
“What It Wants Me To Say”: Bridging the Abstraction Gap
Between End-User Programmers and Code-Generating Large

Language Models
Michael Xieyang Liu∗

Microsoft Research,
Carnegie Mellon University

USA

Advait Sarkar∗
Microsoft Research,

University of Cambridge,
University College London

UK

Carina Negreanu
Microsoft Research

UK

Benjamin Zorn
Microsoft Research

USA

Jack Williams
Microsoft Research

UK

Neil Toronto
Microsoft Research

UK

Andrew D. Gordon
Microsoft Research

UK

ABSTRACT
Code-generating large language models map natural language to
code. However, only a small portion of the infinite space of nat-
uralistic utterances is effective at guiding code generation. For
non-expert end-user programmers, learning this is the challenge
of abstraction matching. We examine this challenge in the specific
context of data analysis in spreadsheets, in a system that maps
the user’s natural language query to Python code using the Codex
generator, executes the code, and shows the result. We propose
grounded abstraction matching, which bridges the abstraction gap
by translating the code back into a systematic and predictable natu-
ralistic utterance. In a between-subjects, think-aloud study (n=24),
we compare grounded abstraction matching to an ungrounded al-
ternative based on previously established query framing principles.
We find that the grounded approach improves end-users’ under-
standing of the scope and capabilities of the code-generating model,
and the kind of language needed to use it effectively.

CCS CONCEPTS
•Human-centered computing→Natural language interfaces;
Interactive systems and tools; Empirical studies in HCI .

KEYWORDS
Natural Language Programming, Spreadsheets, Human-AI Interac-
tion, Large Language Models

∗Equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9421-5/23/04. . . $15.00
https://doi.org/10.1145/3544548.3580817

ACM Reference Format:
Michael Xieyang Liu, Advait Sarkar, Carina Negreanu, Benjamin Zorn, Jack
Williams, Neil Toronto, and Andrew D. Gordon. 2023. “What It Wants Me
To Say”: Bridging the Abstraction Gap Between End-User Programmers
and Code-Generating Large Language Models. In Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems (CHI ’23), April
23–28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 31 pages. https:
//doi.org/10.1145/3544548.3580817

1 INTRODUCTION
Programming languages are an extremely powerful form of user
interface. They also happen to be extremely difficult to learn, espe-
cially for non-expert end-user programmers who lack training in
computing [48]. What if end-user programmers could instead use
a natural language such as English? Natural language is already
known to the user, and ostensibly requires little conscious invest-
ment of effort or learning. This prospect can be realized through
large language models: deep neural networks using the transformer
architecture [113], trained on large corpora, fine-tuned to gener-
ate code from natural language. For brevity, we use LLM to mean
code-generating large language models. Despite impressive bench-
mark performance, LLMs are beset with issues in practical use. Lab
and field studies have shown that the mapping between natural
language and code is poorly understood, that generated code can
contain subtle bugs, and that generated code can be difficult to
verify [95, 112, 124].

In this paper, we consider the specific problem of abstraction
matching [95]: when the user has a well-formed intent, how do
they select an utterance from the near infinite space of naturalistic
utterances that they believe the system will reliably map to a sat-
isfactory solution? This involves “matching” the utterance to the
right level of “abstraction”, by specifying the utterance at a level of
granularity and detail that matches the set of actions the system
can take, and selecting suitable words and grammar.

The abstraction matching problem affects practically every nat-
ural language interface. Solutions (detailed in Section 2) include
showing example commands, teaching users techniques such as

https://doi.org/10.1145/3544548.3580817
https://doi.org/10.1145/3544548.3580817
https://doi.org/10.1145/3544548.3580817
© Owner/Author 2023. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive version was published in CHI '23, https://doi.org/10.1145/3544548.3580817.

CHI ’23, April 23–28, 2023, Hamburg, Germany Liu, et al.

Naturalistic utterances System actions

“Create a new column with the year”

Grounded utterances

“Create column year, select column date,
select characters until character 4”

1 2

34

df['year’]=
df['date'].str[:4]

Figure 1: A summary of the user interaction loop in grounded abstraction matching. The user wishes to extract the year from a
column of date strings. (1) The user chooses a naturalistic utterance to express their intent. (2) The utterance is mapped to a
point in the space of system actions, in this case, a piece of Python code. (3) A grounded utterance is generated, which reflects
the system action back to the user. (4) The user observes this utterance, interacts with it, and develops their mental model for
future utterances.

breaking down their problem, operating with a restricted vocabu-
lary and grammar [77], and incorporating other interface elements
(e.g., graphical menus) to help users formulate their query. Each has
drawbacks: examples are not necessarily reflective of user interests
and do not help the user generalize to a wider range of utterances,
tutorials take time, and restricted grammar reduces user flexibility.

We propose an alternative solution to the abstraction matching
problem, which we call grounded abstraction matching (Section 3):

An interface supports grounded abstraction match-
ing if the user’s naturalistic utterance is mapped to
a system action, and then mapped back to a natu-
ralistic utterance that is an editable example of how
to consistently invoke the same action. This gives a
grounded example of the level of abstraction at which
the system expresses its solutions.

The setting of our study. Figure 1 is a sketch of the user interac-
tion loop we propose. It depicts a concrete example of grounded
abstraction matching in an interface for doing data analysis tasks in
spreadsheets. The user selects an utterance (1) to express their intent
from the large space of naturalistic utterances, such as “Create a new
column with the year”. This is translated into the space of system
actions, which in the example is the space of data analysis code (2).
The code is then translated back into a smaller subspace of grounded
utterances (3), which are in a consistent format, can reliably be inter-
preted by the system, and which we wish the user to learn. Finally
(4), the user observes this grounded utterance (which influences
their future use of the system) and can edit it to refine their query.

We investigate grounded abstraction matching in the context of
end-user programmers solving data analysis tasks in spreadsheets.
End-user programmers stand to benefit greatly from natural lan-
guage programming, as they often do not have formal training
in programming [48, 94]. On the other hand, their lack of pro-
gramming expertise exacerbates the abstraction matching problem.
Without knowledge of the underlying code generator and avail-
able APIs, it is much harder to formulate one’s intent in terms that
can be reliably translated to code. The combination of the high
real-world value, as well as the acute interaction design challenge,
makes this an ideal setting to study the problem. We make the
following contributions in this paper:

• Adescription of the problem of abstractionmatching situated
in prior work, and a solution: grounded abstraction matching
(Section 3). We show an example of how this solution can be

instantiated in the context of end-user programmers solving
data analysis tasks in spreadsheets (Section 4).

• Wepresent a user study (𝑛 = 24) comparing grounded and un-
grounded techniques for abstraction matching, showing that
the grounded approach improves users’ abilities to recover
from system failures, and that users gain greater confidence
and sense of control in using the system (Section 5-6).

• Our discussion throws new light on issues of end-user in-
teraction with large language models. We find design ten-
sions between prompt language and explanation language,
and suggest that confusion of subtly different “dialects” in
different natural language systems may be a future design
challenge (Section 8).

2 BACKGROUND AND RELATEDWORK
Natural language interaction faces many challenges. One of these
challenges is abstraction matching: selecting an utterance that will
translate into the desired system action. Various solutions have been
proposed, but none appears to be targeted towards end-user pro-
grammers working with a large language model, or with the goal of
helping users develop a mental model of the level of abstraction at
which the LLM operates. Here, we review related problems and solu-
tions identified in interaction design and machine learning research.

2.1 Natural language interfaces
Many usability issues of natural language interfaces can be seen
as variations, or consequences, of Norman’s “gulf of execution”
[40]: the problem of getting the computer to do what you want it
to do. The issues begin with forming an intent: a user intent may
be beyond the capabilities of the system. Luger and Sellen [71]
find a gulf between user expectations and the practical experience
of conversational agents, suggesting that they should set realistic
expectations to scaffold the learning process, and should reveal the
system capabilities through interaction.

However, a well-formed intent is not enough; the user now faces
the problem of targeting a set of system actions that might solve
their problem (termed the selection barrier by Ko et al. [49]). For
example, the user of a mobile phone voice assistant, while cooking,
may form an intent not to let the egg overcook. This intent can
be solved through the system action of setting a 2-minute timer.
Design approaches to address the selection barrier include improv-
ing the visibility of the available actions, as in blocks programming
languages [85], where actions are visualized and reified in a virtual

Bridging the Abstraction Gap Between End-User Programmers and Code-Generating Large Language Models CHI ’23, April 23–28, 2023, Hamburg, Germany

toolbox. Similarly, “menu-driven” interfaces for natural language
allow the user to construct naturalistic queries by pointing [108].

Even when a tool is selected, there are use barriers and coor-
dination barriers (in Ko et al.’s terms), because the user needs to
figure out how to operate the tool. In a programming language, this
amounts to using syntax, APIs, data structures, etc. in the correct
way [38, 39, 67–69], and has been termed thematch-mismatch prob-
lem [28]. Programming languages, which use a highly constrained
syntax, are at a relatively fixed level of abstraction (Green and Petre
[29] give a working definition of abstraction). But with natural lan-
guage interfaces, the grammatical possibilities are vast. Consider
the variety of ways in which one can express even the relatively
simple intent to set a 2-minute timer and the small number of ut-
terances that typically produce the correct result in contemporary
voice assistants. Choosing the right level of abstraction, the right
level of granularity in a command, is called the abstraction matching
problem [95].

In this work, we focus on abstraction matching, and propose
an approach to improve the user experience of this problem. We
acknowledge the other problems that are prior to, but distinct from,
the abstraction matching problem, such as the problem of creating
a well-formed intent (i.e., knowing what the system can do), and
selecting tools that can solve that intent (e.g., knowing that a timer
will help you avoid overcooking your egg). Our approach does not
target these issues explicitly, although as we will see, in some in-
stances it can have indirect benefits for these “upstream” challenges.

When conceptualized as a longer dialog, issues such as conver-
sational breakdowns, turn-taking, and self-repair emerge [3, 59–61,
102]. We note these issues and intentionally leave them out of scope.

2.2 Natural language programming
Natural language (NL) has been seen as an attractive mode of pro-
gramming due to its (perceived) lower learning requirements. In the
1960s, there were debates about the suitability of natural language
as a programming notation [19, 32, 88]. At that time, the focus was
not on translating arbitrary intents expressed in natural language
into program code, but rather about adopting naturalistic keywords
and grammars in programming languages, as in AppleScript [17],
where naturalistic statements such as set word to "Apple" are
used instead of more conventional algebraic notation (e.g., let
word = "Apple" in JavaScript).

With developments in natural language processing (NLP), the
possibility emerged of more free-form NL utterances being trans-
lated into program code (e.g., [66]). The growth of the population
of non-expert computer users and end-user programmers [48, 100]
gave added motivation. But NLP technology still had significant
limitations, which led to unpredictable user experiences [71]. In
response, researchers proposed techniques such as context-limiting,
and using a reduced vocabulary (i.e., a well-specified subset of nat-
ural language in a tightly defined application context) [77]. Őzcan
et al. [82] survey challenges for natural language interfaces for
querying data.

Abstraction matching in large language models. Advances
in LLMs have led to the ability to solve previously intractable prob-
lems. For example, generating workflow scripts in mobile appli-
cations [2], helping non-experts design web pages by translating

NL requests into CSS properties [47], summarizing code [104], and
wrangling data [78].

Sarkar et al. [95] review studies of the usability of natural lan-
guage programming with LLMs in particular (e.g., [43, 105, 112, 123,
124]) and articulate how LLMs have made the abstraction matching
problem “fuzzy” (termed “fuzzy abstraction matching”): while LLMs
can interpret a much wider variety of naturalistic utterances than
earlier models, as a consequence, the space of utterances that may
be effective at controlling the model is even more difficult and un-
predictable for an end-user to learn. While a previous model might
simply fail to interpret an utterance, an LLM may interpret it in a
manner that is opaque and difficult for the user to generalize from.

Technical strategies for improving code generation from
LLMs. Notable LLMs include GPT-3 [10] and LaMDA [109]. One
approach to adapt a general LLM for a “downstream” task such as
code generation is to fine-tune a pre-trained LLM by updating part
of the model’s weights. For example, Codex [16] is a fine-tuned
version of GPT-3 for code-related tasks, which we use in our system.

Text generation by an LLM is seeded by a prompt: a sequence of
text that somehow describes the desired output. Prompt engineering,
the templatized design of such prompts, can improve performance
on the downstream task [70], e.g., code generation. According to
Liu et al. [70], approaches for prompting include appending rele-
vant examples [41], appending a table schema [110], generating
mutations of the prompt [64], summarizing complicated prompts
[52], adding explanations [54], or various manipulations in the em-
bedding space of the model [1, 46, 114]. Prompting guidelines for
Codex1 include specifying the language (e.g. Python), libraries (e.g.
Pandas), exploiting comment style (e.g. Python doc strings and the
symbol), providing examples for the format or style, or organiz-
ing tasks into functions. Our approach (described in Section 4.1)
involves combining the user query and data into a fragment of
Python suitable for seeding the model.

Importantly, prompt engineering is a class of technical solutions
for improving model performance; it positions itself as an inter-
mediate step that augments and modifies any text written by the
end-user of a natural language interface. Prompt engineering, as
the term is used in the machine learning literature, is not therefore
intended as a user-facing or interaction design concern.

Design strategies for improving code generation from
LLMs. LLMs are capable of learning and generating instructions,
and breaking down or decomposing a large task into smaller sub-
tasks has consistently been found to improve the performance of
LLMs [26, 37, 75, 83, 84, 115, 119, 121, 122]. Jayagopal et al. [42]
examine the usability of program synthesizers, including GitHub
Copilot, by novices, finding problems arising from the difficulty of
task decomposition, and recommending that designers offer scaf-
folding for decomposition. Unlike prior work, which asks the user
to decompose their request but does not consider how the user
should be guided to do so, our approach can be viewed as providing
an example decomposition of the generated code that the user can
update and resend to the LLM as a set of instructions.

The broader area of interactive parsing frames the process of
converting natural language to code as a dialogue with the user.

1https://beta.openai.com/docs/guides/code/best-practices

CHI ’23, April 23–28, 2023, Hamburg, Germany Liu, et al.

Previous work has explored various interaction design possibili-
ties for this dialogue, such as generating clarification questions in
natural language [125] or multiple-choice [62], helping users cor-
rect errors through natural language feedback [22, 76], formalizing
user intent as tests [53], interactively “naturalizing” a commanding
language [116], and guided step-by-step solution generation [101].
Weisz et al. [120] interviewed programmers about their perceptions
of neural code translation tools, i.e., models that translate from
one programming language into another, finding that confidence
highlighting and alternative translations can improve their utility
and comprehensibility. Other human-in-the-loop approaches at the
level of the LLM support conversational code generation [81]. Our
approach differs from these in the important respect that we focus
on non-expert end-users, who have low expertise in programming
(or none), and in our system users never view generated code, only
the output of its execution.

3 GROUNDED ABSTRACTION MATCHING
The key idea of grounded abstraction matching is to systematically
translate the system action (e.g., code) generated from a user query
back into a naturalistic utterance that is an editable example of how
to consistently invoke the same action. The resultant utterance is
grounded in two ways: it has a direct, systematic correspondence
to the actual code that the system generated, and it is based on an
intent the user actually has.

Contrast the grounded approach with tutorial examples typically
given for natural language interfaces, which are ungrounded in
both senses. Take for instance an instructional example displayed
by Microsoft’s Cortana assistant2: “What’s on my calendar tomor-
row?”. From this example, the user cannot infer a general principle
for using the system in different ways. The system cannot answer
“What’s on my boss’s calendar tomorrow?”, or “What’s on the tele-
vision tomorrow?”. This example is thus ungrounded; it bears no
structured resemblance to the code generated by the system. The
user experience of such systems is piecemeal; a set of disjoint com-
mands to invoke distinct capabilities of the system, with little or no
overarching grammatical structure that can be learned or used to
infer the capabilities of the system. The example is also ungrounded
in the user’s intent: it is only useful to people who use calendars,
and who often need reminding of tomorrow’s schedule.

The grounded abstraction matching approach carves out a space
of naturalistic utterances, which have a predictable mapping with
the space of system actions. We do not force the user to only gen-
erate utterances in this space. In fact, most utterances, due to the
superior performance of LLMs, have a high likelihood of being
mapped to something in the action space. However, an utterance
that matches the capabilities of the system is more likely to gen-
erate the desired result (Section 2). By recasting the user’s own
query in terms of this subspace, the user is exposed to grounded
examples of the kind of utterances, grammar, vocabulary, and level
of specificity, that is effective at generating the desired system ac-
tion. Our hypothesis is that exposure to such grounded examples
leads to more effective and confident use of a natural language
programming interface.

2https://www.microsoft.com/en-us/cortana/

There are several related problems we do not address. First, we
are not directly addressing the problem of helping the user develop
a well-formed intent in the first place (i.e., understanding what the
system can/cannot do). In Section 6, we see that our grounded ap-
proach can help, albeit indirectly. Nor are we explicitly guiding the
user to decompose a problem into smaller units. Nor are we claiming
that natural language programming is more effective for spread-
sheet users than alternatives (e.g., formulas, charts, pivot tables).

Nor are we attempting to explain the output of the model [90], al-
though again, our results show that the grounded approach can per-
form some of the functions of explanation. Unlike an explanation,
a grounded utterance must also be an equivalent command for the
system. If explanation was the objective, it does not follow that lan-
guage is the best form of explanation (we could have used visualiza-
tion), or that an operation-by-operation restatement of the code is
appropriate (we could summarize, or explain in greater detail). Both
Head et al.’s Tutorons [34] and Guo’s Python Tutor [31] articulate
the aims of code explanation and instantiate particular solutions in
particular contexts. Those systems draw on graphical and diagram-
matic elements, documentation, etc., to produce an explanation.

In other words, our interface does not directly address “this is
how the system understood your query” (input interpretation), nor
“this is what the generated code does” (explanation), but rather “this
is how you should ask the system to do what the system thinks you
just asked it to do” (grounded abstraction matching). This differen-
tiates our design from ostensibly similar designs, such as the query
parsing (input interpretation) visualizations of Wolfram Alpha [80].
Finally, our design does not address many aspects of explanation
and transparency typically considered in explainable AI research
[36, 65], such as why did the model generate the output it did (and
why not some other output), how did it generate it (what data and
process were used), how confident is the model, how trustworthy
is the prediction, how biased is the prediction, etc. The tensions
between explanation and abstraction matching led to interesting
design problems, which we discuss in Section 4.2.4.

4 SYSTEM DESIGN AND IMPLEMENTATION
We built two systems, implemented as Microsoft Excel spreadsheet
add-ins.3

• Both systems share a common code generation, execution,
and output display pipeline (Section 4.1).

• System I implements grounded abstraction matching (Sec-
tion 4.2).

• System II implements an ungrounded yet viable alternative
solution to the abstraction matching problem based on pre-
viously established guidelines for effectively writing queries
for large language models (Section 4.3).

4.1 Shared code generation and output pipeline
Both systems share five technical components, summarised in Fig-
ure 2. This figure follows an example where the user has a dataset
listing astronauts, the total time they spent in space, and a comma-
separated list of missions they participated in. The task is to calcu-
late each astronaut’s average mission duration in hours. To begin,

3https://docs.microsoft.com/en-us/office/dev/add-ins/reference/overview/excel-add-
ins-reference-overview

http://approjects.co.za/?big=en-us/cortana/
https://docs.microsoft.com/en-us/office/dev/add-ins/reference/overview/excel-add-ins-reference-overview
https://docs.microsoft.com/en-us/office/dev/add-ins/reference/overview/excel-add-ins-reference-overview

Bridging the Abstraction Gap Between End-User Programmers and Code-Generating Large Language Models CHI ’23, April 23–28, 2023, Hamburg, Germany

Calculate average mission length Go

… ……

InputA
Python 3

import pandas as pd

df = pd.DataFrame()
df['Name'] = ['Joseph Acaba', 'Buzz Aldrin', 'Andrew

Allen', 'Neil Armstrong', 'Richard Arnold']
df['Space Flight (hr)'] = [3307, 289, 906, 205, 307]
df['Missions'] = ['STS-119 (Discovery), ISS-31/32

(Soyuz)', 'Gemini 12, Apollo 11', 'STS-46
(Atlantis), STS-62 (Columbia), STS-75
(Columbia)', 'Gemini 8, Apollo 11', 'STS-119
(Discovery)']

Calculate average mission length

PromptB
B1

B2

B3

B4

1

User queryA1

User tableA2

df['Mission Length']
= df['Space Flight (hr)'] /
df['Missions'].str.count('STS')

Generated Python codeC2

Updated tableE1
OutputEUpdating query via:D

System I:
Grounded abstracting matching

System II:
Guided reframing

or

D1

4 3

5

Excel add-in Codex

D2

D3

Figure 2: System architecture. (1) The user query and table are combined into a prompt. (2) The prompt is passed to Codex to
generate a Python completion. (3) The user table is updated with extra columns or rows or a new table unless a value is returned,
in which case the value is directly displayed to the user. (4) The user may update their query (in different ways depending on
which system they use, i.e., (D1) or (D2)). (5) The new user query is transformed into a prompt.

the user enters the query “calculate average mission length.” Here is
how that query is processed:
(1) Conversion of user query to prompt. Figure 2-A&B shows

how the textual prompt is generated. Per best practice, we spec-
ify the target language (B1) and libraries (B2).We choose Python
and Pandas both because of Codex’s high performance on
Python generation, as well as the large set of operations that are
tailored to common data analysis tasks, which simplifies much
data processing code into the chaining of Pandas API calls. The
Excel table is converted to a Pandas dataframe (B3). The sys-
tem assumes a normalized relational table. Finally we append
the user query as a comment (B4). Using docstrings instead of
#-style comments did not affect the performance in our setting.

(2) Code generation. We call the OpenAI Codex API with our
prompt and hyperparameters. In particular, we set the tempera-
ture to 0 (to minimize variability), and we set the stop sequence
to “\n#” (i.e., at the start of a Python comment, as Codex tends
to delimit self-contained solutions using Python comments).
Figure 2-C shows a generated Python snippet.

(3) Code execution and output display. Snippets are then run in
a JavaScript web service sandbox using Pyodide4. This approach
improves security and ensures a consistent Python runtime en-
vironment, since the user may not have an up-to-date version of
Python (with appropriate libraries) installed. Figure 2-E1 shows
an extra column added by writing the output from the snippet
in Step 2 to the spreadsheet grid. If the completion’s output is
a new column or row, we append it to the user’s table. If the
output is a single value or a new table, we show it in a side-pane
only. The user is not shown the Python snippet.

(4) User interaction. This manifests in two options, which differ
between System I and System II, as shown in Figure 2-D. In
System I (D1), we generate a grounded utterance for the Python
snippet displayed as steps, and in System II (D2), we provide a

4https://pyodide.org. Pyodide is a Python distribution for WebAssembly.

similar “step-staging” area where users can do their own prob-
lem decomposition, or provide additional hints to the system.
Regardless of the option, the user can edit, add, or delete steps
(D3). We expand on System I in Section 4.2 and System II in
Section 4.3.

(5) Preparation of a new prompt.When the user presses “Up-
date & Go” (in Figure 2-D3), the steps are concatenated into a
new query, loaded into the query box, with which we proceed
as per Step 1.

4.2 System I: grounded abstraction matching
4.2.1 Example usage scenario. Interaction with System I is summa-
rized in Figure 3.

Sherry is a journalist working on an article about NASA astro-
nauts, and has gathered data about twenty astronauts in an Excel
spreadsheet, including columns such as “Name”, “Status” (whether
an astronaut is active or retired), “Space Flight (hr)”, and “Missions”.
“Missions” is a comma-delimited list of space missions that an as-
tronaut has participated in, e.g., “Apollo 11”, “STS-132 (Atlantis)”,
and “ISS-19/20 (Soyuz)”.

Sherry wants to calculate an average mission length for ev-
ery astronaut. For example, astronaut Joseph Acaba has a “Space
Flight (hr)” of 3307 and has been on “STS-119 (Discovery), ISS-31/32
(Soyuz)”, so his average mission length is (3307 ÷ 2 =) 1653.5 hours.

Sherry opens the add-in to the right (Figure 3-A), and types
“calculate average mission length” into the query box (Figure 3-B1)
and clicks “Go”. This results in the generation and execution of a
Python snippet (via the process in Section 4.1). The generated code
(Figure 3-G1), which is not visible to Sherry, is:

df['Mission Length'] = df['Space Flight (hr)'] /

df['Missions'].str.count('STS')↩→
(1)

A new “Mission Length” column along with the calculated data
appears in a green background (Figure 3-F1), which is also shown in
the “Results” panel (Figure 3-C) in the sidebar. Sherry notices some

https://pyodide.org

CHI ’23, April 23–28, 2023, Hamburg, Germany Liu, et al.

B1 B2

C

D1 D2

F1 F2
E

df['Mission Length'] = df['Space Flight (hr)'] /
(df['Missions'].str.count(',') + 1)G2

df['Mission Length'] = df['Space Flight (hr)'] /
df['Missions'].str.count('STS')G1

A

Figure 3: System I interface. Left: the user has entered a query (B1), which has been converted to code (G1) and executed by
System I. The result is visible as a new column in the sheet (F1), and a grounded utterance representing the code is visible (D1).
Right: the user has edited the grounded utterance via the text boxes (D1⇒ D2) and submitted it as a new query (B2) by clicking
the “Update & Go” button (E), and new results are visible (F2).

empty cells, so she suspects there has been an error in interpreting
or executing her query. She turns to the grounded utterance panel
(Figure 3-D1).

These grounded utterances (generated according to the method
explained later in Section 4.2.2) are presented as a series of editable
steps (Figure 3-D1). Sherry notices in step 2 (“column Space Flight
(hr) divided by count ‘STS’ from column Missions”) the system
invented a faulty heuristic for counting the number of missions
(the denominator) by counting the number of occurrences of the
word “STS” from the “Missions” column. Sherry observes that some
rows do not contain “STS”, which leads to a zero denominator
and ultimately an empty cell, which also guides her to devise a
correct way of calculating the mission count, namely by counting
the number of commas in the “Missions” column and adding 1. After
editing the second step with the new logic (Figure 3-D2), Sherry
clicks the “Update & Go” button (Figure 3-E) to re-run the task,
with the query being a concatenation of the updated steps (Figure
3-B2).

After reading the new result column (Figure 3-F2) and the new
grounded utterances (based on the newly generated Python code,
see Figure 3-G2), Sherry is convinced that the calculation is correct.

4.2.2 Systematic grounded utterance generation. We generate grou-
nded utterances using program analysis. Our algorithm takes as
input a Python program that is assumed to use the Pandas library,
and outputs a sequence of utterances. We structure the algorithm
in two parts: first, the construction of a task-centric program repre-
sentation (TCR); and second, the generation of grounded utterances
using this representation.

The TCR is designed to retain the algorithmic detail of the code
whilst reducing ambiguity introduced by the concrete Python rep-
resentation. Consider the code df['Missions'].str.count('STS') ,

which counts the number of occurrences of 'STS' in the 'Missions'

column. The presence of attribute .str is an artifact of the Pandas
library, meaningless to a user with no Python expertise. Further,
consider df['Missions'].str[0] , which extracts the first charac-
ter from the 'Missions' column. There are two syntactic access
expressions of the form expr1[expr2] with different meanings;
the first represents column projection and the second represents
string indexing. A purely syntax-driven utterance will fail to reflect
these different meanings.

We construct the TCR using a type-directed translation from the
Python abstract syntax tree. Types are required to resolve identi-
fiers, such as count , to symbols. We can then associate utterance
templates to each symbol. Types are also used to enrich utterances:
the phrases first letter or first word, rather than first element, can
be selected depending on the type of expr1 in expr1[0] . At its
core, the TCR is a domain-specific language for dataframes which
includes row selection, column projection, column extension, vari-
able binding, and a series of methods that operate on dataframes
and columns.

We derive the utterances through a traversal of the TCR; a
process we refer to as layout. When a TCR operation has a sin-
gle subject, we present the operation as an instruction and lay-
out the subject as additional instructions. For example, the code
df['Missions'].str.count('STS') is a linear chain of operations,
each with a single subject, and is therefore presented as a sequence
of instructions: (1) select column “Missions”, (2) calculate count
“STS”. In contrast, the code
df['Space Flight (hr)'] / df['Missions'].str.count('STS') is
rooted with a binary operator, and is therefore presented as a single
descriptive instruction: (1) column “Space Flight (hr)” divided by
count “STS” from column “Missions”. The layout algorithm can

Bridging the Abstraction Gap Between End-User Programmers and Code-Generating Large Language Models CHI ’23, April 23–28, 2023, Hamburg, Germany

combine the instructional and descriptive styles, and therefore, the
resulting utterance for example code (1) mentioned in Section 4.2.1
is: (1) create column “Mission Length”, (2) column “Space Flight
(hr)” divided by count “STS” from column “Missions” .

Our algorithm only supports a subset of Python constructs and
the Pandas library (details in Appendix B); the set is selected based
on their frequency in a benchmark problem set discussed in the
next section.

4.2.3 Round-trip stability. An important validity criterion for a
grounded utterance is that running it through the code generation
pipeline generates the same system action in which it is grounded.
To test whether our heuristics do in fact generate utterances that
have this property, we curated a benchmark dataset of questions
on Stack Overflow5 that requested help solving problems in spread-
sheets. Each question and answer was distilled into an input table,
a natural language query, and an expected output.

We generate a code snippet 𝐶1 from the query, then generate
a grounded utterance for that snippet. We then generate a new
code snippet 𝐶2 from the grounded utterance. We test whether 𝐶1
matches 𝐶2 (code generation equality) and whether executing 𝐶1
and 𝐶2 results in the same output (output equivalence). In practice,
code generation equality is unnecessarily conservative, as Codex
randomly injects statements such as “ print(df) ” that do not affect
the output but will lead to trivial code inequality. Output equiva-
lence, therefore, has more bearing on the user experience.

We calculated equivalences in both our synthetic dataset (126
queries) and the actual queries submitted by participants during
our user study tasks (191 queries where a grounded utterance could
be generated). In both datasets, the outputs were equivalent approx-
imately 85% of the time, suggesting that the grounded utterances
were sufficiently stable for our study of the principle of ground-
ing. Clearly, these results are not perfect and there is room for
improvement, which would be suitable for future work.

4.2.4 Design tensions in the grounded utterance language. In the
design of the utterances, we faced a tension between using the
language as an explanation, versus as a querying language. This
tension manifested as many individual design trade-offs between
optimizing for user understanding versus tactics for effectively
guiding the model. For example, the keyword “string” is highly
effective at specifying the type of textual content for the model,
yet is meaningless to non-expert end-users. We chose “text” after
empirically verifying that the model was performant enough to
interpret this consistently. We made similar decisions between
words for operations such as “average” (more user-friendly) and
“mean” (aligned with the Python function name). An interesting and
tricky case is array indexing. As Python arrays are zero-indexed,
the model can appear inconsistent to non-programmers: asking it
to produce “the first item” in an array yields array[0] , but asking
for “the item in position 1” yields array[1] , which is in fact the
second item in the array. Here we introduced ad-hoc intermediate
heuristics that identified such references to indices and added 1
before displaying it to the user but subtracted 1 before sending it
back to the system.

5https://stackoverflow.com/questions/tagged/excel-formula

A

B

C

Figure 4: System II interface. The portion shown replaces the
section where grounded utterances are displayed in System I,
otherwise the two systems are identical. The ungrounded sys-
tem encourages known best practices for prompting LLMs,
including (A) problem decomposition, (B) specifying output
constraints, and (C) avoiding reliance on background infor-
mation.

The design of these utterances is a rich space, and while we
made some effort to optimize the language for our prototype, we
emphasize that there is still much work to be done in exploring and
articulating the various possibilities. Our solution, whilst sufficient
for evaluating the concept of grounded abstraction matching, has
much room for improvement, some of which we will discuss in
Section 8.

4.3 System II: guidance reframing
We could have compared System I to one without any form of user
support for learning how to use the system effectively. However, this
would have been a straw man comparison, and a lost opportunity to
study how different solutions to the abstraction matching problem
compare. Previous work by Sarkar et al. [95] and Srinivasa Ragavan
et al. [105] has already established the key problems that arise when
users are given a system without support, namely: it is difficult for
users to recover from errors, to develop a mental model of the
capabilities of the system, and to trust the results. We were able
to verify that these problems also apply to our scenario in a small
formative study (Appendix C).

We thus designed an alternative system that supports users
according to established best practices, but where the support is
not grounded in the space of system actions or user intent. This
ungrounded version of the system (Figure 4) interprets recently
established techniques for effectively writing queries for LLMs, in
the context of end-user programming in spreadsheets with LLMs.
We draw upon the following practices:
(1) Decomposing tasks. LLMs are effective at mapping simple

problems to code, e.g. those which can be expressed as a few

CHI ’23, April 23–28, 2023, Hamburg, Germany Liu, et al.

API or function calls, but less effective in multi-step reasoning,
which requires correctly decomposing a problem [5, 75, 122].
Thus, we prompt users to “Describe the task in steps” using the
same step-staging UI as System I (Figure 4-A). Users decompose
the task using their own logic (contrasted with System I, where
the steps can be bootstrapped through the grounded utterances).

(2) Specifying output constraints. Prior work [63, 75, 79, 103,
110] has found that specifying explicit textual statements of
output constraints, such as the intended shape (a single value, a
column, or a table, etc.) and data type (number, boolean, string,
etc.) can improve performance, as the code corpora used for fine-
tuning these LLMs contain comments (likely documentation
strings) that specify the output type.
Thus, users are asked to specify the shape (from “a single value”
to “new columns” or “new tables”) and type (“number(s)”, “char-
acter(s) or word(s)”, or “true/false”) of the system output via the
controls under the prompt “I expect the result to be” (Figure 4-B).

(3) Avoiding reliance on background information.While there
is evidence showing that code-generating LLMs can use knowl-
edge about the world learned from natural language corpora
when solving natural language tasks, it is unreliable and can
lead to unanticipated side effects [75].
Thus, a “Final check” toggle asks users to confirm that their
query (given the data in the spreadsheet) does not use terms
and concepts that require additional knowledge to interpret
(Figure 4-C). This toggle’s purpose is to ensure that the user
consciously designs their query to avoid requiring background
information, and does not affect the prompt.
The information in these sections is concatenated and passed as

a prompt to the model, as in System I.

5 USER STUDY: HOW DOES GROUNDING
AFFECT ABSTRACTION MATCHING?

We designed a study to explore the effect of grounding on the prob-
lem of abstraction matching. Participants completed tasks modeled
after real-world spreadsheet problems. We examined the queries
they submitted, think-aloud data, and questionnaire responses, and
address the following questions:

• In what ways does our system fail to correctly interpret the
user intent?

• How do participants rewrite their queries in response to
failures, to make progress on the tasks?

• How does grounding affect user perceptions of the utility of
such systems, their confidence and trust in the system, and
their mental models?

5.1 Participants
We recruited a purposive sample [24] through emails and social
media. We selected for a diversity of backgrounds, including prior
spreadsheet experience, formula writing experience, and program-
ming experience. Experience was measured using a previously
developed spreadsheet expertise questionnaire [93]. Participants
were required to be over 18 years of age and fluent in English.

We recruited 24 participants (1 non-binary, 9 women, 14 men)
across 11 industries. Fourteen participants were 25-34 years old,
four aged 35-44, four aged 18-24, and two aged 45-54. Of these, half

self-reported having some experience with basic spreadsheet usage
while the other half reported having a lot of experience and having
used at least some advanced features. Eight participants reported
knowing a few basic functions (such as SUM and AVERAGE) in their
spreadsheet formulas, nine reported having knowledge of advanced
functions but rarely used them and preferred basic functions when
writing formulas, and the remaining seven reported having built
a wide variety of formulas or VBA functions. Three participants
reported having little or no programming experience, seven re-
ported having limited knowledge of programming to use it for
small infrequent tasks (this is common for spreadsheet users [93],
and falls within the level of expertise typical of non-expert end-user
programmers [48]), nine reported being moderately experienced
in programming and wrote code regularly, and the remaining five
reported being highly experienced in programming.

5.2 Study protocol
We chose a between-subjects design, where participants were strat-
ified and then randomly assigned to either the grounded or the
ungrounded condition (the obvious learning effect of the interfaces
rules out a within-subjects approach). Groups were balanced in
terms of gender and prior experience. Concretely, Table 1 shows the
similar gender distribution, median spreadsheet expertise, spread-
sheet formula expertise, and programming expertise (as per our
screening questionnaire and its integer coding scheme, taken from
prior work [93]) between the two conditions.

Participants first signed a consent form and completed the demo-
graphic survey. Participants then spent 5 minutes discussing their
experience with, and typical use of, spreadsheets. They were shown
a brief tutorial explaining the user interface elements of the system
used in their respective conditions. Participants then completed
an example task, to increase their familiarity with the system and
mitigate order and learning effects in the remainder of the tasks.

We designed three tasks based on real-world spreadsheet ques-
tions on Stack Overflow and other similar question-answering fo-
rums. For each task, participants were presented with a textual
description of the task and a data table (of roughly 25 rows), which
they read before starting the task. They were asked to think aloud
[27] while completing the task. The experimenter answered ques-
tions about the task objectives and intervened to help participants
recover from bugs in the system implementation, but did not inter-
vene otherwise.

The first task was to identify how many times the city of New
Orleans had won Super Bowl games (an American sporting event)
given a dataset of Super Bowl records. The second was to calculate
a column of average mission duration given a dataset of astronaut
space flights (similar to the example in Section 4.2.1). The third was
to calculate a column that checked whether a house satisfied three
criteria, given a dataset of houses.

Participants were given 15 minutes per task, progressing if they
finished early. Task completion was determined by the partici-
pant’s own judgement, and notifying the experimenter. In rare
cases, participants believed they had succeeded but had slightly
misinterpreted the task (e.g., not counting a house built in 1970 as
part of the class of houses built after 1970). We considered such
cases as successes and did not intervene, since the participant had
a well-formed intent but had simply misread the question.

Bridging the Abstraction Gap Between End-User Programmers and Code-Generating Large Language Models CHI ’23, April 23–28, 2023, Hamburg, Germany

Table 1: Group characteristics in experimental conditions: groups are evenly matched.
Condition Gender Programming expertise Spreadsheet expertise Formula expertise

(non-binary/woman/man) (median) (median) (median)

Grounded 1/4/7 3.5 3.5 4

Ungrounded 0/5/7 4 3.5 4

Avoiding priming. We needed to avoid framing the task objec-
tives in a way that strongly influenced user queries. While some
amount of priming is inevitable, we considered multiple options
that might reduce the influence of the task instructions. Presenting
the task objective pictorially, by showing a screenshot of the de-
sired output column, made it too difficult to infer the task objective.
Phrasing the task differently for each participant would eliminate
an overall bias, but might still bias each participant in idiosyncratic
ways. Our solution was verbosity and circumlocution: we described
the problem indirectly and in a long-winded manner, which we
expected would encourage participants to formulate their initial
query in their own terms. This strategy was effective in practice
(detailed in Section 6). Details of the task descriptions and datasets
are given in Appendix D.

After the tasks, participants completed the NASA TLX [33] and
System Usability Scale [58] questionnaires, and engaged in a semi-
structured interview probing the perceived effectiveness of the
system, their practices around formulating and refining queries, de-
bugging and verifying the system-generated results, and scenarios
where they thought the system would be useful and not useful.

Each session took approximately 65 minutes, conducted via Mi-
crosoft Teams video conferencing software, with the participants
remotely controlling the experimenter’s computer, a designated
Thinkpad laptop with Microsoft Excel and the prototype systems
installed. Sessions were screen and audio recorded. Participants
were compensated USD $25 or local currency equivalent. The study
was approved by our institution’s ethics review board.

5.3 Data segmentation and analysis
We transcribed think-aloud remarks and the post-study interviews
for all participants. Each participant’s transcript was segmented
into remarks made: 1) before the tutorial task, 2) during the tutorial
task, 3) during the first task, 4) the second task, 5) the third task,
6) post-study interview. The transcripts for the tasks were further
segmented into “query episodes”, each starting when the user sub-
mits a query and ending when the user submits the next query (or
the task is complete). Thus each query episode is a single loop of
the user submitting a query, observing and checking the system’s
output, and figuring out how to proceed if the task is still unsolved.

These segments and query episodeswere augmentedwith teleme-
try, consisting of the query the user entered, whether the user sub-
mitted the query from the query box or from the step-staging area,
the generated code (invisible to the user), the generated output (vis-
ible to the user), the generated grounded utterance (in the grounded
condition), and any errors.

Each augmented episode was analyzed using iterative open cod-
ing [111] in accordance with Braun and Clarke’s thematic analysis
[9]. Think-aloud and post-experiment interview data were further
analyzed to identify comments relating to the use of language, trust,
and confidence in the model.

Task episodes were coded into failure modes and rewriting strate-
gies. To generate a codebook, two researchers began by indepen-
dently open-coding the same set of 52 query episodes (data from six
participants). Together they generated 22 and 25 proto-codes for
failure modes and rewrite strategies, which, after discussion and
negotiations, led to an initial codebook of 14 failure mode codes and
17 rewrite strategies. The researchers then independently re-coded
the same sample with the codebook. Manual inspection showed
poor inter-rater agreement, consistent with initial open coding
rounds in prior studies [11, 14, 106]. The two researchers then dis-
cussed disagreements and ambiguities and revised the codebook.
The final codebook (Appendix A) consisted of 12 failure modes and
16 rewrite strategies; 14 code definitions were updated and three
were merged from the initial codebook following two rounds of
negotiations between researchers.

With this final codebook, the two researchers independently
coded the entire set. The agreement on failure modes was 98% (re-
searchers disagreed in 7 out of 293 query episodes), and on rewrite
strategies was 57.3%. To achieve a high level of negotiated agree-
ment [73, 87], the two researchers manually negotiated each dis-
agreement until 100% agreement was reached on the coded set. Our
use of negotiated agreement was with the intent to make quan-
titative comparisons between code frequencies in the grounded
and ungrounded conditions. While more work may be needed to
establish the reusability of the codebook as an independent analysis
device, the shared agreement established is sufficient for us to draw
reliable conclusions about our specific dataset. This aligns with Mc-
Donald et al.’s guidelines for reliability in CSCW and HCI research
[73]. To connect our findings to our codebook, direct references
to codes are presented in bold. Finally, the researchers grouped
codes into larger themes, discussed overall findings, and selected
representative query episodes and quotes.

Table 2: Number of queries issued until first solution.

Task Grounded (mean ± standard deviation) Ungrounded

1 3.17 ± 2.15 2.33 ± 1.31

2 3.50 ± 1.61 3.33 ± 2.75

3 4.50 ± 3.07 2.42 ± 1.80

6 RESULTS
6.1 Task completion and queries
All participants completed every task successfully. Participants com-
pleted the three tasks in similar amounts of time in both grounded
(mean = 32 minutes 38 seconds, 𝜎 = 7 minutes 35 seconds) and un-
grounded (mean = 27 minutes 51 seconds, 𝜎 = 7 minutes 8 seconds)
conditions. The difference was not statistically significant using a
t-test (𝑡 (𝑋) = 1.592, 𝑝 = 0.1256). We include this analysis of time
taken only as an additional description of the difficulty of our tasks;
owing to the variable effects of a think-aloud protocol on timing,

CHI ’23, April 23–28, 2023, Hamburg, Germany Liu, et al.

Table 3: Response to NASA TLX items. Format: median (mean ± standard deviation)
Condition Mental demand Physical demand Temporal demand Performance Effort Frustration

Grounded 4.0 (4.17 ± 1.46) 0.5 (1.08 ± 1.44) 2.0 (2.25 ± 1.59) 8.5 (8.50 ± 0.96) 3.5 (4.08 ± 1.80) 1.0 (1.50 ± 1.71)
Ungrounded 3.0 (3.75 ± 2.71) 1.0 (1.75 ± 2.24) 1.5 (1.58 ± 1.61) 8.5 (8.42 ± 1.55) 4.0 (3.92 ± 2.66) 0.5 (1.83 ± 2.58)

Table 4: Response to System Usability Scale items. Format: median (mean ± standard deviation)
Question category Statement Grounded Ungrounded

Comprehensibility I would consider my interactions with the tool to be understandable and clear. 2 (1.25 ± 1.36) 2 (1.25 ± 1.30)
Learnability I would consider it easy for me to learn how to use this tool. 2 (1.50 ± 1.38) 2 (1.83 ± 0.37)
Enjoyability I enjoyed the features provided by the tool. 2 (1.42 ± 1.38) 2 (1.67 ± 0.62)
Applicability Using this tool would make solving spreadsheet problems at work more efficient and effective. 2 (1.08 ± 1.66) 2 (1.42 ± 0.86)

Recommendability If possible, I would recommend the tool to my friends and colleagues. 2 (1.58 ± 1.38) 2 (1.58 ± 0.64)

we cannot draw conclusions on the direct effect of condition on
task completion time.

Participants required similar numbers of attempts (i.e., issued
similar numbers of queries) to solve each task in both grounded and
ungrounded conditions. This is shown in Table 2. The difference
between conditions is not statistically significant. As in the case
of task 3, the grounded approach can even increase the number of
queries. Our qualitative analysis will show why this is the case, and
why it is not necessarily the disadvantage it may appear.

Our strategy to avoid priming the users’ initial queries was to
make the task description circumlocutory, as detailed in Section 5.
To validate whether this strategy worked, we measure the homo-
geneity of the initial queries submitted by users for each task. The
principle is that the stronger the priming effect, the more similar
users’ initial queries will be, having been biased towards certain
words or phrases by the task description. We chose a simple metric,
the Levenshtein distance [57], computed between every pair of
initial queries for a given task (i.e., (24 × 23) ÷ 2 = 276 unique
initial query pairs per task). The median Levenshtein distance for
the tasks are 44, 61, and 88.5 respectively. These are 66%, 72%, and
86% of the median length in characters of the initial queries to each
task. This can be interpreted roughly as follows: the typical pair
of initial queries share only 14-34% of their textual content; they
are mostly distinct and contain unique content. We consider this as
having successfully avoided priming.

6.2 Usability and cognitive load questionnaires
Participants filled the NASA TLX [33] cognitive load scale and the
System Usability Scale (SUS) [58] questionnaires after completing
the tasks. SUS Likert items were integer-coded on a scale from -2
(strongly disagree) to +2 (strongly agree). The median response
values are presented in Tables 3 and 4. Across both systems, partic-
ipants reported a low to moderate perceived cognitive load, high
perceived performance, and high usability.

The distributions of responses for each item in the TLX and
SUS in the grounded and ungrounded conditions were compared
using the Mann-Whitney U test [74]. Similarly, we compared the
distributions of responses between participants with low and high
programming experience (defined as those who responded in cat-
egories 1-3 and 4-5 respectively, to the programming experience
item in our questionnaire). We compared the distributions of re-
sponses between gender groups. In all cases, we found no significant
differences.

The fact that we did not detect a significant quantitative dif-
ference in cognitive load or standardized usability between the
conditions is not surprising, given the high success rate in both
conditions and the similar number of attempts needed for success.
It speaks to the strength of the reframing principles embodied in the
ungrounded condition, and shows that at least according to these
metrics, the ungrounded condition is a strong, viable alternative
condition and not just a straw man. However, this apparent non-
result obscures significant qualitative differences between the two
conditions revealed both by the strategies adopted by participants
to overcome model failures, as well as in the development of their
mental model and sense of agency, which we shall report in the
following sections.

6.3 Failure modes
Our analysis revealed twelve different types of model failures, i.e.,
reasons why the output did not satisfy the user’s intent. These could
be (loosely) organized into the following four themes: technical
failures, input failures, output failures, and logic failures. These
were not mutually exclusive; a given query episode may result in
multiple failures simultaneously. We classify these failure modes
with full visibility of the generated code, which was not visible to
the user, and as such the failure mode is not necessarily apparent
to the user. The frequency of each failure mode is presented in
Figure 5. There was no statistically significant difference between
the failure mode distributions in the grounded and ungrounded
conditions. Extended examples of each type of failure are given in
Appendix E.

6.3.1 Technical failures. Technical failures are limitations of our
code generation pipeline. In generation failure, no code is gen-
erated. In execution failure, code is generated but cannot be
executed by the prototype. The user experience of each of these
types of error is largely the same; the user gets no feedback except
for a generic error message. Technical failures were uncommon,
occurring in 55 query episodes (18.8% of the total).

6.3.2 Input failures. In input-related failures, the generated code
operated on the wrong columns as input. This could either be
a wrong input column selected when the correct column was
explicitly specified in the query, or an instance of soft wrong
input column, when the correct column was not specified and the
model failed to infer the correct one.

Bridging the Abstraction Gap Between End-User Programmers and Code-Generating Large Language Models CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 5: Relative frequency of failure modes by condition (blue: grounded, striped green: ungrounded).

6.3.3 Output failures. Similarly, in output-related failures, the gen-
erated code produced errors in the output format. The model might
attempt to overwrite existing columns (though overwriting original
data is forbidden in our current implementation) when specifically
asked to generate new columns, or attempt to make a soft over-
write failure, when the request for a new column is implicit or
ambiguous. It may generate extra columns which were not re-
quested, or there may be missing columns which were requested.

6.3.4 Logic failures. Logic failures are errors in the algorithm cho-
sen by the model to solve the problem. Arguably input and output
failures, being part of the generated code, are also logic failures,
but here we loosely apply the term “logic” to mean the method
of computing the result. A logic failure may be a partial answer,
which solves a portion of what the user requested, and which the
user might potentially build upon to solve the remainder of the
task in a subsequent query. Or, it may be raw data output, directly
hallucinating data values to return (which may or may not be cor-
rect), rather than generating code to calculate those values. It may
be the wrong heuristic for calculating an intermediate step when
a method for computing it has not been specified or suggested by
the user. Failures that do not fall into any of the above categories
are coded as other incorrect.

6.4 Query rewriting strategies
How did users cope with model failures? According to decision
support theories of interactive AI system design [50, 89], users
are constantly deciding what to do next when interacting with an
imperfect AI system, in particular when the model’s results are
unsatisfactory. In this view, the role of system design is to provide
the information required to help the user decide what to do next.

We, therefore, focus on the differences between consecutive
query attempts, and characterize the rewriting strategies that par-
ticipants applied in the expectation that the changes made would
solve the model failure, or at least help themmake progress towards
achieving their goal.

Our analysis revealed sixteen distinct rewriting strategies, which
can be organized into four themes: scoping, elaboration, language
restructuring, and intent shaping. These rewriting strategies were
not mutually exclusive; the difference from one version of a query
to the next might involve the application of multiple strategies.

6.4.1 Scoping. In scoping changes, participants either chose to
strictly add steps to their previous query, asking the system to do
an additional prior, intermediate, or subsequent step; or conversely,

they chose to reduce scope, strictly removing a step that was
implicitly or explicitly present in the previous query. Some examples
are given in Table 5.

6.4.2 Elaboration. In elaboration changes, participants addedmore
detail to their queries. They could either elaborate how to per-
form a certain calculation or computation by specifying a method.
Or they could elaborate what they wanted in more detail with-
out necessarily specifying how to compute it. Common ways of
adding more detail about what was required were to specify input
columns that the system should use, or specify output type such
as new column or number, or to name output columns. Examples
are in Table 6.

6.4.3 Language restructuring. Language restructuring consisted
of changes to the grammar (syntax) and vocabulary used in the
query. Users might break down a query into individual clauses that
specify more clearly a computational step. This could have either
been a self-breakdown, using the utterance area of the proto-
type to stage a sequence of steps, or in the grounded condition it
could involve partial or full reuse (of the) system breakdown.
In the grounded condition, participants exposed to the grounded
utterances may adopt system-like language in subsequent queries
(i.e., manually entering a query with grammar or vocabulary that
mimics the grounded utterances). Or in both conditions, partici-
pants may include code-like syntax, such as quotes, parentheses,
or even keywords from other programming languages. These are
illustrated in Table 7.

Code-like syntax and system-like language were effective in
improving themodel output. This shows that the space of utterances
that effectively controls code-generating models is not merely a
subset of natural language, it is a naturalistic space that may contain
elements of natural language and code. This was not lost on our
participants. One participant (P1) remarked, while entering the
query “rows where basement not zero” (i.e., find houses which have
a basement) that it would not make sense spoken aloud: “that one
actually may be a bit less actual language, but [...] I feel like the
system will understand kind of what I mean [...] I don’t have to think
too much about how I would actually say that in a way that would
make sense [to someone else].”

6.4.4 Intent shaping. The final theme consists of rewriting strate-
gies that reflect a shift in the user’s overall intent (i.e., what they
want the system to do), or which help the user evaluate their intent
with respect to the capabilities of the system. They may discard a

CHI ’23, April 23–28, 2023, Hamburg, Germany Liu, et al.

Table 5: Examples of scoping changes. Orange and green highlights indicate differences (removals and additions, respectively)
between a query and its follow-up query (the same color scheme applies to Table 6-8 as well).
Rewrite Strategy Previous Query (Participant-Task) Follow-up Query

Add steps Define mission_count by splitting Missions by ‘,’ (P6-2) ⇒ Define mission_count by splitting Missions by ‘,’ , then divide
Space Flight by mission_count

Reduce scope Create column good where year built is greater than or equal to 1970 AND
squarefoot basement is not 0 and year renovated is not 0 (P9-3)

⇒ Create column good where year built is greater than or equal
to 1970

Table 6: Examples of elaboration changes.
Rewrite Strategy Previous Query (Participant-Task) Follow-up Query

Elaborate how

Add a column of the average flight hour of each mission for each
astronaut (P5-2)

⇒

Add a column of the value of total space flight hour divided by the
number of missions for each astronaut

df['Average Flight Hour'] = [1653.5, 190, 167, 407, 289,
302, 313, 309, 147, 1001.25, 297, 289.5, 423.5, 319.5,
205, 307, 327.5, 168.5, 343, 482.5, 2537.5, 366.5, 190]

↩→

↩→

df['Average Mission Time'] = df['Space Flight (hr)'] /

df['Missions'].str.count('\(')↩→

Elaborate what
how many superbowls has the city of New Orleans won (P27-1)

⇒
how many superbowls has New Orleans Saints won

df[df['Host City'] == 'New Orleans'].shape[0] df[df['Winner'] == 'New Orleans Saints'].shape[0]

Name output
columns

Return true if year built >=1970 AND basement >0 and renovated
TRUE (P11-3)

⇒ Return review column where if year built >=1970 AND basement >0
AND renovated >0

Specify input
columns

How many super bowls has New Orleans won (P9-1)
⇒

Select column “winner” where text includes new orleans
df[df['Host City'] == 'New Orleans']['Winner'].count() df[df['Winner'].str.contains('New Orleans')]

Specify output
type

Select rows where column yr_built greater than 1970 and column
yr_renovated NptEq 0 and column sqft_basement NotEq 0 (P16-3)

⇒ Create a column where column yr_built greater than 1970 and col-
umn yr_renovated NotEq 0 and column sqft_basement NotEq 0

Table 7: Examples of language restructuring changes.
Rewrite Strategy Previous Query (Participant-Task) Follow-up Query

Self breakdown Count the number of rows with ‘New Orleans’ in the winner column
(P12-1)

⇒ (1) Create a new column called city that drops the last word in the winner
column, (2) Count the number of rows in city that say “New Orleans”

Reuse system
breakdown

The number of superbowls the city of New Orleans has won (P5-1)

⇒

(1) select rows where column Winner is New Orleans Saints, (2) count
df[df['Host City'] == 'New Orleans']['Winner'].count() df[df['Winner'] == 'New Orleans Saints'].count()

(1) select rows where column Host City is New Orleans,
(2) select column Winner,
(3) count.

(1) select rows where column Winner is New Orleans Saints,
(2) count.

System-like how many super bowls has New Orleans won (P9-1) ⇒ select column winner where text includes new orleans

Code-like syntax Create a column that shows the value of Space Flight (hr) divided by
the number of items of the Missions column (P26-2)

⇒ (1) create column Space Flight (hr) per Mission, (2) column Space Flight
(hr) divided by (count , from column Missions + 1)

Table 8: Examples of intent shaping changes.
Rewrite Strategy Previous Query (Participant-Task) Follow-up Query

New intent Select rows where basement > 0 and yr_built >= 1970 and
yr_renovated > 0 (P21-3)

⇒ Create a column called consider? where the value is true if basement > 0 and
yr_built >= 1970 and yr_renovated > 0

Start over Use winner column to subtract the winner team column to get the
winner city (P22-1)

⇒ Create a new winner city that remove the winner team from the winner
column

Next step Count the number of mission in column I delimited by comma (P24-2) ⇒ For each name calculate the hours of space flight divided by the mission count

Testing Create a new column that counts how many strings are separated by
“,” in the “Missions” column. Create another column that calculates
“Space Flight (hr)” divided by “Missions_Count” (P25-2)

⇒ new column: # of strings separated by “,” in “Missions”. Create another column
that calculates “Space Flight (hr)” divided by “Missions_Count”

strategy for solving the problem or change their interpretation of
the problem and form an entirely new intent, or they may start
over with the same intent but with a completely fresh expression
of that intent. They may choose to partition the problem into a
series of tasks, and when one task is solved, they may move on to
the next step. Finally, they may write testing queries to probe
the system’s capabilities and improve their own understanding.

Examples are in Table 8. Rewrite strategies that did not fit any of
the above categories were marked as other rephrase.

6.4.5 Rewriting strategies differ between grounded and ungrounded
conditions. The frequency of each rewrite strategy code is presented
in Figure 6. There are some differences between the frequencies in
the grounded and ungrounded conditions. One trivial difference

Bridging the Abstraction Gap Between End-User Programmers and Code-Generating Large Language Models CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 6: Frequency of rewrite strategies per task and overall.

is that the grounded condition enables the reuse system break-
down and system-like language restructuring strategies. These
are naturally absent from the ungrounded condition.

Not including the trivially different codes, the overall distribution
of code frequencies in the grounded condition is different from
the ungrounded condition with statistical significance (𝜒2 (13) =
70.3, 𝑝 = 7.1 · 10−7). In the following paragraphs, we will focus on
differences observed in the frequencies of the next step, reduce
scope, and start over strategies, which, combined with qualitative
analysis of the think-aloud data, explain some of the key advantages
of the grounded strategy.

We see greater use of the next step strategy in the grounded
condition and particularly in task 3. This is because participants
were able to recognize a partial answer much more effectively using
the grounded utterance, and they were more likely to choose to
build upon the partial answer in later steps. In task 3 (finding houses
to satisfy 3 criteria), the model would often give a partial answer by
only satisfying 1 or 2 criteria, or by giving 3 separate columns and
not combining them. When faced with this scenario, participants
in the grounded condition were more likely to recognize this as
a partial answer due to the grounded utterance making it explicit
what the system had done. In contrast, in the ungrounded condition,
participants were more likely to disregard such apparently partial
answers and attempt a self-breakdown or introduce clarity via
code-like syntax.

The reduce scope strategy, though rare in absolute terms (prob-
ably because the tasks were of small scope to begin with), oc-
curred relatively much more often in the grounded condition. The
grounded language, as hypothesized, served as a reference point for
the granularity of command that is achievable by the system, i.e.,
the complexity that can be expressed in a typical Python statement.

The start over strategy is particularly interesting, because it
was more common in the grounded condition in task 1, but in the
ungrounded condition in tasks 2 and 3. This is because the decision
to start over is a cost-benefit tradeoff: the cost of starting over is
high in longer and more complex tasks (such as tasks 2 and 3) but
is lower in simple tasks (such as task 1). The grounded utterances
helped participants evaluate this tradeoff more effectively; in task
1, it was easier for participants to understand the system failure

and start over, but in tasks 2 and 3, it was easier for participants to
understand the system failure and adapt their query, thus avoiding
the need to start over. Conversely, without the feedback of the
grounded utterances, participants in task 1 were stuck with ineffec-
tive approaches longer than necessary, and in tasks 2 and 3 were
likely to abandon results that were partially correct because they
could not recognize them as such.

6.5 Perceived utility of grounded utterances,
and their effects on trust and mental models

From think-aloud comments and semi-structured interviews, we
found that grounded utterances facilitated explanation and debug-
ging, increased users’ trust and confidence, and shaped users’ men-
tal models of system capabilities.

6.5.1 Grounded utterances facilitated explanation and debugging.
Despite the fact that explanationwas not ourmain objective, grounded
utterances gave participants a way of comprehending the system’s
behavior, by manifesting the system’s problem-solving logic and
key information. P3 remarked that “the breakdown would help me
just be able to check that what I’ve typed in did actually make sense
to the system and that it did actually do what I was hoping.” P1 ex-
plained that “[the breakdown] helps me understand what’s going on,
and therefore whether the results is going to be accurate or not,” and
participants imagined it being increasingly valuable with larger ta-
bles, where it is infeasible to manually check all rows and columns.

The presentation of the grounded utterances as isolated steps,
each with reduced scope and standardized explanation language,
exposed multiple entry points for users to identify and repair bugs.
In general, participants thought that the grounded utterances “made
it easy to check your work” (P4), highly “programmable” (P5), and
“providing opportunities for you to modify and iterate over it” (P26).
Grounding for debuggingwas especially useful for participants with
very little or no programming experience. For example, P24 reflected
that “in the New Orleans [task], immediately, I saw that it picked from
the ‘Host City’, and I knew this is why you’re giving me [an incorrect
answer] and then I had to redirect it to go look at the ‘Winner’ col-
umn.” Even a few exposures to the grounded utterances influenced

CHI ’23, April 23–28, 2023, Hamburg, Germany Liu, et al.

participants’ rewrite strategies (discussed in Section 6.4), as opposed
to having to employ guesswork to debug in the ungrounded case.

6.5.2 Grounded utterances increased users’ trust and confidence. In
addition to the ease of comprehension and debugging discussed in
Section 6.5.1, participants commented on the fact that the grounded
utterances aligned with their “intuitions on how to solve a problem”
(P22). For example, P13, who reported having little prior program-
ming experience, recalled that “the step-by-step approach felt natural
and very much mirrored what I usually do, which is to create these
temporary columns as I go along.” Meanwhile, participants with
programming experience also thought the grounded utterances felt
familiar, e.g., “it’s like a more natural language version of SQL” (P16).

Participants, especially non-programmers, also felt that having
access to the grounded utterances made it easier for them to trust
the output, for example, “the more you use [grounded utterances], the
more confident you’ll get to the values, and you get less worried” (P24).
Furthermore, despite having some prior programming experience,
P5 imagined a future in which she would “rely more and more on the
add-in to do my work.” In general, the informative signals from the
grounded utterances contributed to comprehension, debugging, and
a sense of intuitiveness and familiarity, which in turn contributed
to participants’ trust in the system’s behavior and confidence in
their ability to steer the system toward a desirable result.

6.5.3 Grounded utterances shaped users’ mental models of system
capabilities. Interacting with the grounded utterances enabled par-
ticipants to develop mental models of the system’s capabilities and
limitations. To some (8/12), being specific about what is being asked
for helped with successful LLM generations, reflected in rewrite
strategies such as elaborate what, name output columns, spec-
ify input columns, and specify output type. P6 explained his
choice of mentioning the column name in his queries for task 3: “I
went to the exact column name because that’s a useful reference [for
the system], and I don’t super trust the system to be able to semanti-
cally determined that a renovation is connected to ‘year_renovated’.”

Participants picked up vocabularies and styles of utterance from
the grounded utterances, which would reliably get the system to
work according to their intent (7/12). This was particularly helpful
for non-programmers, for example, P13 recalled that through inter-
acting with the breakdowns, “I can see what it’s working with, what
words and language and vocabulary it’s working with, and then I can
kind of shift my understanding of what it wants me to say or what it
understands the best.” Meanwhile, some participants even attempted
to map the breakdown texts to programming or script languages
that they were already familiar with, for example, “when I read and
[subsequently] wrote words like ‘select’, I was very much thinking
about SQL” (P9) and “this [grounded utterance] would be very similar
to how I would tackle it in R.” Participants understood such styles
of utterance to be “reusable and transferable” (P16) across different
tasks, i.e., they could generalize from grounded utterances to form
a predictable notion of a commanding language.

Much like re-purposing spreadsheet formulas [44], 4/12 partic-
ipants saw the value of keeping track of the grounded utterances
of successful LLM generations so that they can act as “informal
documentation” (P26) for future selves and collaborators to better
understand the original intent and the system’s calculation process.

7 LIMITATIONS
We only generate grounded utterances for a subset of the Pandas/
Python APIs, selected by frequency in our benchmark dataset. This
was sufficient for our study: an explanation failure occurred only
13 times out of 159 queries in the grounded condition, on average
1.08 times per user. We do not claim that our algorithm is the
most effective, and future work could explore alternative ways of
producing grounded utterances, such as leveraging the LLM itself
[45, 72]. Our system is limited in assuming a single well-defined
relational data table. Future workmay investigate handlingmultiple
tables [126] or automatic table detection [20].

We chose the reframing principles from previous work as a viable
alternative to our grounded approach, but there are other options,
such as examples or tutorials. We chose an interface that does not
require the users to encounter any information over and above the
text in the user interface, on the basis that in a realistic commercial
spreadsheet feature, the user is not interested in learning and prefers
to develop skills through usage (the “paradox of the active user”
[12]). However, this is not a concern for every natural language
interface, and future work should explore alternatives.

A decision support loop restricted to rewriting queries is not the
only possibility; there is a large design space whichmay increase the
decision surface to the user, including data-oriented (“observation-
level”) interactions [23, 98] (such as indicating incorrect outputs
[91, 96], or manually giving correct examples [30]), or access to
adjust parameters of the model [51, 92] such as temperature. In our
prototype, the usability of naturalistic utterances as a method for
controlling a large language model is the central concern. Thus
rewriting and resubmitting a query is the only available response
to a model failure in our study. This allowed us to inspect the use
of language closely, but future work may explore the interaction of
language with these alternatives.

The data tables in the study consisted of 20-30 rows. In practice,
spreadsheet data analysis can contain much fewer or more rows.
With large datasets, it becomes impossible to verify the model’s
output for each row. A large dataset would have unnecessarily
increased the complexity of the debugging task, which would con-
found our investigation of grounding, and which we leave for future
work.

A lab study cannot capture long-term effects, which become
apparent with days, weeks, or months of use. What appears to be
a clear advantage of one approach over another may erode with
user practice and learning. What appears to be an insignificant
difference may compound over time to create a marked gap. To
longitudinally validate our findings, future work may conduct diary
studies [86] or experience sampling [18].

Many of our participants had prior expertise in formulas and pro-
gramming. It is likely that most users do not regularly use formulas,
based on corpus estimates [97]. Our sample reflects the important
segment of spreadsheet users who do write formulas, and because
the interaction design of our system avoids any direct inspection
or authoring of code, we have reason to believe that some of our
findings might generalize to non-programmers as well. Future work
may explore specifically how grounded abstraction matching might
help users without any prior exposure to formulas or programming.

Bridging the Abstraction Gap Between End-User Programmers and Code-Generating Large Language Models CHI ’23, April 23–28, 2023, Hamburg, Germany

8 DISCUSSION
8.1 Comparison with related work
Our findings throw additional light on prior work. Setlur and Tory
[102] evaluated the interaction design of a chatbot for data analyt-
ics. We further explore how a non-expert end-user, working with a
natural language interface in a data analytics setting, can be guided
to query the system more effectively. Our rewrite strategies expand
upon their classification of follow-up utterances into simplification
and clarification categories, andwe also expand their analysis of fail-
ure cases. They observed the need to “support query expressibility”,
which we directly address with grounded utterances. Our findings
support their observation that “predictability [...] for handling dif-
ferent types of analytical questions further enhanced people’s trust”.

Our findings also support certain conclusions of Jayagopal et al.
[42], in particular, their analysis of Lau’s design guidelines for PBD
systems [56] in the context of LLM-based code generation. Our
findings support guidelines 2: “Make it easy to correct the system”, 3:
“Encourage trust by presenting a model users can understand” : as we
observed in Section 6.5. Our use case shows a new facet of guideline
5: “Consider the perceived value of automation”, which considers the
cost-benefit trade-off of the system as a whole. We found that even
within each episode of use, there are smaller cost-benefit trade-offs,
such as whether to continue refining a particular query or start over.

Ragavan et al.’s study of natural language formulas in the spread-
sheet grid [105] is a close precedent to our work, as it shares the
application domain (data analysis in spreadsheets), target end-user,
and natural language interface. We find significant commonalities.
For instance, our participants also clearly stated the ease of use of
natural language as an advantage compared to spreadsheet formulas
or programming language. Their analysis of failure cases identified
causes such as using incorrect or ambiguous words for concepts, or
phrases requiring background knowledge to understand: our data
shows how both grounding and established reframing principles
can help users avoid, detect, and recover from such issues. We also
extend their work. They acknowledge the limitations of their sys-
tem that “In cases of [...] errors, a user needs to understand how the
intelligence apparatus has interpreted their utterance, and how they
can fix it”, and that “users need a way to [...] provide an alternative
phrasing for the task, when the intent is misinterpreted” ; our findings
show what happens when these are provided, namely: that the abil-
ity to rewrite the query manifests in several rewriting behaviors,
and an intelligibility mechanism (such as grounded utterances) can
shape these behaviors.

8.2 The tutorial value of grounded utterances
A recurring theme from participant feedback was that grounded
utterances could not only be directly reused on future tasks with
the same goal, but also serve as examples of canonical ways of
expressing intent, much like example code for calling an API in
documentation [68]. Some participants who are not expert spread-
sheet or formula users felt it much more straightforward to “work
with natural language than trying to recall or search for that exact
formula for formula combination” to perform data analysis tasks
(P5), observing that “even if I can’t figure out what Excel functions to
use, at least now I know how to sort of just say what I want in English

and make sure to hit those keywords like ‘create a column’, ‘split by’,
‘select rows where ”’ (P26).

The grounded utterances can serve as an “educational tool” (P22)
for learning logical thinking and problem decomposition skills. This
has two advantages: 1) the step-by-step utterances are grounded in
a sequence of API calls in the generated code that are by themselves
primitive building blocks for computation; 2) LLMs are trained on
large corpora of data and are usually able to “translate” a reason-
ably specified initial intent by a user into some logical code, as
documented in Section 2 and evidenced by our system.

The way that an LLM solves a task may be suboptimal (e.g., being
time and space inefficient, reflecting poor practices in coding, etc.),
and could lead to users being misguided downstream. However,
in our study, grounded utterances were presented as a series of
editable steps exposing the abstractions of the LLM-generated code,
which enabled them to reason about model failures (Section 6.3)
and edit the utterances to fix model mistakes (Section 6.4). Helping
learners build mental models for chained functions is a topic of in-
terest in educational tools, and future work may explore alternative
visualizations, such as those in DS.js [128], or Pandas Tutor [55].

8.3 Genres of naturalistic commanding
The notional language of queries that users form is surprisingly easy
to influence. We observed that even a single exposure to a grounded
utterance can change the grammar and vocabulary of subsequent
queries. Participants looked for cues in the task question (although
they were largely thwarted by our strategy of circumlocution), in
the language of the interface, and in the language used by the ex-
perimenter. Moreover, they draw upon their previous experiences
of querying search engines, their expertise (if available) in formula
programming and other programming languages, and syntax from
algebraic notation. The process by which users form a coherent
query language from these disparate, fragmented influences re-
sembles the process of creolization as articulated by Bickerton [6].
Language bioprogramming theory [7], which assumes an innate
capacity for grammar, may be a partial explanation for how users
transform their priming into a structured language.

However, the similarity is superficial: creolization typically oc-
curs at a generational timescale, whereas users of these systems
resolve their influences into a querying style within minutes. Unlike
a creole, the user is the only speaker of their particular query lan-
guage. We observed substantial individual differences in querying
styles (without substantial differences in success rate). Thus each in-
dividual appears to develop their own “speech genres”, per Bakhtin
[4]. This flexibility can be an advantage, but also a disadvantage
when it comes to collaboration and communication; as several par-
ticipants noted, the query forms a part of the documentation of
the spreadsheet to be passed to collaborators for comprehension.
But this is another manifestation of the common fallacy committed
by spreadsheet authors [106]: that what is intelligible to them is
therefore also intelligible to a different reader.

Nonetheless, it is possible that through collaboration, certain
norms, standards, and best practices might emerge, which will lead
groups of individuals to a shared style of naturalistic commanding.
However, these will be slightly different for every system and its
method for generating grounded utterances, which may be vendor-
specific. The user might learn one style of naturalistic commanding

CHI ’23, April 23–28, 2023, Hamburg, Germany Liu, et al.

for a spreadsheet software made by one company, but another for
database software made by another company. This confusion of
“dialects,” if we may call them such, is a potential interaction design
challenge for the future of these interfaces.

8.4 Applications of grounded abstraction
matching

Grounded abstraction matching is a general technique for familiar-
izing users with the space of utterances effective for commanding
any particular language model. Here we have applied it to a system
where the space of system actions is short Python data analysis
programs using the Pandas library.

Even within spreadsheets, there are other applications. For exam-
ple, a query seeking a particular presentation style in a spreadsheet,
such as coloring alternate rows in red, could be solved using spread-
sheet presentation scripting APIs, and grounded utterances could
help the user learn how to express their preferred styles. Similarly,
a query such as “generate a scatterplot for each data series and
mark all negative 𝑥 values on the plots in red”, could result in the
generation of a Vega-Lite [99] visualization, and grounded utter-
ances could be used to allow the user to learn the space of effective
utterances and grammar of visualizations.

Outside of spreadsheets, grounded utterances could be integrated
into the feedback loop for commercial voice assistants, chatbots, or
software that rely on naturalistic queries, such as search engines.

While most LLM applications currently use naturalistic utter-
ances as their input space, there may be applications where the
input space is not a linguistic notation. For example, as part of
an accessibility device, an LLM may be used to “translate” from a
space of non-lingual speech sounds, or a space of body movements,
or gestures, into a space of system actions. Here again, grounded
“utterances” can orient the user to an effective use of the LLM.

8.5 Continued applicability of grounded
abstraction matching as LLMs evolve

At the time of writing, LLMs are improving at a rapid pace, with
yearly dataset and parameter scaling consistently achieving emer-
gent properties [118]. Based on current research trajectories, it
is not unreasonable to forecast that LLMs will improve in two
directions: they will be more frequently able to offer “zero-shot”
solutions (i.e., without bespoke fine-tuning) in current scenarios,
and they will be able to tackle new scenarios.

LLMs can now provide support in many scenarios that were
previously intractable [8]. The technical capability has gone from
not being able to offer any assistance to being able to offer a wide
variety of compelling and viable, yet poorly-understood and un-
predictable assistance. The key challenge for interaction design,
therefore, is finding appropriate application domains, and helping
users make the best use of LLMs while accounting for their limita-
tions. The specific problem of abstraction matching, along with the
related problems of explanation and trust, are unlikely to disappear
with better performance; rather as LLMs become more performant
they are likely to be applied in increasingly complex and high-risk
applications. The interaction design principle of grounded abstrac-
tion matching is generic, yet prescriptive enough to be helpful to
system designers in many of these situations.

8.6 Implications for design
Our work is an early exploration of grounded utterances as a solu-
tion to the abstraction matching problem. It is not straightforward
nor entirely appropriate to directly prescribe implications for design
[21, 107]. Nonetheless, some of our findings may help design.

Abstraction matching becomes a serious challenge when the
space of system actions is large (as with Python code). Fuzzy ab-
straction matching becomes a serious challenge when the language
understanding model is highly performant but still highly unpre-
dictable (as is Codex). In such situations, grounded abstraction
matching can be a systematic and effective way of getting users
familiar with a naturalistic commanding language.

Designers should be aware of language priming cues in the user
interface and also other cues that the user base is exposed to, e.g.,
from other software, programming languages, search engines, etc.
that they commonly use. These priming cues can be built upon,
e.g., by borrowing naturalistic keywords from languages such as
SQL. Conversely, a mismatch between environmental cues and the
language needed to effectively command your system can interfere
with the development of mental models.

Grounded utterances have the potential to serve multiple func-
tions simultaneously: as tutorial examples for the user, as input
interpretation, and as system behavior explanations. Ideally, a nat-
ural language interface would treat each of these separately, but in
commercial tools such as spreadsheets, the user will not expect to
attend to many different categories of feedback just to get their data
analysis done, and could get overwhelmed. Thus a consideration for
feedback from any natural language interfaces ought to be whether
it can serve “double duty” as grounded examples (testable through
round-trip experiments) as well as explanations.

9 CONCLUSION
Abstraction matching, selecting a natural language utterance that
is likely to be understood correctly by the system, is a core problem
facing users of almost all natural language interfaces. We propose
grounded abstraction matching, in which grounded examples of such
effective utterances are systematically generated and shown to the
user. We present a concrete instantiation of grounded abstraction
matching in a system that helps non-expert end-user programmers
perform data analysis in spreadsheets.

In a study comparing this approach to an ungrounded alternative,
we find that the grounded approach has many positive effects on
the strategies available to end-users to cope with model failures. We
find that over time, exposure to grounded examples leads to a more
consistent mental model, greater confidence, and perception of trust
in the system. There are many avenues for future work, including
studying the effect of such grounding in dialogue, in other contexts
besides spreadsheets, studying the effects over longitudinal usage,
and how different “dialects” of naturalistic language that arise due
to differences between users and between systems might interact.

ACKNOWLEDGMENTS
We would like to thank our study participants for their kind partici-
pation. We sincerely thank Sruti Srinivasa Ragavan, Ian Drosos, and
Sherry Tongshuang Wu for their insightful feedback and constant
support.

Bridging the Abstraction Gap Between End-User Programmers and Code-Generating Large Language Models CHI ’23, April 23–28, 2023, Hamburg, Germany

REFERENCES
[1] Shengnan An, Yifei Li, Zeqi Lin, Qian Liu, Bei Chen, Qiang Fu, Weizhu Chen,

Nanning Zheng, and Jian-Guang Lou. 2022. Input-Tuning: Adapting Unfamiliar
Inputs to Frozen Pretrained Models. ArXiv abs/2203.03131 (2022).

[2] Deniz Arsan, Ali Zaidi, Aravind Sagar, and Ranjitha Kumar. 2021. App-Based
Task Shortcuts for Virtual Assistants. In The 34th Annual ACM Symposium on
User Interface Software and Technology. 1089–1099.

[3] Zahra Ashktorab, Mohit Jain, Q Vera Liao, and Justin D Weisz. 2019. Resilient
chatbots: Repair strategy preferences for conversational breakdowns. In Pro-
ceedings of the 2019 CHI conference on human factors in computing systems.
1–12.

[4] Mikhail Bakhtin and Ghodrat Ghāsemipour. 2011. The problem of speech genres.
Literary Criticism 4, 15 (2011), 114–136.

[5] Emily M. Bender and Alexander Koller. 2020. Climbing towards NLU: On
Meaning, Form, and Understanding in the Age of Data. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics. Association
for Computational Linguistics, Online, 5185–5198. https://doi.org/10.18653/v1/
2020.acl-main.463

[6] Derek Bickerton. 1983. Creole languages. Scientific American 249, 1 (1983),
116–123.

[7] Derek Bickerton. 1984. The language bioprogram hypothesis. Behavioral and
brain sciences 7, 2 (1984), 173–188.

[8] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, et al. 2021. On the opportunities and risks of foundation models.
arXiv preprint arXiv:2108.07258 (2021).

[9] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77–101.

[10] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, T. J. Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens Winter,
Christopher Hesse,Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
ArXiv abs/2005.14165 (2020).

[11] John L Campbell, Charles Quincy, Jordan Osserman, and Ove K Pedersen. 2013.
Coding in-depth semistructured interviews: Problems of unitization and inter-
coder reliability and agreement. Sociological methods & research 42, 3 (2013),
294–320.

[12] John M Carroll and Mary Beth Rosson. 1987. Paradox of the active user. In
Interfacing thought: Cognitive aspects of human-computer interaction. 80–111.

[13] Federico Cassano, John Gouwar, Daniel Nguyen, Sy Duy Nguyen, Luna Phipps-
Costin, Donald Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q. Feldman, Arjun Guha, Michael Greenberg, and Abhinav Jangda. 2022.
A Scalable and Extensible Approach to Benchmarking NL2Code for 18 Program-
ming Languages. ArXiv abs/2208.08227 (2022).

[14] George Chalhoub and Advait Sarkar. 2022. “It’s Freedom to Put Things Where
My Mind Wants”: Understanding and Improving the User Experience of Struc-
turing Data in Spreadsheets. In Proceedings of the 2022 CHI Conference on Human
Factors in Computing Systems (CHI ’22). Association for Computing Machinery,
New York, NY, USA, 1–24. https://doi.org/10.1145/3491102.3501833

[15] Kathy Charmaz. 2006. Constructing Grounded Theory: A Practical Guide through
Qualitative Analysis. SAGE. Google-Books-ID: 2ThdBAAAQBAJ.

[16] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welin-
der, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wo-
jciech Zaremba. 2021. Evaluating Large Language Models Trained on Code.
https://doi.org/10.48550/ARXIV.2107.03374

[17] William R Cook. 2007. Applescript. In Proceedings of the third ACM SIGPLAN
conference on History of programming languages. 1–1.

[18] Mihaly Csikszentmihalyi and Reed Larson. 2014. Validity and reliability of the
experience-sampling method. In Flow and the foundations of positive psychology.
Springer, 35–54.

[19] Edsger W Dijkstra. 1979. On the foolishness of" natural language programming".
Program construction (1979), 51–53.

[20] Haoyu Dong, Shijie Liu, Shi Han, Zhouyu Fu, and Dongmei Zhang. 2019. Ta-
bleSense: Spreadsheet Table Detection with Convolutional Neural Networks.

Proceedings of the AAAI Conference on Artificial Intelligence 33, 01 (July 2019),
69–76. https://doi.org/10.1609/aaai.v33i01.330169 Number: 01.

[21] Paul Dourish. 2006. Implications for design. In Proceedings of the SIGCHI confer-
ence on Human Factors in computing systems. 541–550.

[22] Ahmed Elgohary, Christopher Meek, Matthew Richardson, Adam Fourney,
Gonzalo A. Ramos, and Ahmed Hassan Awadallah. 2021. NL-EDIT: Correcting
Semantic Parse Errors through Natural Language Interaction. In NAACL.

[23] Alex Endert, Chao Han, Dipayan Maiti, Leanna House, and Chris North. 2011.
Observation-level interaction with statistical models for visual analytics. In
2011 IEEE conference on visual analytics science and technology (VAST). IEEE,
121–130.

[24] Ilker Etikan, Sulaiman Abubakar Musa, Rukayya Sunusi Alkassim, et al. 2016.
Comparison of convenience sampling and purposive sampling. American journal
of theoretical and applied statistics 5, 1 (2016), 1–4.

[25] Mikhail Evtikhiev, Egor Bogomolov, Yaroslav Sokolov, and Timofey Bryksin.
2022. Out of the BLEU: how should we assess quality of the Code Generation
models? ArXiv abs/2208.03133 (2022).

[26] Matthew Finlayson, Kyle Richardson, Ashish Sabharwal, and Peter Clark. 2022.
What Makes Instruction Learning Hard? An Investigation and a New Challenge
in a Synthetic Environment. ArXiv abs/2204.09148 (2022).

[27] Marsha E Fonteyn, Benjamin Kuipers, and Susan J Grobe. 1993. A description
of think aloud method and protocol analysis. Qualitative health research 3, 4
(1993), 430–441.

[28] TRG Green, M Petre, and RKE Bellamy. 1991. Comprehensibility of Vi-
sual and Textual Programs: A Test of Superlativism Against the’Match-
Mismatch’Conjecture. Empirical Studies of Programming: Fourth Workshop. J.
Koenemann-Belliveau, TG Moher and SP Robertson. New Brunswick.

[29] Thomas R. G. Green and Marian Petre. 1996. Usability analysis of visual pro-
gramming environments: a ‘cognitive dimensions’ framework. Journal of Visual
Languages & Computing 7, 2 (1996), 131–174.

[30] Sumit Gulwani. 2011. Automating string processing in spreadsheets using
input-output examples. ACM Sigplan Notices 46, 1 (2011), 317–330.

[31] Philip J Guo. 2013. Online python tutor: embeddable web-based program
visualization for cs education. In Proceeding of the 44th ACM technical symposium
on Computer science education. 579–584.

[32] Mark Halpern. 1966. Foundations of the Case for Natural-Language Program-
ming. In Proceedings of the November 7-10, 1966, Fall Joint Computer Conference
(San Francisco, California) (AFIPS ’66 (Fall)). Association for Computing Ma-
chinery, New York, NY, USA, 639–649. https://doi.org/10.1145/1464291.1464360

[33] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX
(Task Load Index): Results of empirical and theoretical research. In Advances in
psychology. Vol. 52. Elsevier, 139–183.

[34] Andrew Head, Codanda Appachu, Marti A Hearst, and Björn Hartmann. 2015.
Tutorons: Generating context-relevant, on-demand explanations and demon-
strations of online code. In 2015 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE, 3–12.

[35] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora,
Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Xiaodong Song, and
Jacob Steinhardt. 2021. Measuring Coding Challenge Competence With APPS.
ArXiv abs/2105.09938 (2021).

[36] Andreas Holzinger. 2018. From machine learning to explainable AI. In 2018
world symposium on digital intelligence for systems and machines (DISA). IEEE,
55–66.

[37] Or Honovich, Uri Shaham, Samuel R. Bowman, and Omer Levy. 2022. Instruction
Induction: From Few Examples to Natural Language Task Descriptions. ArXiv
abs/2205.10782 (2022).

[38] Amber Horvath, Michael Xieyang Liu, River Hendriksen, Connor Shannon,
Emma Paterson, Kazi Jawad, Andrew Macvean, and Brad A Myers. 2022. Un-
derstanding How Programmers Can Use Annotations on Documentation. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
(CHI ’22). Association for Computing Machinery, New York, NY, USA, 1–16.
https://doi.org/10.1145/3491102.3502095

[39] Jane Hsieh, Michael Xieyang Liu, Brad A. Myers, and Aniket Kittur. 2018. An
Exploratory Study of Web Foraging to Understand and Support Programming
Decisions. In 2018 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). 305–306. https://doi.org/10.1109/VLHCC.2018.8506517
ISSN: 1943-6092.

[40] Edwin L Hutchins, James D Hollan, and Donald A Norman. 1985. Direct manip-
ulation interfaces. Human–computer interaction 1, 4 (1985), 311–338.

[41] Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh
Parthasarathy, Sriram Rajamani, and Rahul Sharma. 2022. Jigsaw: Large Lan-
guage Models meet Program Synthesis. In International Conference on Software
Engineering (ICSE). https://www.microsoft.com/en-us/research/publication/
jigsaw-large-language-models-meet-program-synthesis/

[42] Dhanya Jayagopal, Justin Lubin, and Sarah E Chasins. 2022. Exploring the
Learnability of Program Synthesizers by Novice Programmers. In User Interface
Software and Technology (UIST’22).

https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.1145/3491102.3501833
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.1609/aaai.v33i01.330169
https://doi.org/10.1145/1464291.1464360
https://doi.org/10.1145/3491102.3502095
https://doi.org/10.1109/VLHCC.2018.8506517
http://approjects.co.za/?big=en-us/research/publication/jigsaw-large-language-models-meet-program-synthesis/
http://approjects.co.za/?big=en-us/research/publication/jigsaw-large-language-models-meet-program-synthesis/

CHI ’23, April 23–28, 2023, Hamburg, Germany Liu, et al.

[43] Ellen Jiang, Edwin Toh, Alejandra Molina, Kristen Olson, Claire Kayacik, Aaron
Donsbach, Carrie J Cai, and Michael Terry. 2022. Discovering the Syntax and
Strategies of Natural Language Programming with Generative Language Models.
In CHI Conference on Human Factors in Computing Systems. 1–19.

[44] Nima Joharizadeh, Advait Sarkar, Andrew D. Gordon, and Jack Williams. 2020.
Gridlets: Reusing Spreadsheet Grids. In Extended Abstracts of the 2020 CHI
Conference on Human Factors in Computing Systems (CHI EA ’20). Association
for Computing Machinery, New York, NY, USA, 1–7. https://doi.org/10.1145/
3334480.3382806

[45] Junaed Younus Khan and Gias Uddin. 2022. Automatic Code Documenta-
tion Generation Using GPT-3. https://doi.org/10.48550/arXiv.2209.02235
arXiv:2209.02235 [cs].

[46] Daniel Khashabi, Shan Lyu, Sewon Min, Lianhui Qin, Kyle Richardson, Sameer
Singh, Sean Welleck, Hannaneh Hajishirzi, Tushar Khot, Ashish Sabharwal,
and Yejin Choi. 2022. Prompt Waywardness: The Curious Case of Discretized
Interpretation of Continuous Prompts. In NAACL.

[47] Tae Soo Kim, DaEun Choi, Yoonseo Choi, and Juho Kim. 2022. Stylette: Styling
the Web with Natural Language. In CHI Conference on Human Factors in Com-
puting Systems. 1–17.

[48] Amy J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett,
Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman, Brad Myers,
Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and Susan Wiedenbeck. 2011.
The State of the Art in End-user Software Engineering. ACM Comput. Surv. 43,
3 (April 2011), 21:1–21:44. https://doi.org/10.1145/1922649.1922658

[49] Amy J. Ko, Brad A. Myers, and Htet Htet Aung. 2004. Six Learning Barriers in
End-User Programming Systems. In Proceedings of the 2004 IEEE Symposium
on Visual Languages - Human Centric Computing (VLHCC ’04). IEEE Computer
Society, Washington, DC, USA, 199–206. https://doi.org/10.1109/VLHCC.2004.
47

[50] Rafal Kocielnik, Saleema Amershi, and Paul N Bennett. 2019. Will you accept an
imperfect ai? exploring designs for adjusting end-user expectations of ai systems.
In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
1–14.

[51] Todd Kulesza, Margaret Burnett, Weng-Keen Wong, and Simone Stumpf. 2015.
Principles of explanatory debugging to personalize interactive machine learning.
In Proceedings of the 20th international conference on intelligent user interfaces.
126–137.

[52] Kirby Kuznia, Swaroop Mishra, Mihir Parmar, and Chitta Baral. 2022. Less is
More: Summary of Long Instructions is Better for Program Synthesis. ArXiv
abs/2203.08597 (2022).

[53] Shuvendu K. Lahiri, Aaditya Naik, Georgios Sakkas, Piali Choudhury, Curtis von
Veh, Madan Musuvathi, Jeevana Priya Inala, ChenglongWang, and Jianfeng Gao.
2022. Interactive Code Generation via Test-Driven User-Intent Formalization.
ArXiv abs/2208.05950 (2022).

[54] Andrew Kyle Lampinen, Ishita Dasgupta, Stephanie C. Y. Chan, Kory Matthew-
son, Michael Henry Tessler, Antonia Creswell, James L. McClelland, Jane X.
Wang, and Felix Hill. 2022. Can language models learn from explanations in
context? ArXiv abs/2204.02329 (2022).

[55] Sam Lau and Philip Guo. 2022. Pandas tutor visualizes how python code trans-
forms dataframes. https://pandastutor.com/

[56] Tessa Lau. 2009. Why programming-by-demonstration systems fail: Lessons
learned for usable ai. AI Magazine 30, 4 (2009), 65–65.

[57] Vladimir I Levenshtein et al. 1966. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, Vol. 10. Soviet Union, 707–
710.

[58] James R. Lewis. 2018. The System Usability Scale: Past, Present, and Future.
International Journal of Human–Computer Interaction 34, 7 (July 2018), 577–
590. https://doi.org/10.1080/10447318.2018.1455307 Publisher: Taylor & Francis
_eprint: https://doi.org/10.1080/10447318.2018.1455307.

[59] Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. 2017. SUGILITE: Creat-
ing Multimodal Smartphone Automation by Demonstration. In Proceedings of
the 2017 CHI Conference on Human Factors in Computing Systems (CHI ’17).
Association for Computing Machinery, Denver, Colorado, USA, 6038–6049.
https://doi.org/10.1145/3025453.3025483

[60] Toby Jia-Jun Li, Igor Labutov, Xiaohan Nancy Li, Xiaoyi Zhang, Wenze Shi,
Wanling Ding, Tom M. Mitchell, and Brad A. Myers. 2018. APPINITE: A
Multi-Modal Interface for Specifying Data Descriptions in Programming by
Demonstration Using Natural Language Instructions. In 2018 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC). 105–114.
https://doi.org/10.1109/VLHCC.2018.8506506 ISSN: 1943-6106.

[61] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah, Tom M.
Mitchell, and Brad A. Myers. 2019. PUMICE: A Multi-Modal Agent that Learns
Concepts and Conditionals from Natural Language and Demonstrations. In
Proceedings of the 32nd Annual ACM Symposium on User Interface Software and
Technology (UIST ’19). Association for Computing Machinery, New Orleans, LA,
USA, 577–589. https://doi.org/10.1145/3332165.3347899

[62] Yuntao Li, Bei Chen, Qian Liu, Yan Gao, Jian-Guang Lou, Yan Zhang, and
Dongmei Zhang. 2020. “What Do You Mean by That?” - a Parser-Independent

Interactive Approach for Enhancing Text-to-SQL. In EMNLP.
[63] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser,

Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago,
Thomas Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin,
Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov,
James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli,
Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. 2022. Competition-
Level Code Generation with AlphaCode. https://doi.org/10.48550/ARXIV.2203.
07814

[64] Zongjie Li, Chaozheng Wang, Zhibo Liu, Haoxuan Wang, Shuai Wang, and
Cuiyun Gao. 2022. CCTEST: Testing and Repairing Code Completion Systems.
ArXiv abs/2208.08289 (2022).

[65] Brian Y Lim and Anind K Dey. 2009. Assessing demand for intelligibility in
context-aware applications. In Proceedings of the 11th international conference
on Ubiquitous computing. 195–204.

[66] Hugo Liu and Henry Lieberman. 2005. Programmatic Semantics for Natural Lan-
guage Interfaces. In CHI ’05 Extended Abstracts on Human Factors in Computing
Systems (Portland, OR, USA) (CHI EA ’05). Association for ComputingMachinery,
New York, NY, USA, 1597–1600. https://doi.org/10.1145/1056808.1056975

[67] Michael Xieyang Liu, Jane Hsieh, Nathan Hahn, Angelina Zhou, Emily Deng,
Shaun Burley, Cynthia Taylor, Aniket Kittur, and Brad A. Myers. 2019. Unakite:
Scaffolding Developers’ Decision-Making Using the Web. In Proceedings of the
32Nd Annual ACM Symposium on User Interface Software and Technology (UIST
’19). ACM, New Orleans, LA, USA, 67–80. https://doi.org/10.1145/3332165.
3347908 event-place: New Orleans, LA, USA.

[68] Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers. 2021. To Reuse or Not
To Reuse? A Framework and System for Evaluating Summarized Knowledge.
Proceedings of the ACM on Human-Computer Interaction 5, CSCW1 (April 2021),
166:1–166:35. https://doi.org/10.1145/3449240

[69] Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers. 2022. Crystalline:
Lowering the Cost for Developers to Collect and Organize Information for
Decision Making. In Proceedings of the 2022 CHI Conference on Human Factors in
Computing Systems (CHI ’22). Association for Computing Machinery, New York,
NY, USA. https://doi.org/10.1145/3491102.3501968 event-place: New Orleans,
LA, USA.

[70] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of
Prompting Methods in Natural Language Processing. ArXiv abs/2107.13586
(2021).

[71] Ewa Luger and Abigail Sellen. 2016. "Like Having a Really Bad PA" The Gulf
between User Expectation and Experience of Conversational Agents. In Pro-
ceedings of the 2016 CHI conference on human factors in computing systems.
5286–5297.

[72] Stephen MacNeil, Andrew Tran, Dan Mogil, Seth Bernstein, Erin Ross, and Zi-
hengHuang. 2022. GeneratingDiverse Code Explanations using theGPT-3 Large
Language Model. In Proceedings of the 2022 ACM Conference on International
Computing Education Research - Volume 2 (ICER ’22). Association for Computing
Machinery, New York, NY, USA, 37–39. https://doi.org/10.1145/3501709.3544280

[73] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. 2019. Reliability and
inter-rater reliability in qualitative research: Norms and guidelines for CSCW
and HCI practice. Proceedings of the ACM on Human-Computer Interaction 3,
CSCW (2019), 1–23.

[74] Patrick E McKnight and Julius Najab. 2010. Mann-Whitney U Test. The Corsini
encyclopedia of psychology (2010), 1–1.

[75] Swaroop Mishra, Daniel Khashabi, Chitta Baral, Yejin Choi, and Hannaneh
Hajishirzi. 2021. Reframing Instructional Prompts to GPTk’s Language. arXiv
preprint arXiv:2109.07830 (2021).

[76] Lingbo Mo, Ashley Glen Lewis, Huan Sun, and Michael White. 2022. Towards
Transparent Interactive Semantic Parsing via Step-by-Step Correction. ArXiv
abs/2110.08345 (2022).

[77] Jesse Mu and Advait Sarkar. 2019. Do we need natural language? Exploring
restricted language interfaces for complex domains. In Extended Abstracts of the
2019 CHI Conference on Human Factors in Computing Systems. 1–6.

[78] Avanika Narayan, Ines Chami, Laurel Orr, and Christopher R’e. 2022. Can
Foundation Models Wrangle Your Data? ArXiv abs/2205.09911 (2022).

[79] Avanika Narayan, Ines Chami, Laurel Orr, and Christopher R’e. 2022. Can
Foundation Models Wrangle Your Data? ArXiv abs/2205.09911 (2022).

[80] Petr Necesal and Jan Pospıšil. 2012. Experience with teaching mathematics for
engineers with the aid of Wolfram Alpha. In Proceedings of the World Congress
on Engineering and Computer Science, Vol. 1. 271–274.

[81] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Haiquan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2022. A Conversational Paradigm for
Program Synthesis. ArXiv abs/2203.13474 (2022).

[82] Fatma Őzcan, Abdul Quamar, Jaydeep Sen, Chuan Lei, and Vasilis Efthymiou.
2020. State of the art and open challenges in natural language interfaces to data.
In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 2629–2636.

https://doi.org/10.1145/3334480.3382806
https://doi.org/10.1145/3334480.3382806
https://doi.org/10.48550/arXiv.2209.02235
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1109/VLHCC.2004.47
https://pandastutor.com/
https://doi.org/10.1080/10447318.2018.1455307
https://doi.org/10.1145/3025453.3025483
https://doi.org/10.1109/VLHCC.2018.8506506
https://doi.org/10.1145/3332165.3347899
https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.1145/1056808.1056975
https://doi.org/10.1145/3332165.3347908
https://doi.org/10.1145/3332165.3347908
https://doi.org/10.1145/3449240
https://doi.org/10.1145/3491102.3501968
https://doi.org/10.1145/3501709.3544280

Bridging the Abstraction Gap Between End-User Programmers and Code-Generating Large Language Models CHI ’23, April 23–28, 2023, Hamburg, Germany

[83] Mihir Parmar, Swaroop Mishra, Mirali Purohit, Man Luo, M. Hassan Murad, and
Chitta Baral. 2022. In-BoXBART: Get Instructions into Biomedical Multi-Task
Learning. In NAACL-HLT.

[84] Pruthvi Patel, Swaroop Mishra, Mihir Parmar, and Chitta Baral. 2022. Is a
Question Decomposition Unit All We Need? ArXiv abs/2205.12538 (2022).

[85] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Eve-
lyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11
(2009), 60–67.

[86] John Rieman. 1993. The diary study: a workplace-oriented research tool to guide
laboratory efforts. In Proceedings of the INTERACT’93 and CHI’93 conference on
Human factors in computing systems. 321–326.

[87] Johnny Saldaña. 2021. The coding manual for qualitative researchers. sage.
[88] Jean E. Sammet. 1966. The Use of English as a Programming Language. Commun.

ACM 9, 3 (mar 1966), 228–230. https://doi.org/10.1145/365230.365274
[89] Advait Sarkar. 2018. Interactive analytical modelling. Technical Report. Univer-

sity of Cambridge, Computer Laboratory.
[90] Advait Sarkar. 2022. Is explainable AI a race against model complexity?. InWork-

shop on Transparency and Explanations in Smart Systems (TeXSS), in conjunction
with ACM Intelligent User Interfaces (IUI 2022) (CEUR Workshop Proceedings,
3124). 192–199. http://ceur-ws.org/Vol-3124/paper22.pdf

[91] Advait Sarkar, Alan F Blackwell, Mateia Jamnik, and Martin Spott. 2014. Teach
and try: A simple interaction technique for exploratory data modelling by
end users. In 2014 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 53–56.

[92] Advait Sarkar, Alan F. Blackwell, Mateja Jamnik, and Martin Spott. 2015. In-
teraction with Uncertainty in Visualisations. (2015). https://doi.org/10.2312/
eurovisshort.20151138 Accepted: 2015-05-24T19:43:20Z Publisher: The Euro-
graphics Association.

[93] Advait Sarkar, Judith W. Borghouts, Anusha Iyer, Sneha Khullar, Christian Can-
ton, Felienne Hermans, Andrew D. Gordon, and Jack Williams. 2020. Spread-
sheet Use and Programming Experience: An Exploratory Survey. In Extended
Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems
(CHI EA ’20). Association for Computing Machinery, New York, NY, USA, 1–9.
https://doi.org/10.1145/3334480.3382807

[94] Advait Sarkar and Andrew D. Gordon. 2018. How do people learn to use
spreadsheets? (Work in progress). In Proceedings of the 29th Annual Conference
of the Psychology of Programming Interest Group (PPIG 2018). 28–35.

[95] Advait Sarkar, Andrew D. Gordon, Carina Negreanu, Christian Poelitz,
Sruti Srinivasa Ragavan, and Ben Zorn. 2022. What is it like to program with ar-
tificial intelligence? https://doi.org/10.48550/arXiv.2208.06213 arXiv:2208.06213
[cs].

[96] Advait Sarkar, Mateja Jamnik, Alan F. Blackwell, and Martin Spott. 2015. In-
teractive visual machine learning in spreadsheets. In 2015 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). 159–163. https:
//doi.org/10.1109/VLHCC.2015.7357211

[97] Advait Sarkar, Sruti Srinivasa Ragavan, Jack Williams, and Andrew D Gordon.
2022. End-user encounters with lambda abstraction in spreadsheets: Apollo’s
bow or Achilles’ heel?. In 2022 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). IEEE Computer Society, 1–11.

[98] Advait Sarkar, Martin Spott, Alan F Blackwell, and Mateja Jamnik. 2016. Visual
discovery and model-driven explanation of time series patterns. In 2016 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,
78–86.

[99] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey
Heer. 2016. Vega-lite: A grammar of interactive graphics. IEEE transactions on
visualization and computer graphics 23, 1 (2016), 341–350.

[100] Christopher Scaffidi, Mary Shaw, and Brad Myers. 2005. Estimating the numbers
of end users and end user programmers. In 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC’05). IEEE, 207–214.

[101] Viktor Schlegel, Benedikt Lang, Siegfried Handschuh, and André Freitas. 2019.
Vajra: step-by-step programming with natural language. In Proceedings of the
24th International Conference on Intelligent User Interfaces. 30–39.

[102] Vidya Setlur and Melanie Tory. 2022. How do you Converse with an Analytical
Chatbot? Revisiting Gricean Maxims for Designing Analytical Conversational
Behavior. In CHI Conference on Human Factors in Computing Systems. 1–17.

[103] Disha Shrivastava, H. Larochelle, and Daniel Tarlow. 2022. Repository-Level
Prompt Generation for Large Language Models of Code. ArXiv abs/2206.12839
(2022).

[104] Ankita Nandkishor Sontakke, Manasi Patwardhan, Lovekesh Vig, Raveendra Ku-
mar Medicherla, Ravindra Naik, and Gautam Shroff. 2022. Code Summarization:
Do Transformers Really Understand Code?. InDeep Learning for CodeWorkshop.

[105] Sruti Srinivasa Ragavan, Zhitao Hou, Yun Wang, Andrew D Gordon, Haidong
Zhang, and Dongmei Zhang. 2022. GridBook: Natural Language Formulas
for the Spreadsheet Grid. In 27th International Conference on Intelligent User
Interfaces (IUI ’22). Association for Computing Machinery, New York, NY, USA,
345–368. https://doi.org/10.1145/3490099.3511161

[106] Sruti Srinivasa Ragavan, Advait Sarkar, and Andrew D Gordon. 2021. Spread-
sheet Comprehension: Guesswork, Giving Up and Going Back to the Author. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(CHI ’21). Association for Computing Machinery, New York, NY, USA, 1–21.
https://doi.org/10.1145/3411764.3445634

[107] Erik Stolterman. 2008. The nature of design practice and implications for
interaction design research. International Journal of Design 2, 1 (2008).

[108] Harry R. Tennant, Kenneth M. Ross, and CraigW. Thompson. 1983. Usable Natu-
ral Language Interfaces through Menu-Based Natural Language Understanding.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Boston, Massachusetts, USA) (CHI ’83). Association for Computing Machinery,
New York, NY, USA, 154–160. https://doi.org/10.1145/800045.801601

[109] Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kul-
shreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, YaGuang
Li, Hongrae Lee, Huaixiu Steven Zheng, Amin Ghafouri, Marcelo Menegali,
Yanping Huang, Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao Chen,
Yuanzhong Xu, Zhifeng Chen, Adam Roberts, Maarten Bosma, Vincent Zhao,
Yanqi Zhou, Chung-Ching Chang, Igor Krivokon, Will Rusch, Marc Pickett,
Pranesh Srinivasan, Laichee Man, Kathleen Meier-Hellstern, Meredith Ringel
Morris, Tulsee Doshi, Renelito Delos Santos, Toju Duke, Johnny Soraker, Ben
Zevenbergen, Vinodkumar Prabhakaran, Mark Diaz, Ben Hutchinson, Kris-
ten Olson, Alejandra Molina, Erin Hoffman-John, Josh Lee, Lora Aroyo, Ravi
Rajakumar, Alena Butryna, Matthew Lamm, Viktoriya Kuzmina, Joe Fenton,
Aaron Cohen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-Arcas, Claire Cui,
Marian Croak, Ed Chi, and Quoc Le. 2022. LaMDA: Language Models for Dialog
Applications. (Jan. 2022). https://doi.org/10.48550/arXiv.2201.08239

[110] Immanuel Trummer. 2022. CodexDB: Generating Code for Processing SQL
Queries using GPT-3 Codex. ArXiv abs/2204.08941 (2022).

[111] Mojtaba Vaismoradi, Hannele Turunen, and Terese Bondas. 2013. Content anal-
ysis and thematic analysis: Implications for conducting a qualitative descriptive
study. Nursing & Health Sciences 15, 3 (2013), 398–405. https://doi.org/10.1111/
nhs.12048 _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/nhs.12048.

[112] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation
vs. Experience: Evaluating the Usability of Code Generation Tools Powered by
Large Language Models. In CHI Conference on Human Factors in Computing
Systems Extended Abstracts. 1–7.

[113] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. Advances in neural information processing systems 30 (2017).

[114] Chaozheng Wang, Yuan-Hong Yang, Cuiyun Gao, Yun Peng, Hongyu Zhang,
and Michael R. Lyu. 2022. No More Fine-Tuning? An Experimental Evaluation
of Prompt Tuning in Code Intelligence. ArXiv abs/2207.11680 (2022).

[115] Liwen Wang, Rumei Li, Yang Yan, Yuanmeng Yan, Sirui Wang, Wei Yu Wu, and
Weiran Xu. 2022. InstructionNER: A Multi-Task Instruction-Based Generative
Framework for Few-shot NER. ArXiv abs/2203.03903 (2022).

[116] Sida I Wang, Samuel Ginn, Percy Liang, and Christoper D Manning. 2017.
Naturalizing a programming language via interactive learning. arXiv preprint
arXiv:1704.06956 (2017).

[117] Zhiruo Wang, Grace Cuenca, Shuyan Zhou, Frank F. Xu, and Graham Neubig.
2022. MCoNaLa: A Benchmark for Code Generation from Multiple Natural
Languages. ArXiv abs/2203.08388 (2022).

[118] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian
Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler,
et al. 2022. Emergent abilities of large language models. arXiv preprint
arXiv:2206.07682 (2022).

[119] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le,
and Denny Zhou. 2022. Chain of Thought Prompting Elicits Reasoning in Large
Language Models. ArXiv abs/2201.11903 (2022).

[120] Justin D Weisz, Michael Muller, Stephanie Houde, John Richards, Steven I Ross,
Fernando Martinez, Mayank Agarwal, and Kartik Talamadupula. 2021. Perfec-
tion not required? Human-AI partnerships in code translation. In 26th Interna-
tional Conference on Intelligent User Interfaces. 402–412.

[121] Tongshuang Wu, Ellen Jiang, Aaron Donsbach, Jeff Gray, Alejandra Molina,
Michael Terry, and Carrie J Cai. 2022. PromptChainer: Chaining Large Lan-
guage Model Prompts through Visual Programming. In Extended Abstracts
of the 2022 CHI Conference on Human Factors in Computing Systems (CHI
EA ’22). Association for Computing Machinery, New York, NY, USA, 1–10.
https://doi.org/10.1145/3491101.3519729

[122] Tongshuang Wu, Michael Terry, and Carrie Jun Cai. 2022. AI Chains: Trans-
parent and Controllable Human-AI Interaction by Chaining Large Language
Model Prompts. In CHI Conference on Human Factors in Computing Systems
(CHI ’22). Association for Computing Machinery, New York, NY, USA, 1–22.
https://doi.org/10.1145/3491102.3517582

[123] Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A
systematic evaluation of large language models of code. In Proceedings of the
6th ACM SIGPLAN International Symposium on Machine Programming. 1–10.

[124] Frank F Xu, Bogdan Vasilescu, and Graham Neubig. 2022. In-ide code generation
from natural language: Promise and challenges. ACM Transactions on Software

https://doi.org/10.1145/365230.365274
http://ceur-ws.org/Vol-3124/paper22.pdf
https://doi.org/10.2312/eurovisshort.20151138
https://doi.org/10.2312/eurovisshort.20151138
https://doi.org/10.1145/3334480.3382807
https://doi.org/10.48550/arXiv.2208.06213
https://doi.org/10.1109/VLHCC.2015.7357211
https://doi.org/10.1109/VLHCC.2015.7357211
https://doi.org/10.1145/3490099.3511161
https://doi.org/10.1145/3411764.3445634
https://doi.org/10.1145/800045.801601
https://doi.org/10.48550/arXiv.2201.08239
https://doi.org/10.1111/nhs.12048
https://doi.org/10.1111/nhs.12048
https://doi.org/10.1145/3491101.3519729
https://doi.org/10.1145/3491102.3517582

CHI ’23, April 23–28, 2023, Hamburg, Germany Liu, et al.

Engineering and Methodology (TOSEM) 31, 2 (2022), 1–47.
[125] Ziyu Yao, Yu Su, Huan Sun, and Wen tau Yih. 2019. Model-based Interactive

Semantic Parsing: A Unified Framework and A Text-to-SQL Case Study. In
EMNLP.

[126] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2019. Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. https://doi.org/10.
48550/arXiv.1809.08887 arXiv:1809.08887 [cs].

[127] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir R.
Radev. 2018. Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, Brussels,
Belgium, October 31 - November 4, 2018, Ellen Riloff, David Chiang, Julia Hock-
enmaier, and Jun’ichi Tsujii (Eds.). Association for Computational Linguistics,
3911–3921. https://doi.org/10.18653/v1/d18-1425

[128] Xiong Zhang and Philip J Guo. 2017. Ds. js: Turn any webpage into an example-
centric live programming environment for learning data science. In Proceedings
of the 30th Annual ACM Symposium on User Interface Software and Technology.
691–702.

[129] Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravindran, Sindhu Tipirneni,
and Chandan K. Reddy. 2022. XLCoST: A Benchmark Dataset for Cross-lingual
Code Intelligence. ArXiv abs/2206.08474 (2022).

https://doi.org/10.48550/arXiv.1809.08887
https://doi.org/10.48550/arXiv.1809.08887
https://doi.org/10.18653/v1/d18-1425

Bridging the Abstraction Gap Between End-User Programmers and Code-Generating Large Language Models CHI ’23, April 23–28, 2023, Hamburg, Germany

A CODES AND DESCRIPTIONS
A.1 Failure modes

Table 9: Failure modes and their descriptions
Failure mode Description

Generation failure No completion from Codex.

Execution failure Code could not be executed.

Output type failure Our prototype could not parse the output type (e.g., the model generate a column, dataframe, or value, but the format cannot be displayed in the
spreadsheet).

Wrong input Model generates code that calculates answer using wrong columns (even if user instruction does not specify which input columns to use, but researcher
can infer it from context).

Soft wrong input Like wrong input, but it is difficult for researcher to infer correct columns from user query.

Overwrite Model attempts to overwrite existing dataframe column when specifically asked to create a column.

Soft overwrite Model attempts to overwrite existing dataframe column, but not asked by user to specifically create a new column.

Other incorrect Model generates code that is incorrect, but none of the other more specific codes applies.

N/A Model generated code matches user intent (success, either intermediate or overall). Or user playing around e.g., “hi.”

Raw data output Model hallucinates data output (array of values) directly, not a computation. Considered a failure regardless of whether values are correct or not,
because it is not reproducible on other data sets.

Missing columns Model generates wrong number of output columns, fewer than the user asked.

Extra columns Model generates wrong number of output columns, more than the user asked.

Wrong heuristic Model invents a plausible way of calculating a quantity which is asked for but the method to calculate it is unspecified, but the method is wrong.

Partial answer Model generates an intermediate step that the user can build on to complete task, OR model only correctly answers a clearly delineated subpart (e.g., in
the breakdown style, or separated by AND or comma) of the user query.

A.2 Rewrite strategies

Table 10: Rewrite strategies and their descriptions
Rewrite strategy Description

Add steps User is asking the model to do strictly more than in the previous query, e.g., adding a new follow-on step, or a new intermediate column.

Code-like syntax User borrows syntax from coding languages, e.g., “()” to group statements, use of quotes, use of “if/then/else”, use of symbols like “>=”, use of
SQL-like keywords. But not specifically the style of the system-generated breakdowns.

Next step Marks when the user moves on to a new query intent that is a following step to their overall task solution.

New intent User decides to try asking the system a different thing (i.e., different code is needed to solve the new intent - not just a rephrasing to ask the system to
do the same thing).

Name output columns Specify a name for the desired output column

Specify output type Add information about the number of columns, type of columns, or type of values expected. (Not if already accounted for by “name output columns”).

Specify input columns Add information about which columns the code should use to calculate the answer name output columns Specify a name for the desired output column.

Reuse system breakdown Partial or full reuse of system-generated breakdown.

Self-breakdown Expresses query in clearly delineated steps, but text is not system-generated.

Elaborate how Give more detailed logic or computation steps for something that user was already asking for previously (e.g., “calculate average” -> “calculate average
by dividing x by y”).

Elaborate what More detailed description of the required output (but not including new details of how to compute it). E.g. “count” -> “count the rows”.

Testing User experimenting, playing, rolling back etc.

Reduce scope User asks the system to do less, or a subset, of previous query.

System-like User borrows style/syntax/vocabulary from the system-generated explanations, but not a reuse (i.e. the user types it manually).

Start over User appears to abandon previous query text entirely; new query text contains little or no character sequences in common with previous query (and the
intent is the same, i.e. not new intent).

Other rephrase User rewrites part of the query, but none of the other codes applies to that specific part. (other parts may be rewritten in a different manner which we
can code).

CHI ’23, April 23–28, 2023, Hamburg, Germany Liu, et al.

B SYSTEM IMPLEMENTATION DETAILS
B.1 Further details of grounded utterance generation
The implementation of utterance generation is specific to a programming language or API, in this case Pandas, but the design of the
algorithm is generic. The algorithm is split into three components:

(1) Translation of python code into the task-centric representation (TCR).
(2) Translation of TCR into an explanation representation (ER), a tree of natural language fragments, preserving hierarchical structure.
(3) The layout algorithm that converts an ER tree into an utterance. The algorithm is parameterised such that it can generate a single

sentence or a sequence of utterances.
As the algorithm consumes and produces different trees, starting with a Python abstract syntax tree, the algorithm works with single or

multi-line programs. The features that determine what is supported by the algorithm are the language constructs and API methods used,
rather than how the code is written.

For this work we focus on defining the algorithm over a subset of Pandas that covers basic data analysis and wrangling tasks. This
includes:

• Dataframe indexing operations such as loc and iloc, supporting patterns that includes element access, slice access, and masking
with boolean-valued series.

• Vectorised operators applied to both dataframes and series.
• Variable declarations bound to pandas expression.
• Dataframe methods such as groupby, size, and transpose.
• Aggregation methods such as sum, min, and max.
• Series methods such as idxmax, sum, and mean.
• Series string methods such as split, replace, lower, and strip.
• Series date and time methods such as ceil and year.

Notable Python features not currently supported include function declarations, list comprehensions, and control flow.
To improve the generated utterances we add special handling for certain patterns. Examples include:
• Labels for tuple types. Certain Pandas operations return tuples with a defined meaning, such as .shape which returns the dimensions
of a dataframe. Our algorithm understands that .shape returns a tuple type, and additionally, we allow the type to label each element
of the tuple, such as rows and columns. When generating an utterance for a subscript operation, such as e1[e2], if e1 is inferred to
have a labeled tuple type and e2 is a known constant, we use the label in the utterance rather than a generic “element of" snippet.

• Strings. When accessing elements of a string column which contains either a single string or a list of strings, we use the terms
“character" or “word" instead of “element".

• Array indexing. As Python arrays are zero-indexed, we add 1 to indices before displaying to the user (e.g., array[1] is rendered as
“element 2 of the array”), and subtract 1 from user queries, detecting such indices using templates, before sending them to the system.

B.2 Formal description of round-trip benchmark
The benchmark simulates the following steps for each input table 𝐼 and natural language utterance 𝑄 :

(1) The user selects table 𝐼 , types 𝑄 into the query box, and clicks “Go”.
(2) The system generates code 𝐶1 and output 𝑂1 (which can be a single value, new column(s), or new table(s)).
(3) If possible, the system generates a grounded utterance 𝐺1 from 𝐶1; otherwise the interaction ends.
(4) The user clicks “Update & Go” without editing 𝐺1.
(5) The system generates code 𝐶2 and output 𝑂2.
To measure the equality of results, the benchmark calculates two metrics:
• Code generation equality: how frequently 𝐶2 = 𝐶1 given that 𝐺1 can be generated.
• Output equivalence: how frequently 𝑂2 = 𝑂1 (modulo column names) given that 𝐺1 can be generated.

We calculated equivalences in both our synthetic dataset and the actual queries submitted by participants during our user study tasks
(Section 5). Table 11 summarizes the results.

Table 11: Results of the round-trip stability experiments on both the Stack Overflow dataset and actual participants’ queries
from the study. 𝑁 is the number of data points that successfully passed the aforementioned 5 simulated interactions. Both
equality measurements are presented as the percentage of data points where equality was reached.

Dataset 𝑁 Code generation equality Output equivalence

Stack Overflow dataset 126 58.7% 85.7%

Study participant dataset 191 72.8% 84.8%

Bridging the Abstraction Gap Between End-User Programmers and Code-Generating Large Language Models CHI ’23, April 23–28, 2023, Hamburg, Germany

B.3 Evaluating LLM performance
In order to assess a LLM’s performance for code generation, the research community has developed a wide range of benchmarks and
quantitative metrics. Primarily there are two types of evaluations that are conducted: output matching and code equivalence. For output
matching, we mark a generation as correct if it passes all I/O examples or tests (as the generation process is not deterministic we use pass@k
to estimate the chance that we obtain a correct generation [16]). For code equivalence we use code similarity metrics [25] where we mark a
generation as correct if it is similar enough to the expected code snippet. The most used benchmarks target Python generation (e.g. APPS
[35], HumanEval [16]) and SQL generation (e.g. Spider [127]), but recently benchmarks for cross-lingual generations have emerged (e.g. [13],
XLCosT [129]) as well as benchmarks with cross-lingual asks (e.g. MCoNaLa [117]). In our work we evaluate over a new dataset of problems
extracted from StackOverflow under the tag Excel-Formulas, where the users believe their ask can be solved by an Excel formula. We use
output matching (pass@k) as our metric for correctness.

C FORMATIVE USABILITY STUDY
We conducted an informal, exploratory study to gain an initial understanding of the challenges users might face when interacting with an
LLM for data analysis in spreadsheets, and to check whether and to what extent the abstraction matching challenges observed by Sarkar
et al. [95] and Srinivasa Ragavan et al. [105] were present in our application.

C.1 Prototype
The prototype used in this formative study uses the code generation pipeline described in Section 4.1, specifically steps 1-3. These steps take
a user query, generate executable Python code using Codex, run the code, and insert the results into the spreadsheet. However, the user
interface of this prototype was minimal. Users could only enter queries using a query box (similar to Figure 3-B1/B2) and subsequently view
the execution results in the spreadsheet (similar to Figure 3-F1/F2). There was no guidance of any kind for writing effective queries. This
user experience resembles commercially available spreadsheet querying features, such as the “Analyze Data” feature in Microsoft Excel,6 or
the “Explore” feature of Google Sheets.7

C.2 Method
We recruited 5 participants (FP1 to FP5) through UserTesting.com. Participants were end-user programmers who all self-reported writing
formulas in spreadsheets for work. One of the participants had some prior programming experience using C++, while the rest had no
programming experience. There were no participants in common between this sample, and the sample used in the main study. While we
do not claim that this sample is representative of all users, the study sessions were informative and helped motivate the idea of grounded
abstraction matching, the development of both System I and System II, and the design of the formal study in Section 5.

We began by asking participants about their experience with, and typical use of spreadsheets. Participants then attempted datamanipulation
and analysis tasks (early versions of the tasks used in the main study). The sessions concluded with a semi-structured interview discussing
their experience with the prototype, what they liked, and what to improve upon. Sessions were conducted remotely through Microsoft
Teams and lasted around 30 minutes each. They were recorded and transcribed. One of the authors analysed the transcripts with an informal
open-coding approach [15], which included discussions with the research team. Our key findings are presented below.

C.3 Results
Participants appreciated the ability to perform spreadsheet tasks with natural language queries rather than developing the correct formula,
whether through personal experience or complex web searching and sensemaking, claiming that it was much more efficient (when it worked)
and reduced the need for “googling” (FP2). However, they encountered several significant challenges in the process:

C.3.1 It was hard for participants to recover from system errors. Sometimes when the system output was obviously incorrect or the system
did something unexpected, participants felt directionless about their options for fixing the errors. On one hand, there often existed a gap
between the natural language intent (for example, “add space flight and space walks”) and the system output manifested in the spreadsheet
(in this case, two new columns, one calculating “space flight = space flights * space flight (hr)”, the other calculating “space
walk = space walks * space walk (hr))”, and it was difficult for participants to form hypotheses of what the root cause was without any
knowledge of the logic generated by Codex. Even if participants had some intuitions on potential fixes, those intuitions were not systematic,
and were often random guesses, such as “should I be careful about pluralization or cases” (FP5).

We observed that when an error occurred, participants only tried to reformulate their natural language intent twice on average before
abandoning the system. When asked about what they would like to do next to solve the tasks, participants reported wanting to “just figure
out how to write a formula” (FP4) or consult “google” (FP1).

C.3.2 It was difficult for participants to develop mental models of the capabilities of the system. Even after repeated use, participants still had
poor notions about what the system could do, and how to phrase their queries to get the system to work reliably. Instead, their queries (and

6https://support.microsoft.com/en-us/office/analyze-data-in-excel-3223aab8-f543-4fda-85ed-76bb0295ffc4
7https://support.google.com/docs/answer/6280499

https://support.microsoft.com/en-us/office/analyze-data-in-excel-3223aab8-f543-4fda-85ed-76bb0295ffc4
https://support.google.com/docs/answer/6280499

CHI ’23, April 23–28, 2023, Hamburg, Germany Liu, et al.

subsequent fixes, if applicable) were biased by their personal beliefs, speculations, and haphazard experimentation, such as the example
discussed in section C.3.1. Participants wished to be able to better grasp the kinds of utterances, grammar, vocabulary, and level of specificity
that is effective at generating the desired output. For example, FP4 wondered “what does it [the system] understand? Do I have to use the same
column names [as the ones in the table]?”

Moreover, participants found it difficult to generalise from a successful solution, to replicate the same or similar computation on different
problems, since they could not identify why a query had been successful (e.g., was it their word choice, level of abstraction or problem
decomposition, specific operations, or mentioning exact elements in the spreadsheet?). They wished that the system could “talk to me
in English and say what it’s doing” (FP5), and felt that there was a missed opportunity of “learning” to “make it [the same type of data
manipulation] faster elsewhere” (FP2).

C.3.3 Participants expressed a lack of trust towards system results. As opposed to spreadsheet formulas, which many spreadsheet users
are familiar with, participants expressed frustration and a sense of distrust towards the instability of the results produced by their natural
language queries. For example, FP2 complained that “non-determinism is a pain” when comparing the system behaviors with regular
spreadsheet formulas that he could understand and obtain anticipated results from. In addition, when system produced some partial instead
of expected results, participants were not sure if they were “on the right track” (FP3). Last but not least, participants thought that, unlike
formulas, the current natural language interface lacked a way for them to effectively verify the correctness of the system output. Though it
was relatively easy to “sanity check” (FP4) a few “instances or examples [of the system output]” during the study, participants felt such spot
checking approach was insufficient and intractable in reality, especially for large data tables with “perhaps thousands or tens of thousands of
rows” (FP1).

In summary, our exploratory study gave evidence in our specific application context both of the abstraction matching problem as well as
the issues around error recovery, mental models, and trust identified by Sarkar et al. [95] and Srinivasa Ragavan et al. [105]. This motivated
the development of the grounded abstraction matching approach.

Bridging the Abstraction Gap Between End-User Programmers and Code-Generating Large Language Models CHI ’23, April 23–28, 2023, Hamburg, Germany

D STUDY TASKS
D.1 Task descriptions shown to participants

• Task 1: As you could probably tell from the spreadsheet, each city has its own home team, for example the city of Denver has Broncos and
Baltimore has Ravens. Your task is: Use the sidebar to find out the number of superbowls the city of New Orleans has won?

• Task 2: This is a worksheet containing the details of some of the NASA astronauts who have been into space, such as their name, birth place,
hours of space flight, as well as the space missions (separated by “,”) that they have flown before. Depending on the primary objectives, the
duration of each space mission can vary a lot. Now, please imagine that you would like to find out on average how long each mission is for
every astronaut. Your task is to create a new column that calculates that.

• Task 3: This is a worksheet listing the prices of some houses for sale as well as their details, such as the number of bedrooms, bathrooms,
where it is located, etc. Now, imagine that you would like to check if a house if relatively new. In addition, you would like to see if it has a
basement that you can use as storage, and if is has been renovated before. For the sake of this task, new houses are those built in or after
1970. Your task is to use the sidebar to create a column checking if a house satisfies all three of the aforementioned criteria.

D.2 Task data

Table 12: Full data table for task 1 (Super Bowl) in the study as described in section 5.

Date Winner Winner
Pts

Loser Loser
Pts

MVP Stadium Host City Host State

Feb 2 2020 Kansas City Chiefs 31 San Francisco 49ers 20 Patrick Mahomes Hard Rock Stadium Miami Florida
Feb 3 2019 New England Patriots 13 Los Angeles Rams 3 Julian Edelman Mercedes-Benz Stadium Atlanta Georgia
Feb 4 2018 Philadelphia Eagles 41 New England Patriots 33 Nick Foles U.S. Bank Stadium Minneapolis Minnesota
Feb 5 2017 New England Patriots 34 Atlanta Falcons 28 Tom Brady NRG Stadium Houston Texas
Feb 7 2016 Denver Broncos 24 Carolina Panthers 10 Von Miller Levi’s Stadium Santa Clara California
Feb 1 2015 New England Patriots 28 Seattle Seahawks 24 Tom Brady University of Phoenix Stadium Glendale Arizona
Feb 2 2014 Seattle Seahawks 43 Denver Broncos 8 Malcolm Smith MetLife Stadium East Rutherford New Jersey
Feb 3 2013 Baltimore Ravens 34 San Francisco 49ers 31 Joe Flacco Mercedes-Benz Superdome New Orleans Louisiana
Feb 5 2012 New York Giants 21 New England Patriots 17 Eli Manning Lucas Oil Stadium Indianapolis Indiana
Feb 6 2011 Green Bay Packers 31 Pittsburgh Steelers 25 Aaron Rodgers Cowboys Stadium Arlington Texas
Feb 7 2010 New Orleans Saints 31 Indianapolis Colts 17 Drew Brees Sun Life Stadium Miami Florida
Feb 1 2009 Pittsburgh Steelers 27 Arizona Cardinals 23 Santonio Holmes Raymond James Stadium Tampa Florida
Feb 3 2008 New York Giants 17 New England Patriots 14 Eli Manning University of Phoenix Stadium Glendale Arizona
Feb 4 2007 Indianapolis Colts 29 Chicago Bears 17 Peyton Manning Dolphin Stadium Miami Florida
Feb 5 2006 Pittsburgh Steelers 21 Seattle Seahawks 10 Hines Ward Ford Field Detroit Michigan
Feb 6 2005 New England Patriots 24 Philadelphia Eagles 21 Deion Branch Alltel Stadium Jacksonville Florida
Feb 1 2004 New England Patriots 32 Carolina Panthers 29 Tom Brady Reliant Stadium Houston Texas
Jan 26 2003 Tampa Bay Buccaneers 48 Oakland Raiders 21 Dexter Jackson Qualcomm Stadium San Diego California
Feb 3 2002 New England Patriots 20 St. Louis Rams 17 Tom Brady Louisiana Superdome New Orleans Louisiana
Jan 28 2001 Baltimore Ravens 34 New York Giants 7 Ray Lewis Raymond James Stadium Tampa Florida
Jan 30 2000 St. Louis Rams 23 Tennessee Titans 16 Kurt Warner Georgia Dome Atlanta Georgia
Jan 31 1999 Denver Broncos 34 Atlanta Falcons 19 John Elway Pro Player Stadium Miami Florida
Jan 25 1998 Denver Broncos 31 Green Bay Packers 24 Terrell Davis Qualcomm Stadium San Diego California
Jan 26 1997 Green Bay Packers 35 New England Patriots 21 Desmond Howard Louisiana Superdome New Orleans Louisiana

CHI ’23, April 23–28, 2023, Hamburg, Germany Liu, et al.

Table 13: Full data table for task 2 (astronauts) in the study as described in section 5.

Name Status Birth
Date

Birth Place Gender Space
Flight
(hr)

Space
Walks

Space
Walks
(hr)

Missions

Joseph M. Acaba Active 5/17/67 Inglewood, CA Male 3307 2 13 STS-119 (Discovery), ISS-31/32 (Soyuz)
Loren W. Acton Retired 7/3/36 Lewiston, MT Male 190 0 0 STS 51-F (Challenger)
James C. Adamson Retired 3/3/46 Warsaw, NY Male 334 0 0 STS-28 (Columbia), STS-43 (Atlantis)
Thomas D. Akers Retired 5/20/51 St. Louis, MO Male 814 4 29 STS-41 (Discovery), STS-49 (Endeavor), STS-61 (Endeavor),

STS-79 (Atlantis)
Buzz Aldrin Retired 1/20/30 Montclair, NJ Male 289 2 8 Gemini 12, Apollo 11
Andrew M. Allen Retired 4/8/55 Philadelphia, PA Male 906 0 0 STS-46 (Atlantis), STS-62 (Columbia), STS-75 (Columbia)
Joseph P. Allen Retired 6/27/37 Crawsfordsville, IN Male 313 2 12 ST-5 (Columbia), STS 51-A (Discovery)
Scott D. Altman Retired 8/15/59 Lincoln, IL Male 1236 0 0 STS-90 (Columbia), STS-106 (Atlantis), STS-109 (Columbia),

STS-125 (Atlantis)
William A. Anders Retired 10/17/33 Hong Kong Male 147 0 0 Apollo 8
Clayton C. Anderson Retired 2/23/59 Omaha, NE Male 4005 6 38 STS-117/120 (Atlantis/Discovery), STS-131 (Discovery)
Michael P. Anderson Deceased 12/25/59 Plattsburgh, NY Male 594 0 0 STS-89 (Endeavor), STS-107 (Columbia)
Dominic A. Antonelli Active 8/23/67 Detroit, MI Male 579 0 0 STS-119 (Discovery), STS-132 (Atlantis)
Jerome Apt III Retired 4/18/49 Springfield, MA Male 847 2 11 STS-37 (Atlantis), STS-47 (Endeavor), STS-59 (Endeavor),

STS-79 (Atlantis)
Lee J. Archambault Retired 8/25/60 Oak Park, IL Male 639 0 0 STS-117 (Atlantis), STS-119 (Discovery)
Neil A. Armstrong Deceased 5/8/30 Wapakoneta, OH Male 205 1 2 Gemini 8, Apollo 11
Richard R. Arnold II Active 11/26/63 Cheverly, MD Male 307 2 12 STS-119 (Discovery)
Jeffrey S. Ashby Retired 1/6/54 Dallas, TX Male 655 0 0 STS-93 (Columbia), STS-100 (Endeavor), STS-112 (Atlantis)
James P. Bagian Retired 2/22/52 Philadelphia, PA Male 337 0 0 STS-29 (Discovery), STS-40 (Columbia)
Ellen S. Baker Retired 4/27/53 Fayettesville, NC Female 686 0 0 STS-34 (Atlantis), STS-50 (Columbia), STS-71 (Atlantis)
Michael A. Baker Management 10/27/53 Memphis, TN Male 965 0 0 STS-43 (Atlantis), STS-52 (Columbia), STS-68 (Endeavor),

STS-81 (Atlantis)
Michael R. Barratt Active 4/16/59 Vancouver, WA Male 5075 1 5 ISS-19/20 (Soyuz), STS-133 (Discovery)
Daniel T. Barry Retired 12/30/53 Norwalk, CT Male 733 4 26 STS-72 (Endeavor), STS-96 (Discovery), STS-105 (Discovery)
John-David F. Bartoe Retired 11/17/44 Abington, PA Male 190 0 0 STS 51-F (Challenger)

Table 14: Full data table for task 3 (houses) in the study as described in section 5.

price bedrooms bathrooms floors sqft_above sqft_basement yr_built yr_renovated zipcode latitude longitude
221900 3 1 1 1180 0 1955 0 98178 47.5112 -122.257
538000 3 2.25 2 2170 400 1951 1991 98125 47.721 -122.319
180000 2 1 1 770 0 1933 0 98028 47.7379 -122.233
604000 4 3 1 1050 910 1965 1998 98136 47.5208 -122.393
510000 3 2 1 1680 0 1987 0 98074 47.6168 -122.045
1230000 4 4.5 1 3890 1530 2001 0 98053 47.6561 -122.005
257500 3 2.25 2 1715 0 1995 0 98003 47.3097 -122.327
291850 3 1.5 1 1060 0 1963 0 98198 47.4095 -122.315
229500 3 1 1 1050 730 1960 2010 98146 47.5123 -122.337
323000 3 2.5 2 1890 0 2003 0 98038 47.3684 -122.031
662500 3 2.5 1 1860 1700 1965 1998 98007 47.6007 -122.145
468000 2 1 1 860 300 1942 0 98115 47.69 -122.292
310000 3 1 1.5 1430 0 1927 0 98028 47.7558 -122.229
400000 3 1.75 1 1370 400 1977 2001 98074 47.6127 -122.045
530000 5 2 1.5 1810 0 1900 0 98107 47.67 -122.394
650000 4 3 2 1980 970 1979 0 98126 47.5714 -122.375
395000 3 2 2 1890 0 1994 0 98019 47.7277 -121.962
485000 4 1 1.5 1600 0 1916 0 98103 47.6648 -122.343
189000 2 1 1 1200 0 1921 0 98002 47.3089 -122.21
230000 3 1 1 1250 296 1970 2019 98003 47.3343 -122.306
385000 4 1.75 1 860 760 1947 0 98133 47.7025 -122.341
2000000 3 2.75 1 2330 720 1968 0 98040 47.5316 -122.233
285000 5 2.5 2 2270 200 1995 2015 98092 47.3266 -122.169
252700 2 1.5 1 1070 0 1985 0 98030 47.3533 -122.166

Bridging the Abstraction Gap Between End-User Programmers and Code-Generating Large Language Models CHI ’23, April 23–28, 2023, Hamburg, Germany

E EXTENDED QUERY EPISODE EXAMPLES
E.1 Extended examples for failure modes

Table 15: Examples of input failures encountered by participants

Failure Mode Example Query (Participant-Task) Generated Python Code Explanation of Failure

Wrong input How many times has the city of New Or-
leans appear in the winners column (P24-1)

df[df['Host City'] == 'New Orleans'].shape[0] The model should have used the “Winner”
column instead of the “Host City” column.

Soft wrong
input

how many superbowls has the city of New
Orleans won (P27-1)

df[df['Host City'] == 'New Orleans'].shape[0] The model should have used the “Winner”
column instead of the “Host City” column.

Table 16: Examples of output failures encountered by participants

Failure Mode Example Query (Participant-Task) Generated Python Code Explanation of Failure

Overwrite Create col showing howmanymissions (P1-
2)

df['Missions'] = df['Missions'].str.split(',')
df['Missions'] = df['Missions'].str.len()

Themodel should not have overwritten the
“Missions” column in both lines.

Soft overwrite Split the Missions column and count the
number of splits (P28-2)

df['Missions'] = df['Missions'].str.split(', ')
df['Mission Count'] = df['Missions'].str.len()

Themodel should not have overwritten the
“Missions” column in the first line of code.

Extra
columns

Add a column to see if the house has base-
ment, been renovated and was built later
than 1970 (P5-3)

df['has_basement'] = df['sqft_basement'] > 0
df['has_renovated'] = df['yr_renovated'] > 0
df['built_after_1970'] = df['yr_built'] > 1970

The model should not have generated
the extra columns of “has_basement”,
“has_renovated”, or “built_after_1970”,
since the participant specifically asked for
only one column.

Missing
columns

(1) Add new column with count number of
missions, each separated by a ‘,’, (2) Add
new column and calculate average space
flight (hr) per name per mission. Return
type: new columns of number (P7-2)

df['Mission Count'] =

df['Missions'].str.split(',').str.len()↩→

The model failed to create a second column
that the participant asked for that should
“calculate average space flight (hr) per name
per mission.”

Table 17: Examples of logic failures encountered by participants

Failure Mode Example Query (Participant-Task) Generated Python Code Explanation of Failure

Partial answer Returning the time of “New Orleans” ap-
pears in the winner column (P16-1)

df[df['Winner'].str.contains('New Orleans')] The model only created a new table that se-
lected the rows where “New Orleans” ap-
pears in the “Winner” column. However, the
user can easily achieve the final goal by
adding a new step to “return the number
of rows” from the new table.

Raw data output New column number of missions (P20-2) df['Number of Missions'] = [2, 1, 2, 4, 2, 3, 2,
4, 1, 3, 2, 2, 2, 4, 2, 1, 3, 2, 3, 4, 2, 2,
1]

↩→

↩→

The model hallucinated data values in the
“Number of Missions” column rather than
generating code to calculate those values.

Wrong heuristic List all the teams that have lost to New
England Patriots (P21-1)

df[df['Loser'] == 'New England Patriots'] The model should have used the “Winner”
column instead of the “Loser” column to per-
form the filtering.

Other incorrect Return 3 columns for if year built >=1970,
basement >0, renovated >0 (P11-3)

def get_features(df):
df['built_after_1970'] = df['yr_built'] >= 1970
df['has_basement'] = df['sqft_basement'] > 0
df['has_renovated'] = df['yr_renovated'] > 0
return df[['built_after_1970', 'has_basement',

'has_renovated']]↩→

The model generated some code defining a
get_features function, but failed to include
any code that runs it, nor was the logic of
the function syntactically correct.

CHI ’23, April 23–28, 2023, Hamburg, Germany Liu, et al.

E.2 Extended examples for rewrite strategies

Table 18: Examples of scoping changes. Orange and green highlights indicate differences (removals and additions, respectively)
between a query and its follow-up query (the same color scheme applies to Table 19-21 as well).

Rewrite Strategy Previous Query (Participant-Task)
Generated Python Code

Grounded Utterance

Follow-up Query
Generated Python Code

Grounded Utterance

Add steps

Define mission_count by splitting Missions by ‘,’ (P6-2)

⇒

Define mission_count by splitting Missions by ‘,’ , then divide Space
Flight by mission_count

df['mission_count'] =

df['Missions'].str.split(',').str.len()↩→

df['mission_count'] =

df['Missions'].str.split(',').str.len()↩→

df['Space Flight (hr)'] = df['Space Flight (hr)'] /

df['mission_count']↩→

(1) create column mission_count,
(2) select column Missions,
(3) split the text on ‘,’,
(4) len

(1) create column mission_count from len from the text split on
‘,’ from column Missions,

(2) create column Space Flight (hr) from column Space Flight
(hr) divided by column mission_count.

Reduce scope

Create column good where year built is greater than or equal to 1970
AND squarefoot basement is not 0 and year renovated is not 0 (P9-3)

⇒

Create column good where year built is greater than or equal to 1970

df['good'] = ((df['yr_built'] >= 1970) &

(df['sqft_basement'] != 0) & (df['yr_renovated'] != 0))↩→

df['good'] = df['yr_built'] >= 1970

(1) create column good,
(2) column yr_built greater than or equal to 1970 and column

sqft_basement NotEq 0 and column yr_renovated NotEq 0.

(1) create column good,
(2) column yr_built greater than or equal to 1970.

Bridging the Abstraction Gap Between End-User Programmers and Code-Generating Large Language Models CHI ’23, April 23–28, 2023, Hamburg, Germany

Table 19: Examples of elaboration changes.

Rewrite Strategy Previous Query (Participant-Task)
Generated Python Code

Grounded Utterance

Follow-up Query
Generated Python Code

Grounded Utterance

Elaborate how

Add a column of the average flight hour of each mission for each astro-
naut (P5-2)

⇒

Add a column of the value of total space flight hour divided by the
number of missions for each astronaut

df['Average Flight Hour'] = [1653.5, 190, 167, 407, 289, 302,
313, 309, 147, 1001.25, 297, 289.5, 423.5, 319.5, 205,
307, 327.5, 168.5, 343, 482.5, 2537.5, 366.5, 190]

↩→

↩→

df['Average Mission Time'] = df['Space Flight (hr)'] /

df['Missions'].str.count('\(')↩→

N/A
(1) create column Average Mission Time,
(2) column Space Flight (hr) divided by count \(from column

Missions.

Elaborate what

how many superbowls has the city of New Orleans won (P27-1)

⇒

how many superbowls has New Orleans Saints won

df[df['Host City'] == 'New Orleans'].shape[0] df[df['Winner'] == 'New Orleans Saints'].shape[0]

(1) select rows where column Host City is New Orleans,
(2) return number of rows.

(1) select rows where column Winner is New Orleans Saints,
(2) return number of rows.

Name output
columns

Return true if year built >=1970 AND basement >0 and renovated TRUE
(P11-3)

⇒

Return review column where if year built >=1970 AND basement
>0 AND renovated >0

def is_renovated(row):
if row['yr_built'] >= 1970 and row['sqft_basement'] > 0

and row['yr_renovated'] > 0:↩→

return True
else:

return False
df['renovated'] = df.apply(is_renovated, axis=1)
print(df)

def review(row):
if row['yr_built'] >= 1970 and row['sqft_basement']

> 0 and row['yr_renovated'] > 0:↩→

return 1
else:

return 0
df['review'] = df.apply(review, axis=1)
print(df)

N/A N/A

Specify input
columns

How many super bowls has New Orleans won (P9-1)

⇒

Select column “winner” where text includes new orleans

df[df['Host City'] == 'New Orleans']['Winner'].count() df[df['Winner'].str.contains('New Orleans')]

(1) select rows where column Host City is New Orleans,
(2) select column Winner,
(3) count.

(1) select rows where contains ‘New Orleans’ from column
Winner.

Specify output
type

Select rows where column yr_built greater than 1970 and column
yr_renovated NptEq 0 and column sqft_basement NotEq 0 (P16-3)

⇒

Create a column where column yr_built greater than 1970 and
column yr_renovated NotEq 0 and column sqft_basement NotEq 0

df[(df['yr_built'] > 1970) & (df['yr_renovated'] != 0) &

(df['sqft_basement'] != 0)]↩→

df['new_house'] = df.apply(lambda row: 1 if
row['yr_built'] > 1970 and row['yr_renovated'] != 0
and row['sqft_basement'] != 0 else 0, axis=1)

↩→

↩→

(1) select rows where column yr_built greater than 1970 and column
yr_renovated NotEq 0 and column sqft_basement NotEq 0. N/A

CHI ’23, April 23–28, 2023, Hamburg, Germany Liu, et al.

Table 20: Examples of language restructuring changes.

Rewrite Strategy Previous Query (Participant-Task)
Generated Python Code

Grounded Utterance

Follow-up Query
Generated Python Code

Grounded Utterance

Self breakdown

Count the number of rows with ‘New Orleans’ in the winner column
(P12-1)

⇒

(1) Create a new column called city that drops the last word in the winner
column, (2) Count the number of rows in city that say “New Orleans”

df[df['Winner'] == 'New Orleans'].count() df['city'] = df['Winner'].str.split().str[-1]
df['city'].value_counts()

N/A N/A

Reuse of the
system
breakdown

The number of superbowls the city of New Orleans has won (P5-1)

⇒

(1) select rows where column Winner is New Orleans Saints, (2) count

df[df['Host City'] == 'New Orleans']['Winner'].count() df[df['Winner'] == 'New Orleans Saints'].count()

(1) select rows where column Host City is New Orleans,
(2) select column Winner,
(3) count.

(1) select rows where column Winner is New Orleans Saints,
(2) count.

System-like

how many super bowls has New Orleans won (P9-1)

⇒

select column winner where text includes new orleans

df[df['Host City'] == 'New Orleans']['Winner'].count() df[df['Winner'].str.contains('New Orleans')]

(1) select rows where column Host City is New Orleans
(2) select column Winner
(3) count

(1) select rows where contains New Orleans from column Winner

Code-like syntax

Create a column that shows the value of Space Flight (hr) divided by
the number of items of the Missions column (P26-2)

⇒

(1) create column Space Flight (hr) per Mission, (2) column Space Flight
(hr) divided by (count , from column Missions + 1)

df['Space Flight (hr) per Mission'] = df['Space Flight

(hr)'] / df['Missions'].str.count(',') + 1↩→

df['Space Flight (hr) per Mission'] = df['Space Flight (hr)']

/ (df['Missions'].str.count(',') + 1)↩→

(1) create column Space Flight (hr) per Mission,
(2) column Space Flight (hr) divided by count “,” from column

Missions + 1.

(1) create column Space Flight (hr) per Mission,
(2) column Space Flight (hr) divided by count “,” from column Mis-

sions + 1.

Bridging the Abstraction Gap Between End-User Programmers and Code-Generating Large Language Models CHI ’23, April 23–28, 2023, Hamburg, Germany

Table 21: Examples of intent shaping changes.

Rewrite
Strategy

Previous Query (Participant-Task)
Generated Python Code

Grounded Utterances

Follow-up Query
Generated Python Code

Grounded Utterances

New intent

Select rows where basement > 0 and yr_built >= 1970 and
yr_renovated > 0 (P21-3)

⇒

Create a column called consider? where the value is true if basement > 0
and yr_built >= 1970 and yr_renovated > 0

df[(df['sqft_basement'] > 0) & (df['yr_built'] >= 1970) &

(df['yr_renovated'] > 0)]↩→

"df['consider?'] = df['sqft_basement'] > 0
df['consider?'] = df['consider?'] & (df['yr_built'] >= 1970)
df['consider?'] = df['consider?'] & (df['yr_renovated'] > 0)"

N/A N/A

Start over

Use winner column to subtract the winner team column to get the
winner city (22-1)

⇒

Create a new winner city that remove the winner team from the winner
column

df['Winner City'] = df['Winner'] - df['Winner team'] df['Winner City'] = df['Winner'].str.replace(r'\b\w+\b', '')

(1) create column Winner City,
(2) column Winner - column Winner team.

(1) create column Winner City,
(2) select column Winner,
(3) replace ‘\b\w+\b’ with ‘’.

Next step

Count the number of mission in column I delimited by comma (P24-2)

⇒

For each name calculate the hours of space flight divided by the mission
count

df['Mission Count'] = df['Missions'].str.count(',') + 1 df['Hours per Mission'] = df['Space Flight (hr)'] /

df['Mission Count']↩→

(1) create column Mission Count,
(2) count ‘,’ from column Missions + 1.

(1) create column Hours per Mission,
(2) column Space Flight (hr) divided by column Mission Count.

Testing

Create a new column that counts how many strings are separated by
“,” in the “Missions” column. Create another column that calculates
“Space Flight (hr)” divided by “Missions_Count” (P25-2)

⇒

new column: # of strings separated by “,” in “Missions”. Create another
column that calculates “Space Flight (hr)” divided by “Missions_Count”

df['Missions_Count'] = df['Missions'].str.count(',') + 1
df['Space Flight (hr) per Mission'] = df['Space Flight

(hr)'] / df['Missions_Count']↩→

df['Missions_Count'] = df['Missions'].str.count(',') + 1
df['Avg_Mission_Length'] = df['Space Flight (hr)'] /

df['Missions_Count']↩→

N/A N/A

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Natural language interfaces
	2.2 Natural language programming

	3 Grounded abstraction matching
	4 System Design and Implementation
	4.1 Shared code generation and output pipeline
	4.2 System I: grounded abstraction matching
	4.3 System II: guidance reframing

	5 User study: how does grounding affect abstraction matching?
	5.1 Participants
	5.2 Study protocol
	5.3 Data segmentation and analysis

	6 Results
	6.1 Task completion and queries
	6.2 Usability and cognitive load questionnaires
	6.3 Failure modes
	6.4 Query rewriting strategies
	6.5 Perceived utility of grounded utterances, and their effects on trust and mental models

	7 Limitations
	8 Discussion
	8.1 Comparison with related work
	8.2 The tutorial value of grounded utterances
	8.3 Genres of naturalistic commanding
	8.4 Applications of grounded abstraction matching
	8.5 Continued applicability of grounded abstraction matching as LLMs evolve
	8.6 Implications for design

	9 Conclusion
	Acknowledgments
	References
	A Codes and descriptions
	A.1 Failure modes
	A.2 Rewrite strategies

	B System implementation details
	B.1 Further details of grounded utterance generation
	B.2 Formal description of round-trip benchmark
	B.3 Evaluating LLM performance

	C Formative usability study
	C.1 Prototype
	C.2 Method
	C.3 Results

	D Study Tasks
	D.1 Task descriptions shown to participants
	D.2 Task data

	E Extended query episode examples
	E.1 Extended examples for failure modes
	E.2 Extended examples for rewrite strategies

