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Abstract

Compression techniques for deep learning have
become increasingly popular, particularly in
settings where latency and memory constraints
are imposed. Several methods, such as prun-
ing, distillation, and quantization, have been
adopted for compressing models, each provid-
ing distinct advantages. However, existing lit-
erature demonstrates that compressing deep
learning models could affect their fairness. Our
analysis involves a comprehensive evaluation
of pruned, distilled, and quantized language
models, which we benchmark across a range
of intrinsic and extrinsic metrics for measur-
ing bias in text classification. We also investi-
gate the impact of using multilingual models
and evaluation measures. Our findings high-
light the significance of considering both the
pre-trained model and the chosen compression
strategy in developing equitable language tech-
nologies. The results also indicate that com-
pression strategies can have an adverse effect
on fairness measures.

1 Introduction

Despite their increasing popularity, machine learn-
ing models have been known to exhibit biases in
their outputs, present privacy risks, and have poten-
tially negative environmental consequences from
their training and deployment. (Bender et al., 2021;
Talat et al., 2022). Language models suffer from
biases that result in unequal resource distributions
(allocational harms), in addition to the undesired
tendency to reproduce biases and stereotypes in
content that is reflective of hegemonic worldviews
(representational harms). Although measures
have been proposed in tasks such as text classi-
fication (Czarnowska et al., 2021) to investigate the
disparate allocational treatment of different classes,
much of the research on fairness in language mod-
els centers on addressing representational harms
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(Blodgett et al., 2020). The potential of these mod-
els to further stigmatize marginalized communi-
ties is demonstrated in (Dressel and Farid, 2018),
which illustrates how recidivism prediction systems
are biased against black defendants, who have a
higher baseline risk for repeat offences. Biases
are also prevalent in computer vision applications
such as facial recognition technologies. Within
NLP, (Bolukbasi et al., 2016), one of the first forays
that studied this phenomenon in language, noted
that word embeddings contained stereotypical as-
sociations with respect to gender. Language mod-
els can exhibit biases toward different dialects for
tasks like toxicity and hate speech detection (Garg
et al., 2022; Sap et al., 2019), generate stereotypi-
cal representations and narratives (Lucy and Bam-
man, 2021), and are capable of the outright erasure
of underrepresented identities (Dev et al., 2021).
Compressed models that are biased may have detri-
mental consequences in the real world, as they are
typically deployed on edge devices, which can fur-
ther disadvantage communities without access to
other forms of technology. Consequently, these
issues have compelled a shift towards developing
more inclusive systems.

Hooker et al. (2020) demonstrates how compres-
sion techniques, when applied to models that deal
with tabular data, lead to the disparate treatment
of less-represented classes. However, equivalent
studies in NLP (Tal et al., 2022; Ahn et al., 2022;
Silva et al., 2021) do not provide a conclusive ob-
servation as to whether compression methods are
effective for reducing bias in NLP, and are centered
mainly solely around model distillation being the
compression technique of choice. This paper aims
to resolve the following questions by benchmark-
ing a wide range of metrics and datasets to study
bias in text classification systems.

• How does model compression using pruning,
quantization, or distillation impact bias in lan-
guage models, and to what extent?



• To what extent are these observations influ-
enced by variables such as the utilization of
different techniques within a specific compres-
sion method or a change in model architecture
or size?

• How does multilinguality affect these obser-
vations in compressed models?

2 Related Work

Compression techniques such as pruning, distil-
lation, and quantization have proven effective at
reducing the size of models while maintaining their
performance. Pruning can be done in two ways,
via structured and unstructured pruning. While
structured pruning involves removing groups of
neurons, unstructured pruning removes individual
neurons by zeroing out their values. Structured
pruning methods generally achieve faster infer-
ence speeds, along with a reduction in parame-
ter size. Knowledge distillation techniques are
another alternative that have been demonstrated
to effectively transfer knowledge from a teacher
model to a smaller student model, using a loss
function designed to minimize the distance be-
tween the features or the outputs of the student
and teacher models. We also incorporate a third
form of model compression - quantization, where
model weights and/or activations are represented
using lower-bit precisions. There are two main
approaches to quantization: post-training quantiza-
tion, which is applied to a pre-trained model, and
quantization-aware training (Zafrir et al., 2019a),
which incorporates quantization into the training
process in order to mitigate the loss of accuracy
that can occur with post-training quantization. Al-
though several techniques for pruning and quanti-
zation have been developed, we acknowledge that
our work consists only of models compressed using
post-training dynamic quantization and the pruning
method proposed in Zafrir et al. (2021).

Whilst there has been research at the confluence
of fairness and efficiency in natural language pro-
cessing (NLP), the results from these studies can be
inconclusive, limited in their research design, and
at times, contradict the results from previous analy-
ses. Talat et al. (2022); Orgad and Belinkov (2022);
Field et al. (2021); Blodgett et al. (2020) provide
critical insights into the current state of fairness in
NLP and delve into the details of what research
studies must consider when conducting work in
this area. The discussion thus far concerning fair-

ness, in general, has mainly been Anglo-centric,
but recent forays (Kaneko et al., 2022; Huang et al.,
2020b; Gonen et al., 2019; Zhao et al., 2020) have
explored bias in multilingual spaces and languages
beyond English.

In the context of model compression, Tal et al.
(2022) show that while larger models produce
fewer gendered errors, they produce a greater pro-
portion of gendered errors in coreference resolution
whilst Xu and Hu (2022) suggest that distillation
and pruning have a regularizing effect that miti-
gates bias in text classification. On the other hand
Silva et al. (2021); Ahn et al. (2022); Hessenthaler
et al. (2022) all demonstrate how distillation can
have an adverse impact on model fairness.

Hessenthaler et al. (2022) strongly casts doubt on
the results from Xu and Hu (2022) by showing that
knowledge distillation decreases model fairness.
Additionally, the findings from Mohammadshahi
et al. (2022) point toward the fact that pruning can
amplify bias in multilingual machine translation
models. It must also be noted that with the excep-
tion of Hessenthaler et al. (2022); Tal et al. (2022);
Xu and Hu (2022); Mohammadshahi et al. (2022),
many of these studies do not validate the fairness
of these models over downstream tasks. This is
essential as bias measurements over a model’s pre-
trained representations cannot be used as a proxy
to assess bias in its downstream outputs (Goldfarb-
Tarrant et al., 2021). Lauscher et al. (2021); Gupta
et al. (2022) explore the efficient debiasing of mod-
els via the use of adapters and an adapted form of
distillation, respectively.

To our knowledge, our work is the first com-
prehensive study on fairness in NLP with respect
to pruning, distillation and quantization, in addi-
tion to which it addresses both monolingual and
multilingual models.

3 Methodology and Setup

3.1 Pruning, Quantization, Distillation

Our pruning approach uses the Prune Once For All
(Prune OFA) (Zafrir et al., 2021) method on the
base models. The Prune OFA method is a state-of-
the-art pruning strategy that prunes models during
the pre-training phase, eliminating the need for
additional pruning on downstream tasks.

We employ dynamic quantization (Zafrir et al.,
2019b) as a post-training quantization method for
fairness evaluation. This approach converts model
weights to INT8 format post-training and dynami-



cally quantizes activations during runtime based on
the range of data. This method has the advantage of
minimal hyperparameter tuning and additional flex-
ibility in the model, which minimizes any potential
performance loss.

For knowledge distillation, we consider mod-
els compressed using the techniques employed in
(Sanh et al., 2019; Wang et al., 2020a), with the
primary difference in these methods being the type
of feature representations that the student is en-
couraged to mimic. We utilize pre-trained distilled
models that are publicly available12 for all of our
experiments. The complete list of models we con-
sidered for these experiments is in the appendix
(Table 9).

3.2 Fairness Evaluation in Language Models

To examine bias in LMs, we rely on a combina-
tion of intrinsic and extrinsic measures. Intrinsic
measures primarily evaluate bias in the pre-trained
representations of language models, such as in the
static and contextualized embedding spaces. On the
other hand, extrinsic measures estimate bias in the
outputs produced by the LLM in the downstream
task it is fine-tuned for. Extrinsic evaluation mea-
sures are capable of identifying both allocational
and representational harms, while intrinsic mea-
sures only address the latter. The inconsistencies
and lack of correlation between these two kinds of
metrics (Goldfarb-Tarrant et al., 2021; Cao et al.,
2022) has led to calls for better evaluation prac-
tices that prioritize extrinsic evaluation. We have
included detailed explanations of the metrics and
datasets in the next section and provided a broad
overview and additional details in the appendix in
Table 11.

4 Intrinsic measures

StereoSet (Nadeem et al., 2021) is an English
dataset used for analyzing’s a model’s proclivity
for stereotypical and anti-stereotypical data across
the axes of gender, race, religion, and profession.
We consider only the intrasentence samples from
StereoSet and evaluate the test set split. The ICAT
(Idealized Context Association Test) score com-
bines both the language model score (LMS) and
the stereotype score (SS) such that it is maximized
when the model is unbiased and simultaneously

1https://huggingface.co
2https://github.com/microsoft/unilm/tree/master/minilm

proficient at language modeling as shown in Equa-
tion 1.

ICAT = LMS ∗ min(SS, 100− SS)

50
(1)

Similar to StereoSet, CrowS-Pairs (Nangia
et al., 2020) is a crowdsourced dataset that allows
us to observe bias along the dimensions of gen-
der, race, and religion. The distance between the
stereotype and anti-stereotype pairs is kept to a
minimum, and the metric involves the pseudo-log
likelihood scoring mechanism from Salazar et al.
(2020). However, both StereoSet and CrowS-Pair
have been subject to critique for the inconsistencies
in their datasets (Blodgett et al., 2021).

5 Extrinsic measures

For extrinsic measurement over downstream tasks,
we have used multiple datasets with different fair-
ness definitions (details in Table 11 in the ap-
pendix). The Jigsaw dataset is used to evaluate
bias in toxicity detection systems across multiple
demographic identities. We do this by assessing
the difference in False Positive Rates (FPR) across
subgroups to ensure that text from one group is not
unfairly flagged as toxic. We report ROC-AUC as
a metric on three specific subsets:

• Subgroup AUC : The test set is restricted to
samples that mention the specific identity sub-
group. A low value suggests that the model
is ineffective at differentiating between toxic
and non-toxic remarks that mention the iden-
tity.

• BPSN AUC (Background Positive, Subgroup
Negative) : The test set is restricted to the
non-toxic examples that mention the identity
and the toxic examples that do not mention
the identity. A low value suggests that the
model predicts a higher toxicity score than it
should for a non-toxic example mentioning
the identity.

• BNSP AUC (Background Negative, Subgroup
Positive) : The test set is restricted to the
toxic examples that mention the identity and
the non-toxic examples that do not mention
the identity. A low value here indicates that
the model predicts lower toxicity scores than
it should for toxic examples mentioning the
identity.



The other monolingual extrinsic measure
includes the African American Vernacular
English-Standard American English (AAVE-
SAE) dataset (Groenwold et al., 2020a), which con-
sists of intent-equivalent SAE and AAVE sentence
pairs. Sap et al. (2019) has shown that AAVE lan-
guage is more likely to be identified as hate speech
compared to the standardized form of American
English. A fair, unbiased model on this data would
produce similar sentiment scores for both AAVE
and SAE. We have also included the results for
the Equity Evaluation Corpus (EEC), a template-
based dataset that evaluates the emotional intensity
of sentiment classification systems over four cate-
gories of data- anger, fear, sadness, and joy, in the
appendix (Section C.1).

5.1 Multilingual Datasets

To test if these observations are consistent with
results across multilingual models, we use a bi-
narized hate speech detection dataset, originally
sourced from Huang et al. (2020a). It consists of
online data accumulated from Twitter along with la-
bels containing information pertinent to the user’s
age, gender, country, and race/ethnicity, and the
details regarding the distribution of data and labels
across languages are provided in the Appendix in
Table 17. The fairness evaluation objective for the
hate speech detection task involves measuring the
equality differences (ED) metric across each of
the groups corresponding to the aforementioned
demographic factors. The ED is defined as the
difference between the true positive/negative and
false positive/negative rates for each demographic
factor. For instance, the ED for false positive rates
(FPED) is defined below, where d is representative
of each demographic group within a demographic
factor D (for example, gender is a demographic
factor, and male is a corresponding representative
demographic group).

FPED =
∑
dϵD

∥FPRd − FPR∥ (2)

We also make use of reviews datasets sourced
from Trustpilot, Yelp, and Amazon, with a rating
(1-5) for each review (Hovy et al., 2015; Huang
and Paul, 2019). The data includes user informa-
tion, such as age, gender, and country (our analysis
is constrained to gender). For this specific task,
the dataset has been transformed into a binary sen-
timent analysis classification task, where reviews

with a rating above 3 are classified as positive, and
those with a rating below 3 are classified as nega-
tive. Reviews with a rating of 3 are discarded. As
with the hate speech dataset, the equality differ-
ence metric is used to evaluate group fairness over
this task along a given dimension.

6 Analysis of Results

6.1 StereoSet

The findings of the StereoSet evaluation are pre-
sented in Table 1, wherein a higher ICAT score
implies a lesser biased model 3. According to the re-
sults, the monolingual models’ distilled and pruned
versions exhibit more bias than their original coun-
terparts. However, this trend does not necessarily
apply to the multilingual or quantized versions of
these models (Table 13). There is also an indica-
tion that the extent of pruning is potentially propor-
tional to the negative impact on fairness in these
models for this metric. Additionally, the MiniLM
models, which employ a different distillation tech-
nique than the one used for DistilBERT, show a
significant decrease in the ICAT score. However,
it is worth noting that they are relatively smaller
(MiniLMv2 being approximately one-third the size
of DistilBERT). Among the three techniques, quan-
tization appears to be the rank the lowest in terms
of bias according to the intrinsic StereoSet mea-
sure. That said, these results may not accurately
predict the model’s performance in downstream
tasks (Goldfarb-Tarrant et al., 2021). Based on
the ICAT score measurement, the models distilled
using MiniLMv2 exhibit the highest level of bias,
while the quantized models demonstrate the best
performance in this metric.

DistilBERT emerges as the least biased among
the distilled models, while the quantized version of
BERT-base shows the least bias among the quan-
tized model sets. We highlight that while quantiza-
tion results in a higher ICAT score for BERT, this is
not the case for RoBERTa. Furthermore, although
we have aggregated the scores for the dimensions of
gender, race, and religion, these trends do not per-
sist uniformly across individual dimensions. This
observation is also reflected in our evaluation of
the CrowS-Pair dataset.

3A green arrow indicates that the model is less biased in
comparison to the parent model (in bold), while a red arrow
indicates the opposite.



Model Overall ICAT Score
bert-base-uncased 70.30
distilbert-base-uncased 69.52 ↓-0.78

miniLMv2-L6-H384-uncased 53.94 ↓-16.36

bert-base-uncased-90%-pruned 69.44 ↓-0.86

bert-base-uncased-85%-pruned 68.50 ↓-1.8

bert-base-uncased-quantized 72.06 ↑1.76

bert-base-multilingual-cased 64.94
distilbert-base-multilingual-cased 67.99 ↑3.05

xlm-roberta-large 71.29
multilingual-MiniLM-L12-H384 52.47 ↓-18.82

roberta-base 67.18
distilroberta 66.68 ↓-0.5

roberta-base-quantized 65.81 ↓-1.37

bert-large-uncased 69.50
miniLMv2-L6-H384-uncased 49.74 ↓-19.76

bert-large-uncased-90%-pruned 68.91 ↓-0.59

bert-large-uncased-quantized 70.20 ↑0.7

Table 1: We report the overall ICAT score for the model
evaluations over the StereoSet dataset. The higher the

ICAT score, the less biased the model.

6.2 CrowS-Pair
In Table 2, the results for CrowS-Pair have been
presented for gender, race, and religion, along with
the deviation from the ideal baseline score of 50.
According to this metric, a higher magnitude of
deviation indicates more bias in the model. Our
findings reveal inconsistent disparities in the scores
across different compression methods and their
base and large counterparts. For example, while
the results suggest that DistilBERT is less biased
than BERT-base in terms of gender and race, this
does not hold true for religion. While this may
also be in due part to the relatively smaller sam-
ple size of the data for each dimension (Meade
et al., 2022), it would be essential to understand
if a model demonstrating lower bias in one dimen-
sion generalizes to other dimensions or data that
incorporates intersectional identities. However, it
is important to acknowledge that intrinsic and ex-
trinsic measures do not necessarily correlate with
each other. Additionally, Aribandi et al. (2021)
highlights the substantial variance in likelihood-
based and representation-based diagnostics during
empirical evaluations, emphasizing the need for
caution when interpreting findings from intrinsic
measures.

6.3 Jigsaw
To evaluate the potential harm caused by these mod-
els, it is essential to assess bias in the context of
downstream tasks. We fine-tuned the models on
the Jigsaw dataset and examined how well they

Model Gender Race Religion
bert-base-uncased 57.25 +7.25 62.33 +12.33 62.86 +12.86

distilbert-base-uncased 56.87 +6.87 60.97 +10.97 66.67 +16.67

miniLMv2-L6-H384-uncased 50.76 +0.76 50.68 +0.68 72.38 +22.38

bert-base-uncased-90%-pruned 51.91 +1.91 59.61 +9.61 60.95 +10.95

bert-base-uncased-85%-pruned 51.91 +1.91 53.01 +3.01 58.10 +8.10

bert-base-uncased-quantized 57.25 +7.25 62.14 +12.14 46.67 -3.33

bert-base-multilingual-cased 47.71 -2.29 44.66 -5.34 53.33 +3.33

distilbert-base-multilingual-cased 50.38 +0.38 41.94 -8.06 53.33 +3.33

xlm-roberta-large 54.41 +4.41 51.65 +1.65 69.52 +19.52

multilingual-MiniLM-L12-H384 39.85 -10.15 60.39 +10.39 47.62 -2.38

roberta-base 60.15 +10.15 63.57 +13.57 60.00 +10.00

distilroberta 52.87 +2.87 60.08 +10.08 63.81 +13.81

roberta-base-quantized 53.64 +3.64 58.53 +8.53 49.52 -0.48

bert-large-uncased 55.73 +5.73 60.39 +10.39 67.62 +17.62

miniLMv2-L6-H384-uncased 43.13 -6.87 50.1 +0.1 57.14 +7.14

bert-large-uncased-90%-pruned 54.20 +4.20 60.19 +10.19 69.52 +19.52

bert-large-uncased-quantized 50.38 +0.38 63.11 +13.11 55.24 +5.24

Table 2: The results for the CrowS-Pairs metric for
different model families have been reported, with
values closer to 50 indicating less biased models

according to this metric.

performed on various forms of protected identity
mentions. Table 3 presents the aggregated scores
for all subgroups across the metrics discussed in
Section 5.4

The overall trend suggests that compression
methods can have a negative impact on fairness.
Distilled models generally appear to demonstrate a
higher level of bias compared to their pruned and
quantized counterparts. In contrast to the findings
from intrinsic measurements, quantization does
lead to a decrease in performance in these mod-
els, and this drop is also observed in the multilin-
gual models. However, the pruned and quantized
models generally exhibit a lower magnitude of bias
compared to the distilled models.

Among all the compressed models evaluated,
the base form of DistilBERT exhibits the highest
degree of bias. These findings may vary at different
training stages, and they warrant further probing
to see if training the models further to improve
the performance of these compressed models could
also significantly contribute to reducing bias.

6.4 AAVE-SAE

Given the proclivity of hate speech detection sys-
tems to flag AAVE language as hate speech (Sap
et al., 2019; Groenwold et al., 2020b), we aimed
to assess whether SST-2 fine-tuned models also
tend to classify AAVE language as negative. The
underlying fairness objective in this context is to
evaluate the robustness of sentiment analysis mod-
els to data from diverse dialects. We make use

4Results for the pruned version of BERT-large excluded
due to low performance on Jigsaw and AAVE-SAE.



Model Subgroup
AUC

BPSN
AUC

BNSP
AUC

bert-base-uncased 0.918 0.934 0.975
distilbert-base-uncased 0.878 ↓-0.04 0.892 ↓-0.042 0.972 ↓-0.003

miniLM-L12-H384-uncased 0.917 ↓-0.001 0.943 ↑0.009 0.970 ↓-0.005

bert-base-uncased-90%-pruned 0.915 ↓-0.003 0.932 ↓-0.002 0.973 ↓-0.002

bert-base-uncased-85%-pruned 0.917 ↓-0.001 0.933 ↓-0.001 0.974 ↓-0.001

bert-base-uncased-quantized 0.917 ↓-0.001 0.933 ↓-0.001 0.974 ↓-0.001

bert-base-multilingual-cased 0.914 0.936 0.971
distilbert-base-multilingual-cased 0.895 ↓-0.019 0.913 ↓-0.023 0.969 ↓-0.002

xlm-roberta-base 0.914 0.942 0.969
multilingual-MiniLM-L12-H384 0.904 ↓-0.01 0.926 ↓-0.016 0.968 ↓-0.001

roberta-base 0.920 0.947 0.971
distilroberta 0.901 ↓-0.019 0.921 ↓-0.026 0.971 0

roberta-base-quantized 0.918 ↓-0.002 0.943 ↓-0.004 0.971 0

bert-large-uncased 0.913 0.922 0.975
bert-large-uncased-quantized 0.909 ↓-0.004 0.922 0 0.971 ↓-0.004

Table 3: We report the results for the Jigsaw dataset.
The higher the AUC, the less biased the model. The

scores for the identity subgroups have been aggregated
and presented in this table.

of well-optimized, pre-trained models that were
fine-tuned on the Stanford Sentiment Bank (SST-
2) dataset (Socher et al., 2013), and we fine-tuned
the pruned pre-trained models over SST-2. Ad-
ditionally, we applied quantization techniques to
the existing models and compared the outcomes
of dynamically quantized models with other com-
pressed variations. We examined the change in
predictions when considering the AAVE intent-
equivalent counterpart of the SAE language. We
term the contradictory predictions of the classifier
on AAVE-SAE sentence pairs as non-concurrent
predictions, and our results are presented in Table
4.

A consistent pattern is observed where distilled
models demonstrate a significantly higher degree
of bias in this particular task than their base models.
While the BERT-base pruned models also show a
decline in performance, the 90% pruned version
appears to be more robust than the 85% pruned ver-
sion. Across all cases, except for the dynamically
quantized form of RoBERTA-base, the quantized
models show an increase in these non-concurrent
predictions. Another interesting point of note is
that several of these models seem to record posi-
tive to negative non-concurrent predictions when
considering AAVE language instead of its SAE
intent-equivalent counterpart.

7 Multilingual Datasets

To investigate whether the observed trends in a
monolingual setting extend to a multilingual sce-
nario, we conducted experiments using a separate
set of models, with information about their size

Model Negative
to Positive

Positive
to Negative

Total
Changes

bert-base-uncased 238 89 327
distilbert-base-uncased 326 ↑88 76 ↓-13 402 ↑75

bert-base-uncased-90%-pruned 205 ↓-33 128 ↑39 333 ↑6

bert-base-uncased-85%-pruned 340 ↑102 147 ↑58 487 ↑160

bert-base-uncased-quantized 281 ↑43 93 ↑4 374 ↑47

xlm-roberta-base 247 56 303
multilingual-MiniLM-L12-H384 294 ↑47 73 ↑17 367 ↑64

roberta-base 241 102 343
distilroberta 238 ↓-3 108 ↑6 346 ↑3

roberta-base-quantized 207 ↓-34 115 ↑13 322 ↓-21

roberta-large 178 110 288
miniLM-L12-H384-uncased 265 ↑87 64 ↑-46 329 ↑41

bert-large-uncased 230 72 302
bert-large-uncased-quantized 175 ↓-55 156 ↑84 331 ↑29

Table 4: The results depict the count of non-concurrent
predictions for the SST-2 fine-tuned models tested over

the AAVE-SAE dataset.

provided in Table 10 in the appendix. For these
experiments, we employed the same techniques of
pruning, distillation, and quantization as used in
the monolingual experiments.

7.1 Hate Speech Detection

The hate speech dataset evaluation results are pre-
sented in Table 5 and Table 7. In contrast to the
trends observed in the monolingual evaluations con-
ducted for English, the impact on fairness, as mea-
sured by the equality differences (ED) metric, is
not as consistently evident among the compressed
models in the multilingual setup. In the quantized
and distilled models, the trends with respect to En-
glish remain consistently negative.

The training for all these models was constrained
to 5 epochs, and the F1 and AUC scores for the base
models are lower than their compressed counter-
parts. The compressed models demonstrate greater
performance gains within the same training du-
ration as compared to their base forms, and this
observed improvement in performance could con-
tribute to enhanced fairness outcomes as well.

Furthermore, it is worth considering that in previ-
ous monolingual tasks and even in the multilingual
evaluation of Trustpilot reviews (Table 8), the com-
pressed models were more likely to experience a
drop in the ED metric. However, it is essential
to highlight that the magnitude of this drop ob-
served in the current results is considerably less
pronounced. Additionally, the F1 and AUC per-
formance of these models over these datasets is
significantly higher.

Across nearly all the experiments conducted
and languages documented in Tables 5, 7, and 8,



Model Language AUC F1-macro Age Gender

bert-base-
multilingual-cased

English 0.743 0.645 0.110 0.043

Italian 0.662 0.509 0.064 0.070

Polish 0.735 0.648 0.302 0.266

Portuguese 0.616 0.539 0.194 0.181

Spanish 0.676 0.618 0.177 0.179

distilbert-base-
multilingual-cased

English 0.790 0.702 0.199 ↑+0.089 0.084 ↑+0.041

Italian 0.673 0.551 0.123 ↑+0.059 0.102 ↑+0.032

Polish 0.706 0.638 0.264 ↓-0.038 0.249 ↓-0.017

Portugese 0.651 0.513 0.031 ↓-0.163 0.173 ↓-0.008

Spanish 0.695 0.617 0.134 ↓-0.043 0.135 ↓-0.044

bert-base-multilingual
-cased-quantized

English 0.750 0.641 0.141 ↑+0.031 0.080 ↑+0.037

Italian 0.675 0.509 0.089 ↑+0.025 0.078 ↑+0.008

Polish 0.735 0.628 0.314 ↑+0.012 0.242 ↓-0.024

Portuguese 0.602 0.493 0.191 ↓-0.003 0.026 ↓-0.155

Spanish 0.670 0.613 0.217 ↑+0.040 0.173 ↓-0.006

bert-base-multilingual-
cased-90%-pruned

English 0.813 0.708 0.135 ↑+0.025 0.075 ↑+0.032

Italian 0.666 0.537 0.150 ↑+0.086 0.238 ↑+0.168

Polish 0.698 0.580 0.221 ↓-0.081 0.230 ↓-0.036

Portuguese 0.697 0.540 0.209 ↑+0.015 0.054 ↓-0.127

Spanish 0.659 0.616 0.185 ↑+0.008 0.150 ↓-0.029

bert-base-multilingual-
cased-50%-pruned

English 0.764 0.657 0.078 ↓-0.032 0.048 ↑+0.005

Italian 0.648 0.553 0.168 ↑+0.104 0.178 ↑+0.108

Polish 0.711 0.622 0.245 ↓-0.057 0.233 ↓-0.033

Portuguese 0.644 0.505 0.115 ↓-0.079 0.108 ↓-0.073

Spanish 0.684 0.625 0.246 ↑+0.069 0.085 ↓-0.094

bert-base-multilingual-
cased-10%-pruned

English 0.745 0.644 0.089 ↓-0.021 0.051 ↑+0.008

Italian 0.670 0.565 0.210 ↑+0.146 0.260 ↑+0.190

Polish 0.670 0.597 0.160 ↓-0.142 0.167 ↓-0.099

Portuguese 0.590 0.480 0.142 ↓-0.052 0.048 ↓-0.133

Spanish 0.681 0.620 0.347 ↑+0.170 0.188 ↑+0.009

xlm-roberta-large

English 0.529 0.218 0.005 0.004

Italian 0.629 0.549 0.246 0.119

Polish 0.580 0.520 0.080 0.067

Portuguese 0.447 0.398 0.126 0.045

Spanish 0.590 0.556 0.251 0.088

multilingual-MiniLM-L12-H384

English 0.701 0.605 0.060 ↑+0.055 0.032 ↑+0.028

Italian 0.622 0.571 0.337 ↑+0.091 0.191 ↑+0.072

Polish 0.643 0.587 0.138 ↑+0.058 0.098 ↑+0.031

Portuguese 0.606 0.559 0.336 ↑+0.210 0.237 ↑+0.192

Spanish 0.624 0.570 0.270 ↑+0.019 0.096 ↑+0.008

Table 5: The results for the age and gender categories of the Hate Speech dataset. The lower the ED, the less biased
the model.

Language Race Country Age Gender

English distilbert-base-multilingual-cased distilbert-base-multilingual-cased distilbert-base-multilingual-cased distilbert-base-multilingual-cased
Italian - - bert-base-multilingual-cased-10%-pruned bert-base-multilingual-cased-10%-pruned

Spanish multilingual-MiniLM-L12-H384 bert-base-multilingual-cased-90%-pruned bert-base-multilingual-cased-10%-pruned bert-base-multilingual-cased-10%-pruned
Portuguese multilingual-MiniLM-L12-H384 multilingual-MiniLM-L12-H384 multilingual-MiniLM-L12-H384 multilingual-MiniLM-L12-H384

Polish - - multilingual-MiniLM-L12-H384 multilingual-MiniLM-L12-H384

Table 6: The list of compressed models which demonstrate the sharpest increase in the ED metric relative to their
base model.



Model Language AUC F1-macro Race Country

bert-base-
multilingual-cased

English 0.743 0.645 0.059 0.031

Portuguese 0.616 0.539 0.200 0.109

Spanish 0.676 0.618 0.087 0.130

distilbert-base-
multilingual-cased

English 0.790 0.702 0.086 ↑+0.027 0.077 ↑+0.046

Portuguese 0.651 0.513 0.105 ↓-0.095 0.089 ↓-0.020

Spanish 0.695 0.617 0.089 ↑+0.002 0.127 ↓-0.003

bert-base-multilingual
-cased-quantized

English 0.750 0.641 0.066 ↑+0.007 0.043 ↑+0.012

Portuguese 0.602 0.493 0.069 ↓-0.131 0.037 ↓-0.072

Spanish 0.670 0.613 0.039 ↓-0.048 0.149 ↑+0.019

bert-base-multilingual-
cased-90%-pruned

English 0.813 0.708 0.041 ↓-0.018 0.026 ↓-0.005

Portuguese 0.697 0.540 0.151 ↓-0.049 0.106 ↓-0.003

Spanish 0.659 0.616 0.033 ↓-0.054 0.289 ↑+0.159

bert-base-multilingual-
cased-50%-pruned

English 0.764 0.657 0.038 ↓-0.019 0.020 ↓-0.011

Portugese 0.644 0.505 0.086 ↓-0.114 0.118 ↑+0.009

Spanish 0.684 0.625 0.092 ↑+0.005 0.217 ↑+0.087

bert-base-multilingual-
cased-10%-pruned

English 0.745 0.644 0.024 ↓-0.025 0.009 ↓-0.022

Portuguese 0.590 0.480 0.193 ↓-0.007 0.024 ↓-0.085

Spanish 0.681 0.620 0.130 ↑+0.043 0.249 ↑+0.119

xlm-roberta-large
English 0.529 0.218 0.005 0.003

Portuguese 0.447 0.398 0.121 0.175

Spanish 0.590 0.556 0.030 0.376

multilingual-MiniLM-L12-H384
English 0.701 0.605 0.011 ↑+0.006 0.027 ↑+0.024

Portuguese 0.606 0.559 0.263 ↑+0.142 0.232 ↑+0.057

Spanish 0.624 0.570 0.097 ↑+0.067 0.383 ↑+0.007

Table 7: The results for the race/ethnicity and country categories of the Hate Speech dataset. The lower the ED, the
less biased the model.

the MiniLM model distilled from XLM-R Large
demonstrates higher levels of bias compared to the
base model. These results also exhibit variations
across languages and dimensions under consider-
ation. A model may produce fairer outcomes for
data in one language but not necessarily generalize
to another language or dimension. Additionally,
the trends observed in the ED values for pruning
the multilingual BERT-base model are not consis-
tently monotonic. We have included the results for
the most significant decrease in magnitude across
each dimension and language for these experiments
in Table 6. Our benchmarking of these compressed
models indicates that various elements in the exper-
imental setup, such as the selection of techniques
within a given compression method or the choice
of pre-trained model architecture, are likely to have
consequences in the measurements we observe.

7.2 Trustpilot Reviews Dataset

We also fine-tuned these models using a dataset
comprising Trustpilot reviews from four different
languages. The results for the equality difference
(ED) for gender are presented in Table 8. Although
the compressed models generally exhibit poorer
performance in terms of their overall equality dif-
ference, the magnitude of the difference in ED
between the compressed models and their base

forms is considerably smaller compared to the val-
ues observed in the previous task. However, it is
worth noting that the results for the English reviews
dataset (Table 12 in the appendix) contradict this
pattern. In that case, the compressed versions of
BERT demonstrate less bias, whereas the opposite
is true for XLM-R Large.

8 How Does Model Compression Affect
Fairness?

8.1 Distillation, Pruning and Quantization

The claim that distillation tends to amplify biases
in models aligns with our findings in monolingual
evaluation experiments. However, the impact on
fairness metrics can vary, and this pattern does not
necessarily hold true in multilingual settings, as ev-
idenced by our evaluation of multilingual fairness
datasets. Similar observations can be made regard-
ing pruned models, although further investigation
is warranted to understand how different pruning
strategies and levels of pruning may influence these
effects.

In contrast, our approach of post-training quanti-
zation has yielded more diverse outcomes. While
its impact on fairness may be relatively less pro-
nounced, it can sometimes lead to impractical mod-
els for downstream tasks due to their low perfor-



Model Language F1-W Avg AUC-W Avg Total ED

bert-base-multilingual-cased

English 0.981 0.987 0.026
French 0.976 0.990 0.022
German 0.979 0.985 0.014
Danish 0.971 0.992 0.015

distilbert-base-multilingual-cased

English 0.975 0.987 0.026 0.000

French 0.971 0.984 0.037 ↑+0.015

German 0.976 0.977 0.043 ↑+0.029

Danish 0.964 0.992 0.020 ↑+0.005

bert-base-multilingual-cased-quantized

English 0.978 0.984 0.047 ↑+0.021

French 0.969 0.984 0.048 ↑+0.026

German 0.976 0.980 0.005 ↓-0.009

Danish 0.970 0.991 0.021 ↑+0.006

bert-base-multilingual-cased-90%-pruned

English 0.976 0.988 0.029 ↑+0.003

French 0.973 0.986 0.036 ↑+0.014

German 0.975 0.982 0.025 ↑+0.011

Danish 0.963 0.991 0.024 ↑+0.009

bert-base-multilingual-cased-50%-pruned

English 0.980 0.989 0.020 ↓-0.006

French 0.975 0.989 0.038 ↑+0.016

German 0.977 0.988 0.025 ↑+0.011

Danish 0.970 0.991 0.019 ↑+0.004

bert-base-multilingual-cased-10%-pruned

English 0.979 0.988 0.026 0.000

French 0.976 0.988 0.028 ↑+0.006

German 0.976 0.981 0.017 ↑+0.003

Danish 0.969 0.993 0.017 ↑+0.002

xlm-roberta-large

English 0.987 0.993 0.018
French 0.984 0.991 0.024
German 0.985 0.992 0.031
Danish 0.985 0.994 0.008

multilingual-MiniLM-L12-H384

English 0.976 0.991 0.042 ↑+0.024

French 0.972 0.989 0.041 ↑+0.017

German 0.975 0.986 0.023 ↓-0.008

Danish 0.970 0.993 0.017 ↑+0.009

Table 8: The results for the gender category of the Trustpilot Reviews dataset. The lower the ED, the less biased the
model.

mance. Therefore, careful consideration is required
when employing post-training quantization to strike
a balance between fairness and task effectiveness.

8.2 Multilingual vs Monolingual Models
While monolingual evaluation generally negatively
impacts fairness, the same cannot be said for multi-
lingual evaluation, which varies across languages
and dimensions. It would be valuable to investigate
the underlying causes for the decrease in fairness
during compression and explore its relationship
with the multilingual and monolingual aspects of
the model. It also remains to be seen whether well-
optimized models for a specific task are more prone
to demonstrating increased bias in their compressed
versions, thereby possibly relying on unfair associ-
ations to make predictions.

8.3 Additional Considerations
There are still lingering questions regarding the in-
fluence of various elements, such as model size,
architecture choices, different variants of compres-
sion techniques, and their impact on our evalua-
tions. While our results seem to indicate other-
wise for some of these parameters (such as size), it
is essential to explore whether these observations
translate across different tasks. As evinced by Tal
et al. (2022), the size of a model does not neces-
sarily correlate with reduced biases, a notion that

is further supported by our own findings. It would
be worthwhile to extensively examine how these
models are affected when different compression
methods are combined or constrained to the same
parameter count.

9 Conclusion

In this work, we conduct a comprehensive evalu-
ation of fairness in compressed language models,
covering multiple base models, compression tech-
niques, and various fairness metrics. While prior
studies have evaluated the fairness of compressed
models, the results have not always been conclu-
sive. In contrast, our extensive benchmarking pro-
vides evidence that challenges recent research sug-
gesting that model compression can effectively re-
duce bias through regularization, and we demon-
strate that this is the case for both multilingual and
monolingual models across different datasets.

The compression of language models through
distillation, quantization, and pruning is crucial for
the practical use of language technologies in var-
ious real-world applications. While it is essential
to preserve performance during compression, it is
equally imperative that the compressed versions of
language models maintain or even enhance fairness
measures to avoid potential harm.
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Our results indicate that compression does harm
fairness, particularly in the monolingual setting.
The potential harm that the system may cause and
the application it will be used for should be con-
sidered when selecting a model compression tech-
nique, in addition to factors like accuracy, latency,
and size. Although we have not observed absolute
trends across models, datasets, and compression
techniques, it is especially crucial to evaluate com-
pressed models for fairness and accuracy before
deployment and, on a broader note, to understand
why compressed models might exhibit issues with
respect to fairness.

In our paper, we conducted evaluations of multi-
lingual language models using fairness metrics for
various languages, including English. We observed
varying trends regarding their performance on fair-
ness metrics across different languages. However,
it is vital to consider the potential influence of the
lack of well-optimized models for these specific
tasks, which may mitigate some of these issues.
Additionally, evaluation datasets are scarce for as-
sessing bias in languages other than English and for
different fairness definitions. We also acknowledge
that fairness trends identified in English evaluations
may not necessarily be true for all languages.

While our benchmarking encompassed multiple
intrinsic and extrinsic metrics, it is important to
acknowledge their limitations in capturing all di-
mensions of fairness. Further research is needed
to develop comprehensive extrinsic metrics across
diverse tasks. Although our work has been cen-
tered around fairness in allocation-based (classifi-
cation) applications, addressing fairness concerns
in other types of language models, such as natural
language generation models, is necessary. In gen-
erative tasks, the measurement of unfair outcomes
would be distinct from the methods we have used.
Another area of potential future work could involve
benchmarking debiasing methods for compressed
models and developing new compression-aware
methods.

Limitations

The primary motivation behind this paper was to
provide a comprehensive benchmarking study that
explores the impact of model compression tech-
niques on bias in large language models. While our
work is among the first efforts to address fairness in
compressed language models across multiple com-

pression methods, including exploring multilingual
settings, we are aware of the inherent limitations
associated with our benchmarking study. Some of
the limitations and potential directions for future
work that builds on our study include the following:

• Our study primarily focused on benchmark-
ing pre-trained models and evaluating their
performance in the downstream text classifi-
cation task. Expanding our investigation to
encompass other tasks, particularly those in-
volving generative models or large language
models (LLMs), would be a valuable contri-
bution to the research community. Examining
the impact of model compression techniques
on fairness in these domains would provide
further insights and contribute to a more com-
prehensive understanding of bias in different
types of language models.

• While our work includes a multilingual evalu-
ation component, we acknowledge that there
is room for further improvement and compre-
hensiveness in our benchmarking study, par-
ticularly with regard to quantization and prun-
ing techniques. Apart from this, we did not
provide a comparative analysis of monolin-
gual and multilingual models using the same
extrinsic data, which could provide valuable
insights into the disparate impact of compres-
sion on the bias across languages. These are
potential areas for future research that could
contribute to a more thorough understanding
of bias in compressed language models.

• Despite showing results for state-of-the-art
pruning methods, further benchmarking is
necessary to observe how bias varies across
different pruning techniques. Similarly, whilst
our method serves as a proxy to estimate
bias trends in quantized models, a thorough
quantization-specific study is needed.

• Different compression strategies yield var-
ied benefits in terms of latency, memory,
and so forth. Investigating the tradeoffs be-
tween these elements and fairness and accu-
racy would yield valuable insights for obtain-
ing realistic estimations in real-world scenar-
ios. Additionally, conducting case-study anal-
yses would give practitioners in the field a
deeper understanding of the potential harm
these methods may introduce.
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A Appendix

A.1 Methodology and Setup

A.1.1 Pruning
We adopt the Prune Once For All or Prune OFA
method (Zafrir et al., 2021) as our central pruning
strategy. Prune OFA has demonstrated state-of-
the-art performance in terms of compression-to-
accuracy ratio for BERT-based models, and it also
eliminates the need to conduct task-specific prun-
ing, as the sparse pre-trained language model can
be directly fine-tuned on the target task. This sim-
plifies our comparisons, as the same pruned model
can be fine-tuned on different datasets.

A.1.2 Distillation
We use the pre-trained distilled variants of base
models such as BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019), and XLM-R (Con-
neau et al., 2019), namely DistilBERT (Sanh et al.,

2019), DistilRoBERTa, and multilingual MiniLM
(Wang et al., 2020a), which are publicly available
through the HuggingFace API (Wolf et al., 2020)
for our experiments. DistilBERT selects one layer
from each pair of alternate layers in the teacher
architecture (BERT-base), lowering the number of
layers in the distilled model by half. MiniLM is
distilled from the final attention layer of the teacher
model, thus making this knowledge distillation
method task-independent. In addition to evaluat-
ing bias in these pre-trained models using intrinsic
metrics, we fine-tuned some distilled models on the
SAE-AAVE, Jigsaw, and Equity Evaluation Cor-
pus (EEC) datasets for evaluation using extrinsic
metrics.

A.1.3 Quantization
Dynamic quantization is particularly effective
when the time required to execute a model is domi-
nated by loading weights from memory rather than
computing matrix multiplications, as with trans-
former models. Therefore, we adopt dynamic quan-
tization in all of our experiments. With this ap-
proach, model parameters are converted to INT-8
format post-training, and the scale factor for activa-
tions is dynamically determined based on the range
of the data observed at runtime, which helps to
maintain flexibility in the model and minimize any
loss in performance. Additionally, dynamic quanti-
zation requires minimal hyperparameter tuning and
is easy to deploy in production.

A.2 Further Details on Pruning, Quantization
and Distillation

A.2.1 Pruning
Neural architecture pruning aims at eliminating
redundant parts of neural networks while main-
taining model performance. Unstructured pruning
removes individual neurons by setting the value
of these parameters to zero, whereas structured
pruning removes groups of neurons such as lay-
ers, attention heads, and so forth. (Sanh et al.,
2020) presents a form of unstructured weight prun-
ing in which individual weights can be eliminated
to create a sparse network. Although massive re-
ductions in the parameter count are observed, the
inference speeds show no such improvement. On
the other hand, structured pruning methods (Wang
et al., 2020b) achieve faster inference speeds along
with a reduction in parameter size. (Lagunas et al.,
2021) extend the work of movement pruning to
the structured and semi-structured domains. Re-
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cently, (Zafrir et al., 2021) showed that integrating
pruning during the pre-training of language models
gives high-performing sparse pre-trained models,
thus removing the burden of pruning for a specific
downstream task.

A.2.2 Distillation
Knowledge distillation (KD) (Hinton et al., 2015)
has been shown to effectively transfer knowledge
from a teacher model to a smaller student model,
with a loss function designed to minimize the dis-
tance between the features or the outputs of the
student and teacher models. Numerous alterations
can be made to the KD setup, such as choosing
intermediate layers of the teacher model for initial-
izing the student architecture (Sanh et al., 2019),
distilling the final attention layer of the teacher
transformer architecture (Wang et al., 2020a), in-
troducing bottlenecks for distillation (Sun et al.,
2020). However, biases in the teacher model could
potentially propagate into the distilled models mak-
ing it more biased compared to the original teacher
model (Silva et al., 2021).

A.2.3 Quantization
Quantization compresses models by representing
model weights and/or activations with lower bit
precisions. It can also make it possible to carry out
inference using integer-only operations, as demon-
strated by Kim et al. (2021). There are two main
approaches to quantization: post-training quantiza-
tion, which is applied to a pre-trained model, and
quantization-aware training (Zafrir et al., 2019a),
which incorporates quantization into the training
process in order to mitigate the loss of accuracy
that can occur with post-training quantization.



B Additional Results

We have included the results and a brief description
for certain monolingual and multilingual measures
below. Our decision to include the Equity Evalua-
tion Corpus (EEC) and Log Probability Bias Score
(LPBS) metric measures in the appendix is moti-
vated by the fact that both these metrics consist
of template-based data lacking concrete fairness
objectives, and are therefore not a reflection of
harms that can be caused in real-world applications.
Recent research (Alnegheimish et al., 2022) has
effectively highlighted the sensitivity of template-
based evaluations to the selection and design of
templates, which can bias the results. Furthermore,
the LPBS is an intrinsic measure, and Aribandi et al.
(2021) addresses the instability of likelihood and
representation-based model diagnostic measures.
Therefore, we advise readers to exercise caution
when drawing conclusions from these results.

B.1 Multilingual Datasets
The findings of our multilingual evaluation on the
English reviews dataset, comprising reviews ob-
tained from platforms such as Amazon and Yelp,
have been presented in Table 12. Additionally, we
have included the results of the evaluation of multi-
lingual models on the English version of StereoSet
in Table 13, as well as the evaluation of these mod-
els for the Crows-Pair dataset for English in Table
14. Ideally, we intended to study the performance
of models on datasets with comparable fairness
notions or objectives in both monolingual and mul-
tilingual contexts. Unfortunately, we encountered
limitations in sourcing such datasets, and therefore,
we leave this as an avenue for future research.

C Fine-tuning Setup

For the extrinsic measures, the models are fine-
tuned over a specific training dataset before the
fairness evaluation is carried out over the test set.
Most of our fine-tuning setups have been derived
from previous work (Huang et al., 2020a; Huang,
2022; Câmara et al., 2022). The intrinsic measures
do not require a hyperparameter search, as they are
evaluated over pre-trained model representations.
For the extrinsic measures, we relied on pre-trained
SST-2 fine-tuned models available on HuggingFace.
We performed fine-tuning solely for all the mod-
els trained on the Jigsaw Toxicity Classification
dataset, the final details of which are as follows:

• Batch Size : 16

• Learning Rate : 1e-4

• Weight decay: 0.01

• Warmup Ratio: 0.06

• Epochs: 5

• Optimizer: AdamW

C.1 Equity Evaluation Corpus
The Equity Evaluation Corpus (Kiritchenko and
Mohammad, 2018) is a template-based corpus for
evaluating sentiment analysis systems for emo-
tional intensity across four categories (joy, sadness,
anger and joy). In this particular task, we mea-
sure the Pearson Correlation Coefficient (PCC) of
the predictions of these models against the gold
label. the It must be noted that previous research
(Alnegheimish et al., 2022) indicates that bias eval-
uation is sensitive to design choices in template-
based data, and that evaluating our models over
natural sentence-based datasets would be a better
alternative to gauge the impact these models can
have. The fairness objective here looks to address
the disparity in terms of the PCC across all the
models across the different categories of template
data. The results have been reported in Table 15.

C.2 Log Probability Bias Score
The Log Probability Bias Score (LPBS) (Kurita
et al., 2019) was proposed as a modification to the
DisCo metric (Webster et al., 2020). LPBS operates
similarly to WEAT, using template sentences (e.g.,
‘[TGT] likes to [ATT]’) in which TGT represents
a list of target words and ATT represents a list
of attributes for which we aim to measure biased
associations. The test also accounts for the prior
probability of the target attribute, allowing us to
evaluate bias solely based on the attributes without
being influenced by the prior probability of the
target token. The attribute categories that we have
taken into consideration are a list of professions,
positive words, and negative words (Bartl et al.,
2020) (Kurita et al., 2019). The results have been
reported in Table 16.



Model Name Parameter # Jigsaw EEC AAVE-SAE StereoSet CrowS-Pair LPBS

bert-base-uncased 110 M ✓ ✓ ✓ ✓ ✓ ✓

distilbert-base-uncased 66 M ✓ ✓ ✓ ✓ ✓ ✓

miniLM-L12-H384-uncased 33 M ✓ ✓ ✓ ✗ ✗ ✗

bert-base-uncased-85%-pruned 16.5 M ✓ ✓ ✓ ✓ ✓ ✓

bert-base-uncased-90%-pruned 11 M ✓ ✓ ✓ ✓ ✓ ✓

bert-base-uncased-quantized 110 M ✓ ✓ ✓ ✓ ✓ ✓

bert-large-uncased 340 M ✓ ✓ ✓ ✓ ✓ ✓

bert-large-uncased-90%-pruned 34 M ✗ ✓ ✗ ✓ ✓ ✓

bert-large-uncased-quantized 340 M ✓ ✓ ✓ ✓ ✓ ✓

bert-base-multilingual-cased 178 M ✓ ✓ ✗ ✓ ✓ ✓

distilbert-base-multilingual-cased 135 M ✓ ✓ ✗ ✓ ✓ ✓

xlm-roberta-large 560 M ✗ ✗ ✗ ✓ ✓ ✓

multilingual-MiniLM-L12-H384 [xlm-roberta-large] 117 M ✗ ✗ ✗ ✓ ✓ ✓

xlm-roberta-base 278 M ✓ ✓ ✓ ✗ ✗ ✗

multilingual-MiniLM-L12-H384 [xlm-roberta-base] 117 M ✓ ✓ ✓ ✗ ✗ ✗

roberta-base 125 M ✓ ✓ ✓ ✓ ✓ ✓

distilroberta 82 M ✓ ✓ ✓ ✓ ✓ ✓

roberta-base-quantized 125 M ✓ ✓ ✓ ✓ ✓ ✓

Table 9: Details about the models and which metrics they were evaluated for in the monolingual fairness
experiments. The parameter counts for the pruned models indicates the total number of non-sparse parameters.

Some of the models could not be evaluated for the intrinsic measures due to their architectural setup.

Model Name Parameter #
bert-base-multilingual-cased 178 M
distilbert-base-multilingual-cased 135 M
bert-base-multilingual-cased-10%-pruned 160 M
bert-base-multilingual-cased-50%-pruned 89 M
bert-base-multilingual-cased-90%-pruned 17 M
bert-base-multilingual-cased-quantized 178 M
xlm-roberta-large 560 M
multilingual-MiniLM-L12-H384 117 M

Table 10: Parameter count for all the models used for the multilingual fairness evaluation experiments. The
parameter counts for the pruned models indicates the total number of non-sparse parameters. These models have

been used uniformly for all the multilingual datasets.

Metric Type of Metric Downstream Task Template-Based Fairness Objective Dimensions

Monolingual

Jigsaw Toxicity
Unintended Bias

Extrinsic
Toxicity
Detection

No
Increased likelihood of being classifying
comment as toxic based on identity group mentions

Multiple [Gender, Religion,
Race/Ethnicity, Sexual Orientation,
Disability, etc]

AAVE-SAE Extrinsic
Sentiment
Classification

No
Increased likelihood of being classifying comment
as negative based on dialect used

Dialect

EEC Extrinsic
Sentiment
Classification

Yes
Difference in emotion categories for emotional
intensity prediction

Emotional Intensity

StereoSet Intrinsic N/A No
Evaluation of model preference for stereotypical
sentences

Gender, Race/Ethnicity, Religion,
Profession

CrowS-Pair Intrinsic N/A No
Evaluation of model preference for stereotypical
sentences

Gender, Race/Ethnicity, Religion

LPBS Intrinsic N/A Yes
Evaluation of model preference for stereotypical
associations

Gender

Multilingual

Hate Speech Extrinsic
Hate Speech
Detection

No
Measuring performance across data based on the
demographic groups they are sourced from

Age, Gender, Country, Race/Ethnicity

Reviews Dataset Extrinsic
Sentiment
Classification

No
Measuring performance across data based on the
demographic groups they are sourced from

Gender

Table 11: List of all the details pertaining to the fairness metrics used.



Model F1-W Avg AUC-W Avg Total ED

bert-base-multilingual-cased 0.872 0.916 0.499
distilbert-base-multilingual-cased 0.868 0.914 0.350 ↑-0.149

bert-base-multilingual-cased-quantized 0.854 0.892 0.317 ↑-0.182

bert-base-multilingual-cased-10%-pruned 0.869 0.921 0.258 ↑-0.241

bert-base-multilingual-cased-50%-pruned 0.865 0.918 0.313 ↑-0.186

bert-base-multilingual-cased-90%-pruned 0.862 0.910 0.442 ↑-0.057

xlm-roberta-large 0.908 0.947 0.290
multilingual-MiniLM-L12-H384-distilled-XLMR-Large 0.839 0.898 0.402 ↓+0.112

xlm-roberta-large-quantized 0.865 0.928 0.474 ↓+0.184

xlm-roberta-base 0.787 0.900 0.349 ↓+0.059

Table 12: We report the performance of multilingual models and the ED (equality differences) fairness estimate
over a set of English reviews sourced from websites such as Amazon, Yelp, etc. The higher the ED, the less fair the

model.

Model Overall ICAT Score
bert-base-multilingual-cased 64.94
distilbert-base-multilingual-cased 67.99 ↑+3.05

bert-base-multilingual-cased-quantized 64.78 ↓-0.16

bert-base-multilingual-cased-10%-pruned 67.82 ↑+2.88

bert-base-multilingual-cased-50%-pruned 66.67 ↑+1.73

bert-base-multilingual-cased-90%-pruned 67.00 ↑+2.06

xlm-roberta-large 71.29
multilingual-MiniLM-L12-H384 52.47 ↓-18.82

xlm-roberta-large-quantized 69.63 ↓-1.66

Table 13: The overall ICAT score for the multilingual models for the StereoSet (English) dataset. The higher the
ICAT score, the less biased the model.

Model Gender Race Religion

bert-base-multilingual-cased 47.71 -2.29 44.66 -5.34 53.33 +3.33
distilbert-base-multilingual-cased 50.38 +0.38 41.94 -8.06 53.33 +3.33
bert-base-multilingual-cased-quantized 52.29 +2.29 42.72 -7.28 52.38 +2.38
bert-base-multilingual-cased-10%-pruned 47.71 -2.29 47.57 -2.43 58.1 +8.1
bert-base-multilingual-cased-50%-pruned 49.24 -0.76 48.54 -1.46 56.19 +6.19
bert-base-multilingual-cased-90%-pruned 50.0 0 57.48 +7.48 53.33 +3.33
xlm-roberta-large 54.41 +4.41 51.65 +1.65 69.52 +19.52
multilingual-MiniLM-L12-H384 39.85 -10.15 60.39 +10.39 47.62 -2.38
xlm-roberta-large-quantized 52.87 2.87 57.28 +7.28 71.43 +21.43

Table 14: The results for the CrowS-Pairs metric for multilingual models have been reported, with values closer to
50 indicating less biased models according to this metric.



Model Joy Sadness Anger Fear

bert-base-uncased 0.600 0.533 0.557 0.552
distilbert-base-uncased 0.623 0.587 0.623 0.565
distilbert-base-uncased-60%-pruned 0.586 0.551 0.585 0.540
miniLM-L12-H384-uncased 0.352 0.195 0.230 0.245
miniLM-L12-H384-uncased-70%-pruned 0.600 0.539 0.573 0.547
bert-base-uncased-85%-pruned 0.550 0.432 0.464 0.478
bert-base-uncased-90%-pruned 0.523 0.418 0.450 0.472
bert-base-uncased-quantized 0.455 0.382 0.383 0.410
bert-base-multilingual-cased 0.506 0.386 0.364 0.408
distilbert-base-multilingual-cased 0.478 0.380 0.328 0.410
xlm-roberta-base 0.491 0.476 0.039 0.354
multilingual-miniLM-L12-H384 0.336 0.012 0.019 0.046
roberta-base 0.495 0.305 0.393 0.450
distilroberta-base 0.540 0.503 0.508 0.557
roberta-base-quantized 0.177 0.230 0.360 0.108
bert-large-uncased 0.545 0.450 0.549 0.503
bert-large-uncased-90%-pruned 0.614 0.476 0.519 0.547
bert-large-uncased-quantized 0.375 0.314 0.356 0.364

Table 15: The results for the emotionality intensity regression task over the EEC corpus. The results represent the
Pearson Correlation Coefficient of the model for each emotion and indicates how the model performs on that

particular category’s template data.

Profession Positive Negative

bert-base-uncased 0.694 0.040 0.111
distilbert-base-uncased 1.113 0.279 0.218
distilbert-base-uncased-60% 0.206 0.422 0.361
bert-base-uncased-85%-pruned 1.393 0.090 0.135
bert-base-uncased-90%-pruned 1.943 0.070 0.048
bert-base-uncased-quantized 1.116 0.102 0.006
bert-base-multilingual-cased 1.326 0.322 0.052
distilbert-base-multilingual-cased 0.660 0.005 0.053
xlm-roberta-large 2.007 0.031 0.073
multilingual-MiniLM-L12-H384 0.667 1.739 0.028
roberta-base 4.704 0.016 0.014
distilroberta 6.218 0.287 0.271
roberta-base-quantized 3.657 0.019 0.014
bert-large-uncased 0.155 0.359 0.343
bert-large-uncased-90%-pruned 0.899 0.293 0.269
bert-large-uncased-quantized 1.861 0.115 0.082

Table 16: The results for the effect size from the LPBS metric. The higher the effect size (calculated using Cohen’s
d), the higher the magnitude of bias in the model.

Dataset Languages

StereoSet en
Crows-Pair en

Reviews Dataset en, fr, de, dk
Hate Speech Detection en, pt, es, it, po

Table 17: List of the multilingual datasets and their corresponding languages.


