
2023 IEEE International Conference on Big Data (BigData)

979-8-3503-2445-7/23/$31.00 ©2023 IEEE 5266

NASEREX: Optimizing Early Exits via AutoML for
Scalable Efficient Inference in Big Image Streams

Aakash Kapoor
Cornell University
New York, USA

ak2247@cornell.edu

Rajath Elias Soans
Merck Research
Atlanta, USA

soans@merck.com

Soham Dixit
University of Southern California

Los Angeles, USA
dixitsoham@gmail.com

Pradeep NS
Qualcomm

Bangalore, India
pns@qti.qualcomm.com

Brijraj Singh
Sony Research

Bangalore, India
brijraj.singh@sony.com

Mayukh Das
M365 Research, Microsoft

Bangalore, India
mayukhdas@microsoft.com

Abstract—We investigate the problem of smart operational
efficiency, at scale, in Machine Learning models for Big Data
streams, in context of embedded AI applications, by learning
optimal early exits. Embedded AI applications that employ
deep neural models depend on efficient model inference at
scale, especially on resource-constrained hardware. Recent vi-
sion/text/audio models are computationally complex with huge
parameter spaces and input samples typically pass through
multiple layers, each with large tensor computations, to produce
valid outputs. Generally, in most real scenarios, AI applications
deal with big data streams, such as streams of audio signals,
static images and/or high resolution video frames. Deep ML
models powering such applications have to continuously perform
inference on such big data streams for varied tasks such as noise
suppression, face detection, gait estimation and so on. Ensuring
efficiency is challenging, even with model compression techniques
since they reduce model size but often fail to achieve scalable
inference efficiency over continuous streams. Early exits enable
adaptive inference by extracting valid outputs from any pre-final
layer of a deep model which significantly boosts efficiency at scale
since many of the input instances need not be processed at all the
layers of a deep model, especially for big streams. Suitable early
exit structure design (number + positions) is a difficult but crucial
aspect in improving efficiency without any loss in predictive
performance, especially in context of big streams. Naive manual
early exit design that does not consider the hardware capacity
or data stream characteristics is counterproductive. We propose
NASEREX framework that leverages Neural architecture Search
(NAS) with a novel saliency-constrained search space and exit
decision metric to learn suitable early exit structure to augment
Deep Neural models for scalable efficient inference on big image
streams. Optimized exit-augmented models perform ≈ 2.5×
faster having ≈ 4× aggregated lower effective FLOPs, with no
significant accuracy loss.

Index Terms—DNNs, Early Exits, Image Streams, AutoML,
NAS

I. INTRODUCTION

Deep Neural Networks (DNNs) are essentially stacked
transformation functions (layers) that generate progressively
complex features/encoding which makes them universal ap-
proximators and allows for unprecedented success in complex

tasks. This inferential effectiveness comes at the cost of
increased computational complexity, making them hard to
scale for operational efficiency in AI applications, especially
when running on resource constrained hardware. Existing
research on compute/power/size-efficient models [9], [21]–
[23] focus primarily on model architecture/parameter space
compression via quantization, pruning or distillation [1], [2].
However, in reality, operational efficiency of AI-driven appli-
cations/features powered by deep neural models pivots on not
just lighter models but also on how the models can adapt to
input signals. Incoming signals for most AI-driven applications
or features, running either on-edge or on-cloud platforms,
tend to be streams of instances or samples. For example,
smartphone camera background blurring models running at
the preview stage receive streams of image frames.

Operational efficiency in real machine learning systems is
not only subject to latency over a single inference/execution
run but instead depends more on tail latency and/or throughput
for inference workloads, scaled over extended periods of time.
This operational efficiency is indicative of the expected user
experience of real machine learning applications. Traditional
model compression strategies such as pruning, quantization
etc., focus on reducing the architecture/parameter space and
optimizing tensor operations. These techniques typically im-
prove latency for isolated runs but tend to be ineffective for
improving efficiency at scale in extended inference workloads
with data streams. A promising alternative is to capitalize
on the fact that not all instances in a stream are of similar
complexity and while some instances might require end-to-
end computation across all DNN layers to compute the output,
others might be able to make a reasonable estimate of output
after transformation over just a few layers. For instance, image
streams or video frames often contain irrelevant frames [25]
or frames of varying complexity that may either not offer
useful insights relevant to the use-case or not require all
the complex computations across all the layers to produce
meaningful output. Such adaptive execution on data streams

5267

Fig. 1: Exit gates at terminal and/or non-terminal layers.

has the potential to reduce aggregate/tail latency or throughput
over data streams.

Early Exits [3], [6], [14], [15], [20], [24] enable adaptive
inference by allowing us to obtain outputs of a given input
signal from any pre-final layer of a DNN. This reduces
information flow bottlenecks in DNNs leading to reduced
aggregate inference latency without adversely affecting pre-
dictive performance on big streams of samples/instances over
a period of time. For instance FrameExit [3] processes fewer
video frames for simpler videos, via early exits based on
frame complexity, for efficient video processing. This is even
more critical for modern large language models [19] since
their size makes their usage prohibitive in rapid streams of
text. However, in this work, to ensure clarity of motivation
and presentation, we focus primarily on big image streams
scenarios that include sequence of images, video frames, etc.

Obtaining structures for early exits (feasible number of exits
and their suitable placement at one or more DNN layers) is
a key factor towards task-aware operational efficiency. Fig. 1
illustrates a general idea of how exit gates can be placed in a
model. As can be clearly seen, the number of exit gates placed
along with the location where they are placed can significantly
impact both a model’s predictive performance as well as
its operational efficiency. This necessitates careful design of
exit gates. However, manual design of exits is not possible
at an industrial scale. ANNExR [16] studies the challenges
of automated early exit design. We propose NASEREX to
automatically learn optimal early exit structure via Neural
Architecture Search (NAS)/AutoML1 [13], [26]. Employing
NAS, especially on pre-trained base architectures, is not trivial.
Several challenges exist, including designing a manageable
search space and obtaining a robust / efficient scoring metric
that accounts for output uncertainty/confidence while balanc-
ing additive complexity due to exit structures. While different
NAS approaches address the architecture learning problem in
various ways, be it first order optimization (RL or evolutionary
algorithms) on discrete search spaces [26] or efficient gradient
based optimization on differentiable search spaces [13], none
of them directly fit our problem setting of task-aware learning
of exit structure. We make the following contributions - (1)
A method to augment base DNN model to generate space of
candidate early exit structure, (2) NAS framework to optimize

1AutoML and NAS are used interchangeably throughout this paper

Fig. 2: Overview of our proposed NASEREX framework

the number and placement of exits, (3) A robust metric to
regulate early exit decisions on input stream samples, and (4)
Tractable implementation strategy for our proposed framework
to seamlessly work at an industrial scale.

II. METHODOLOGY

A. Problem Setting

Given a base model architecture, we aim to automatically
learn optimal early exit structure (number and positions) to
augment the base model, and effectively maximize inference
efficiency on big image stream tasks without loss in accuracy.

Let the base model M with at most |ℓ| = N layers. In many
recent models, however, layers may not always be sequential,
and can have parallel paths. For clarity of presentation we
assume each layer has a unique index ℓj : 1 ≤ j ≤ N . We
aim to learn exit gates G = {Gi}ni=1; s.t. 0 ≤ n ≤ N and
a mapping function G → ℓ : F(i) = j which determines the
position of the exits to generate an augmented model m ∈
M ′2. For a streaming image sample D = d1, . . . dk, . . . , dT ,
for some time window T , our optimization problem can be
formally presented as,

argmin
Φ

ED[Latency(m)] + ED[|M(dk)−m(dk)|] (1)

where Φ = (n,G → ℓ) is the tuple of optimizable dimensions
that represent the space of exit gate structures. Note that
this is not a straightforward optimization problem. We need
to jointly optimize over a count variable (n) and mapping
function F(i) = j with a multi-criteria objective. There is
no closed form solution and gradient-based optimization is
also not feasible since we are operating in the (non-numeric)
architecture/design space of DNNs. Also, it is subject to
the base architecture M that is being augmented as well as
the big image stream D. Thus we propose to address this
problem using a Neural Architecture Search (NAS) approach
that leverages zero-order optimization over a hybrid search
space of early exit structures. Our framework (Fig. 2) NAS-
designed early Exits, NASEREX, has 3 main components: (1)
NAS pipeline, (2) Design of architecture for exit augmentation,
and (3) Novel real-time early exit decision criteria.

2M ′ is the set of all feasible exit-augmented models

5268

B. Problem & Solution Framework Components

1) Neural Architecture Search: Given a base model M ,
we augment it by providing tuneable hyper-parameters θ
and architectural parameters α, to generate the augmented
model mα,θ ∈ M ′. An important thing to note here is
that exit gate structure space (from Eqn. 1) Φ ⊆ α, since
there is no restriction against optimizing other architectural
parameters along with the exit gates. Our NAS problem can
be summarized using Eqns. 2–4

wopt
α,θ = argmin

w
L(mα,θ(w)) (2)

αopt, θopt = argmax
α,θ

S(mα,θ(w
opt
α,θ)) (3)

Mopt
α,θ = mαopt,θopt(wopt

α,θ) (4)

where mα,θ ∈ M ′ is a candidate augmented model sampled
from the set of all possible augmented models M ′, L is
the training loss and S is the scoring metric to estimate
performance of trained candidate augmented models. Our
architecture search explores α, θ values over a tractable dis-
crete search space. Candidate model architectures are trained
and scored, with the scores being used as a reward in our
AgingEvolution-based NAS controller [17] to generate an
optimal model architecture, denoted by Mopt

α,θ ∈ M ′. Agin-
gEvolution works by randomly initializing a pool of models
from the discrete search space mutates them using the scores
as fitness function to iteratively select better pools of models.
Optimality is guaranteed, subject to the level of exploration,
but may converge early.

2) Architecture Design: We need to consider two aspects of
model architecture, the base architecture that forms the back-
bone of our exit-augmented model and the exit gate placements
themselves. Our optimization problem is independent of any
specific baseline model feature which alleviates any restriction
on the choice of backbone. Since the primary purpose of early
exits is faster inference, we note that – (1) Exit gates need to
be reasonably simple to ensure that they do not significantly
add to computational complexity of the base model itself. (2)
Exit gate outputs need to be of the same shape as the backbone
output. (3) Exit gates can, in theory, be placed anywhere but
the complexity of modern DNNs precludes us from feasibly
implementing this naively with discrete search spaces.
[SALIENCY CRITERIA]: Discrete search spaces grow at an
exponential rate, especially if formulated as binary decisions,
which will not scale well in our setting. To keep the search
space polynomial, factors that grow with logarithmic com-
plexity are used in place of binary decisions. Formally this
reduces to the problem of ranking model nodes {N} by a
metric, and choosing O(log |N |) nodes. In practice, however,
a heuristic approach of manually selecting a criteria that allows
suitable coverage of the search space, suffices. For example,
given the highly residual nature of the models (II-D) in our
study, we decided to choose our saliency criteria such that
only the locations where the residual connections merge into
the main branch were considered for our search space.

3) Early Exit Decision Strategy: The learned exit-
augmented model Mα,θ relies upon confidence measurement
bounds for exit decision at any given exit for a given input sig-
nal. Our goal, post-training, is to estimate decision confidence
bounds by the use of predictor functions shown below

Tlow = flow(C0, C1, ..., CK); Thigh = fhigh(C0, C1, ..., CK)
(5)

where flow is the predictor that yields the lower confidence
threshold Tlow, fhigh the upper confidence threshold Thigh,
and K is the number of exit gates augmented to the model. Ci

is the confidence score at exit gate i. The predictor functions
may either be deterministic or stochastic. Universal approx-
imators such as DNNs may be used as predictor functions.
In this paper, we learn Gaussian regressors (parameterized
with mean and variance) as predictor functions. Estimation
of model uncertainty and decision confidence is critical to
regulating the exit gates. Softmax outputs as proxies for model
confidence is not reliable in real scenarios since the nature of
relationship between softmax outputs and model confidence
is unknown. Therefore, we adopt softmax with temperature
scaling [5] which softens the DNN outputs in a manner that
better represents true probability distributions.

C. Algorithm

Algorithm 1 outlines our NASEREX framework. Firstly,
we generate a manageable search space from base model
via saliency. AgingEvolution controller draws models as per
fitness from our search space with a certain exploration bias.
Each model drawn is trained, calibrated, and used to obtain
the threshold values (Tlow, Thigh) for early exit decisions. At
validation, an input sample D is passes through the model
until an exit gate is encountered. At the exit gate, we compute
the confidence score which, if higher than Thigh, generates
positive decision, or, if lower than Tlow, a negative decision
for D. If no decision can be made, execution proceeds along
the model until the output is obtained either form an early exit
or the final layer. This ensures that we consider both highly
confident positive predictions (for inputs where target is easy
to predict) and highly confident negative predictions (for out-
of-distribution samples). As is clear, earlier exits favour lower
latency while later exits favour better accuracy. This trade-off
can be controlled by the use of appropriate predictor functions.
In addition to the algorithmic details, we outline the tractable
implementation choices, next, which make NASEREX usable
in practice at an industrial scale.

D. Tractable Implementation of NASEREX

Our tractable implementation has 4 major aspects : (1)
A practically feasible search space design for Neural Archi-
tecture Search, (2) Designing the exit gate architecture on
the basis of suitable baseline models chosen, (3) Choosing
a suitable criterion for exit decisions, and (4) Implementing
an effective training pipeline that serves our objectives. We
illustrate the same with ResNet50 [7] and MobileNetV2 [18]
as base architectures.

5269

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Model Complexity (Number of Layers)

2

4

6

8

Se
ar

ch
 S

pa
ce

 S
ize

Naive Approach (Exponential Complexity)
Using Saliency (Linear Complexity)

Fig. 3: Search Space Complexity with and without saliency

Algorithm 1 Optimized Early Exit via Efficient NAS
Require: M ← Base Model, DT , DV ← Dataset
1: function NASEREX(M,DT , DV)
2: PM ← GetSearchSpace(M) ▷ PM is the Search Space
3: PC ← GenerateModelPool(PM) ▷ Initial Model Pool
4: while PM is not empty do
5: PM ← PM − PC ; R← 0
6: for Mα,θ in PC do
7: M∗

α,θ, Thigh, Tlow ← TRAIN(Mα,θ)
8: Score← VALIDATE(M∗

α,θ, Thigh, Tlow)
9: if Score > R then

10: R← Score; Mopt ←Mα,θ

11: end if
12: end for
13: PC ← AgingEvolution(PM , R)
14: end while
15: return Mopt

16: end function
17: function TRAIN(Mα,θ)
18: while Convergence do
19: OM , OE ←Mα,θ(DT) ▷ Final/Early Exit Output
20: Thigh ← fhigh(OE); Tlow ← flow(OE)
21: M∗

α,θ ← Backward(Mα,θ) ▷ Backward Pass
22: for i in NE do ▷ NE : Number of Exits
23: M∗

α,θ ← Backward(M i
s)

24: end for
25: end while
26: return M∗

α,θ, Thigh, Tlow

27: end function
28: function VALIDATE(Mα,θ, Thigh, Tlow)
29: OM , OE ←Mα,θ(DV) ▷ Model/Exit Output
30: if Confidence(Oi

E) > Thigh then
31: O ← Oi

E
32: end if
33: if max(Confidence(Oi

E)) < Tlow then
34: O ← Oneg

35: end if
36: Score← Accuracy(O, Pred)
37: return Score
38: end function

1) Search Space: In our setting, the search space is essen-
tially encoded as an array of binary choices between placing an
exit gate or not at a given position. However, in this scheme
the search space may grow exponentially with the number
of potential positions for placing the exit gates, illustrated in
Fig. 3. We solve this problem by identifying and exploiting
salient points (outlined in section II-B2) present in our base
architectures. So, in practice we get O(log |N |) exit points.
|N | indicates number of layers, i.e. unique places we can
locate our exit gate in the PyTorch implementation of the
given models. Thus, given |N | = 175 layers for ResNet50

and |N | = 152 for MobileNetV2, without saliency, the size
of the search space would be ≈ 2175 and ≈ 2152, however,
with saliency it is reduced to ≈ 175k and ≈ 152k respectively
(where k is a simple linear scaling factor).

2) Exit Gate Structure: The most basic building block
within the MobileNetV2 and ResNet50 architectures is a
sequence of Convolution, Batch Normalization, and Activation
layers. We choose this as a refinement block for our exit gate.
Furthermore, we allow our NAS controller to decide how many
of these sequences to add per exit gate. The collection of these
sequential blocks, however, do not provide the correct output
shape. Hence, the outputs from the sequential layers are further
processed by pooling, followed by flattening the tensors and
then adding a fully connected layer to map the flattened tensors
to the correct output shape.

3) Exit Decision Criterion: The backbone/base model out-
puts are augmented with Temperature controlled Softmax to
ascertain a measure of confidence for class selection. Using
temperature helps improve the reliability of using the softmax
classifier by making it confidence-calibrated [11]. The temper-
ature value is typically set to 1 in traditional softmax usage but
in our experiments, we set it to a higher value of 5, empirically,
to smooth out the softmax distribution. Since our task is multi-
class classification, we use cross-entropy loss along with L1
regularization on our model (and exit gate) outputs for training.
During training, we keep track of the per-class output values
from the base model output which we pass to the predictor
functions, formulated as µc + 0.5σc, where µc is the mean
and σc is the standard deviation of the output vector for class
c, for the upper threshold predictor function.

4) Training Details: We define a sub-model M (sub)
i as the

set of layers beginning from the input nodes of the backbone
model and culminating in the output layer of the ith exit gate.
Each candidate sub-model needs to behave as close to the
main backbone as possible, within limitations of its respective
complexity, to provide effective inference. To ensure this, our
pipeline trains each sub-model with as much independence
as possible, with each sub-model backpropagating in an in-
terleaving fashion rather than parallel, shown in Algorithm 1.
This is essential in order to avoid race conditions during model
weight updates.

III. EXPERIMENTS

A. Experimental Settings

We evaluate our exit-augmented architectures against the
backbone architectures as baselines on 2 types of vision
problems with big data streams, image classification and video
classification. Image classification experiments are sort of a
control experiment to demonstrate that our method is effective
(lower expected latency) even on static image datasets that
can be executed in batch workloads. Video classification task
highlights the primary claim of the paper about scalable
operational efficiency on big image stream inference tasks.

Backbones: Note that the backbone models we have evalu-
ated in this early work are traditional CNN-based architectures
for vision tasks. This choice is motivated by the clarity of CNN

5270

Dataset ResNet50 : Base ResNet50 : NASEREX

Accuracy
(%)

Latency
(ms)

Accuracy
(%)

Latency
(ms)

CIFAR-10 82.73 7.27 85.28 1.78
CIFAR-100 51.95 7.32 24.57 2.82
CalTech-101 63.50 7.40 78.07 1.43
CalTech-256 26.58 7.34 35.23 2.41

Dataset MobileNetV2 : Base MobileNetV2 : NASEREX

Accuracy
(%)

Latency
(ms)

Accuracy
(%)

Latency
(ms)

CIFAR-10 81.08 5.22 84.14 2.24
CIFAR-100 51.61 5.62 49.76 2.17
CalTech-101 50.61 5.25 61.52 2.83
CalTech-256 21.01 5.51 10.2 2.41

TABLE I: Performance Comparison of Exit-Augmented Opti-
mal Architectures with Base Architectures.

(a) ResNet50 Backbone. (b) MobileNetV2 Backbone.

Fig. 4: Latency Profile at Exit Points for augmented models.

architectures even with parallel execution paths. This allows
us to demonstrate the impact of intelligently learned early exit
structure on aggregate latencies over image streams. However,
our proposed method can potentially construct exit-augmented
model with respect to any kind of backbone architectures,
including transformers.

For image classification we use CIFAR-10 [10], CIFAR-
100 [10], CalTech-101 [12], and CalTech-256 [4] using an
NVIDIA TESLA P40 GPU server. Datasets chosen represent
problems with different complexities. For example, CIFAR-
100 and CalTech256 are complex problems to solve, espe-
cially for the architectures of our choice. We also evaluate
NASEREX on phantom videos with irrelevant frames added
to it in a controlled manner. The ratio of irrelevant frames is
varied and the improvement in latency savings is characterized.
The video frames consisted data from imagenette [8] for
MobileNetV2, and cifar10 for ResNet50 along with custom-
frames with low entropy.

B. Results

1) Image Classification: Table I shows the accuracy and
latency comparisons between the backbone baselines and
NASEREX-augmented models. We observe negligible drop in
overall validation accuracy, with significant reduction in aver-
age inference latency. Augmented models are scored on test
datasets based on the accuracy they provide while functioning
as they would during deployment.

2) Video (Big Image Streams): Table II shows how
NASEREX-designed exit-augmented models have lower ex-

Fig. 5: Pareto-Optimality Boundary of NAS Search. The com-
putational costs, (Multiply-Accumulate Operation) vs accuracy
of exit augmented models. (Cost cut-off indicated in red.)

Architecture Base Model
Expected

Latency lb
(s)

Irrelevant
Frames

Augmented
Model

Expected
Latency la

(s)

Speed-Up(lb
la

)

ResNet50 70.19

0% 22.35 3.14
10% 21.95 3.19
30% 21.12 3.32
50% 20.54 3.41
75% 20.73 3.38

MobileNetV2 54.67

0% 24.63 2.21
10% 24.45 2.23
30% 22.92 2.38
50% 22.31 2.45
75% 21.32 2.56

TABLE II: Inference latency gain on a frame-by-frame anal-
ysis of a simulated video with Augmented architectures.

pected cumulative latency on simulated video frames. Observe
the substantial speed-up even with low percentage of irrelevant
frames. This proves that it is not just irrelevant frames that exit
out early, but frames of varying complexity exit at appropriate
gates leading to overall efficiency.

Figs. 4a & 4b illustrate the latency profiles with respect to
the exit positions for ResNet50 and MobileNetV2 backbones.
We have observed that the optimal placement of exit gates for
MobileNetV2 favour the latter part of the model due to high
complexity in training data. However, ResNet50 has simpler
datasets which allowed the low entropy frames to exit early.

C. Layer Pruning

Furthermore, we also propose layer pruning on exit-
augmented models, motivated by an observation that the
desired accuracy might be achieved at a certain non-terminal
exit gate in the model and the layers succeeding to that gate
can be removed if needed. Table III presents the results of
of our study. After an optimal NASEREX generated model
is obtained, we remove layers after every exit point and
record the overall accuracy each tsime. Our results show that
this method may be leveraged to yield architectures with up
to 4× fewer FLOPs and 2.5× lower latency at competitive
accuracies. The average inference latencies also show how,
for simpler tasks such as CIFAR-10 highlighted in 4a and
4b, our model is able to maintain competitive accuracy while

5271

Model Accuracy (%) Latency (s) FLOPS (M)

Base 81.08 5.22 6.4
NASEREX optimized 83.4 2.35 9.9

Exit 1 82.62 2.09 2.4
Exit 2 83.07 2.10 3.2
Exit 3 83.36 2.11 3.8
Exit 4 83.44 2.15 4.6
Exit 5 83.57 2.16 7.6
Exit 6 83.45 2.14 8.9
Exit 7 83.31 2.11 9.9

TABLE III: Model Compression by layer pruning. Results
obtained using MobileNetV2 on CIFAR-10 data at each Exit
Gate by removing all the succeeding layers.

exiting at the first exit for a large number of image samples.
Thus, based on the target problem complexity and choice of
the user, designers have the option to choose subset of layers
to be pruned that balance accuracy and efficiency needed for
the use case.

D. Pareto Optimality & Limitations

Given sufficient exploration, pareto-optimality in the space
of accuracy versus model complexity is an implicit outcome
of NASEREX, as early exits by nature enhance expected oper-
ational efficiency and our saliency-guided search space design
further improve the odds of identifying the right candidate(s).
The novel learned exit decision criteria, on the other hand,
takes care of accuracy frontier. As illustrated in the scatter
plot (Fig. 5), we observe a high density of exit-augmented
candidates very close to the true optimal structures.

A major limitation, however, is that the degree of explo-
ration over the search space versus computational cost of NAS
search is a delicate balance and with limited training resources
shared between data loading of large data sets and search
algorithm, exhaustive exploration is challenging.

IV. CONCLUSIONS

In this paper, we have proposed a NAS framework to learn
optimal early exit structure, thereby, providing an automated
way to enable task-aware efficient adaptive inference for any
backbone model on big image streams. While our proposed
method is conceptually generic for all types of models and
tasks (discriminative and generative), extending the implemen-
tation of the framework such that any developer/designer can
generate exit augmented networks along with post-pruning
for arbitrary model types and data sets as well as extensive
evaluation are some of the key objectives in our on-going and
future efforts.

ACKNOWLEDGEMENT

AK, RS, SD, PNS, BS and MD gratefully acknowledge
Samsung R&D Institure, Bangalore (SRIB) for its support
during initial stages of the work (when the authors were
employed there). MD gratefully acknowledges Microsoft for
the support and funding towards continuance of this work and
for conference participation.

REFERENCES

[1] Jiasi Chen and Xukan Ran. Deep learning with edge computing: A
review. Proc. IEEE, 107(8):1655–1674, 2019.

[2] Yunbin Deng. Deep learning on mobile devices: a review. In Mobile
Multimedia/Image Processing, Security, and Applications 2019, volume
10993, page 109930A. International Society for Optics and Photonics,
2019.

[3] Amir Ghodrati, Babak Ehteshami Bejnordi, and Amirhossein Habibian.
Frameexit: Conditional early exiting for efficient video recognition. In
CVPR, 2021.

[4] Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object
category dataset. CalTech Report, 03 2007.

[5] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On
calibration of modern neural networks. In International Conference on
Machine Learning, pages 1321–1330, 2017.

[6] Amirhossein Habibian, Davide Abati, Taco S Cohen, and Babak Eht-
eshami Bejnordi. Skip-convolutions for efficient video processing. In
CVPR, 2021.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In CVPR, pages 770–778, 2016.

[8] FastAI Jeremy Howard. The imagenette dataset.
[9] Ziheng Jiang, Tianqi Chen, and Mu Li. Efficient deep learning inference

on edge devices. ACM SysML, 2018.
[10] Alex Krizhevsky. Learning multiple layers of features from tiny images.

Technical report, University of Toronto, 2009.
[11] Meelis Kull, Miquel Perelló-Nieto, Markus Kängsepp, Telmo

de Menezes e Silva Filho, Hao Song, and Peter A. Flach. Beyond
temperature scaling: Obtaining well-calibrated multiclass probabilities
with dirichlet calibration. In NeurIPS, 2019.

[12] Fei-Fei Li, Marco Andreetto, and Marc ’Aurelio Ranzato. Caltech101
image dataset. CalTech Report, 2003.

[13] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055, 2018.

[14] Yoshitomo Matsubara, Marco Levorato, and Francesco Restuccia. Split
computing and early exiting for deep learning applications: Survey and
research challenges. arXiv preprint arXiv:2103.04505, 2021.

[15] Nikolaos Passalis, Jenni Raitoharju, Anastasios Tefas, and Moncef Gab-
bouj. Efficient adaptive inference for deep convolutional neural networks
using hierarchical early exits. Pattern Recognition, 105:107346, 2020.

[16] Annapurna P Patil, Rajarajeswari Subramanian, Varun Cornelio,
S Venkatesh, M Varun, K Shavin, Mayukh Das, and NS Pradeep.
Annexr: Efficient anytime inference in dnns via adaptive intermediate
decision points. In IntelliSys, 2022.

[17] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le.
Regularized evolution for image classifier architecture search. In AAAI,
2019.

[18] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. In CVPR, 2018.

[19] Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri,
Vinh Tran, Yi Tay, and Donald Metzler. Confident adaptive language
modeling. In NeurIPS, 2022.

[20] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung.
Branchynet: Fast inference via early exiting from deep neural networks.
In ICPR, pages 2464–2469. IEEE, 2016.

[21] Marian Verhelst and Bert Moons. Embedded deep neural network
processing: Algorithmic and processor techniques bring deep learning to
iot and edge devices. IEEE Solid-State Circuits Magazine, 9(4):55–65,
2017.

[22] Mário P Véstias, Rui Policarpo Duarte, José T de Sousa, and Horácio C
Neto. Moving deep learning to the edge. Algorithms, 13(5):125, 2020.

[23] Sahar Voghoei, Navid Hashemi Tonekaboni, Jason G Wallace, and
Hamid R Arabnia. Deep learning at the edge. In CSCI, 2018.

[24] Meiqi Wang, Jianqiao Mo, Jun Lin, Zhongfeng Wang, and Li Du.
Dynexit: A dynamic early-exit strategy for deep residual networks. In
SiPS, pages 178–183. IEEE, 2019.

[25] Jiaojiao Zhang, Kunqian Li, and Wenbing Tao. Multivideo object
cosegmentation for irrelevant frames involved videos. IEEE Signal
Processing Letters, 23(6):785–789, 2016.

[26] Barret Zoph and Quoc V. Le. Neural architecture search with reinforce-
ment learning. In ICLR, 2017.

