interpolation setup. We choose an n-gram
model as our main choice for a ranker. This n-gram is also
built into the FST. We also consider employing an additional
LSTM ranker to further improve contextual re-ranking. The
conversion rules in the FST are created & maintained by a
pool of experts. This design is inspired by previous works
like [7, 8].

2.3. Modeling ITN as a Seq2Seq task

In this work, we also consider the transformer-seq2seq archi-
tecture [13], to model the task of ITN. Learning the ITN task
in an end-to-end manner has many advantages. Firstly, unlike
WFSTs, where experts need to prepare the conversion rules,
these models learn all the rules entirely from data, with no
involvement from human experts. Hence, it is much more
scalable to new domains and languages, as long as sufficient
amount of data is available. Secondly, since these models tend
to be all-neural, their size can be compressed using a myriad
of techniques [14, 15, 16, 17, 18, 19, 20]. The WFST models,
on the other hand, tend to blow up in size when trained on
large amount of data and can’t be compressed effectively.

Despite these advantages, there are a few big challenges
that prohibit the deployment of an all-neural model for ITN.
The first big challenge is customization. ITN models are re-
quired to change their behavior by ingesting arbitrary human-
specified rules, say from a configuration file. This kind of
functionality is difficult to enable with all-neural models since
they require a large amount of data to learn. The second major
challenge is potential lack of robustness. Even when trained
with large amounts of data, an all-neural ITN model can still
suffer from poor generalization. A good example is that of
phone numbers. There is a combinatorial complexity associ-
ated with the total number of 10-digit numbers that can form a
phone number. Even when large training data is used, there is
still a good chance that we will get a phone number that hap-
pens to be out-of-distribution, and is consequently formatted
incorrectly. One can try an augment the training data to mit-
igate this issue, but this is not a scalable solution since such
combinatorial explosion also happens for other categories like

Fig. 1. High-level architecture of the proposed approach.

postal codes, money, fractions, time etc. Note that the above
challenges are where the WFSTs show their strength. As long
as rules can be expressed as regex, WFST can apply any con-
version in a very robust manner.

2.4. Proposed approach: Transformer Tagger + WFST

Our proposed approach is built on the insight that the task
of ITN can be broken down into 2 disjoint steps. The first
step is to figure out which parts of the sentence needs to be
converted and the corresponding ITN category for them. The
second step is the actual conversion according to the rules of
the ITN category. Hence, we propose a “hybrid” method to
ITN, which combines the robustness and customizability of a
WFST and the strong predictive powers of a neural network
like Transformer. More specifically, we train a Transformer
neural network “tagger” that processes the output of ASR in a
streaming manner and predicts a “tag” for every input token.
Each tag is associated with a certain ITN category. For tokens
that do not belong to any ITN category, a “blank” token is put
out. Once the tags are predicted, the WFST is responsible for
the actual conversion. The WFST component is a collection
of several FSTs, where each FST is responsible for a partic-
ular ITN category or tag. This also helps reduce the overall
size of the FST component. Please note that a particular FST
is applied only to the corresponding tagged span, and not the
full utterance. The approach is depicted in figure 1.

The transformer-tagger learns to use the context, both his-
tory and limited future, to predict what tag needs to be as-
signed to any input token. To make the transformer archi-
tecture work in a streaming manner, we use a “chunk-based”
processing scheme. Similar schemes have also been utilized
to make Transformer blocks within ASR encoders, work in a
streaming manner [21, 22]. More specifically, the transformer
only processes a certain chunk of tokens at a time, and it does
not have access to all the tokens in the future to make the pre-
diction. It can however consider the chunks in the past. This
chunk-based processing setup is illustrated in figure 1.

Fig. 2. Example of a Tag-Consuming ITN FST Network

Chunk-based processing means that output is not avail-
able until all the tokens in a chunk are available. This means
that some algorithmic latency is incurred at every token. Con-
sider the example in Figure 1. The chunk size is 3. It’s clear
that 1st, 2nd and 3rd token incur a latency of 2, 1 and 0 to-
kens respectively, bringing the average latency to 1 token. It
follows that a larger chunk size means a larger algorithmic la-
tency. For streaming and on-device applications, a very small
latency is preferred. This would imply that a smaller chunk
size is preferred. However, a smaller chunk size means lim-
ited look ahead and a smaller window to do context modeling.
Hence, there is a trade-off between latency and accuracy.

After the tagger assigns labels to lexical recognition re-
sults, tagged spans of words are mapped to symbols via a
FST. This FST consumes both lexical words and XML-style
tags to indicate categories. For instance, if “at four thirty” is
tagged [blank, time, time], then <time> four
thirty </time> will be passed to the FST and mapped
to “4:30” (see Fig. 2 for an example). This FST is com-
piled from a pattern-matching & rewriting rule language,
which supports transformations (e.g., “5:five”), insertions
(“ϵ:word”) & deletions (“word:ϵ”). We combine these trans-
formations via regex-like notation, and references to subrules.

3. EXPERIMENTAL DETAILS

3.1. Model Details and Training Data

3.1.1. Lexical & Display format ASR

The model architecture for our on-device ASR is a Transformer-
Transducer (T-T) [21]. The encoder in our T-T model works
in a chunk-based manner which allows streaming operation.
It contains 24 transformer blocks. Each block contains 16
heads, 4096 dimensional FFN (Feed Forward Network) and
a convolutional front-end with 512 channels. The decoder is
stack of 2-layer unidirectional LSTMs. Number of hidden
units in each LSTM is 1024, which is projected down to 512.
The Joint network is a fully connected MLP with dimension
1024. We train all the components in an end-to-end man-
ner using the transducer loss [23]. The optimizer of choice
is adamW [24] which follows the Noam [13] learning rate
(LR) schedule. For more details on model architecture and
training, please refer to [21].

The ASR model is trained on 50k hours of internal speech
data. This data is anonymized with all Personally Identifiable

Information (PII) removed. The speech data is featurized to
80 dimensional Mel Frequency Cepstral Coefficients (MFCC)
and the target sentence is tokenized using using a vocab of
4k word pieces [25]. The target transcription are originally
present in lexical format. Training on this data gives us the
“lexical-ASR”. To train “display-format-ASR”, we convert
our lexical-format transcripts to display-format. To accom-
plish that, we leverage another powerful ITN solution that is
not constrained in memory or compute like the on-device ITN
model. We do not explain it’s model architecture or training
setup due to limited space in the paper, but have benchmarked
it to be of high quality. After the conversion, we form a new
4k vocab [25] from the display-format transcriptions and train
the ASR model like before. Both lexical & display-format
ASR have the same number of parameters (∼80M).

3.1.2. Weighted Finite State Transducers with rescoring

A major part of the FST system is based on hand-written
rules, for e.g. numberword-to-digit mappings. The
FST system also embeds a first scoring stage, an n-gram
(N=7) LM. This n-gram is trained on a relatively small set (∼
2M strings) carefully curated to help choose between compet-
ing ITN mappings. For example, since there are sequences of
words that are often ambiguous between times and numbers
(e.g., “four thirty”), we make sure that the training corpus
for the n-gram LM has many examples of Time, in a variety
of contexts, and also many examples of strings whose lexical
forms could be a Time, but contextually should not be (i.e.,
both “see you at 4:30” and “on route 430”).

The FST system can generate nbest alternates. This al-
lows to use an additional LSTM model to rerank better. We
can simply use a weighted combination of the FST score and
the LSTM score. In our experiments, the LSTM model is
trained on a set of ∼ 700M strings. The data is drawn from
a coprora of email text, a collection of email addresses, com-
mon crawl data, and search queries. The selection of data
from common crawl is loosely constrained to ITN-relevant
strings, with some heuristics to avoid “mis-formatted” data
such as “see you at 430”.

3.1.3. Seq2Seq models

Following Section 2.3, we train a transformer-based seq2seq
model [13] that learns to translate lexical-format into display-
format. The encoder of this model has 6 transformer blocks.
Each block has 8 attention heads, 256 dimensional FFN &
256-dimensional input embedding. The decoder is a 2-layer
transformer, with the same number of attention heads, FFN
embedding size and embedding dimension as the encoder.
The total number of parameters in this model is ∼6M. We
train this model in an end-to-end way using a cross-entropy
loss. To train, we used the adamW optimizer [24] with ‘noam’
learning rate decay scheme [13]. At the end of the training,
we pick the checkpoint with the best performance on a held

Fig. 3. Tag-Outputting TN FST Network for Training Data

out set. We also train a proportionally scaled-up version of
the above model. It has ∼82.5M parameters. We refer to 1st

and 2nd model as ‘S2S-small’ & ‘S2S-large’ respectively.
We train both S2S models on a dataset that has ∼240M

parallel lexical & display-format sentences. The data was
sourced from our company’s speech service transcriptions,
first-party partners and free online data sources. We mined in-
ternal structured databases in order to extract address queries,
popular URLs (aggregrated over six months using page view
counts) and common search queries (aggregrated over six
months using impresson counts). The common crawl data
was filtered to extract specific patterns like plurals, ordinals,
date, time and currency. Finally, we used anonymized text
messages from our company’s phone keystroke application
to augment the training set. All the data was cleaned and PII
was removed.

3.1.4. Transformer Tagger + WFST (Proposed approach)

The transformer tagger follows a similar architecture to that of
the ASR encoder. It has 6 transformer blocks, with each hav-
ing a 256-dimensional FFN, 8 heads and 256-dimensional in-
put embedding. It works in a chunk-based manner to make the
tagging process streaming. For each token, the tagger learns
to predict one out of 19 tags using a cross entropy loss. We
use a dropout of 0.1 throughout the network

Training data for the tagger is prepared with the help of
Text Normalization (TN) FSTs. These are essentially mirror
images of the ITN FSTs discussed in Section 2.4, but can
encode more complicated rules, since memory is not a con-
cern. In addition to converting written form to spoken form,
the TN FSTs also output category-tag labels. For e.g., it will
convert “$25.00 please” to “<money> twenty five
dollars </money> please”. A simple example of
such a TN FST is in Fig 3. To generate the training data for
the tagger, we form paired data out of the XML strings that
are generated by TN FSTs. For e.g., the above XML string
will yield, [twenty, five, dollars, please] →
[money, money, money, blank] as a training se-
quence. The set of tagging categories we have chosen loosely
correspond to the set ITN categories we monitor.

Many expressions can be mapped to multiple possible
lexical forms by competing FST paths, sometimes produc-
ing different category tags. Several mechanisms are used
to ensure that TN output takes advantage of these alterna-

Table 1. Evaluation of various ITN models on the lexical-to-
display text-only ITN test set. For neural models and compo-
nents, the size is take after INT8 quantization.

Model Size (MB) Precision Recall F1
WFST + n-gram 30 0.80 0.83 0.81
WFST + n-gram + LSTM 60 0.83 0.84 0.83
S2S-small 6 0.75 0.76 0.76
S2S-large 82.5 0.77 0.78 0.77
Tagger + WFST 5.5 0.81 0.84 0.82

tives to reflect the variety of spoken language. An n-gram
model, trained on lexical transcriptions, is used to encourage
a choice of idiomatically/contextually appropriate transla-
tions. For instance, 101 is mapped to <alnum> one
oh one </alnum> in “hwy 101”, but <num> one
hundred and one </num> before “dalmatians”. For
some categories, alternate paths can produce different outputs
interchangeably; here, the choice is made pseudorandomly:
e.g., “1:45” can become <time> one forty five
</time> or <time> quarter to two </time>.
This ensures that the tagger will learn to identify both types
as time expressions.

3.2. Evaluation

We conduct 2 types of evaluations for our models. For the
models where ITN is learnt separately, we first perform a
“text-only” evaluation. Our test set for this contains lexical
sentences and corresponding display-format. This set allows
us to test all models except the display-format ASR model.
This test set is rich with ITN instances and was internally de-
veloped just to test ITN performance. It contains ∼6k utter-
ances with ∼11k ITN occurrences overall. We also prepared
a “speech-to-display-format” test set by passing the lexical
sentences from the text-only test set through a TTS system
and generating speech audio. We use this test set to conduct a
more comprehensive and realistic evaluation.

The main metric we track to evaluate ITN performance is
Precision/Recall/F1 over the ITN instances in the references.
For “speech-to-display-format” evaluation, in addition to Pre-
cision/Recall/F1, we also compute Token Error Rate (TER).
TER is simply edit distances computed over space separated
display-format output & display-format reference.

4. RESULTS

4.1. Text-only evaluation

Table 1 shows the results of various ITN models on the ‘Text-
only’ evaluation. The first 2 rows correspond to the models
described in Section 3.1.2 and 2.2. The ranker in the 1st row
is an n-gram and in the second row is a combination of n-gram
& LSTM. It can be seen that ‘WFST+rescoring’ framework is
really effective and forms a very strong baseline. Just rescor-

Table 2. Relationship between tagger’s chunk size, tagger’s
average algorithmic latency & model F1 for the proposed ap-
proach. Both chunk size and average tagger latency are in
number of subword tokens.

Chunk size Average latency Precision Recall F1
11 5 0.81 0.84 0.82
6 2.5 0.79 0.82 0.81
4 1.5 0.76 0.80 0.78
2 0.5 0.72 0.77 0.74
1 0 0.60 0.70 0.65

ing the WFST output with an n-gram is able to produce one
of the best results in this study. Additional rescoring with
an LSTM further improves the results. However, please also
note that LSTM rescoring might not be a feasible option in a
streaming scenario.

The next 2 results are from seq2seq models trained on par-
allel lexical & display-format data. These results correspond
to the models described in Section 2.3 & 3.1.3. With such
small footprint, and no human engineered rules, ‘S2S-small’
is able to achieve a respectable F1 of 0.76. It was natural
for us to wonder, if simply scaling the model size would help
here. ‘S2S-large’ is a proportionally scaled, much larger ver-
sion. It is clear that simply scaling does not help much. We
attribute this to 2 observation: (i) real-world ITN is very di-
verse and even a decently large dataset will likely not have
sufficient coverage to cover all ITN patterns. (ii) S2S models
might be too flexible & lack robustness for this task. During
our error analysis, we did observe a few instances where S2S
would “hallucinate” output [11] or rewrite parts of the utter-
ances that shouldn’t have been changed.

The last entry in the table is for our proposed approach.
The first thing to notice is that overall model size is 5.5 MB
only. 3.5 MB of this comes from the tagger and the remain-
ing 2MB comes from the FST for conversion. A much sim-
pler FST is possible here than with the with the pure-FST
approach, or the the FST + rescoring approach, because the
FST is only responsible for transformations, not for modeling
their contexts. When compared to the WFST + rescoring so-
lutions, we see that it can achieve very similar F1 scores, with
a model size that is drastically smaller (in one case less than
10%). When compared to S2S models, the F1 score of the
proposed approach is significantly better, even though they
are similar in size.

Table 2 shows the results for trade-off described in Sec-
tion 2.4. We can clearly see that decreasing the chunk size,
and consequently the tagger’s average latency has a negative
effect on the F1 scores. However, the decrease in F1 perfor-
mance in not significant. For example, going from chunk size
of 11 to 6, we can reduce our average tagger latency in half
with only a decrease of 1 point in the F1 score. Depending
on the application’s requirements, the proposed architecture
allows us to trade-off latency for ITN performance.

Table 3. 2-stage evaluation with lexical ASR. Size is only
shown for the ITN component and does not include ASR.

Model Size (MB) P/R/F1 TER
Display-format ASR - 0.63/0.64/0.63 25.33
Lexical ASR
+ WFST & n-gram 30 0.72/0.74/0.73 22.25
+ WFST & n-gram & LSTM 60 0.70/0.71/0.71 22.00
+ Tagger & WFST (proposed) 5.5 0.71/0.75/0.73 22.70

4.2. Speech-to-text evaluation

Table 3 shows the final ITN performance going from speech
to display-format. The first baseline to consider is ‘Display-
format ASR’. This model is trained in an E2E manner to go
from speech to display-format transcription directly. As Table
3 shows, this model performs the worst of all the candidates
evaluated. We mainly attribute this to insufficient ITN variety
& instances in the ASR training data. This is because ITN
coverage in not considered in curation of most ASR datasets.
The inability of this method to properly leverage our text-only
ITN training assets is another contributing factor.

To test the solutions where ITN is modeled separately, we
first decode the speech using a lexical ASR and then apply
corresponding ITN solution on it. It is clear, from both F1
scores and TER, that these modular pipelines perform much
better than the completely E2E approach. Please see that our
tagger approach performs similar to the ‘WFST + n-gram’ so-
lution, in terms of the F1 scores. This is despite being only
one-sixth in size. The TER numbers are also similar to each
other but please see that we pay more attention to the F1 score.
While there is correlation between F1 and TER, this corre-
lation is not perfect. There are cases where TER punishes
missed conversion much more than F1. For instance, if we
miss converting a phone number, F1 would register missing
only 1 ITN instance but a TER is going to register 10 errors.

Next, we consider WFST solution, reranked using both
n-gram and LSTM. In Table 1, we saw this is supposed to
be a superior solution to WFST reranked with n-gram alone.
However, as seen in Table 3, that trend might not hold in an
end to end evaluation. Comparing the 2nd and 3rd row in Table
3, additional LSTM rescoring does not improve the F1 score,
rather it deteriorates it very slightly. We think this might be
because the LSTM was trained on clean text, while output of
ASR is not clean and can contain errors.

4.3. Runtime Advantages

Consider the WFST+n-gram system. Implementation wise, it
makes sense to integrate the n-gram into FST itself. Hence,
in this section, we refer to it as the “WFST-only” solution.
Figure 4 shows how the runtime computation cost varies for
WFST-only system & our proposed approach, on input se-
quences of varying length. We see the WFST-only solution’s
computation cost increases much faster than our tagger-based

Fig. 4. The proposed approach is runtime friendly.

solution and that for lengthy sequences, it becomes imprac-
tical to use. This is because amortized runtime complexities
of WFST composition [26, 12] do not scale well. While our
proposed solution also has a WFST component, that WFST is
much smaller and it is only applied on the tagged span, which
never exceeds more than 10 tokens. Also note that it easy to
accelerate the transformer tagger by batch processing N to-
kens, while a WFST-only solution has to go with token by
token. Besides computation cost, there are several other ad-
vantages for the proposed solution, when its deployed with an
ASR system. Firstly, we can cache and reuse the results for
an ITN span. Since the hypothesis present in the beam search
of an E2E ASR are very similar to each other, it is possible
that the same ITN span might show up for conversion several
times. In such a case, the per-span ITN conversion results
have a lot of chance to be reused. Secondly, the transformer
tagger solution proposed in this work is naturally streamable.
While it’s also possible to do stream processing with a WFST,
the space and computation cost for it will be a lot higher.

5. CONCLUSION & FUTURE WORK

In this paper we propose a novel modeling solution that
enables on-device, fast, streaming & high quality Inverse
Text Normalization. Our proposed solution is a “hybrid”
model that leverages the strong contextual prediction of a
transformer-tagger and the robustness & customization abili-
ties of a WFST. We benchmark this approach against several
strong baselines and show that our proposed solution can per-
form ITN on par with best alternative solutions, while being
an order of magnitude smaller and having several runtime
benefits. In future work, we will extend the tagger’s respon-
sibilities to simultaneously learn other post-processing tasks
like disfluency removal, punctuation & capitalization. We
will showcase it’s effectiveness on both E2E & Hybrid ASR.
We will also explore pre-training schemes and better neural
architectures for the tagger, to further improve robustness.

6. REFERENCES

[1] Richard Sproat, Alan W. Black, Stanley F. Chen,
Shankar Kumar, Mari Ostendorf, and Christopher D.
Richards, “Normalization of non-standard words,”
Comput. Speech Lang., vol. 15, pp. 287–333, 2001.

[2] Hasim Sak, Yun-Hsuan Sung, Françoise Beaufays, and
Cyril Allauzen, “Written-domain language modeling
for automatic speech recognition,” in INTERSPEECH,
2013.

[3] Yun-Cheng Ju and J. J. Odell, “A language-modeling
approach to inverse text normalization and data cleanup
for multimodal voice search applications,” in INTER-
SPEECH, 2008.

[4] Tim Schlippe, Chenfei Zhu, Jan Gebhardt, and Tanja
Schultz, “Text normalization based on statistical ma-
chine translation and internet user support,” in Proc.
Interspeech 2010, 2010, pp. 1816–1819.

[5] Richard Sproat and Navdeep Jaitly, “Rnn approaches
to text normalization: A challenge,” ArXiv, vol.
abs/1611.00068, 2016.

[6] Monica Sunkara, Chaitanya Shivade, Sravan Bodapati,
and Katrin Kirchhoff, “Neural inverse text normal-
ization,” in ICASSP 2021 - 2021 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2021, pp. 7573–7577.

[7] Maria Shugrina, “Formatting time-aligned ASR tran-
scripts for readability,” in Human Language Technolo-
gies: The 2010 Annual Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics, Los Angeles, California, June 2010, pp. 198–
206, Association for Computational Linguistics.

[8] Issac Alphonso, Nick Kibre, and Tasos Anastasakos,
“Ranking approach to compact text representation for
personal digital assistants,” 12 2018, pp. 664–669.

[9] Ernest Pusateri, Bharat Ram Ambati, Elizabeth Brooks,
Ondrej Plátek, Don McAllaster, and Venki Nagesha, “A
mostly data-driven approach to inverse text normaliza-
tion,” in INTERSPEECH, 2017.

[10] Jinyu Li, Yu Wu, Yashesh Gaur, Chengyi Wang, Rui
Zhao, and Shujie Liu, “On the Comparison of Popu-
lar End-to-End Models for Large Scale Speech Recog-
nition,” in Proc. Interspeech 2020, 2020, pp. 1–5.

[11] Eric Battenberg, Jitong Chen, Rewon Child, Adam
Coates, Yashesh Gaur Yi Li, Hairong Liu, Sanjeev
Satheesh, Anuroop Sriram, and Zhenyao Zhu, “Explor-
ing neural transducers for end-to-end speech recogni-
tion,” in 2017 IEEE Automatic Speech Recognition and
Understanding Workshop (ASRU), 2017, pp. 206–213.

[12] Mehryar Mohri, Weighted Finite-State Transducer Al-
gorithms. An Overview, pp. 551–563, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin, “Attention is all you need,” Ad-
vances in neural information processing systems, vol.
30, 2017.

[14] Jinyu Li, Rui Zhao, Jui-Ting Huang, and Yifan Gong,
“Learning small-size dnn with output-distribution-based
criteria,” in Fifteenth annual conference of the interna-
tional speech communication association, 2014.

[15] Jiazheng Wang, Cunlin Bian, Xian Zhou, Fan Lyu,
Zhibin Niu, and Wei Feng, “Online knowledge distil-
lation for efficient action recognition,” 2022 IEEE 2nd
International Conference on Computer Communication
and Artificial Intelligence (CCAI), pp. 177–181, 2022.

[16] Suraj Srinivas, Akshayvarun Subramanya, and
R. Venkatesh Babu, “Training sparse neural net-
works,” 2017 IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pp.
455–462, 2017.

[17] Jiong Zhang, Qi Lei, and Inderjit S. Dhillon, “Stabiliz-
ing gradients for deep neural networks via efficient svd
parameterization,” in ICML, 2018.

[18] Angela Fan, Edouard Grave, and Armand Joulin, “Re-
ducing transformer depth on demand with structured
dropout,” ArXiv, vol. abs/1909.11556, 2020.

[19] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo
Aila, and Jan Kautz, “Pruning convolutional neural net-
works for resource efficient transfer learning,” ArXiv,
vol. abs/1611.06440, 2016.

[20] Song Han, Huizi Mao, and William J. Dally, “Deep
compression: Compressing deep neural network with
pruning, trained quantization and huffman coding,”
arXiv: Computer Vision and Pattern Recognition, 2016.

[21] Xie Chen, Yu Wu, Zhenghao Wang, Shujie Liu, and
Jinyu Li, “Developing real-time streaming trans-
former transducer for speech recognition on large-scale
dataset,” in ICASSP 2021 - 2021 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2021, pp. 5904–5908.

[22] Qian Zhang, Han Lu, Hasim Sak, Anshuman Tripathi,
Erik McDermott, Stephen Koo, and Shankar Kumar,
“Transformer transducer: A streamable speech recog-
nition model with transformer encoders and rnn-t loss,”
in ICASSP 2020-2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2020, pp. 7829–7833.

[23] Alex Graves, “Sequence transduction with recurrent
neural networks,” arXiv preprint arXiv:1211.3711,
2012.

[24] Ilya Loshchilov and Frank Hutter, “Decoupled weight
decay regularization,” in ICLR, 2019.

[25] Taku Kudo and John Richardson, “SentencePiece: A
simple and language independent subword tokenizer
and detokenizer for neural text processing,” in Proceed-
ings of the 2018 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations,
Brussels, Belgium, Nov. 2018, pp. 66–71, Association
for Computational Linguistics.

[26] Michael Riley, “Fst composition,” https:
//www.openfst.org/twiki/bin/view/
FST/ComposeDoc, 2018.

https://www.openfst.org/twiki/bin/view/FST/ComposeDoc
https://www.openfst.org/twiki/bin/view/FST/ComposeDoc
https://www.openfst.org/twiki/bin/view/FST/ComposeDoc

	 INTRODUCTION
	 ON-DEVICE INVERSE TEXT NORMALIZATION
	 Modeling ITN within E2E ASR
	 Weighted Finite State Transducers with rescoring
	 Modeling ITN as a Seq2Seq task
	 Proposed approach: Transformer Tagger + WFST

	 EXPERIMENTAL DETAILS
	 Model Details and Training Data
	 Lexical & Display format ASR
	 Weighted Finite State Transducers with rescoring
	 Seq2Seq models
	 Transformer Tagger + WFST (Proposed approach)

	 Evaluation

	 RESULTS
	 Text-only evaluation
	 Speech-to-text evaluation
	 Runtime Advantages

	 CONCLUSION & FUTURE WORK
	 References

