
Ekho: Synchronizing Cloud Gaming Media Across
Multiple Endpoints

Pouya Hamadanian
MIT CSAIL

Doug Gallatin
Microsoft

Mohammad Alizadeh
MIT CSAIL

Krishna Chintalapudi
Microsoft Research

ABSTRACT
Online cloud gaming platforms stream game media to multiple end-
points (e.g., a television display and a controller-connected headset)
via possibly different networks with considerably different latencies.
This leads to the media being played out of sync with one another,
and severely degrades user experience. Typical approaches that
rely on network and software timing measurements fail to reach
synchronization goals. In this work, we propose Ekho, a robust and
efficient end-to-end approach for synchronizing streams transmit-
ted to two devices. Ekho adds faint, human-inaudible pseudo-noise
(PN) markers to the game audio, and listens for these markers in
the chat audio captured by the player’s microphone to measure
inter-stream delay (ISD). The game server then compensates for
the ISD to synchronize the streams. We evaluate Ekho in depth,
with a corpus of audio samples from popular online games, and
demonstrate that it calculates ISD with sub-millisecond accuracy,
has low computational overhead, and is resilient to background
chatter, compression and microphone quality. In end-to-end tests
over WiFi and cellular links with frequent packet loss and playback
disruption, Ekho maintains human-imperceptible ISD (< 10 ms)
86.8% of the time. Without Ekho, the ISD exceeds 50 ms at all times.

CCS CONCEPTS
• Networks → Application layer protocols; Control path algo-
rithms;

KEYWORDS
Media Synchronization, Cloud Gaming, Inter-device Synchroniza-
tion, ITU-T P.808
ACM Reference Format:
Pouya Hamadanian, Doug Gallatin, Mohammad Alizadeh, and Krishna Chin-
talapudi. 2023. Ekho: Synchronizing Cloud Gaming Media Across Multiple
Endpoints. In ACM SIGCOMM 2023 Conference (ACM SIGCOMM ’23), Sep-
tember 10–14, 2023, New York, NY, USA. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3603269.3604826

1 INTRODUCTION
— Soon Echo was no longer found, Except a faint repeating sound.
(Ima Ryma, 2022)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0236-5/23/09.
https://doi.org/10.1145/3603269.3604826

Cloud Gaming Server

Screens

TV PC Tablet

Controller

Chat audio from other players

Accessory Stream Screen Stream

Accessory Audio +

Haptic Feedback

Game Inputs +
Chat Audio

Screen audio

Screen Audio + Video

Figure 1: A typical cloud gaming setup

Online cloud game streaming comprises an important class of
applications with a $6B market and continues to see an unprece-
dented growth [13]. In online game streaming players connect to
remote gaming servers in the cloud through WiFi/cellular/wired
connections, instead of consoles in their home. Gaming servers
process gaming inputs (e.g., joystick movements, button presses,
etc.) generated by the player and respond by rendering game au-
dio, video and, haptic feedback. They also facilitate multi-player
coordination through audio chat.

A typical online game streaming system (e.g., XCloud, the cloud
streaming service by Xbox) is depicted in Figure 1. The gaming
server receives gaming inputs and audio chat streams from gaming
accessories such as controllers and headsets. In response it gener-
ates two separate media streams simultaneously for the player. First,
a game-screen stream comprising game audio-video intended for a
screen device such as a television, LCD display or tablet. Second,
a game-accessory stream intended for gaming accessories such as
gaming controllers and gaming audio headsets comprising of (1) the
game audio sounds mixed with chat from fellow players, intended
for players’ ears only and played through a headset connected to
the controller via an audio jack or a wireless headset; (2) haptic
feedback, such as controller vibrations.1 Given different end points
on different devices, these two streams are conveyed over separate
network network connections.

In the typical scenario, a gamer listens to the accessory audio
stream including game audio and chat from fellow players over
headphones while watching the screen video stream on the screen.
In addition, a common practice in gaming is for the gamers to have
audience while they play. In this case, the screen will also play a

1Past approaches used the screen as a proxy to connect the gaming accessories, e.g.,
controllers to the screen via Bluetooth. However, modern providers prefer a separate
direct connection between the server and the accessories to avoid the extra Bluetooth
hop that causes 17 to 30 ms of latency [20].

https://doi.org/10.1145/3603269.3604826
https://doi.org/10.1145/3603269.3604826

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA P. Hamadanian et al.

screen audio stream for the benefit of the onlookers. Thus, during
game play, a player hears two audio streams simultaneously – the
game-screen audio stream playing on the headphones, and the
game-accessory audio stream playing on the speakers of the screen
device and captured by the player’s microphone.

While the screen audio and video playback are synchronized at
the screen device, they are not synchronized to the accessory audio
stream and haptic feedback which are conveyed over a separate
network connection to different gaming accessory devices. This
lack of synchronization between the screen and accessory streams
can lead to the perception of an echo, a video lag and a sluggish
haptic response leading to distraction and a poor gaming experience,
especially for professional players and in games that are sensitive
to the players’ reaction time such as driving and fighting games. As
we demonstrate in §3 through our user studies, players can perceive
an echo by audio synchronization errors above 10 ms and video
synchronization errors over 15-45 ms.

In general these two streams will incur an Inter-Stream Delay
(ISD) ranging from few tens to over 100 ms depending on how
players choose to connect their screen devices and gaming acces-
sories to the cloud server over the internet, the type of end devices,
and even the distance of the player from the screen device as we
describe in detail in §3.
Network Delay Differences. The common scenario is when the screen
is connected via Ethernet to the home router,2 while the controller
is connected to a WiFi access point (AP). Sometimes, the screen
and the controller/headset may be connected to different WiFi APs.
In another common scenario, in a hotel room, a user might connect
their tablet (screen) over a cellular network with latency well over
100 ms, while the WiFi based controller incurs only few tens of ms.
Further, the streaming protocol used for these two streams might be
different depending on the OS, front-end, and compute constraints
of the screen and controller — WebRTC for the screen [14] and
URCP [37] for the controller. This will in general lead to different
network delays to the WiFi AP. ISPs may prioritize traffic to certain
ports over others or even tunnel the streams differently based on
their type of IP addresses (IPV4/IPV6).
Device Playback Differences. Besides network delay differences, the
devices themselves add variable delays to the streams. The end
devices consuming these two streams may have different hardware
(GPU/CPU, etc.), operating systems, scheduling and buffer man-
agement strategies in their applications leading to differences of
up to few tens of ms. Playback devices such as TVs add 10-60 ms
additional latency before playback due to buffering and hardware
post processing.
Sound Propagation Delay. Finally, sound propagation from the screen
to the player’s ear itself adds a delay of several ms depending on
the player’s distance from the screen, e.g., 6 ms for a TV screen 6
feet away (1 ms/feet).

In this paper we consider the problem of synchronizing the screen
and accessory streams to limit ISD < 10 ms with the goal of elimi-
nating the perception of echo and audio-video lag for the player. ISD
is dynamic due to changes in network latencies as well as buffer-
ing delays at end devices. Thus, any synchronization scheme must

2Ethernet provides a more stable connection for cloud gaming compared to wireless
connections [27], and is generally preferred.

continuously measure and track the ISD in order to compensate
for it. As discussed in detail in §3, measuring ISD to an accuracy
well below 10 ms can be extremely challenging due to two key
sources of error. First, network based measurements, e.g., those that
rely on Round Trip Time (RTT) measurements may incur errors of
several tens of ms due to asymmetry in the forward and backward
network paths. Second, many other contributors to latency such as
delays from decoding, playback and sound propagation are imprac-
tical/impossible to measure either due to the lack of access to APIs
and are difficult to profile given the variety of devices.

Prior work on Inter-Device Synchronization (IDES) [12, 23]
mainly approach this problem in three ways. (a) By using Precision
Time Protocol (PTP), i.e., dedicated connections through a shared
network component, e.g., a WiFi router, to synchronize clocks [4].
An example of this is WiFi Certified TimeSync [2]. Typical cloud
gaming scenarios, however, do not observe (or force) a shared router.
(b) Using the Network Time Protocol (NTP) to synchronize clocks
across devices [21]. However, NTP is known to be as inaccurate as
100 ms [22], particularly in cases with asymmetric network delay.
(c) Using a recording with all device playbacks, one can measure
ISD [8]. However these approaches consider controlled environ-
ments with high quality microphones, no background chatter and
lossless recordings without compression, which as we shall observe
in §6.4, lead to poor synchronization in more than 75% of sample
stimuli. Last, such approaches fail in scenarios where the screen
audio stream is muted (e.g., to prevent disturbing others).

In this paper we present Ekho, a robust end-to-end system that can
measure ISD to sub-millisecond accuracy and use it to synchronize the
screen and accessory streams accurately to eliminate echo, video and
haptic lag. Ekho comprises of two key components. First, a novel
ISD measurement mechanism, Ekho-Estimator, that can estimate
the latency difference between the streams to sub-millisecond ac-
curacy by embedding pseudo-noise acoustic sequences within the
streams. Second, a mechanism Ekho-Compensator, that uses this
measurement as a feedback to synchronize the streams.

In Ekho-Estimator, the game server adds a Pseudo-Noise (PN)
sequence to the rendered screen audio stream that is imperceptible
to human ears. As the speakers on the screen play the game audio,
it is overheard and captured by the chat microphone in the player’s
headset possibly mixed with the player’s chat as they speak into
the microphone. The captured screen audio as well as the acces-
sory stream from the server are time stamped using the local clock
of the headset/controller. By correlating the two streams against
the PN-sequence and comparing the time-stamps, Ekho is able to
estimate the ISD to a sub-millisecond accuracy. The added pseudo-
noise sequence allows Ekho to perform accurately despite being
mixed with human chat, lossy audio compression encoding that
deteriorates recording quality, ambient noise in the game environ-
ment, and even on poor quality speakers and microphones on the
end devices. The estimated ISD can be negative or positive. The
Ekho-Compensator at the cloud game server then either adds extra
samples (by adding zeros or audio loss concealment mechanisms)
or skips samples depending on positive or negative estimates.

We have evaluated Ekho by implementing and testing it across
a large range of headsets varying in quality as well as ambient and
human chat noises. To ascertain that the added PN-sequence is
imperceptible to humans, we have conducted Degradation MOS

Ekho: Synchronizing Cloud Gaming Media Across Multiple Endpoints ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

0 10 20 40 60 80 160 300
Very Distracting

Distracting

Slightly Distracting

Audible

Inaudible
Speech

0 10 20 40 60 80 160 300

Music

0 10 20 40 60 80 160 300

Game SFX

Delay (ms)

Figure 2: Crowdsourced opinion scores for how echoes affect user experience. Higher delays in the echo visibly affect the
speech category, while the effect plateaus for music and game sound effects.

tests, following the ITU-T P.808 standard [24]. In summary, our
contributions in this paper are as follows,

• We propose Ekho, a novel system to synchronize gaming
streams across multiple endpoints to sub-millisecond accu-
racy over the public internet and improve user experience
in online gaming (§4 and §5).

• In an end-to-end test with WebRTC streams going over WiFi
and cellular links, Ekho maintains synchronization below
human-perceptible levels (< 10 ms) for 86.6% of the time,
whilst without Ekho streams never reach synchronization
below 50 ms.

• Through crowd-sourced user tests we demonstrate that our
PN-sequence addition technique in Ekho is imperceptible to
players (§6).

• We evaluate Ekho extensively across different headsets as
well as ambient conditions to evaluate its efficacy (§6).

2 RELATEDWORK
Delay Perception. A rich body of work has investigated how
playing multiple unsynchronized media affect user perception. The
effect varies based on the relationship among these media and their
content.

Humans are most sensitive to two similar audio streams playing
with at a delay with respect to each other. Prior work defines the
echo threshold as the maximum delay that two identical sounds can
be heard by a human without an echo being perceived [11]. The
echo threshold is highly affected by the type of audio, equipment
and subjects, ranging anywhere from 2 to 50 ms; sudden sharp
sounds are discernible with more than 5 ms of delay [18, 30], and
complex signals such as speech may be less discernible until 16–22
ms [17]. Game audio streams typically comprises a mixture of all
these different kinds of sounds. Further, games differ with respect
to the composition of these sounds. In this paper, we are the first to
study the effect of echoes in video game audio on user experience,
and conclude that delays as low as 10 ms can disturb the user (§3.1).

Video to audio lag is more forgiving. Past work shows that delays
as low as 20 ms reduce subject evaluation by statistically significant
margins [29]. Standards on video/audio playback allow the audio to
precede the video up to 15 ms, and the video to precede the audio
up to 45 ms in delay [6].

Users sense the delay between haptic feedback and audio if the
delay is above 24 ms [1]. Haptic feedback to video delay is more
forgiving, and tolerable up to 30–100 ms [31, 32].
Media Synchronization. We focus on IDES, i.e., synchronizing
media across multiple endpoints in close vicinity. These endpoints
connect to the same server in the cloud, and we do not assume any
further shared network path. For IDES, existing work rely on three
techniques:

(a) Provided the devices have accurate clocks, they can exchange
when playback timing and synchronize [21]. To synchronize clocks,
they can use the NTP, which connects to accurate time servers
in the cloud and adjusts the system clock to the timestamp of
the server corrected with the RTT. Unfortunately, NTP is known
to be as inaccurate as 100 ms [22], and is especially affected by
network path asymmetry. Network path asymmetry is common in
the internet [26], particularly in wireless networks [36].

(b) Some routers and devices implement PTP, which allows
relative clock synchronization for devices connected to the same
router. [2]. This is a highly accuratemethod, and should synchronize
media to tolerable delay levels [4]. Unfortunately, this is only useful
when the media endpoints share the same router, and it is unclear
to us what fraction of existing routers support PTP.

(c) An opportunistic and less common approach to relative clock
synchronization is to leverage the physical locality of endpoints
directly. If we can record the playback of one device in the other,
we can use signal processing based techniques to measure the play-
back delay. Past work showcases this approach in a controlled
environment [8], but real-world limitations hindered it’s applica-
bility; low-quality microphones, background audio such as chatter,
and lossy uplink audio compression are common, and contribute
to poor synchronization in more than 75% of test cases, as we high-
light in §6.4. We build on this third approach, and through a clever
design that utilizes inaudible markers, we achieve synchronization
in more than 90% of test cases.

3 BACKGROUND AND MOTIVATION
In this section we provide the necessary background andmotivation
for Ekho.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA P. Hamadanian et al.

3.1 Time Synchronization Requirements
We first ask the question, “What is the echo threshold, i.e., the mini-
mum synchronization error threshold between the screen and acces-
sory streams that the player can perceive as an echo-like artifact
for the most popular online games?” Answering this question will
inform us as to the required accuracy in synchronizing the streams.
Existing EchoThreshold Studies.The existing corpus of research
and studies on echo thresholds [11, 17, 30], suggest that the echo
threshold varies greatly with the type of audio (e.g., speech, sudden
sharp sounds, music, etc.), stimuli, equipment and subjects, ranging
anywhere from 2 to 50 ms [18]. Given this rather large range and
lack of specificity, we conducted a study specifically targeting echo
thresholds in game audio.
Methodology. For our study we adhered to the Degradation Cat-
egory Ratings (DCR) test methodology as dictated by the ITU-T
P.808 standard [24]. We have created a corpus of 30 game audio
clips, each 15s long sampled from 15 popular online games (details
in Table 2 in the appendix). Our corpus includes first person shooter
(FPS) games, sports and racing games, platform games, etc. To each
of the clips we add a delayed version of the same clip (echo) with
varied delays ranging from 10 to 300 ms to generate a large number
of audio clips with echo.

Human testers first listened to a reference audio clip without
echoes, and then listened to the same clip with echoes with an
unknown amount of delay including 0 ms, i.e., no echo. They were
asked to select one of many choices indicating the level of distrac-
tion arising from the echo. Each tester periodically went through
a training phase to ensure a quiet standardized environment by
first listening to six clips with varying amounts of echo as training
(as per the P.808 standard). We collected a total of 3555 ratings,
removed low-quality responses (33% of total data) in accordance
with ITU-T P.808 [24]. Each clip was rated ≈ 10 times, and we had
30 different clips for each delay level across all games resulting in a
total of ≈ 296 votes per delay level. The respondent pool consisted
of 17% young adults (18-25), 43% adults (26-35), 32% middle-aged
individuals (36-50), and 8% seniors (51 and above), and their native
language was English. Following ethical guidelines, surveys were
anonymous, and we informed respondents of the survey process
and type of stimuli before participating. We compensated respon-
dents, and avoided stimuli that could be considered disturbing.
Microsoft IRB reviewed and approved this survey.
Results. Since, echo threshold depends on the content of the au-
dio, we categorize audio clips into three categories comprising
predominantly – speech, music and game sound effects (car sounds,
shooting sounds, etc.) Average opinion scores along with 95% con-
fidence intervals for each of these three categories are presented
in Figure 2. As seen from Figure 2, across all categories, even a 10
ms echo is perceptible and slightly distracting. Given that gaming
sessions typically last 30 minutes to several hours, even slightly
distracting in a 15 second sample is considered unacceptable and
must be devoid of distractions for complete immersion, especially
for professional level players. Speech-based games show a steady
increase in annoyance beyond 10 ms delays, while the distraction
plateaus for music and game sound effects. This study suggests that
echo threshold and hence ISD should be lower than 10 ms.

Network Transport
(10-200ms)

Decoding + Jitter Buffer

(40-90ms)

Hardware
Playback

(0-50ms)

Propagation

(0-18ms)

Accessory Stream

Screen Stream

∆"!"#$

∆"!"#% ∆"&"'%

∆"&"'$

∆"()*+%

∆"()*+$ ∆"(,-.$
Cloud Gaming Server

Figure 3: Latency breakdown and synchronization error be-
tween screen-stream and accessory-stream in cloud gaming.

Video and Tactile Lag Perception Studies. Studies show that if
audio precedes video by as little as 20 ms, subject evaluation loss is
statistically significant [29]. Standards on tolerable audio/video lag
state that audio must not precede video by more than 15 ms, and
video must not precede by more than 45 ms [6]. Past research shows
that users can perceive audio-to-haptic and video-to-haptic lag at
delays as low as 24 ms and 30 ms [1, 31, 32]. Hence, we believe that
synchronizing the screen and accessory audio streams to within
10 ms to eliminate echo perception is sufficient to synchronize the
video and haptic feedback.

3.2 Inter-Stream Delay
In this section, wemodel the (ISD) between the screen and accessory
game streams as heard by the player by analyzing the various
latencies incurred along the path as depicted in Figure 3 and listed
in Table 1.
Network Latency. This part of the latency captures the time taken
by the audio packets to traverse the path from the cloud server
to the end device (Δ𝑇𝐴

𝑁𝑒𝑡
for the accessory stream and Δ𝑇𝑆

𝑁𝑒𝑡
for

the screen stream). The latency can range anywhere from 10 to
200 ms. Latency beyond 200 ms renders the majority of games
unplayable [7].

The most accurate ways to measure network latency is by syn-
chronizing the physical clocks on each device using GPS or dedi-
cated shared hardware (PTP). This approach however is not prac-
tical for devices such as gaming controllers, headphones, TVs, etc.
Network-based time synchronization techniques (NTP) over public
internet incur several 10s of ms of errors and consequently are
inadequate for our goal of synchronizing under 10 ms. A common
approach is to estimate network latency by measuring RTT and
estimate latency as RTT/2 at the server. This approach relies on
the assumption that network latency is identical in both forward
and reverse directions – server to device and device to server. Prior
studies [26] however, have shown that asymmetry in network path
latencies is common and that estimates relying on symmetry can
be off by up to 60 ms.
Decoding Latency. Audio is typically compressed for bandwidth
efficiency using encoders such as OPUS [35]. Upon their receipt
from the transport layer, audio packets must be decoded to the
native Pulse-Code Modulation (PCM) audio format for playback at
the end device. The end devices are typically embedded devices and
the decoding times (typically 0−10 ms) vary depending on available

Ekho: Synchronizing Cloud Gaming Media Across Multiple Endpoints ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Latency Part Notation Typical Range (ms) Measurement Error Source Measurement Error Range (ms)

Network Path Δ𝑇𝑆
𝑁𝑒𝑡

& Δ𝑇𝐴
𝑁𝑒𝑡

10 − 200 RTT asymmetry 0 − 60

Decoding and Buffering Δ𝑇𝑆
𝐷𝑒𝑐

& Δ𝑇𝐴
𝐷𝑒𝑐

40 − 90 3rd party APIs 0 − 80

Hardware Scheduling Δ𝑇𝑆
𝑃𝑙𝑎𝑦

& Δ𝑇𝐴
𝑃𝑙𝑎𝑦

0 − 50 Immeasurable 0 − 50

Sound Propagation Δ𝑇𝑆
𝑃𝑟𝑜𝑝

0 − 18 Immeasurable 0 − 18

Total - 50 − 360 - 0 − 210
Table 1: Latency breakdown in cloud gaming, source of error, and ranges.

computational resources (e.g., GPU/CPU), operating system, load
due to other applications sharing resources, and the encoding audio
format.

Once the audio is decoded, a jitter buffer receives and controls
playback rate. Buffer management strategies try to ensure smooth
playback in the face of network jitter. Both the jitter as well as
the buffer management algorithms vary from device to device, and
can incur up to 80 ms in typical streams. We represent the time
taken to decode for the screen-stream as Δ𝑇𝑆

𝐷𝑒𝑐
and that for the

accessory-stream as Δ𝑇𝐴
𝐷𝑒𝑐

. While in theory, these delays can be
profiled by careful measurements on the target device and audio
format type, in practice, given the sheer variability in the number of
devices, it is impractical to profile all varieties of end devices. Also,
most devices do not provide APIs to measure jitter buffer delays.
Hardware Latency. The jitter buffer schedules audio for play-
back at specific times. The actual playback time, however, varies
depending on the device’s hardware and operating system buffers.
For example, screen devices (e.g., TV, tablet) may delay playback
to try and synchronize audio to corresponding video frames go-
ing through post-processing, while headsets do not. We represent
the latency incurred in the hardware as Δ𝑇𝐴

𝑃𝑙𝑎𝑦
for the accessory-

stream and Δ𝑇𝑆
𝑃𝑙𝑎𝑦

for the screen-stream. Outside of profiling, such
latencies can not be measured.
Sound Propagation Latency. Sound waves travel at a speed of
∼ 330 m/s, or ∼ 1 ms/foot. Players may be located at a distance of
2 feet, to as far as 19 feet, from the TV.3 Thus, the screen-stream
audio emanating from the speakers of the screen device will incur
a propagation delay (represented as Δ𝑇𝑆

𝑃𝑟𝑜𝑝
) up to 18 ms before

reaching the ears of the player. Measuring this component of delay
is not feasible.

Thus, we can characterize ISD as:

𝐼𝑆𝐷 = Δ𝑇𝑆
𝑁𝑒𝑡 + Δ𝑇𝑆

𝐷𝑒𝑐 + Δ𝑇𝑆
𝑃𝑙𝑎𝑦

+ Δ𝑇𝑆
𝑃𝑟𝑜𝑝

− Δ𝑇𝐴
𝑁𝑒𝑡 − Δ𝑇𝐴

𝐷𝑒𝑐 − Δ𝑇𝐴
𝑃𝑙𝑎𝑦

(1)

Conclusions. The variation in these different components of laten-
cies can add up to several tens of milliseconds to even over 100 ms.
Coupled with the inability to measure the various latencies accu-
rately, it is not possible to estimate the synchronization error and
synchronize audio streams to within 10 ms using network-based
measurements.

3The maximum rated distance for an Xbox Wireless controller is 19ft. [33]

3.3 ISD variation
A further complexity is that latency components will vary over
time, rendering prior ISD measurements obsolete. We can broadly
categorize latency variation in three groups:
No variation. The hardware lag fromwhen audio is given to (taken
from) the Digital-to-Analog Converter (DAC) (Analog-to-Digital
Converter (ADC)) modules is a low-level hardware lag that does
not change.
Low-frequency. These variations are substantial (up to several 100
ms), but occur rarely. Examples include network latency changes
due to path changes in the IP layer, decoding latency changes due to
CPU/GPU throttling, or changes in the sound propagation latency
due to player movement.
High-frequency. Network latency can change on a per packet
basis, due to congestion, queuing and competing traffic. If packets
are streamed in 20 ms frames, any latency fluctuation above 20
ms will lead to the frame arriving too late. To circumvent this, a
jitter buffer is typically implemented that takes in frames, and only
serves them once a the buffer level surpasses some threshold, say 60
ms. In theory, any fluctuation up to this threshold will be absorbed
by the jitter buffer. However, fluctuations above this threshold will
still deplete the buffer, and lead to a change in ISD.
Conclusion. Although the jitter buffers isolate stream playback
from modest delay fluctuations, we still need to synchronize the
accessory and screen audio streams (i) at the start of the playback
and (ii) again, anytime when delay fluctuations cause a jitter buffer
to deplete. Ekho measures and attempts to correct ISD periodically.
The ISD measurement frequency determines how fast we can re-
spond to changes. In practice, we believe that a measurement at
most every 15 seconds will suffice to handle most ISD changes.

4 EKHO
In this section we provide the intuition and an overview of our
proposed scheme Ekho that can measure the inter-stream latency
difference with a sub-millisecond accuracy and uses these measure-
ments as feedback to synchronize the screen and accessory audio
streams.

4.1 Overview of ISD Measurement in Ekho
Figure 4 illustrates the central idea behind the measurement of ISD
in Ekho. The server streams the accessory stream directly to the
headset. At the same time, the screen audio streamed to the screen
device (e.g., TV) is played by its speakers. This screen audio stream

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA P. Hamadanian et al.

Accessory audio
streamed to

headset/controller

Screen audio,
overheard and

captured by
headset

Time

#$%

Cloud Gaming Server

Controller

Screen Audio Screen

Accessory Stream Screen Stream

Figure 4: Intuition behind measuring ISD in Ekho

is overheard and captured by the player’s headset microphone as
a part of the chat audio stream. Thus, ISD can be estimated by
correlating the overheard screen game audio content in the audio
chat to that in the accessory-stream received directly from the
cloud server. This estimated ISD is an end-to-end estimate, as the
latency difference of the overheard screen stream and the received
accessory stream is precisely what causes the perception of an
echo. This key intuition forms the basis of the design of Ekho’s ISD
measurement mechanism.
Poor auto-correlation of game audio. Ekho’s ISD measurement
based on the above intuition faces a key challenge. Unlike signals
like chirps or pseudo-noise sequences, game audio does not pos-
sess sharp auto-correlation properties. While signal processing
techniques like Generalized Cross-Correlation PHAse Transform
(GCC-PHAT) [5] perform significantly better than standard corre-
lation based schemes in correlating game audio, they incur several
tens of ms error as we evaluate in §6.4. This is due to several alter-
ations that the audio signals undergo on their path to the headset.
The overheard version of the game audio stream from the speakers
in the headset microphone are an order of magnitude fainter than
the speech of the player directly speaking into it. It is affected by
the echoes and ambient sounds in the room. The speaker and micro-
phone themselves introduce distortions in the waveform depending
on their quality. Furthermore, both audio streams undergo deteri-
oration due to lossy compression by the server and the accessory
audio stream is also mixed with chat audio from other players.

Pseudo-Noise Markers. To provide the game audio stream with
sharp cross correlation properties, Ekho adds identical pseudo-
noise (PN) sequences as markers periodically at a regular interval
(1 second in our implementation) into the screen audio stream at the
cloud server. These markers can be detected within the streams by
correlating with the known PN-sequence marker. This allows Ekho
to continuously estimate and track the ISD between the streams.
The PN-sequence requires a careful design to ensure that it does
not deteriorate the quality of the game audio perceptibly to humans.
Our choice of PN-sequences rather than other sequences like chirps
is motivated by human imperceptibility.

4.2 Reliable marker detection in Ekho
There are three key challenges in designing markers and their
detection in our ISDmeasurement scheme. First, as discussed earlier,
the PN-sequence marker should be inaudible to humans. Second,
our PN-sequence marker detection scheme must have a very low
false positive rate, i.e., it must not detect spurious peaks despite
the presence of human speech and being altered by compression,
microphones and speakers. This is because spurious peaks can cause
very large estimation errors, and when synchronization algorithms
compensate for the erroneous ISD, they cause jitter and unpleasant
audio artifacts at the end user. At 48,000 samples/sec, a false positive
rate of 10−6 per sample will result in a spurious detection every 20
seconds; in practice, we require a significantly lower false positive
rate. Third, we must periodically estimate ISD to keep up with the
changes in ISD due to changes in network latencies [10] as well as
playback latencies (as buffer sizes vary due to buffer management
schemes).

We now outline the sequence of steps that Ekho uses for the
addition and detection of the markers in detail.
Marker Addition. Through several tests we found that often chat
audio is typically encoded at Super Wide Band (SWB), i.e., up to
12KHz in the frequency spectrum. Further, most significant audio
content generally lies below 6KHz. Thus, Ekho PN-sequences are
band-limited between 6-12KHz, to avoid either limitation. Gener-
ating PN-sequences is simple; we create a vector of 𝐿 Gaussian
Normal variables, and then apply a band-pass filter between 6-
12KHz on this vector. The amplitude of game audio is dynamic and
varies significantly on the timescale of few tens of ms. Audibility
of the marker depends on the relative amplitudes of the markers to
the game audio. Since, the game audio amplitude is dynamic and
varies significantly, in order to ensure imperceptibility of the added
PN-sequence marker, Ekho continuously tracks the game audio
amplitude and adjusts the amplitude of the added PN-sequence
as a moving average to ensure that the ratio of amplitudes of the
PN-sequence to that of game audio is constant.

Let 𝑥 [𝑡] be the game audio and𝑤 [𝑡] the PN-sequence of length
𝐿. Then 𝑥𝑚 [𝑡], the audio stream with added markers, is computed
as,

𝑥𝑚 [𝑡] = 𝑥 [𝑡] +𝐶.𝛼𝑘 .𝑤 [𝑡]
𝛼𝑘 = 𝛾 × 𝛼𝑘−1 + (1 − 𝑔𝑎𝑚𝑚𝑎) × 𝜌 (𝑥 [(𝑘 − 1) .𝑇 : 𝑘.𝑇]) (2)

The choice of 𝐿 affects both the rate of ISD measurement and the
maximum measurable ISD, as we describe later on, and for most
experiments, we set 𝐿 = 48, 000 (corresponding to 1 second of audio).

Ekho: Synchronizing Cloud Gaming Media Across Multiple Endpoints ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

In Equation (2), 𝜌 (𝑥 [(𝑘−1).𝑇 : 𝑘.𝑇]) is the signal power in the 6KHz
to 12KHz spectrum, computed over 𝑇 samples. We chose 𝑇 = 960
corresponding to 20 ms of samples at 48KHz. Our choice stems from
practical ease of implementation considerations, since each OPUS
encoded audio packet at the cloud server comprised 20 ms of audio.
Thus, choosing 20 ms, allowed us to adjust amplitude on a per
packet basis. 𝛼𝑘 is adjusted every𝑇 samples as a moving average of
this power. Empirically, we found 𝛾 = 0.4 to be effective. We control
the relative volume of the marker to the original game audio with
𝐶 . We study the effects of 𝐶 on audibility and ISD measurement in
§6.
Marker Cross-Correlation. Given the headset recording 𝑥𝑟𝑒𝑐 [𝑡],
its cross-correlation 𝑍 [𝑡] (depicted in Figure 5a) can be computed
with the marker as,

𝑍 [𝑡] =
𝐿∑︁
𝑖=1

𝑥𝑟𝑒𝑐 [𝑡 + 𝑖] .𝑤 [𝑖] (3)

𝑍 [𝑡] will have sharp peaks, when the markers in 𝑥𝑟𝑒𝑐 [𝑡 + 𝑖] and
𝑤 [𝑖] align. This is depicted in Figure 5a as seen by the spikes in the
𝑍 [𝑡]. However, game audio amplitude varies significantly over time,
which affects the amplitude of𝑍 [𝑡]. In order to reliably detect a peak
in the face of changing game audio levels, we normalize the correla-
tion by dividing it by the power in the cross-correlation signal over
a signal history window size 𝑆 . Further to account for sampling
offsets that result in negative and positive cross-correlation peaks
we use the absolute value of the normalized correlation as,

𝑍 ∗ [𝜏] =

������� 𝑍 [𝜏]√︃
1
𝑆

∑𝑆
𝑖=1 𝑍 [𝜏 + 𝑖]2

������� (4)

As seen from Figure 5b, 𝑍 ∗ [𝑡] has an almost constant envelope
due to normalization and the peaks are more pronounced even in
sections where the game audio amplitude was low. In practice we
found that 𝑆 = 100 ms works well, perhaps because typical game
sounds such as game effects and speech phonemes last 100–250 ms.
Cross-Correlation Peak Filtering and Extraction: Peaks in a
signal are the local maxima in the signal envelope. Thus, in order to
detect the peaks, we first compute the envelope of 𝑍 ∗ [𝑡] (depicted
in Figure 5c) as,

𝑅 [𝑡] =
{
|𝑍 ∗ [𝑡] | 𝑖 𝑓 𝑅 [𝑡 − 1] ≤ |𝑍 ∗ [𝑡] |
𝛽.𝑅 [𝑡 − 1] 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5)

In Equation (5), to compute the envelope we chose the decay param-
eter 𝛽 as 0.99995 to ensure that the envelope of an impulse decays
to about 0.1 within 1 second. This choice was motivated by the
interval of our markers which is 1s. We then identify, points where
the gradient of the envelop changes from positive to negative as
peaks. After normalization 𝑍 [𝑡] has a standard deviation of 1. Thus,
to pick reliable peaks, we choose only peaks above a minimum peak
threshold of \ = 5 as indicated by the orange spots in Figure 5c in
𝑅 [𝑡]. This choice of \ is carefully driven by an analytical model,
described in detail in Appendix §A. Thus, the peaks function 𝑃 [𝑡]
(as indicated in Figure 5c) is computed as,

𝑃 [𝑡] =
{
𝑅 [𝑡] 𝑖 𝑓 𝑅 [𝑡 − 1], 𝑅 [𝑡 + 1], \ < 𝑅 [𝑡]
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6)

0 10 20 30 40

−0.1

0.0

0.1

Z
[t

]

Delay (s)

(a)

0 10 20 30 40

0

5

10

Z
∗ [

t]

Delay (s)

(b)

0 2 4 6 8 10

5

10
R

[t
]

Envelope P[t] P∗ [t] Threshold

Delay (s)

(c)

Figure 5: (a) Unnormalized cross-correlation, (b) normalized
cross-correlation, and (c) the envelope.

Filtering based on consecutive peaks and local maxima.We
filter peaks that have larger peaks than them less than 𝛿 samples
away. We also expect peaks to periodically recur every 𝐿 samples.
Thus, we remove all peaks that do not have a peak 𝐿 samples later
allowing for an error of up to 𝛿 samples (shown in Figure 5c) as,

𝑃∗ [𝑡] =

𝑃 [𝑡] 𝑖 𝑓 𝑃 [𝑡] = max𝑗∈[−𝛿,𝛿] 𝑃 [𝑡 + 𝑗] > 0

𝑎𝑛𝑑 max𝑗∈[−𝛿,𝛿] 𝑃 [𝑡 + 𝐿 + 𝑗] > 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(7)

In Equation (7), 𝐿 = 48000, the number of samples in 1s worth of
audio data. The peaks found by 𝑃∗ [𝑡] are extremely reliable with
almost zero false positives as modeled in §A and evaluated in §6.
Periodic Marker Addition In order to continuously track ISD, we
must periodically addmarkers to audio streams. Two considerations
dictate the choice of periodicity. First, the period should be small
enough to respond to changes in the ISD. Second, it should be
larger than twice the maximum possible value of ISD, to avoid
accidentally estimating ISD with the incorrect marker (as discussed
in §4.3). In our implementation we chose an interval of 1s assuming
conservatively a maximum possible ISD below 500 ms. Finally, the
longer the PN-sequence, the higher its detection rate. Thus, we

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA P. Hamadanian et al.

31 32 33 34

Local Time (s)

0

10

20 Markers in Recordings Hypothetical Markers in Private Audio

ISD = 250ms
ISD = 1250ms

ISD = 2250ms

Figure 6: Markermatching, whenmarker length 𝐿 is 1 second.
If the marker length is long enough, the smallest delay is
ISD.

chose our PN-sequence length to be 1 second, i.e., 48000 samples
long.

4.3 ISD Estimation
The headset/controller records time 𝑇𝑐ℎ𝑎𝑡

𝑖
when chat audio frame

𝑖 was captured, and logs the playback time 𝑇𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑦

𝑗
when the

𝑗𝑡ℎ accessory-stream audio frame was played at the headset. Let
us define 𝑡 = 0 at 𝑃 [𝑡] to correspond to local time 𝑇𝑐ℎ𝑎𝑡

0 , at the
controller. If a marker was found at sample 𝜏 (corresponding to
𝑃∗ [𝜏] = 1 from Equation (7)), then this implies that it was detected
at local time 𝑇𝑐ℎ𝑎𝑡

0 + 𝜏
𝐹𝑠

at the headset/controller (green lines in
Figure 6). Assuming the server informs the headset/controller that
a marker was added at the beginning of audio packet 𝑗 in the screen
audio stream, then we know 𝑇

𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑦

𝑗
is the local time at which

the accessory-stream would have had a hypothetical marker (red
lines in Figure 6). The final step is to align these two signals. This
is done by looking for the smallest shift in time that aligns them
and we can estimate ISD with this shift. In order for this scheme
to function correctly, the interval between two markers should
be greater than twice the greatest possible ISD since ISD can be
negative or positive. As discussed in §4.2 we chose a duration of 1
second, under the assumption that ISD does not exceed 500 ms.

4.4 Ekho Delay Compensation
Using the ISD measured as feedback, Ekho synchronizes the two
streams. This synchronization is achieved by either skipping sam-
ples in the stream with higher latency or slowing down the stream
with lower latency by injecting a silence period equal to the ISD
once. Thus, ISD is measured once every second and continuously
eliminated to keep the streams synchronized. Since injecting silence
periods can deteriorate audio quality, a better alternative is to use
packet loss concealment techniques [16, 19] and add interpolated
audio instead of silence periods. We leave this enhancement to
future work.

5 DESIGN AND IMPLEMENTATION
Often headsets/controllers are limited in terms of compute and
power resources to compute correlations in real-time. Consequently,
Ekho estimates ISD at the cloud server rather than at the head-
set/controller. Further, operations such as marker addition and

Screens

Controller

Ekho-Client

Uplink Packet:
1. Chat Audio x!"#[t]
2. Timestamp	&$%&'(
3. Timestamp &)'%%*++,-.

Screen Audio

Screen and
Accessory streams

Chat Audio

Ekho-Server

Ekho-Compensator

ISD

': Marker Locations

Ekho-Estimator

Game Audio Server

Downlink Packet:
1. Delay-Corrected &

Marker-Infused
Screen Stream

Downlink Packet:
1. Delay-Corrected

Accessory Stream

Figure 7: Systematic overview of Ekho.

delay compensation are also better implemented as server side op-
erations. Thus, Ekho adopts an architecture that enables compute
intensive operations to be performed in the cloud.

We leverage the underlying architecture of existing online gam-
ing system. In all cloud gaming systems, chat audio is packetized
and sent to the game server. Thus, chat audio destined to the gam-
ing server can be intercepted in the cloud to detect markers in them.
Similarly, delay compensation in Ekho is achieved by modifying
the audio streams by either adding extra zero samples (silence) or
skipping game audio samples. This can be done by intercepting
the audio streams generated by the gaming server in the cloud and
modifying it prior to sending them to the player’s devices.

5.1 Architecture
Ekho comprises two main components; Ekho-Server located at the
cloud gaming server, and Ekho-Client, situated at the controller
with a headset. Ekho-Server itself is composed of two modules:
Ekho-Compensator for delay compensation and marker addition,
and Ekho-Estimator for ISD measurement. Figure 7 visualizes the
design of Ekho.

Ekho-Compensator. Ekho-Compensator intercepts the screen
and accessory streams from the gaming server and modifies them
in two ways before forwarding them to the player’s devices. First, it
receives ISD measurements from Ekho-Estimator, and compensates
for them. When ISD is positive, i.e., the accessory stream is playing
before the screen stream, we inject extra ‘silence’ frames to the ac-
cessory stream. The reverse is done when ISD is negative. When an
already compensated delay shrinks, e.g., accessory stream preceded
by 80 ms before, but now precedes by 60 ms, we need to revert cor-
rected delay. Reverting corrected delay is done by skipping frames
(or temporarily faster playback) at the streaming device that was
previously delayed. The second role of Ekho-Compensator is that

Ekho: Synchronizing Cloud Gaming Media Across Multiple Endpoints ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

it adds PN-sequence markers to the screen audio stream and logs
audio frame IDs containing the start of the markers.

As a minor optimization for stability, correction is only initiated
when the current synchronization error is markedly large. ISD
can change slightly due to network reasons, encoding changes or
hardware throttling and we suggest 5 ms as a minimum difference
before correction is needed. When ISD correction begins, it will
take several seconds before it reflects in measurements. During
this temporary period, Ekho-Compensator ignores any new ISD
measurements.

We expect a preceding screen audio stream to be rare; the screen
audio stream accompanies a bandwidth-hungry video stream that
adds transport latency, and must compensate for video decoders.
In contrast, the accessory stream only has audio, tactile and in-
put streams, and the headset/controller will usually include fast
hardware decoding. As such, the one-way latency to the accessory
stream is expected to be smaller. The rare exceptions are when
the screen stream goes over a faster network than the accessory
stream. For example, screen stream going over broadband, while
the controller is connected to a public WiFi access point with many
active users.

Ekho-Estimator. Ekho-Estimator receives chat audio packet with
ID 𝑖 from the controller/headset along with timestamps from Ekho-
Client 𝑇𝑐ℎ𝑎𝑡

𝑖
. It also receives the time-stamps corresponding to

the playback time for each accessory-stream packet with ID 𝑗 ,
𝑇
𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑦

𝑗
from Ekho-Client. Meanwhile, as described earlier in

this section, Ekho-Compensator already logs the audio frame IDs
𝑗 where a marker was added to the screen audio stream. Ekho-
Estimator measures ISD by following the technique described in
§4.2 and §4.3. Ekho-Estimator needs 2-5 seconds of recording before
a robust ISD can be measured. During this initial 2-5 second period,
the streams are not fully in sync.

Ekho-Client. Ekho-Client is a lightweight component on the con-
troller that communicates with Ekho-Server and sends back chat
audio, appended with two sets of timestamps; (1) Chat audio local
timestamps 𝑇𝑐ℎ𝑎𝑡

𝑖
, and (2) Accessory audio playback timestamps

𝑇
𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑦

𝑗
. Note that in most situations, we do not have access to

the screen device API (such as when streaming to a WebRTC screen
client), and thus we design Ekho without any cooperation from the
screen device API in mind.

5.2 Implementation
We implement Ekho-Server in ∼ 1000 lines of C++ code. In our
implementation, we use FFTW 3.3.10 [9] for signal processing. The
bulk of the compute involved with Ekho is done in Ekho-Server,
and our implementation utilizes a modest 2.5% of a single core of an
Intel 2.3GHz core i9 processor (I9-9880H) and allocates a maximum
of 83MiB of memory at peak.

Ekho measures an end-to-end ISD, except for 𝑇𝑃
𝑃𝑙𝑎𝑦

, i.e., the
hardware latency. This is not an issue, however, as controllers have
low hardware latency (sub-millisecond). Furthermore, the controller
designer can measure the hardware latency and inform Ekho, as
we do in our end-to-end test.

6 EVALUATION
In this section, we aim to evaluate Ekho, and analyze the effect
of certain conditions on its accuracy. Specifically, we answer the
following questions:

(1) §6.1. Does Ekho successfully synchronize audio streams in
an end-to-end system?

(2) §6.2, §6.3. What marker volume is sufficient for accurate
ISD estimation while being imperceptible to humans?

(3) §6.4.Howdoesmarker-assisted ISDmeasurement fare against
prior work?

(4) §6.5. Can Ekho be used for video to audio synchronization
when the screen audio stream is muted?

We include further ablations on Ekho’s marker estimation with
respect to various encoding and microphone type in §B and §C.

6.1 End-to-end synchronization
We evaluate Ekho with synchronizing twoWebRTC streams. In this
test, a central game server streams the same audio to two different
devices. One device, acting as the screen and connected to a cellular
network, simply plays back the audio. The other device, acting as
the controller and connected to a campus WiFi endpoint, plays the
audio back, sends back recordings from a microphone to the server,
and also sends back timestamps of the recordings and playback.
We measure the ISD of the streams throughout the test. We use an
Xbox Stereo Headset as the microphone connected to the controller.

At the start of each session, the streams will be out of sync, and
Ekho will synchronize them in several seconds. As such, we shall
ignore the first 5 seconds in each stream in our evaluation. If there
was no packet loss that depletes the jitter buffer and changes ISD,
the streams would remain in sync indefinitely. In our tests however,
packet loss and jitter buffer depletion was common, and led to Ekho
having to resynchronize the streams frequently, with a response
time of 4 to 6 seconds.
Setup.Weuse a Python implementation of theWebRTC library [15].
To play audio or record from a microphone, we use PyAudio [28],
a python binding of PortAudio [3]. We use input ADC and DAC
timestamps for 𝑇𝑐ℎ𝑎𝑡

𝑖
and 𝑇𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑦

𝑗
, respectively. The controller

device is a MacBook Pro 2019, the screen device is an ASUS ROG
G551JW, the game server is an AWS c4.large instance in the East
1 or East 2 region. All audio is encoded with OPUS [35] in 20 ms
frames. We also correct ISD by adding or skiping 20 ms frames in
this implementation, which means we can have errors up to 10
ms. Note that a more involved implementation could add or skip
fractions of frames, and synchronize below the 10 ms bound.
ISD Measurement Methodology. To calculate the end-to-end
ground-truth ISD, we have both devices log the time at which they
play each audio frame. Since the device clocks are not in sync, we
need one ISD measurement from another source to synchronize
these logs. To achieve that, we add a 2KHz to 5KHz chirp (a fre-
quency sweeping audio) to the start of the screen audio, and a 5KHz
to 2KHz chirp to the start of the controller audio. A microphone
from a third device listens to the playback from both devices, and
by correlating each chirp to the recording, we extract the initial
ISD, which then synchronizes the two device’s logs.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA P. Hamadanian et al.

0 10

0.0

25.0

50.0

75.0
86.8

100.0

C
D

F
(%

)

100 200 300 400 500

Ekho ON
Ekho OFF

ISD (ms)

Figure 8: CDF of ISD throughout several tests. Despite consis-
tent jitter, Ekho maintains ISD below 10 ms more than 86%
of times.

0 20 40 60 80 100 120

Time (s)

−400

−200

0

IS
D

(m
s)

A
dd

22
fr

am
es

to
Sc

r

1
Pa

ck
et

L
os

ta
tC

tr
l Skip

1
fram

e
atScr 2

Pa
ck

et
s

L
os

ta
tS

cr

A
dd

2
fr

am
es

to
Sc

r

Figure 9: ISD in an example WebRTC session with Ekho.

Results. Figure 8 displays the end-to-end ISD with and without
Ekho, across 6 sessions, each of 5 minutes length, for a total of 30
minutes of streaming. Ekho maintains synchronization with the 10
ms bound for 86.8% of the time across all streams. The remaining
13.2% is due to 0.03% packet loss, each of which leads to several sec-
onds of out-of-sync playback. Note that without Ekho, the streams
never reach this bound. As an illustrative example, Figure 9 shows
the ISD across time in one session from the East 2 instance. First,
the controller leads the screen playback by 436 ms, and Ekho adds
22 frames of 20 ms length to the screen audio to synchronize them.
Then, a packet loss event at 𝑡 = 57.6𝑠 at the controller stream leads
to the playback missing one frame and jumping ahead by 20 ms,
which causes the controller to now lead by 24 ms. Ekho amends
this after 6s by skipping one packet at the screen audio. A second
packet loss at 𝑡 = 98.4𝑠 at the screen side leads to the screen leading
by 40 ms, and Ekho reacts to this after 4 seconds by adding 2 frames
to the screen side.

6.2 Marker Audibility
As Ekho is based on adding PN-sequences to the screen-stream
audio, it is vital that such markers are imperceptible to the user’s
ear, and do not distract the player. 𝐶 in Equation (2) controls the
marker volume, and for small enough values, the marker should not
be audible. In this section we ask the question: What is the range of
𝐶 , in which, marker addition does not affect user experience?

Test Methodology. As in echo threshold in §3.1, we use the DCR
test methodology of the ITU-T P.808 standard [24]. We use the
same corpus of 30 game audio clips from 15 popular online games
(details in Table 2 in the appendix). To each of the clips we add

PN-sequence markers according to Equation (2), but with varied 𝐶
values, ranging from 𝐶 = 0.1 to 𝐶 = 5.

Human testers first listen to the reference audio clip, and then to
the marker infused clip with an unknown𝐶 , possibly𝐶 = 0, i.e., no
PN-sequence marker. They are asked to select one of several choices
indicating the level of distraction arising from the degradation. We
collected a total of 2010 ratings, removed low-quality responses (36%
of total data) in accordance with ITU-T P.808 [24]. Each clip was
rated ≈ 6 times, and with 30 different clips for each marker volume
across all games, this results in a total of ≈ 186 votes per level. The
respondent pool consisted of 28% young adults (18-25), 32% adults
(26-35), 25% middle-aged individuals (36-50), and 14% seniors (51
and above), and their native language was English. We follow the
same ethical guidelines in §3.1, and Microsoft IRB reviewed and
approved this survey.
Results. As in §3, we measure audibility for three different cate-
gories of game audio: speech, music and game sound effects. Av-
erage opinion scores along with 95% confidence intervals for each
of these three categories are presented in Figure 10. As seen in
Figure 10, across all categories, 𝐶 up to 1.0 does not significantly
change user experience respective to the reference. At 𝐶 = 2.5 the
marker is audible and slightly distracting.

6.3 Marker Detection
In this section we ask the question: "What is minimum value of
𝐶 for which markers are detectable by Ekho and provide accurate
ISD estimates?" This will allow us to choose a value of𝐶 that is not
audible (§6.2), and can be used to estimate ISD reliably by Ekho.
Measuring ISD Groundtruth. In order to measure ISD estimation
error by Ekho we need the groundtruth ISD. To this end we intro-
duce a loud 20s long chirp spanning 0Hz to 20KHz at the beginning
each audio clip. This chirp serves as a reliable as start of clip marker
to help estimate the groundtruth delay.
ExperimentMethodology.We record game audio clips with vary-
ing marker volumes, i.e., the corpus of samples in the DCR study.
We then provide Ekho-Estimator with the recording and times-
tamps, and log ISD measurements it provides. For timestamps, we
set𝑇𝑐ℎ𝑎𝑡

𝑖
= (𝑖 − 1) ∗ 20𝑚𝑠 ,𝑇𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑦

𝑗
= (𝑗 − 1) ∗ 20𝑚𝑠 − 𝑥 where 𝑥

is the ground truth ISD Ekho-Estimator must measure, and we add
markers every second (𝑗 = 50.𝑛,∀𝑛 ∈ N). We vary 𝑥 from −300 to
300 ms.
Hardware. For recording, we use a $45 Xbox Stereo Headset, rep-
resentative of the typical headset used in gaming sessions. We use a
MacBook Pro 2019 as the screen playing the screen game audio. The
screen volume was the same across all recordings, and configured
for the typical volume in gaming sessions (60-70 dBA,4 since game
volume varies).
Encoding. We encode the recording with varying compression
levels. We use FFMPEG (version N-107374) [34] and specifically
libopus to encode and decode clips. Unless otherwise stated, we use
an OPUS compression scheme with 32kbps of bitrate budget, super-
wide-band (SWB) mode (frequency spectrum kept up to 12KHz), a
level 4 search complexity and application set to lowdelay.
4A-weighted sound level (dBA), standardized in ISO 226:2003, normalizes frequency
amplitudes to be heard at equal levels by a human ear [25]

Ekho: Synchronizing Cloud Gaming Media Across Multiple Endpoints ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Orig 0.1 0.25 0.5 1.0 2.5 5.0
Very distracting

Distracting

Slightly Distracting

Audible

Inaudible
Speech

Orig 0.1 0.25 0.5 1.0 2.5 5.0

Music

Orig 0.1 0.25 0.5 1.0 2.5 5.0

Game SFX

Marker Power (Relative)

Figure 10: Crowdsourced opinion scores for how the addition of the marker affects user experience. Up to a relative power of
1.0, user experience remains comparable to the reference.

Metric. We assess Ekho-Estimator by looking at (1) how accurate
ISD measurements are, and (2) the ISD measurement rate. For each
marker, we could potentially have one ISD measurement, and hence
we define this rate as the number of measurements over the number
of markers in the sample.
Results. Figure 11 shows histograms (across 30 sample clips) of the
ISD estimation error, and ISD measurement rate. We observe that
with 𝐶 ≥ 0.25, ISD error is less than 1 ms, less than our limit of 10
ms and the lowest echo thresholds from prior work [18]. With the
lowest volume 𝐶 = 0.1, Ekho has errors surpassing 10 ms in 1.5%
of measurements. All markers (450 total) are detected for 𝐶 > 0.5,
and for 𝐶 = 0.25 in worst cases we get one measurement every
4 seconds. With 𝐶 = 0.1 however, there is one sample where no
measurement is found. Overall, this experiment suggests that for
𝐶 > 0.25, we should comfortably detect markers and accurately
estimate ISD.
Conclusion: Suitable range of 𝐶 Thus, based on the audibility
range for 𝐶 in §6.2 with the range for reliable detectability, we
observe that any 𝐶 ∈ [0.25 1.0] should be detectable by Ekho-
Estimator, and at the same time inaudible to the user and will not
effect the gaming experience. Consequently, we pick𝐶 = 0.5 as our
choice of 𝐶 .

6.4 Ekho vs. GCC-PHAT
We now compare Ekho to GCC-PHAT [5], a state-of-the-art cross-
correlation technique that does not use markers. Since background
chatter is common in indoor gaming environments, we repeat the
experiment in §6.3, but in addition to the default chatter-free game
audio, we conduct additional experiments that include background
voice chatter. Here, a speech clip is played alongside the game audio,
and we vary the speech clip’s loudness in three levels, such that
the median sound level of the speech clip is: (Low Chat) 5 dBA
lower than the game audio, (Med Chat) as loud as the game audio,
(Loud Chat) 5 dBA louder than the game audio.

We use GCC-PHAT to measure ISD. At a high level, GCC-PHAT
works by computing the Fourier transform of the accessory au-
dio 𝑥 [𝑡], 𝑋 (𝜔), and the recorded audio 𝑥𝑟𝑒𝑐 [𝑡], 𝑋𝑟𝑒𝑐 (𝜔). Then, it
computes ISD in the following way:

No Detection 0-25% 25-50% 50-75% 75-100%

ISD Measurement Rate

0%
25%
50%
75%

100%

H
is

to
gr

am
(%

)

C = 0.1
C = 0.25

C = 0.5
C = 1.0

C = 2.5
C = 5.0

0 1000 2000 4000 6000 8000 10000

ISD Measurement Error (µs)

0%
25%
50%
75%

100%

C
D

F
(%

)

Significant Error

Figure 11: Studying Ekho with six different marker volumes.
Based on Figure 10 and these results, ideally 𝐶 ∈ [0.25 1.0].

𝑅(𝜏) =
∫ +∞

−∞

𝑋 (𝜔)𝑋𝑟𝑒𝑐 (𝜔)
|𝑋 (𝜔)𝑋𝑟𝑒𝑐 (𝜔) |

𝑒 𝑗𝜔𝜏𝑑𝜔

𝐼𝑆𝐷 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜏𝑅(𝜏)
(8)

It is noteworthy that unlike Ekho, GCC-PHAT always produces
a measurement, whether confident or not. Thus, there are cases
where the error is larger than a second. We believe in practice ISD
measurements higher than 300 ms can be flagged as erroneous, and
therefore we ignore such values for GCC-PHAT, treating them as
missed detections. We attempted to use the same normalization
and filtering strategy we used with Ekho, but were not successful
in improving GCC-PHAT.
Results. Whenever Ekho and GCC-PHAT are able to measure ISD
(i.e., ignoring outliers for GCC-PHAT), they achieve good accuracy
(< 2 ms ISD error). However, Ekho is much more robust in detect-
ing ISD across all chatter levels. In Figure 12 we present the ISD
measurement rate for Ekho and GCC-PHAT. Even without back-
ground chatter, GCC-PHAT fails to produce any ISD measurements
for a third of our corpus, while Ekho has a consistent ISD mea-
surement every second. When we introduce background chatter,

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA P. Hamadanian et al.

No Detection 0-25% 25-50% 50-75% 75-100%

ISD Measurement Rate

0%
25%
50%
75%

100%

H
is

to
gr

am
(%

)

Ekho No Chat
Ekho Low Chat
Ekho Med Chat

Ekho Loud Chat
GCC-PHAT No Chat
GCC-PHAT Low Chat

GCC-PHAT Med Chat
GCC-PHAT Loud Chat

Figure 12: Comparing EkhowithGCC-PHAT [5] against vary-
ing background chatter.

GCC-PHAT fails to produce any measurement for more than 75%
of the corpus, while Ekho observes a modest drop in detection rate.
Overall, Ekho is robust and and maintains a superior detection rate
to GCC-PHAT, while its added markers are proven to be inaudible
to human subjects.

6.5 Video-to-Audio Sync
When the screen audio is muted (e.g., to avoid disturbing others),
the player uses a headphone attached to the controller. In such cases,
echo between the screen and accessory audio is not a problem, but
we still want the headphone audio and haptic feedback to be in sync
with the video being displayed. In these cases, the cloud gaming
software can send PN-sequence markers at a constant amplitude
(instead of dynamically based on game audio in Equation (2)). We
study what a viable amplitude for this scenario is such that (1) the
marker is detectable for Ekho-Estimator, and (2) is not noticeable.
While evaluating the first condition is trivial, for the second, we
measure the sound levels (dBA) across varying amplitudes for the
PN-sequence audio using a commercial sound level meter. For the
microphone, we use three types of microphones, described in §B.
Figure 13 presents the max ISD error, the detection rate, and the PN-
sequence’s sound level for varying amplitudes. Where a detection
is available, Ekho-Estimator maintains sub-millisecond accuracy.
All microphones allow for detection for amplitudes of 6 dB and
above. Up to an amplitude of 15 dB, the PN-sequence marker sound
level is lower than 40 dBA, a typical sound for a quiet library. This
suggests that we can use amplitudes in the range of [6𝑑𝐵 15𝑑𝐵]
and satisfy both conditions.

7 CONCLUSION
We present Ekho, a robust end-to-end technique for synchronizing
media playback over the network. Ekho uses recordings from one
device to measure the delay between playbacks, compensates for
them directly at the server. Ekho does not require a shared network
or cooperation from the screen device, is resilient to aggressive
lossy compression in the recording, and remains robust to micro-
phone quality and background noise/chatter. Importantly, Ekho
outperforms prior work in such realistic conditions.

We exhaustively evaluate Ekho, and perform standardized tests
to measure the impact of Ekho’ technique on user experience, as
well as the impact of unsynchronized playback. We implement
and test Ekho, both from a computational overhead standpoint,

3 6 9 12 15 18 21 24 27
0

25
50
75

100

D
et

ec
tio

n
(%

)

Studio Microphone
Xbox Stereo Headset

Samsung IG955 Earphone

0
100
200
300
400

M
ax

E
rr

or
(µ

s)
Ref 3 6 9 12 15 18 21 24 27

30

40

50

60

So
un

d
L

ev
el

(d
B

A
)

Recording Studio
Quiet Library

Air Conditioner
Normal Conversation

Amplitude (dB)

Figure 13: Studying Ekhowhen screen-stream audio ismuted,
and the software plays PN-sequences with low amplitude.
An Amplitude of 6 dB is enough for marker detection, and
up to an amplitude of 15 dB, PN-sequences do not noticeably
elevate sound level.

and with a live test with WebRTC sessions over a jittery network
path. Ekho continuously recovers synchronization and a smooth
playback experience. Ekho’s main goal is synchronizing two audio
streams, but can also be used to synchronize an audio stream on
one device, and a video stream on another.

ACKNOWLEDGEMENTS
We are grateful to our reviewers for insightful comments. We thank
Babak Naderi and Ross Cutler for their help with the ITU-T P.808
standard, and Thomas Puget Abadie for helping us understand the
Xbox cloud streaming setup.

REFERENCES
[1] Bernard D. Adelstein, Durand R. Begault, Mark R. Anderson, and Elizabeth M.

Wenzel. 2003. Sensitivity to Haptic-Audio Asynchrony. In Proceedings of the
5th International Conference on Multimodal Interfaces (ICMI ’03). Association
for Computing Machinery, New York, NY, USA, 73–76. https://doi.org/10.1145/
958432.958448

[2] WiFi Alliance. 2017. Wi-Fi CERTIFIED TimeSync™ brings precise synchro-
nization to Wi-Fi® devices. https://www.wi-fi.org/news-events/newsroom/
wi-fi-certified-timesync-brings-precise-synchronization-to-wi-fi-devices.
(2017). [Accessed 20-Jul-2023].

[3] Ross Bencina and Phil Burk. 2001. PortAudio-an open source cross platform
audio API. In ICMC.

[4] Fernando Boronat, Dani Marfil, Mario Montagud, and Javier Pastor. 2018. HbbTV-
Compliant Platform for Hybrid Media Delivery and Synchronization on Single-
and Multi-Device Scenarios. IEEE Transactions on Broadcasting 64, 3 (2018),
721–746. https://doi.org/10.1109/TBC.2017.2781124

https://doi.org/10.1145/958432.958448
https://doi.org/10.1145/958432.958448
https://www.wi-fi.org/news-events/newsroom/wi-fi-certified-timesync-brings-precise-synchronization-to-wi-fi-devices
https://www.wi-fi.org/news-events/newsroom/wi-fi-certified-timesync-brings-precise-synchronization-to-wi-fi-devices
https://doi.org/10.1109/TBC.2017.2781124

Ekho: Synchronizing Cloud Gaming Media Across Multiple Endpoints ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

[5] Maximo Cobos, Fabio Antonacci, Luca Comanducci, and Augusto Sarti. 2019.
Frequency-Sliding Generalized Cross-Correlation: A Sub-band Time Delay Esti-
mation Approach. (2019). https://doi.org/10.48550/ARXIV.1910.08838

[6] Advanced Television Systems Committee et al. 2003. ATSC implementation sub-
committee finding: Relative timing of sound and vision for broadcast operations.
IS-191 26 (2003).

[7] Matthias Dick, Oliver Wellnitz, and Lars Wolf. 2005. Analysis of Factors Affecting
Players’ Performance and Perception in Multiplayer Games. In Proceedings of 4th
ACM SIGCOMM Workshop on Network and System Support for Games (NetGames
’05). Association for Computing Machinery, New York, NY, USA, 1–7. https:
//doi.org/10.1145/1103599.1103624

[8] Ngoc Q. K. Duong, Christopher Howson, and Yvon Legallais. 2012. Fast sec-
ond screen TV synchronization combining audio fingerprint technique and
generalized cross correlation. In 2012 IEEE Second International Conference on
Consumer Electronics - Berlin (ICCE-Berlin). IEEE, Berlin, Germany, 241–244.
https://doi.org/10.1109/ICCE-Berlin.2012.6336458

[9] Matteo Frigo and Steven G. Johnson. 2005. The Design and Implementation of
FFTW3. Proc. IEEE 93, 2 (2005), 216–231. Special issue on “Program Generation,
Optimization, and Platform Adaptation”.

[10] Mojgan Ghasemi, Partha Kanuparthy, Ahmed Mansy, Theophilus Benson, and
Jennifer Rexford. 2016. Performance Characterization of a Commercial Video
Streaming Service. In Proceedings of the 2016 Internet Measurement Conference
(IMC ’16). Association for Computing Machinery, New York, NY, USA, 499–511.
https://doi.org/10.1145/2987443.2987481

[11] Helmut Haas. 1972. The influence of a single echo on the audibility of speech.
Journal of The Audio Engineering Society 20, 2 (march 1972), 146–159.

[12] Christopher Howson, Eric Gautier, Philippe Gilberton, Anthony Laurent, and
Yvon Legallais. 2011. Second screen TV synchronization. In 2011 IEEE Inter-
national Conference on Consumer Electronics -Berlin (ICCE-Berlin). IEEE, Berlin,
Germany, 361–365. https://doi.org/10.1109/ICCE-Berlin.2011.6031815

[13] Fortune Business Insights. 2023. Cloud Gaming Market Size, Share,
Growth &; Forecast [2030]. https://www.fortunebusinessinsights.com/
cloud-gaming-market-102495. (2023). [Accessed 20-Jul-2023].

[14] Cullen Jennings, Florent Castelli, Henrik Boström, Jan-Ivar Bruaroey, Adam
Bergkvist, Daniel C. Burnett, Anant Narayanan, Bernard Aboba, and Taylor
Brandstetter. 2023. WebRTC: Real-Time Communication in Browsers. https:
//www.w3.org/TR/webrtc/. (2023). [Accessed 20-Jul-2023].

[15] Jeremy Lainé. 2023. aiortc. https://github.com/aiortc/aiortc. (2023). [Accessed
20-Jul-2023].

[16] Bong-Ki Lee and Joon-Hyuk Chang. 2016. Packet Loss Concealment Based on
Deep Neural Networks for Digital Speech Transmission. IEEE/ACM Transactions
on Audio, Speech, and Language Processing 24, 2 (2016), 378–387. https://doi.org/
10.1109/TASLP.2015.2509780

[17] Narimene Lezzoum, Ghyslain Gagnon, and Jérémie Voix. 2016. Echo threshold
between passive and electro-acoustic transmission paths in digital hearing pro-
tection devices. International Journal of Industrial Ergonomics 53 (2016), 372–379.
https://doi.org/10.1016/j.ergon.2016.04.004

[18] Ruth Y. Litovsky, H. Steven Colburn, William A. Yost, and Sandra J. Guz-
man. 1999. The precedence effect. The Journal of the Acoustical Soci-
ety of America 106, 4 (1999), 1633–1654. https://doi.org/10.1121/1.427914
arXiv:https://doi.org/10.1121/1.427914

[19] Reza Lotfidereshgi and Philippe Gournay. 2018. Speech Prediction Using an Adap-
tive Recurrent Neural Network with Application to Packet Loss Concealment.
In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, Calgary, AB, Canada, 5394–5398. https://doi.org/10.1109/icassp.
2018.8462185

[20] Team Luna. 2021. Amazon Luna – Quick Start Guide. https://amazonluna.blog/
getting-started-a473f603c2d4. (2021). [Accessed 20-Jul-2023].

[21] Dani Marfil, Fernando Boronat, Almanzor Sapena, and Anna Vidal. 2019. Syn-
chronization Mechanisms for Multi-User and Multi-Device Hybrid Broadcast
and Broadband Distributed Scenarios. IEEE Access 7 (2019), 605–624. https:
//doi.org/10.1109/ACCESS.2018.2885580

[22] David L. Mills. 2012. Executive Summary: Computer Network Time Synchroniza-
tion. https://www.eecis.udel.edu/~mills/exec.html. (2012). [Accessed 20-Jul-2023].

[23] Mario Montagud, Pablo Cesar, Fernando Boronat, and Jack Jansen. 2018. Intro-
duction to Media Synchronization (MediaSync). Springer International Publishing,
Cham, 3–31. https://doi.org/10.1007/978-3-319-65840-7_1

[24] Babak Naderi and Ross Cutler. 2020. An Open Source Implementation of ITU-T
Recommendation P.808 with Validation. In Interspeech 2020. ISCA, Shanghai,
China, 2862–2866. https://doi.org/10.21437/interspeech.2020-2665

[25] International Standardization Organization. 2003. ISO 226: 2003(E): Acous-
tics—Normal Equal-Loudness-Level Contours. (2003).

[26] Abhinav Pathak, Himabindu Pucha, Ying Zhang, Y. Charlie Hu, and Z. Morley
Mao. 2008. A Measurement Study of Internet Delay Asymmetry. In Proceedings
of the 9th International Conference on Passive and Active Network Measurement
(PAM’08). Springer-Verlag, Berlin, Heidelberg, 182–191.

[27] Oswaldo Sebastian Peñaherrera-Pulla, Carlos Baena, Sergio Fortes, Eduardo
Baena, and Raquel Barco. 2021. Measuring key quality indicators in cloud gaming:

Framework and assessment over wireless networks. Sensors 21, 4 (2021), 1387.
[28] Hubert Pham. 2023. PyAudio: Cross-platform audio I/O for Python, with PortAu-

dio. https://people.csail.mit.edu/hubert/pyaudio/. (2023). [Accessed 20-Jul-2023].
[29] Byron Reeves and David Voelker. 1993. Effects of audio-video asynchrony on

viewer’s memory, evaluation of content and detection ability. Stanford Univ.,
Stanford, CA, Tech. Rep. (1993).

[30] Earl D. Schubert and Joel Wernick. 1969. Envelope versus Microstruc-
ture in the Fusion of Dichotic Signals. The Journal of the Acoustical So-
ciety of America 45, 6 (1969), 1525–1531. https://doi.org/10.1121/1.1911633
arXiv:https://doi.org/10.1121/1.1911633

[31] Juan M. Silva, Mauricio Orozco, Jongeun Cha, Abdulmotaleb El Saddik, and
Emil M. Petriu. 2013. Human Perception of Haptic-to-Video and Haptic-to-
Audio Skew in Multimedia Applications. 9, 2, Article 9 (may 2013), 16 pages.
https://doi.org/10.1145/2457450.2457451

[32] Charles Spence, Roland Baddeley, Massimiliano Zampini, Robert James, and
David I Shore. 2003. Multisensory temporal order judgments: When two locations
are better than one. Perception & psychophysics 65 (2003), 318–328.

[33] Xbox Support. 2023. Xbox Adaptive Controller Troubleshooting.
https://support.xbox.com/en-US/help/account-profile/accessibility/
adaptive-controller-wont-connect-to-xbox-or-pc. (2023). [Accessed 20-
Jul-2023].

[34] Suramya Tomar. 2006. Converting video formats with FFmpeg. Linux Journal
2006, 146 (2006), 10.

[35] Jean-Marc Valin, Koen Vos, and Tim Terriberry. 2012. Definition of the Opus
Audio Codec. RFC 6716. RFC Editor. 1–325 pages. https://www.rfc-editor.org/
rfc/rfc6716.txt

[36] Ray van Brandenburg and Arjen Veenhuizen. 2013. Immersive second-screen
experiences using hybrid media synchronization. InMediaSyncWorkshop. Nantes,
France, 1–7.

[37] Di Xie, Sanjeev Mehrotra, Jin Li, and Y. Charlie Hu. 2013. URCP: Universal Rate
Control Protocol for Real-Time Communication Applications. Technical ReportMSR-
TR-2013-64. Microsoft. https://www.microsoft.com/en-us/research/publication/
urcp-universal-rate-control-protocol-for-real-time-communication-applications/

https://doi.org/10.48550/ARXIV.1910.08838
https://doi.org/10.1145/1103599.1103624
https://doi.org/10.1145/1103599.1103624
https://doi.org/10.1109/ICCE-Berlin.2012.6336458
https://doi.org/10.1145/2987443.2987481
https://doi.org/10.1109/ICCE-Berlin.2011.6031815
https://www.fortunebusinessinsights.com/cloud-gaming-market-102495
https://www.fortunebusinessinsights.com/cloud-gaming-market-102495
https://www.w3.org/TR/webrtc/
https://www.w3.org/TR/webrtc/
https://github.com/aiortc/aiortc
https://doi.org/10.1109/TASLP.2015.2509780
https://doi.org/10.1109/TASLP.2015.2509780
https://doi.org/10.1016/j.ergon.2016.04.004
https://doi.org/10.1121/1.427914
http://arxiv.org/abs/https://doi.org/10.1121/1.427914
https://doi.org/10.1109/icassp.2018.8462185
https://doi.org/10.1109/icassp.2018.8462185
https://amazonluna.blog/getting-started-a473f603c2d4
https://amazonluna.blog/getting-started-a473f603c2d4
https://doi.org/10.1109/ACCESS.2018.2885580
https://doi.org/10.1109/ACCESS.2018.2885580
https://www.eecis.udel.edu/~mills/exec.html
https://doi.org/10.1007/978-3-319-65840-7_1
https://doi.org/10.21437/interspeech.2020-2665
https://people.csail.mit.edu/hubert/pyaudio/
https://doi.org/10.1121/1.1911633
http://arxiv.org/abs/https://doi.org/10.1121/1.1911633
https://doi.org/10.1145/2457450.2457451
https://support.xbox.com/en-US/help/account-profile/accessibility/adaptive-controller-wont-connect-to-xbox-or-pc
https://support.xbox.com/en-US/help/account-profile/accessibility/adaptive-controller-wont-connect-to-xbox-or-pc
https://www.rfc-editor.org/rfc/rfc6716.txt
https://www.rfc-editor.org/rfc/rfc6716.txt
https://www.microsoft.com/en-us/research/publication/urcp-universal-rate-control-protocol-for-real-time-communication-applications/
https://www.microsoft.com/en-us/research/publication/urcp-universal-rate-control-protocol-for-real-time-communication-applications/

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA P. Hamadanian et al.

Appendices
Appendices are supportingmaterial that has not been peer-reviewed.

A EKHO RELIABILITY
Here, we provide an analytical model for Ekho’s peak detection
method, and shall analyze the false-positive rate in this approach.
First, let us consider the false positive rate for the outlier strategy.
Recall that we define the cross-correlation metric in the following
way:

𝑍 [𝑡] =
𝐻∑︁
𝑖=1

𝑥𝑟𝑒𝑐 [𝑡 + 𝑖] .𝑤 [𝑖] (9)

Concretely, let us separate the recording 𝑥𝑟𝑒𝑐 [𝑡] to a game audio
component 𝑥 [𝑡] and a marker component �̂� [𝑡], and for simplicity,
let us assume that the PN-sequence is not spectrum limited and
thus the cross-correlation of𝑤 [𝑡] and �̂� [𝑡] with itself is 0 when not
aligned properly. If we assess the cross-correlation at such times,
𝑍 [𝜏], we have:

𝑍 [𝜏] =
𝐻∑︁
𝑖=1

(𝑥 [𝜏 + 𝑖] + �̂� [𝜏 + 𝑖]).𝑤 [𝑖]

=

𝐻∑︁
𝑖=1

𝑥 [𝜏 + 𝑖] .𝑤 [𝑖]

𝑤 [𝑖] ∼ 𝑁 (0, 𝜎2)

⇒ 𝑍 [𝜏] ∼ 𝑁 (0, 𝜎2 .
𝐻∑︁
𝑖=1

𝑥 [𝜏 + 𝑖]2)

𝑍 [𝜏] ∼ 𝑁 (0, �̂� [𝜏]2)

(10)

In other words, for all non-aligning indexes 𝜏 , 𝑍 [𝜏] is a Gaussian
random variable with an unknown standard deviation. Thus if 𝑍 [𝜏]
is a normalized cross-correlation we have:

𝑍 [𝜏] = 𝑍 [𝜏]√︃
1
𝑆

∑𝑆
𝑖=1 𝑍 [𝜏 + 𝑖]2

⇒ 𝑍 [𝜏] ∼ 𝑁 (0, 1)
(11)

Where is 𝑆 is the length of the normalization window. Thus, if
we set a threshold \ , the false positive rate is 𝐹𝑃 = 1−Φ(−\) +Φ(\).
For the choice of \ = 5, the false positive rate is 2𝐸 − 4%, which
despite sound like very little, is actually one false positive sample
every 10 seconds.

Now, let us consider the back-to-back filter strategy. If the chance
of an outlier in the past analysis is 𝑝 << 1, and we naïvely assume
that false positives pass the envelope, the chance of a sample having
two back to back outliers is 𝑝.(1 − (1 − 𝑝)2𝛿+1) ≈ (2𝛿 + 1).𝑝2. For
\ = 5 and 𝑝 = 2𝐸−4%, this amounts two a false peak rate of 8𝐸−8%.
This means that there will be one false peak every 7 hours on
average, which should be robust enough for a commercial setting.

B ABLATION: MICROPHONE QUALITY
To assess the effect of microphone quality on marker detection,
we use three microphones, visualized in Figure 16, with frequency

No Detection 0-25% 25-50% 50-75% 75-100%

ISD Measurement Rate

0%
25%
50%
75%

100%

H
is

to
gr

am
(%

)

Studio Microphone
Xbox Stereo Headset

Samsung IG955 Earphone

0 200 400 600

ISD Measurement Error (µs)

0%
25%
50%
75%

100%

C
D

F
(%

)

Studio Microphone
Xbox Stereo Headset

Samsung IG955 Earphone

Figure 14: Studying Ekho with three different microphones.
Ekho maintains sub-millisecond accuracy and high marker
detection throughout different hardware.

responses in Figure 17: (1) a $25 Studio microphone, representative
of the highest recording quality, (2) a $45 Xbox Stereo Headset,
representative of the typical headset used in gaming sessions, (3)
a $4 Samsung IG955 Earphone, representing the lowest quality
microphones usable.

We repeat the experiment in §6.3, and plot ISD error and mea-
surement rate in Figure 14. As observable, despite extreme differ-
ences in frequency responses across these three microphones, Ekho
maintains 100% marker detection and sub-millisecond accuracy
throughout.

C ABLATION: ENCODING
Figure 15 demonstrates the effect of encoding level on measure-
ments, when using the Xbox Stereo Headset. We consider no com-
pression (lossless), a 32kbps bitrate budget, a 24kbps bitrate budget
and 24kbps bitrate budget with a level 4 search complexity. While
encoding does affect perceptible quality, it does not noticeably affect
Ekho-Estimator’s performance.

D DATASET
We use 30 audio samples from 15 popular online games, as listed
in Table 2. These games span a variety of genres, from platform
to racing and role-playing games, and samples consist of different
stimuli such as speech, music and game sound effects.

E HARDWARE
We use three microphones in our evaluation (§6), visualized in
Figure 16. In Figure 17, we present the frequency response of the
recording channel, with different microphones. This channel con-
sists of the speaker hardware, the physical environment surround-
ing the speaker to microphone path, and the microphone itself. We
only change the microphone, and keep the speaker and physical

Ekho: Synchronizing Cloud Gaming Media Across Multiple Endpoints ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Game Title Genre Audio Category

CrossFireX First Person Shooter #1: Game Sound Effects

#2: Game Sound Effects, Speech

GRID Legends Racing Simulator #1: Game Sound Effects, Speech

#2: Game Sound Effects

Resident Evil Village Survival Horror #1: Speech

#2: Game Sound Effects

Death’s Door Isometric Action-Adventure #1: Music

#2: Music, Game Sound Effects

Halo Infinite First Person Shooter #1: Game Sound Effects

#2: Speech, Game Sound Effects

Sable Adventure & Exploration #1: Music, Game Sound Effects

#2: Music

Dying Light 2 (RWDI) Action Role Playing Game #1: Speech

#2: Speech

OlliOlli World Sports Action Platformer #1: Music, Game Sound Effects

#2: Music, Game Sound Effects

Tales of Arise Action Role Playing Game #1: Speech, Music

#2: Speech, Music

Elden Ring Soulsborne Role Playing Game #1: Game Sound Effects

#2: Game Sound Effects

Ori and the Will of the Wisps Metroidvania Platformer #1: Game Sound Effects, Music

#2: Game Sound Effects, Music

The Artful Escape Adventure Platformer #1: Speech, Music

#2: Speech, Music

Forza Horizon 5 Racing Simulator #1: Music, Speech

#2: Game Sound Effects, Music, Speech

Psychonauts 2 Adventure Platformer #1: Speech

#2: Speech

Tormented Souls Psychological Horror Shooter #1: Speech, Music

#2: Game Sound Effects, Music

Table 2: Description of the game audio clips used in the evaluation. There are two clips per game, and all clips are 15 seconds
long.

environment the same throughout the setup. As observed, the high
quality studio microphone has a relatively flat frequency response
(Figure 17a), especially in our region of interest of 6-12KHz, while
the Xbox Stereo Headset has several peaks and troughs (Figure 17b).

The Samsung earphone displays the worst response and deteriora-
tion, where the difference from the lowest to highest amplitude in
the response exceeds 30dB (Figure 17c).

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA P. Hamadanian et al.

No Detection 0-25% 25-50% 50-75% 75-100%

ISD Measurement Rate

0%
25%
50%
75%

100%

H
is

to
gr

am
(%

)

No compression
OPUS SWB 32kbps

OPUS SWB 24kbps
OPUS SWB 24kbps ULL

0 200 400 600 800 1000

ISD Measurement Error (µs)

0%
25%
50%
75%

100%

C
D

F
(%

)

No compression
OPUS SWB 32kbps

OPUS SWB 24kbps
OPUS SWB 24kbps ULL

Figure 15: Studying Ekho with four different levels of
compression. Aggressive encoding makes marker detection
harder, but Ekho maintains a satisfiable level of detection
throughout.

Ekho: Synchronizing Cloud Gaming Media Across Multiple Endpoints ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

(a) Studio Microphone (b) Xbox Stereo Headset (c) Samsung IG955 Earphone

Figure 16: Microphones used in our experiments.

0 3 6 9 12 15 18 21 24

Frequency (KHz)

−30

−20

−10

0

10

20

30

A
m

pl
itu

de
(d

B
)

(a) Studio Microphone

0 3 6 9 12 15 18 21 24

Frequency (KHz)

−40

−30

−20

−10

0

10

20

A
m

pl
itu

de
(d

B
)

(b) Xbox Stereo Headset

0 3 6 9 12 15 18 21 24

Frequency (KHz)

−40

−30

−20

−10

0

10

20

A
m

pl
itu

de
(d

B
)

(c) Samsung IG955 Earphone

Figure 17: Frequency Responses for tested microphones. High quality microphones have flat frequency responses.

	Abstract
	1 Introduction
	2 Related Work
	3 Background and Motivation
	3.1 Time Synchronization Requirements
	3.2 Inter-Stream Delay
	3.3 isd variation

	4 Ekho
	4.1 Overview of isd Measurement in Ekho
	4.2 Reliable marker detection in Ekho
	4.3 isd Estimation
	4.4 Ekho Delay Compensation

	5 Design and Implementation
	5.1 Architecture
	5.2 Implementation

	6 Evaluation
	6.1 End-to-end synchronization
	6.2 Marker Audibility
	6.3 Marker Detection
	6.4 Ekho vs. GCC-PHAT
	6.5 Video-to-Audio Sync

	7 Conclusion
	References
	A Ekho Reliability
	B Ablation: Microphone quality
	C Ablation: Encoding
	D Dataset
	E Hardware

