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ABSTRACT

Today, ground-truth generation uses data sets annotated by cloud-based annotation
services. These services rely on human annotation, which can be prohibitively
expensive. In this paper, we consider the problem of hybrid human-machine
labeling, which trains a classifier to accurately auto-label part of the data set.
However, training the classifier can be expensive too. We propose an iterative
approach that minimizes total overall cost by, at each step, jointly determining
which samples to label using humans and which to label using the trained classifier.
We validate our approach on well known public data sets such as Fashion-MNIST,
CIFAR-10, CIFAR-100, and ImageNet. In some cases, our approach has 6× lower
overall cost relative to human labeling the entire data set, and is always cheaper
than the cheapest competing strategy.

1 INTRODUCTION

Ground-truth is crucial for training and testing ML models. Generating accurate ground-truth was
cumbersome until the recent emergence of cloud-based human annotation services (SageMaker
(2021); Google (2021); Figure-Eight (2021)). Users of these services submit data sets and receive, in
return, annotations on each data item in the data set. Because these services typically employ humans
to generate ground-truth, annotation costs can be prohibitively high especially for large data sets.

Hybrid Human-machine Annotations. In this paper, we explore using a hybrid human-machine
approach to reduce annotation costs (in $) where humans only annotate a subset of the data items;
a machine learning model trained on this annotated data annotates the rest. The accuracy of a
model trained on a subset of the data set will typically be lower than that of human annotators.
However, a user of an annotation service might choose to avail of this trade-off if (a) targeting a
slightly lower annotation quality can significantly reduce costs, or (b) the cost of training a model to
a higher accuracy is itself prohibitive. Consequently, this paper focuses on the design of a hybrid
human-machine annotation scheme that minimizes the overall cost of annotating the entire data
set (including the cost of training the model) while ensuring that the overall annotation accuracy,
relative to human annotations, is higher than a pre-specified target (e.g., 95%).

Challenges. In this paper, we consider a specific annotation task, multi-class labeling. We assume
that the user of an annotation service provides a set X of data to be labeled and a classifier D to use
for machine labeling. Then, the goal is to find a subset B ⊂ X human-labeled samples to train D,
and use the classifier to label the rest, minimizing total cost while ensuring the target accuracy. A
straw man approach might seek to predict human-labeled subset B in a single shot. This is hard to do
because it depends on several factors: (a) the classifier architecture and how much accuracy it can
achieve, (b) how “hard” the dataset is, (c) the cost of training and labeling, and (d) the target accuracy.
Complex models may provide a high accuracy, their training costs may be too high and potentially
offset the gains obtained through machine-generated annotations. Some data-points in a dataset are
more informative as compared to the rest from a model training perspective. Identifying the “right”
data subset for human- vs. machine-labeling can minimize the total labeling cost.

Approach. In this paper we propose a novel technique, MCAL1 (Minimum Cost Active Labeling),
that addresses these challenges and is able to minimize annotation cost across diverse data sets. At its

1MCAL is available at https://github.com/hangqiu/MCAL
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FIGURE 1: Differences between MCAL and Active Learning. Active learning outputs an ML model using few
samples from the data set. MCAL completely annotates and outputs the dataset. MCAL must also use the ML
model to annotate samples reliably (red arrow).

core, MCAL learns on-the-fly an accuracy model that, given a number of samples to human-label, and
a number to machine label, can predict the overall accuracy of the resultant set of labeled samples.
Intuitively, this model implicitly captures the complexity of the classifier and the data set. It also uses
a cost model for training and labeling.

MCAL proceeds iteratively. At each step, it uses the accuracy model and the cost model to search
for the best combination of the number of samples to human-label and to machine-label that would
minimize total cost. It obtains the human-labels, trains the classifier D with these, dynamically
updates the accuracy model, and machine-labels un-labeled samples if it determines that additional
training cannot further reduce cost.

MCAL resembles active learning in determining which samples in the data set to select for human-
labeling. However, it differs from active learning (Fig. 1) in its goals; active learning seeks to train a
classifier with a given target accuracy, while MCAL attempts to label a complete data set within a
given error bound. In addition, active learning does not consider training costs, as MCAL does.

This paper makes the following contributions:

• It casts the minimum-cost labeling problem in an optimization framework (§2) that minimizes total
cost by jointly selecting which samples to human label and which to machine label. This framing
requires a cost model and an accuracy model, as discussed above (§3). For the former, MCAL assumes
that total training cost at each step is proportional to training set size (and derives the cost model
parameters using profiling on real hardware). For the latter, MCAL leverages the growing body of
literature suggesting that a truncated power-law governs the relationship between model error and
training set size (Cho et al. (2015); Hestness et al. (2017); Sala (2019)).
• The MCAL algorithm (§4) refines the power-law parameters, then does a fast search for the
combination of human- and machine-labeled samples that minimizes the total cost. MCAL uses an
active learning metric to select samples to human-label. But because it includes a machine-labeling
step, not all metrics work well for MCAL. Specifically, core-set based sample selection is not the best
choice for MCAL; the resulting classifier machine-labels fewer samples.
• MCAL extends easily to the case where the user supplies multiple candidate architectures for
the classifier. It trains each classifier up to the point where it is able to confidently predict which
architecture can achieve the lowest overall cost.

Evaluations (§5) on various popular benchmark data sets show that MCAL achieves lower than the
lowest-cost labeling achieved by an oracle active learning strategy. It automatically adapts its strategy
to match the complexity of the data set. For example, it labels most of the Fashion data set using
a trained classifier. At the other end, it chooses to label CIFAR-100 mostly using humans, since it
estimates training costs to be prohibitive. Finally, it labels a little over half of CIFAR-10 using a
classifier. MCAL is up to 6× cheaper compared to human labeling all images. It is able to achieve
these savings, in part, by carefully determining the training size while accounting for training costs;
cost savings due to active learning range from 20-32% for Fashion and CIFAR-10.

2 PROBLEM FORMULATION

In this section, we formalize the intuitions presented in §1. The input to MCAL is an unlabeled data set
X and a target error rate bound ε. Suppose that MCAL trains a classifierD(B) using human generated
labels for some B ⊂ X . Let the error rate of the classifier D(B) over the remaining unlabeled data
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using D(B) be ε(X B). If D(B) machine-generated2 labels for this remaining data, the overall
ground-truth error rate for X would be, ε(X) = (1− |B|/|X|) ε(X B). If ε(X) ≥ ε, then, this
would violate the maximum error rate requirement.

However,D(B) is still able to generate accurate labels for a carefully chosen subset S(D, B) ⊂ X B
(e.g., comprising only those that D(B) is very confident about). After generating labels for S(D, B)
using D(B), labels for the remaining X B \ S(D, B) can be once again generated by humans.
The overall error rate of the generated ground-truth then would be {(|S(D, B)|)/(|X|)}ε(S(D, B)).
ε(S(D, B)) is the error rate of generating labels over S(D, B) using D(B) and is, in general, higher
for larger |S(D, B)|. Let S?(D, B) be the largest possible S(D, B) that ensures that the overall error
rate is less than ε. Then, overall cost of generating labels is:

C = (|X S?(D, B)|) · Ch + Ct(D(B)) (1)
where, Ch is the cost of human labeling for a single data item and Ct(D(B)) is the total cost of
generating D(B) including the cost of optimizing B and training D(B). Given this, MCAL achieves
the minimum cost by jointly selecting S?(D, B) and B subject to the accuracy constraint:

C? = argmin
S?(D,B),B

C, s.t. (|S?(D, B)|)/(|X|)ε(S?(D, B)) < ε (2)

3 COST PREDICTION MODELS

MCAL must determine the optimal value of the training size B and its corresponding maximum
machine-labeled set S?(D, B) that minimizes C. In order to make optimal choices, MCAL must be
able to predict C as a function of the choices. C in turn depends on |S?(D, B)| and the training cost
Ct(D(B)) (Eqn. 1). Thus, MCAL actually constructs two predictors, one each for |S?(D, B)| (§3.1)
and Ct(D(B)) (§3.2). These predictors rely on two sample selection functions (§3.3): from among
the remaining un-labeled samples, M(.) selects, which to human-label for training; L(.) selects those
that the classifier D(B) can machine-label within the error constraint ε.

3.1 ESTIMATING MACHINE-LABELING PERFORMANCE

To maximize total cost reduction without violating the overall accuracy constraint (Eqn. 1), MCAL
must determine a maximal fraction of samples θ? selected by L(.) for machine labeling. To predict
the model error ε(Sθ(D(B))), we leverage recent work (§6) that observes that, for many tasks and
many models, the generalization error vs. training set size is well-modeled by a power-law (Hestness
et al. (2017); Sala (2019)) ( ε(Sθ(D(B))) = αθ |B|−γθ ). However, it is well-known that most
power-laws experience a fall-off (Burroughs (2001)) at high values of the independent variable. To
model this, we use an upper-truncated power-law (Burroughs (2001)):

ε(Sθ(D(B))) = αθ |B|−γθ e
− |B|
kθ (3)

where αθ, γθ, kθ are the power-law parameters.

Eqn. 3 can better predict the generalization error (Fig. 2) based on the training size than a power-law,
especially at larger values of |B|. Fig. 3 shows that more samples help calibrate the truncated power
law to better predict the falloff. Other models and data sets show similar results (see Appendix §F).

ε(Sθ(D(B))) will increase monotonically with θ since increasing θ has the effect of adding data
that D is progressively less confident about (ranked by L(.)). Lacking a parametric model for this
dependence, to find θ?, MCAL generates power-law models ε(Sθ(D(B))) for various discrete θ ∈
(0, 1) (§4). MCAL obtains θ? for a given B by searching across the predicted ε(Sθ(D(B))). While
ε(Sθ(D(B))) also depends on the data acquisition batch size (δ, see §3.2), when the total accumulated
training sample size is large enough, the error rate starts to converge, hence the dependence is
insignificant. Fig. 4 shows this variation is < 1% especially for smaller values of θ.

3.2 ESTIMATING ACTIVE LEARNING TRAINING COSTS

Active learning iteratively obtains human labels for a batch size of δ items ranked using the sample
selection function M(.) and adds them to the training set B to retrain the classifier D. A smaller

2Evaluation of mixed-labels assumes perfect human-labels(B).
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FIGURE 2: Fitting generalization
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FIGURE 3: Error prediction im-
proves with increasing number of
error estimates for CIFAR-10 using
RESNET18.
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δ typically makes the active learning more effective: it allows for achieving a lower error for a
potentially smaller B through more frequent sampling, but also significantly increases the training
cost due to frequent re-training. Choosing an appropriate training sample acquisition batch size δ is
thus an important aspect of minimizing overall cost.

The training cost depends on the training time, which in turn is proportional to the data size (|B|) and
the number of epochs. A common strategy is to use a fixed number of epochs per iteration, so the
training cost in each iteration is proportional to |B|. Assuming δ new data samples added in each
iteration, the total training cost follows

Ct(D(B)) =
1

2
|B| (|B|/δ + 1) (4)

MCAL can accommodate other training cost models3.

3.3 SAMPLE SELECTION

The sample selection functions M(.) and L(.) are qualitatively different. The former selects samples
to obtain an accurate classifier, the latter determines which samples a given classifier is most confident
about (so they can be machine-labeled). For L(.), we simply use the margin metric (Scheffer et al.
(2001)), the score difference between the highest and second highest ranked labels (see Fig. 5).

FIGURE 5: Machine labeling accu-
racy of samples ranked by L(.)

FIGURE 6: Sampling metric
(M(.)) comparison

M(.) is similar to sample
selection for active learning.
Prior work has considered
coreset (Sener & Savarese
(2017)) and uncertainty (Schef-
fer et al. (2001)) based ap-
proaches. The k-center selec-
tion method (Wolf (2011)), an
instance of the former, uses the
feature-space distance between
the last activation layer output
to iteratively select data points
farthest from existing centers.
Uncertainty-based approaches include max-entropy (Dagan & Engelson (1995)), which samples data
with highest entropy in activation output, least-confidence (Culotta & McCallum (2005)), and margin.

We evaluate MCAL using these different choices for M(.), but find that (§5), for a subtle reason,
uncertainty-based approaches perform better. Unlike with active learning, where the goal is to select
samples to match the generalization error of the entire data set, MCAL’s goal is to select samples
to train a classifier that can machine label the largest number of samples possible. When MCAL
uses margin or least confidence for L(.), the samples selected have high accuracy (close to 100%,

3For example, if the number of epochs is proportional to |B| in which case Ct(D(B)) can have a cubic
dependency on |B|
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Fig. 5)4. The samples selected by a core-set based algorithm such as k-centers is poorly correlated
with accuracy (Fig. 5) and margin (Fig. 6).

4 THE MCAL ALGORITHM

The MCAL algorithm (Alg. 1, see appendix §A) takes as input an active learning metric M(.), the data
set X, the classifier D (e.g., RESNET18) and parametric models for training cost (e.g., Eqn. 4), and
for error rate as a function of training size (e.g., the truncated power law in Eqn. 3). The algorithm
operates in two phases. In the first phase, it uses estimates obtained during active learning to learn
the parameters of one truncated power-law model for each discrete machine-label fraction θ, and
uses the cost measurements to learn the parameters for the training-cost model. In the second phase,
having the models, it can estimate and refine the optimal machine-labeling subset S?(D, B) and the
corresponding training set B that produce the optimal cost C?. It can also estimate the optimal batch
size δopt for this cost. It terminates when adding more samples to B is counter productive. It trains a
classifier to label S?(D, B) and use human labels for the remaining unlabeled samples.

To start with, MCAL randomly selects a test set T (e.g., |T | = 5% of |X|) and obtains human labels
to test and measure the performance of D. Next, MCAL initializes B = B0 by randomly selecting
δ0 samples from X (e.g., 1% of X in our implementation) and obtaining human labels for these.
Then, MCAL trains D using B0 and uses T to estimate the generalization errors εT

(
Sθ(D(B0))

)
for

various values of θ ∈ (0, 1) (we chose in increments of 0.05 {0.05, 0.1, · · · , 1}), using T and M(.).

Next, the main loop of MCAL begins. Similar with active learning, MCAL selects, in each step, δ
samples, ranked byM(.), obtains their labels and adds them toB, then trainsD on them. The primary
difference with active learning is that MCAL, in every iteration, estimates the model parameters for
machine-labeling error ε(Sθ(D(B))) for each θ with various training size B, then uses these to
estimate the best combination of B and θ that will achieve the lowest corresponding overall cost C?.
At the end of this iteration, MCAL can answer the question: “How many human generated labels must
be obtained into B to train D, in order to minimize C?” (§3).

The estimated model parameters for the training cost Ct(D(B)) and the machine-label error
ε(Sθ(D(B))) may not be stable in the first few iterations given limited data for the fit. To de-
termine if the model parameters are stable, MCAL compares the estimated C? obtained from the
previous iteration to the current. If the difference is small (≤ 5%, in our implementation), the model
is considered to be stable for use.

After the predictive models have stabilized, we can rely on the estimates of the optimal training size
Bopt, to calculate the final number of labels to be obtained into B. At this point MCAL adjusts δ to
reduce the training cost when it is possible to do so. MCAL can do this because it targets relatively high
accuracy for D(B). For these high targets, it is important to continue to improve model parameter
estimates (e.g., the parameters for the truncated power law), and active learning can help achieve
this. Fig. 3 shows how the fit to the truncated power law improves as more points are added. Finally,
unlike active learning, MCAL adapts δ, proceeding faster to Bopt to reduce training cost. Fig. 4 shows
that, for most values of θ, the choice of δ does not affect the final classifier accuracy much. However,
it can significantly impact training cost (§3).

This loop terminates when total cost obtained in a step is higher than that obtained in the previous
step. At this point, MCAL simply trains the classifier using the last predicted optimal training size
Bopt, then human labels any remaining unlabeled samples.

Extending MCAL to selecting the cheapest DNN architecture. In what we have described so far,
we have assumed that MCAL is given a candidate classifier D. However, it is trivial to extend MCAL
to the case when the data set curator supplies a small number (typically 2-4) of candidate classifiers
{D1,D2, · · · }. In this case, MCAL can generate separate prediction models for each of the classifiers
and pick the one that minimizes C once the model parameters have stabilized. This does not inflate
the cost significantly since the training costs until this time are over small sizes of B.

Accommodating a budget constraint. Instead of a constraint of labeling error, MCAL can be
modified to accommodate other constraints, such as a limited total budget. Its algorithm can search

4The results are from Res18 trained over 8K samples (CIFAR10); actual numbers will vary by dataset,
training size, and model used.
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for the lowest error satisfying a given budget constraint. Specifically, with the same model for
estimation of network error and total cost (§3), instead of searching the S?(D, B) for minimum total
cost while error constraint is satisfied (line 18 of Alg. 1, Appendix §A), we can search for minimum
estimated error while the total cost is within budget. The difference is: in the former case, we can
always resort to human labeling when error constraint cannot be satisfied; in the latter case, we can
only sacrifice the total accuracy by stopping the training process and taking the model’s output when
the money budget is too low.

5 EVALUATION

In this section, we evaluate the performance of MCAL over popular classification data sets: Fashion-
MNIST, CIFAR-10, CIFAR-100, and ImageNet. We chose these data sets to demonstrate that MCAL
can work effectively across different difficulty levels, We use three popular DNN architectures
RESNET50, RESNET18 (He et al. (2016)), and CNN18 (RESNET18 without the skip connections).
These architectures span the range of architectural complexity with differing training costs and
achievable accuracy. This allows us to demonstrate how MCAL can effectively select the most
cost efficient architecture among available choices. We also use two different labeling services:
Amazon SageMaker (2021) at $0.04/image and Satyam (Qiu et al. (2018)) at $0.003/image. This
allows us to demonstrate how MCAL adapts to changing human labeling costs. Finally, parametric
model fitting costs are negligible compared to training, metric profiling, and human labeling costs.

MCAL evaluates different sampling methods discussed (Fig. 6) and uses margin to rank and select
samples. At each active learning iteration, it trains the model over 200 epochs with a 10× learning
rate reduction at 80, 120, 160, 180 epochs, and a mini-batch-size of 256 samples (Keras (2021)).
Training is performed on virtual machines with 4 NVIDIA K80 GPUs at a cost of 3.6 USD/hr. In all
experiments, unless otherwise specified, the labeling accuracy requirement ε was set at 5%.

5.1 REDUCTION IN LABELING COSTS USING MCAL

Fashion CIFAR-10CIFAR-100

C
o

s
t 
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]
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Human Labeling

MCAL

Oracle AL CNN18

Oracle AL RESNET18

Oracle AL RESNET50

FIGURE 7: Total cost of labeling for various
data sets, for i) Human labeling, ii) MCAL,
and iii) Oracle assisted AL with various DNN
architectures.

MCAL automatically makes three key decisions to mini-
mize overall labeling cost. It a) selects the subset of images
that the classifier should be trained on (|B|opt), b) adapts
δ across active learning iterations to keep training costs
in check, and c) selects the best DNN architecture from
among a set of candidates. In this section, we demonstrate
that MCAL provides significant overall cost benefits at the
expense of ε (5%) degradation in label quality. Further,
it even outperforms active learning assisted by an oracle
with optimal δ value.

Fig. 7 depicts the total labeling costs incurred when using
Amazon labeling services for three different schemes: i)
when the entire data set is labeled by Amazon labeling
services, ii) MCAL for ε = 5%, and iii) active learning
with an oracle to choose δ for each DNN model.

Tbl. 1 lists the numerical values of the costs (in $) for human labeling and MCAL. To calculate the
total labeling error, we compare the machine labeling results on S?(D, Bopt) and human labeling
results on X \ S?(D, Bopt) against the ground-truth. The human labeling costs are calculated based
on the prices of Amazon labeling services SageMaker (2021) and Satyam (Qiu et al. (2018)).

Cost Saving Compared to Human Labeling. From Fig. 7 and Tbl. 1, MCAL provides an overall
cost saving of 86%, 67% and 30% for Fashion, CIFAR-10 and CIFAR-100 respectively. As expected,
the savings depend on the difficulty of the classification task. The “harder” the dataset the higher
the savings. Tbl. 1 also shows the number of samples in B used to train D, as well as the number of
samples |S| labeled using D. For Fashion, MCAL labels only 6.1% of the data to train the classifier
and uses it to label 85% of the data set. For CIFAR-10, it trains using 22% of the data set and labels
about 65% of the data using the classifier. CIFAR-100 requires more data to train the classifier to a
high accuracy so is able to label only 10% of the data using the classifier.
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Data Set Labeling |B|
|X|

|S|
|X| DNN Error Human MCAL MCAL

Service Selected Cost ($) Cost ($) Savings
Fashion Amazon 6.1% 85.0% Res18 4.0% 2800 400 86%

Satyam 8.4% 85.0% Res18 4.0% 210 29 86%
CIFAR Amazon 22.2% 65.0% Res18 2.4% 2400 792 67%

10 Satyam 27.0% 65.0% Res18 2.4% 180 63 65%
CIFAR Amazon 32.0% 10.0% Res18 0.4% 2400 1698 29%

100 Satyam 57.6% 20.0% Res18 1% 180 139 23%
TABLE 1: Summary of Results
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Cost Savings from Active Learning. In the absence of MCAL, how much cost savings would one
obtain using naive Active Learning? As described in §3, the overall cost of AL depends on the batch
size δ, the DNN architecture used for classification, as well as how “hard” it is to classify the data
set. In order to examine these dependencies, we performed active learning using values of δ between
1% to 20% of |X|, to label each data set using the different DNN architectures until the desired
overall labeling error constraint was met. The contribution to overall labeling error is zero for human
annotated images and dictated by the classifier performance for machine labeled images.

MCAL v.s. AL. Figures 8, 9 and 10 show the overall cost for each of the three data sets using different
DNN architectures. The optimal value of δ is indicated by a circle in each of the figures. Further, the
cost of labeling using humans only as well as MCAL cost is indicated using dashed lines for reference.
As shown in the figure, MCAL outperforms AL even with optimal choice of δ. The choice of δ can
significantly affect the overall cost, by up to 4-5× for hard data sets.

Training cost. Figures 19, 20, and 21 (see appendix §E) depict the AL training costs for each of
the data sets using three different DNNs. The training cost can vary significantly with δ. While for
Fashion, there is a 2× reduction in training costs, it is about 5× for CIFAR-10 and CIFAR-100.

Dependence on sample selection method M(.). Fig. 11 shows the total cost of MCAL using dif-
ferent sample selection functions M(.). As §3.3 describes, k-center is qualitatively different from
uncertainty-based methods in the way it selects samples. In Fig. 11, for CIFAR10 on RESNET18
(other results are similar, omitted for brevity), while all metrics reduce cost relative to human-labeling
the entire data set, uncertainty-based metrics have 25% lower cost compared to k-center because the
latter machine-labels fewer samples. Thus, for active labeling, an uncertainty-based metric is better
for selecting samples for classifier training.

Dependence on batch size δ. Fig. 12 depicts the fraction of images that were machine labeled for the
different data sets and DNN architectures trained with different batch sizes. As seen in Fig. 12, lower
δ values allow AL to adapt at a finer granularity, resulting in a higher number of machine labeled
images. Increasing δ from 1% to 15% results in a 10-15% fewer images being machine labeled.

Dependence on data set complexity. As seen from Figures 8-10, and 12, the training costs as well as
potential gains from machine labeling depend on the complexity of the data set. While, using a small
δ (2%) is beneficial for Fashion, the number is larger for CIFAR-10. For CIFAR-100, using active
learning does not help at all as the high training costs overwhelm benefits from machine labeling.

A second dimension of complexity is the number of samples per class. CIFAR-100 has 600 per class,
CIFAR-10 has 6000. To demonstrate that MCAL adapts to varying numbers of samples per class,
Fig. 13 shows an experiment in which we ran MCAL on subsets of CIFAR-10, with 1000−5000
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DNN Architecture
Data Set Labeling CNN-18 RESNET18 RESNET50

Service δopt Cost ($) Savings δopt Cost ($) Savings δopt Cost ($) Savings
Fashion Amazon 1.7% 438.37 84.3% 6.7% 429.27 84.6% 3.3% 452.36 83.8%

Satyam 1.7% 49.87 76.3% 6.7% 40.77 75.3% 3.3% 63.86 69.6%
CIFAR Amazon 10% 1577.24 34.3% 6.7% 891.06 62.9% 10% 1128.65 53.0%

10 Satyam 16.7% 235.81 -31.0% 6.7% 129.60 28.0% 10% 149.63 16.9%
CIFAR Amazon 13.3% 2520.79 -5% 16.7% 2184.60 9.0% 13.3% 2915.80 -21.5%

100 Satyam 16.7% 407.04 -126.1% 16.7% 297.60 -65.3% 16.7% 805.76 -347.6%

TABLE 2: Oracle Assisted Active Learning

randomly selected samples per class. With 1000 samples per class, the majority of samples were used
for training so MCAL can machine-label only 30%. With 5000 samples per class, this fraction goes
up to 65%, resulting in increased cost savings relative to human-labeling the entire data set.

Dependence on DNN architecture. While a larger DNN has the potential for higher accuracy, its
training costs may be significantly higher and may potentially offset savings due to machine labeling.
As seen from Figures 8–10, and 12, even though RESNET50 is able to achieve a higher prediction
quality and machine-labels more images, its high training cost offsets these gains. CNN18 on the
other hand incurs much lower training costs, however, its poor performance leads to few images
being machine-labeled. RESNET18 provides for a better compromise resulting in overall lower cost.

MCAL on Imagenet. We have explored applying MCAL on Imagenet using an EfficientNetB0 (Tan
& Le (2019)). Relative to CIFAR-10 data set, Imagenet (with over 1.2 M images) is challenging for
MCAL because: it has more classes (1000), fewer samples per class (avg. 1200), and the training cost
is 60-200× higher than that for RESNET-18. For these reasons, MCAL trains the network to over
80% accuracy up to 454K images, and decides, because it cannot machine label any, to human-label
the entire data set. As with CIFAR-100, for complicated data sets, MCAL still makes the correct
decision.5

Summary. Tbl. 2 provides the optimal choices for δ and the optimal cost savings obtained for various
DNNs. Comparing these values with Tbl. 1, we conclude that: MCAL outperforms Naive AL across
various choices of DNN architectures and δ by automatically picking the right architecture, adapting
δ suitably, and selecting the right subset of images to be human labeled.

5.2 GAINS FROM ACTIVE LEARNING

Figures 14 and 15 ( see appendix §B) show the overall labeling cost with and without AL for the
three data sets using Amazon and Satyam labeling services. The percentage cost gains are in brackets.
While Fashion and CIFAR-10 show a gain of about 20% for both data sets, the gains are low in
the case of CIFAR-100 because most of the images in that data set were labeled by humans and
active learning did not have an opportunity to improve significantly. The gains are higher for Satyam,
since training costs are relatively higher in that cost model: active learning accounted for 25-31% for
Fashion and CIFAR-10’s costs, and even CIFAR-100 benefited from this.

5To make this decision, MCAL terminates when it has spent more than x% (x =10 in our evaluations) of the
human labeling cost to train the classifier before reaching the desired accuracy. So, for any highly complex data
set for which it decides to human-label all samples, MCAL pays a small ”exploration tax” before termination.
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5.3 EFFECT OF RELAXING OTHER ASSUMPTIONS

Cheaper Labeling Cost. Intuitively, with cheaper labeling costs MCAL should use more human
labeling to train the classifier. This in turn should enable a larger fraction of data to be labeled by the
classifier. To validate this, we used the Satyam (Qiu et al. (2018)) labeling service (with 10× lower
labeling cost). The effect of this reduction is most evident for CIFAR-100 in Tbl. 1 as MCAL chooses
to train the classifier using 57.6% of the data (instead of 32% using Amazon labeling service). This
increases the classifier’s accuracy allowing it to machine-label 10% more of the data set. For other
data sets, the differences are less dramatic (they use 2.5-5% more data to train the classifier, more
details in appendix §C, Figures 16, 17, and 18). The numerical values of the optimal δ as well as the
corresponding cost savings are provided in Table 2: MCAL achieves a lower overall cost compared to
all these possible choices in this case as well.

Relaxing Accuracy Requirement. In appendix §D, we examine the quality-cost trade-off by relax-
ing the accuracy target from 95% to 90% to quantify its impact on additional cost savings. Fashion
achieves 30% cost reductions; many more images are labeled by the classifier. CIFAR-10 and
CIFAR-100 also show 10-15% gains.

6 RELATED WORK

Active learning (Settles (2010)) aims to reduce labeling cost in training a model, by iteratively
selecting the most informative or representative samples for labeling. Early work focused on
designing metrics for sample selection based on coreset selection (Sener & Savarese (2017)), margin
sampling (Scheffer et al. (2001); Jiang & Gupta (2019)), region-based sampling (Cortes et al. (2020)),
max entropy (Dagan & Engelson (1995)) and least confidence (Culotta & McCallum (2005)). Recent
work has focused on developing metrics tailored to specific tasks, such as classification (Coleman
et al. (2020)), detection (Brust et al. (2019)), and segmentation (Yang et al. (2017)), or for specialized
settings such as when costs depend upon the label (Krishnamurthy et al. (2017)), or for a hierarchy
of labels (Hu et al. (2019)). Other work in this area has explored variants of the problem of sample
selection: leveraging selection-via-proxy models (Coleman et al. (2020)), model assertions (Kang
et al. (2020)), model structure (Wang et al. (2017)), using model ensembles to improve sampling
efficacy (Beluch et al. (2018)), incorporating both uncertainty and diversity (Ash et al. (2020)), or
using self-supervised mining of samples for active learning to avoid data set skew (Wang et al. (2018)).
MCAL uses active learning and can accommodate multiple sample selection metrics.

Training cost figures prominently in the literature on hyper-parameter tuning, especially for ar-
chitecture search. Prior work has attempted to predict learning curves to prune hyper-parameter
search (Klein et al. (2017)), develop effective search strategy within a given budget (Lu et al. (2019)),
or build a model to characterize maximum achievable accuracy to enable fast triage during architec-
ture search (Istrate et al. (2019)), all with the goal of reducing training cost. The literature on active
learning has recognized the high cost of training for large datasets and has explored using cheaper
models (Coleman et al. (2020)) to select samples. MCAL solves a different problem (dataset labeling)
and explicitly incorporates training cost in reasoning about which samples to select.

Also relevant is the empirical work that has observed a power-law relationship between generalization
error and training set size (Beery et al. (2018); Johnson et al. (2018); Figueroa et al. (2012)) across a
wide variety of tasks and models. MCAL builds upon this observation, and learns the parameters of a
truncated power-law model with as few samples as possible.

7 CONCLUSIONS

Motivated by the need of data engineering for increasingly advanced ML applications as well as the
the prohibitive human labeling cost, this paper asks: “How to label a data set at minimum cost”? To
do this, it trains a classifier using a set B from the data set to label S samples, and uses humans to
label the rest. The key challenge is to balance human- (B) vs. machine-labels (S) that minimizes total
cost. MCAL jointly optimizes the selection by modeling the active learning accuracy vs. training size
as a truncated power-law, and search for minimum cost strategy while respecting error constraints.
The evaluation shows that it can achieve up to 6× lower cost than using humans, and is always
cheaper than active learning with the lowest-cost batch size.
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A MCAL ALGORITHM

Algorithm 1 MCAL
Inputs: An active learning metric M(.), a classifier D, set of unlabeled images (X), a parametric model to predict Ct(D(B)) and a

parametric model to predict ε(Sθ(D(B)))

1: Obtain human generated labels for a randomly sampled test set T ⊂ X , and letX = X T .
2: Obtain human generated labels for a randomly sampled data itemsB0 ⊂ X , |B0| = δ0.
3: TrainD(B0) and test the classifier over T
4: Record training cost Ct(D(B0))
5: for θ ∈ {θmin, . . . , θmax} do
6: Estimate εT

(
Sθ(D(B0))

)
using T andM(.)

7: end for
8: Initialization: C?new = 0,C?old = 0, δ = δ0, i = 1, Bopt = B0

9: while C? < C(Bopt + δ) do
10: Obtain human generated labels for bi ⊂ X Bi−1 comprising |bi| = δ samples ranked usingM(.)
11: Bi = Bi−1 ∪ bi
12: TrainD(Bi) and test the classifier over T
13: Record Ct(D(Bi)) and estimate Ct(D(B)) using 〈|Bk| , Ct(D(Bk))〉, ∀k
14: for θ ∈ [θmin, · · · , θmax] do
15: Estimate εT

(
Sθ(D(Bi))

)
using T andM(.)

16: Estimate and update the error model parameters (αθ, γθ, kθ from Eqn. 3) for ε(Sθ(D(B))) using

〈|Bk| , εT
(
Sθ(D(Bk))

)
〉, ∀k

17: end for
18: Find C?new = C?,Bopt as described in Section 3
19: if (|C?new −C?old|)/|C

?
new| < ∆ then

20: argminN δopt = (|Bopt| − |Bi|)/N, s.t.C < C?(1 + β)

21: δ = δopt
22: end if
23: C?old = C?new
24: i = i+ 1
25: end while
26: UseD(Bopt) and L(.) to find S?(D, Bopt)
27: Annotate the residualX \ B \ S?(D, Bopt)

B COST SAVINGS ON ACTIVE LEARNING

Figures 14 and 15 show the overall labeling cost with and without AL for the three data sets using
Amazon and Satyam respectively The percentage cost gains are in brackets. While Fashion and
CIFAR-10 show a gain of about 20% for both data sets, the gains are low in the case of CIFAR-100
because most of the images in that data set were labeled by humans and active learning did not
have an opportunity to improve significantly. The gains are higher for Satyam, since training costs
are relatively higher in that cost model: active learning accounted for 25-31% for Fashion and
CIFAR-10’s costs, and even CIFAR-100 benefited from this.
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C RESULTS ON CHEAPER LABELING SERVICE

Figures 16, 17, and 18 depict the effect of using Satyam as the labeling service. As seen in these
figures, the lower labeling cost alters the tradeoff curves. The figures also depict the corresponding
MCAL cost as well as the human labeling cost for reference. MCAL achieves a lower overall cost
compared to all these possible choices in this case as well.

D EFFECT OF RELAXING ACCURACY REQUIREMENT

Tbl. 3 depicts the fraction of images that were machine-labeled by the classifier (|S|/|X|) and the
number of samples used to train it (|B|/|X|) for each of the data sets. Comparing with Tbl. 1, for
Fashion MCAL predicts more images by using a smaller number of training images. For CIFAR-10
and CIFAR-100, it makes a different decision and uses more training images to increase the classifier
accuracy to enable more images to be machine-labeled. Further, RESNET18 continues to be the
optimal architecture for all three data sets. As seen from Tbl. 3, MCAL ensures the accuracy target of
90% for all the data sets. Tbl. 3 also captures savings with respect to human labeling while using an
accuracy guarantee of 90%. However, the savings do not dramatically increase indicating that most
of the cost gain comes in reducing the accuracy requirement to 95% from 100%.

Data Set |B|
|X|

|S|
|X| DNN Labeling Cost

Selected Accuracy Savings
Fashion 4.4% 90.0% RES18 91.9% 88.9%

CIFAR-10 25.9% 75.0% RES18 94.7% 70.5%
CIFAR-100 64.0% 25.0% RES18 98.4% 39.1%

TABLE 3: Relaxing Error Constraints to ε = 10%

E TRAINING COST

Fig. 19, Fig. 20, Fig. 21 shows the training cost portion from the total cost (Fig. 8,Fig. 9, Fig. 10).
The training cost can vary significantly with δ. While for Fashion, there is a 2× reduction in training
costs, it is about 5× for CIFAR-10 and CIFAR-100 data sets.

F POWER-LAW AND TRUNCATED POWER-LAW FIT

In this section, we show power law and truncated power law fitting results on all combinations of
datasets and models. Fig. 22, Fig. 23, Fig. 24 show fitting results on CIFAR-10, Fig. 25, Fig. 26,
Fig. 27 on CIFAR-100. As an example, we show the fitting results on the error profile of θ = 50% in
all figures in this section. In all combinations of datasets and models, while using more points gives
higher accuracy and better prediction, both power-law and truncated power-law can get stable and
precise prediction using a very limited number of small sample points.
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FIGURE 22: Power-law and Trun-
cated Power-law fits on CIFAR-10
using CNN18

FIGURE 23: Power-law and Trun-
cated Power-law fits on CIFAR-10
using RESNET18

FIGURE 24: Power-law and Trun-
cated Power-law fits on CIFAR-10
using RESNET50

FIGURE 25: Power-law and Trun-
cated Power-law fits on CIFAR-100
using CNN18

FIGURE 26: Power-law and Trun-
cated Power-law fits on CIFAR-100
using RESNET18

FIGURE 27: Power-law and Trun-
cated Power-law fits on CIFAR-100
using RESNET50
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