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Abstract

We introduce a new benchmark, LLF-Bench (Learning from Language Feedback Benchmark;
pronounced as “elf-bench”), to evaluate the ability of AI agents to interactively learn from natural
language feedback and instructions. Learning from language feedback (LLF) is essential for people,
largely because the rich information this feedback provides can help a learner avoid much of trial
and error and thereby speed up the learning process. Large Language Models (LLMs) have recently
enabled AI agents to comprehend natural language — and hence AI agents can potentially benefit
from language feedback during learning like humans do. But existing interactive benchmarks do not
assess this crucial capability: they either use numeric reward feedback or require no learning at all
(only planning or information retrieval). LLF-Bench is designed to fill this omission. LLF-Bench is
a diverse collection of sequential decision-making tasks that includes user recommendation, poem
writing, navigation, and robot control. The objective of an agent is to interactively solve these
tasks based on their natural-language instructions and the feedback received after taking actions.
Crucially, to ensure that the agent actually learns from the feedback, LLF-Bench implements
several randomization techniques (such as paraphrasing and environment randomization) to ensure
that the task isn’t familiar to the agent and that the agent is robust to various verbalizations.
In addition, LLF-Bench provides a unified OpenAI Gym interface for all its tasks and allows the
users to easily configure the information the feedback conveys (among suggestion, explanation, and
instantaneous performance) to study how agents respond to different types of feedback. Together,
these features make LLF-Bench a unique research platform for developing and testing LLF agents.

1 Introduction

Natural language provides an intuitive medium for a person to teach an AI agent, since that is also
how humans learn and teach each other. Compared with rewards, typically used in the reinforcement
learning (RL) paradigm (Sutton and Barto, 2018), language feedback can provide rich signals about the
agent’s behaviors, in addition to a quantitative measure of instantaneous performance. For instance,
language feedback can explain why the agent’s previous bad behaviors should be avoided, rather
than just punishing the agent without giving justification. Language feedback can also provide direct
suggestions on how the agent can improve its future behavior, similar to action feedback used in
imitation learning (IL) (Ross et al., 2011; Spencer et al., 2021) but easier to provide — after all, it’s
easier said than done. For example, providing action feedback to a robot requires setting up additional
teleoperation devices which might not always be feasible, while language feedback can be given verbally
by an ordinary user (Liu et al., 2023a).

LLF-Bench (Learning from Language Feedback Benchmark; pronounced as “elf-bench”) is a simu-
lation benchmark designed to evaluate an AI agent’s ability to learn interactively from just language
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Learning from Language Feedback (LLF)
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  Instruction:
  Your task is to go close enough to the 
  big tree near the boat. You can take 4 
  actions: forward, turn left, turn right, 
  and stop. 

   Feedback:
   You are making good progress. 
   The tree is even visible now.

Reset
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   Feedback:
   You have succeeded. You are 
   close enough to the tree.

Observation o2
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Figure 1: Shows an example navigation task to illustrate our setup, Learning from Language Feedback
(LLF). A single episode in LLF starts with a given instruction and can be multi-step long. The actions
are taken by the agent that changes the observation and provides a text feedback to the agent. The
agent receives no reward or any other form of feedback.

feedback. LLF-Bench is a collection of sequential decision making problems (ranging from item rec-
ommendation, poem writing, navigation, to robot control). In each problem, an agent interacts with
a task environment and receives language instructions and feedback. At the start of an episode, the
agent is first given a natural language instruction that describes the objective of the task, the rules,
and (optionally) side information that may help solve the problem. After executing an action in the
environment, the agent receives teacher feedback in natural language which can be used as a learning
signal.

We call this paradigm Learning from Language Feedback (LLF). LLF generalizes reinforcement
learning (RL) from reward maximization to general problem solving. Like in RL, LLF focuses on
sequential decision problems. However, in contrast to RL, an LLF agent does not receive rewards and
is not necessarily tasked with maximizing returns. Figure 1 shows an example LLF flowchart. LLF
replaces RL’s assumption of numeric rewards with generic task instructions and feedback expressed in
natural language. We can recover RL as an instance of LLF, e.g., with the instruction “Maximize the
accumulated rewards.” and the feedback template “You’ve received a reward of X.”. But LLF covers
many other scenarios that would be unnecessarily difficult to describe in the conventional RL framing,
e.g., training a robotic arm controller by giving it general advice about the types of actions it should
consider in certain situations, or asking an agent to write a poem in a certain mood by showing a few
examples. We illustrate the similarities and differences between RL and LLF in Figure 3.

How can an interactive agent use language feedback to achieve efficient learning in the LLF set-
ting? A prerequisite is that the agent can already understand commonsense and reason with natural
language, so that the agent can focus on skill learning rather than figuring out the basics of language
understanding (because instructions, rewards, and feedback in LLF are written in natural language).
This has been the main reason why LLF has not received significant attention in the past. However,
recently, Large Language Models (e.g., GPT4 (OpenAI, 2023), Gemini (Gemini Team, 2023)) have
demonstrated impressive natural language processing abilities. In addition, multiple LLM-agents have
shown promising signs of solving text-based problems involving decision making, planning, information
retrieval, tool uses (Schick et al., 2023; Wang et al., 2023a; Wu et al., 2023). Therefore, LLMs provide
a promising way to work with the general-purpose language feedback in LLF. Further, solving LLF
can also be viewed as a way to measure the ability of LLMs to solve new learning tasks. Notably,
LLF-Bench differs from the vast majority of benchmarks for evaluating LLMs which are either non-
interactive, or allow the agent designer to choose how to verbalize the environment, which can lead to
prompt hacking (i.e., an LLM-agent overfitted to a specific environment through its prompts).

1.1 Highlights of LLF-Bench

We design LLF-Bench as a research platform to facilitate the development and testing of LLF agents
(e.g., LLM-agents). LLF-Bench consists of 8 diverse sets of decision-making problems (see Figure 2),
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Figure 2: LLF-Bench (“Elf-bench”) includes 8 sets of LLF problems. Image by Bing Chat.

with different action spaces (discrete, continuous, and free-form text spaces) and decision horizons:

• llf-bandit is a verbalized version of the classic multi-armed bandit problem, which we im-
plement based on gym-bandits. llf-bandit tests the agent’s learning ability in an unknown
environment with a finite number of actions.

• llf-poem consists of a set of poem writing tasks, where the agent needs to write a poem satisfying
certain syllable- and line-constraints. These problems tests the agent’s learning ability to infer
and solve constraint satisfaction problems.

• llf-reco-movie simulates a classic recommendation scenario where a user wants movie or TV
show recommendations based on some preferences. The user specifies their preferences in text,
and any recommendation made by the agent is matched to a movie database for checking whether
the preferences are matched correctly.

• llf-optimization consists of 8 loss functions (Rosenbrock, Bohachevsky, etc.) and provides an
interface to give verbal feedback for the task of optimization on any loss function.

• llf-parking extends the Highway gym environment, providing a long horizon goal-conditioned
continuous control task. The agent must control an ego-vehicle to park in a given location
without colliding with any obstacles in the environment.

• llf-gridworld evaluates the agent’s ability to navigate in a graph-based environment. Each
node of the graph is a room and the edges are doors connecting the rooms. The agent’s goal is
to navigate from the room it starts in to the room with treasure.

• llf-alfworld adds a wrapper on top of the Alfworld text-based environment (Shridhar et al.,
2021) to provide language feedback instead of reward. In llf-alfworld, the agent is tasked to
solve problems in a text-based house environment. The agent is tested for generalization as each
episode can contain a new task in a new house environment.

• llf-metaworld is a low-dimensional state-based version of the existing Meta-World v2 bench-
mark (Yu et al., 2019). It comprises 50 simulated robotic manipulation tasks featuring a Sawyer
arm and various objects that this arm needs to bring into desired configurations, such as opening
doors, placing cubes in boxes, etc.
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When designing a learning benchmark, an important consideration is whether the evaluation can
truthfully reflect an agent’s learning and generalization abilities and separate them from overfitting.
To this end, we make two important design choices:

1. Following the framing of LLF, LLF-Bench implements the task instruction as part of the envi-
ronment, as opposed to as part of the agent. The latter is common in the current literature of
LLM-agents, and many LLM-agents heavily rely on using task-specific prompt templates (Wang
et al., 2023a; Yao et al., 2023). By this design, we encourage users of LLF-Bench to develop
agents that can simultaneously work well across different problems sets in LLF-Bench. We hope
that this paradigm shift would facilitate the development of more generic learning agents that
can solve multiple tasks, rather than being engineered for solving just a single task.

2. LLF-Bench provides the option to further randomize the textual description of task instruction
and feedback that the agent receives. In addition, for several environments, we randomize the
environment’s latent parameters (e.g., to permute the action ordering in llf-bandit or change
the room connectivity in llf-gridworld) when the environment is reset. Sensitivity to differ-
ent phrasing of the same instruction is often used to measure the robustness of a text-based
model (Ribeiro et al., 2018; Wallace et al., 2019). This design is motivated by the observation
that LLMs as of now, do not always perfectly understand semantics and can be sensitive to the
exact texts that are presented (Zhu et al., 2023). It has been shown LLMs suffer from recency
bias and can give drastic different outputs for semantically similar inputs (Arora et al., 2023;
Leidinger et al., 2023). To combat that, for each problem instance in LLF-Bench, we manually
curate a set of syntax templates via paraphrasing, which are used to produce a diverse yet se-
mantically equivalent set of task instructions and feedback during interactions. By introducing
randomization, LLF-Bench can better evaluate the agent’s ability of task solving and prevent
the agent from overfitting a specific text realization.

One prominent feature of LLF-Bench is its configurable feedback system. Taking inspiration from
the education research literature (Shute, 2008), we classify the language feedback into 3 different types:
1) feedback of the current performance (similar to reward scalars and success booleans), 2) suggestions
of future behaviors (e.g., hints or things to avoid) 3) explanation of past behavior (e.g., why some
behaviors are bad and should not be repeated). By default, a testing environment in LLF-Bench
provides a mix of these feedback (when appropriate). It can also be easily configured to provide
feedback based on any subset of these categories.

For ease of use, LLF-Bench adopts the OpenAI Gym API (Brockman et al., 2016), which abstracts
the interaction with reset and step API functions. LLF-Bench environments return the natural
language instruction and feedback as the observation (a python dict) and the action spaces vary across
problems. LLF-Bench environments also return rewards per the Gym step API. While agents in
the LLF setup do not use rewards, the returned rewards can be used to evaluate an LLF agent’s
performance; this feature makes the LLF-Bench environments also usable as typical RL environments.
LLF-Bench also provides a text-mode option (where both the observation and the action are free-form
texts), so that it can also be used as a benchmark for evaluating LLM-agents as well.

1.2 Related Setups and Benchmarks

Many RL environments incorporate natural language. We provide a list summarizing their main fea-
tures in Table 1. The RL environments can use language to describe the reward/goal (instructions),
the observations, or the actions. Commonly, language is used as goal-specifying instructions
(which is essentially a reward function) for an RL agent (e.g., GridLU by Bahdanau et al. (2019),
ViZDoom Text by Chaplot et al. (2018), ISI Block by Misra et al. (2017), and Puddle World by Jan-
ner et al. (2018)). In this context, understanding and mapping instructions/goals to the state of the
environment is the key challenge. Some RL environments naturally have observations in text; these
include text-based adventure games (Text World by Côté et al. (2019) and NetHack by Küttler et al.
(2020)) and HTML webpages (MiniWoB by Shi et al. (2017), MiniWOB++ by Liu et al. (2018), and
WebShop by Yao et al. (2022)). Other RL environments have action spaces in text, i.e. an RL agent
can generate a sequence of tokens as an action, such as a structured text representing a short exe-
cutable program (e.g. SHRDLURN by Wang et al. (2016)). However, this was considered challenging
due to the relatively large vocabulary space and the difficulty of learning to generate a sequence. None
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Environment
Observation

Space
Action
Space

Reward
Space

Language
Variations

(Robustness)

Language
Feedback

Language Grounding Envs

SHRDLURN (Wang et al., 2016) Vector Text Scalar None No
GridLU (Bahdanau et al., 2019) Pixel Discrete Scalar None No

VizDoom Text (Chaplot et al., 2018) Pixel Discrete Scalar None No
ISI Block (Misra et al., 2017) Pixel Discrete Scalar None No

Puddle World (Janner et al., 2018) Pixel Discrete Scalar None No

Text-based Games

BabyAI (C-Boisvert et al., 2018) Pixel Discrete Scalar None No
Zork (Narasimhan et al., 2015) Text Text Scalar None No
TextWorld (Côté et al., 2019) Text Text Scalar None No
NetHack (Küttler et al., 2020) Pixel Discrete Scalar None No

Web-Navigation Envs

MiniWoB (Shi et al., 2017) Pixel/Text Disc/Cont Scalar None No
MiniWOB++ (Liu et al., 2018) Pixel/Text Disc/Cont Scalar Observation No

WebShop (Yao et al., 2022) Pixel/Text Text Scalar None No

LLM Agent Benchmark Envs

AgentBench (Liu et al., 2023b) Text Text Scalar None No
OpenAGI (Ge et al., 2023) Text Text Scalar None No
MINT (Wang et al., 2023b) Text Text Scalar None Yes (LLM)

LMRL Gym (Abdulhai et al., 2023) Text Text Scalar None No

LLF-Bench (Ours) Text All Scalar1+Text All Yes (Synthetic)

Table 1: We list several decision-making environments that involve natural language. Language is
used to instruct model behavior, represent observation, or is part of the action output. “Language
Variations” refers to whether there are multiple descriptions of the same instruction, observation, or
reward. “Disc/Cont” means the output is a mix of discrete and continuous variables. LLF-Bench
offers text representation for instruction, observation, and reward, generates paraphrasing to prevent
prompt hacking, and offers procedurally generated synthetic feedback for fast and cheap evaluation.

of these environments provide rewards as text and do not provide feedback on actions. They also do
not consider variations in language expressions – such as different phrasing or writing that represent
the same underlying goal or state of the environment. Many of these environments are unsuitable for
testing LLM agents due to having an observation space that is pixel or vector-based, and the types of
tasks are dissimilar to what people use LLMs for today.

On the other hand, several benchmarks have been proposed to evaluate LLM-based agents for
decision-making (AgentBench by Liu et al. (2023b), OpenAGI by Ge et al. (2023), MINT by Wang
et al. (2023b), and LMRL Gym by Abdulhai et al. (2023)). However, many tasks in these benchmarks
center around planning and information retrieval problems. Few require the agent to learn and adapt
beyond what an LLM can already do. A real-life user would leverage an LLM-based agent to solve
challenging tasks but also give intermediate feedback, such as “make the title text larger” or “wrap
the code with an error-catching block.” LLF-Bench supports such intermediate feedback as well. Also,
due to the lack of language variations, developers might identify a specific prompt that solves an
instantiation of the task, over-fitting to a particular writing of the task specification. Lastly, because
an LLM-based agent interacts with human users, the specification of reward from a user can often be
text. Are LLM-based agents capable of learning and adaptation from rewards represented as text?
LLF-Bench aims to provide a set of environments to help answer this question while addressing the
challenges in reliably benchmarking LLM-based agents.
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Figure 3: Comparison between RL and LLF setups. LLF replaces reward feedback in RL with language
feedback and generalizes the reward maximization objective to general instructions that can be specified
via natural language.

2 LLF: Learning from Language Feedback

LLF is a learning paradigm that generalizes the RL setup. As shown in Figure 3, LLF is an abstract
setup2 that models the interaction between an agent (e.g., a learning algorithm), a world (e.g., a robot
hardware, or a recommendation system based on a database), and a teacher (e.g., a person who uses
or teaches the agent mentioned in Section 1.2).

2.1 Setup

The agent in the LLF is prompted by the teacher to complete a task in the world with some natural
language instruction. The instruction may be different from reward maximization and could include
information about how to interpret observations, what valid actions are, and side information (such as
examples) that may help the agent solve the problem. After receiving the instruction, the agent sees
the initial observation of the world state, and the agent starts to interact with the world by taking
actions within the problem’s prescribed action space, which like that in RL can be e.g. a finite space,
a continuous vector space, or a free-form text space. After an action is executed, the world’s internal
state may change and the agent sees the next observation of the world. As the agent interacts and
learns to solve the task, the teacher would provide natural language feedback to guide the agent to learn
better based on how the agent performs. This language feedback is a strict generalization of the reward
signal in RL and can provide richer information to help agent learn (e.g., suggestions, explanations,
etc.). If we group the world and the teacher in LLF together as an abstract environment, we see
that LLF mainly replaces the reward maximization objective and feedback in RL with a generic task
instruction and language feedback. In LLF-Bench, we simulate LLF problems through the OpenAI
Gym interface, which we will describe in Section 3. .

2.2 Motivation

The LLF setup is motivated by the inefficiency and unnaturalness of communicating intentions with
rewards. The concept of reward maximization in RL, while giving a simple abstraction of interactive
learning, often creates a barrier for humans to transfer knowledge and convey their intention to AI
agents. Reward feedback compresses all the information that one wishes to convey down to a single

1The scalar reward is for evaluation, not for agent learning in the LLF setup.
2Here we follow the convention of Sutton and Barto (2018) that “anything that cannot be changed arbitrarily by

the agent is considered to be outside of it and thus part of its environment.”. Therefore, we consider the (physical or
digital) world that the agent has effects on as well as the teacher who provides instructions and feedback to the agent as
part of the environment. As per Sutton and Barto (2018), we note that “the boundary between agent and environment
is typically not the same as the physical boundary of a robot’s or animal’s body. Usually, the boundary is drawn closer
to the agent than that.”
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numerical value, representing signals for encouraging or penalizing certain behaviors. In addition,
rewards are received only after the agent takes actions, so the agent would have to not only learn
the task solving skill but also learn to understand the task’s objective. This bottleneck limits the
information that can be transferred to the agent and couples skill learning and intention understanding,
causing the agent to learn inefficiently in a trial-and-error manner.

Moreover, in many cases, it is difficult for human designers to fully understand the long-term effects
of reward maximization, even when each instantaneous reward makes sense. This misalignment has led
to many surprising behaviors of RL agents (Amodei et al., 2016). Consequently, reward engineering has
been a common practice in building RL systems, where the user iteratively tweaks the reward to give to
the agent by observing how the agent behaves after maximizing the current reward function. However,
reward engineering is an expensive process. If agents can learn directly from language feedback (i.e.
efficiently solving LLF), learning systems can be built more economically.

Overall, compared to RL, LLF encapsulates the rich language feedback that is used in human to
human learning. The expressive nature of this rich language feedback, provides a potentially more
efficient mechanism for training agents than RL.

2.3 LLF and RL with text/language observations

Interactive learning settings with language-based instructions (Chen et al., 2019; Misra et al., 2018) or
observations has been extensively studied (Guu et al., 2017; Wang et al., 2016; Zhong et al., 2021) in
the literature. However, in all these settings, one assumes access to either gold actions or rewards that
are crucially necessary for understanding the textual instructions and observations, and learning the
optimal policy. In contrast, in LLF the agent is neither provided gold actions nor rewards. This makes
LLF appear as a harder learning setting than RL. We argue that this difficulty working with general-
purpose language feedback, has been the reason why LLF hasn’t received much attention previously
despite its potential benefits.

However, with the recent success LLMs at general-purpose language reasoning, we have a powerful
tool to work with language feedback and develop LLF agents. As mentioned earlier, language feedback
can provide more expressive forms of feedback, thereby, providing a more sample-efficient setup for
developing agents. For example, the feedback in LLF can be formative which is defined by Shute
(2008) as “information communicated to the learner that is intended to modify the learner’s thinking
or behavior for the purpose of improving learning.”.

We also highlight that with access to accurate LLMs, LLF is not harder than a RL setting, if the
task instructions in LLF are detailed enough such that from the observations alone (without language
feedback) it is possible for the LLM to infer if the agent has succeeded at following the instruction.
Note that this assumption does not mean that the instruction necessarily shows the agent how to
solve the problem. Under this assumption, LLF problems can always be solved without the feedback,
by a reduction to a RL problem with sparse binary reward of success (the binary reward can be
computed using a LLM to detect success based on the instruction and the observation). However, such
a reduction approach would lead to inefficient learning. The main research question of LLF is how to
best leverage the language feedback, which can convey more information than just success/failure, to
learn the optimal policy for the task in a sample-efficient manner. We next describe LLF-Bench as our
proposed research platform to measure progress in answering this question.

3 Gym Interface of LLF-Bench

LLF-Bench formalizes a wide variety of decision-making problems by extending the popular OpenAI
Gym API. The API contains three key functions — make, reset, step — that are semantically similar
to their Gym namesakes and detailed below.

• make: Returns an Environment object similar to gym.make. An LLF-Bench Environment extends
classic Gym Environments (e.g., with well-defined ActionSpace and ObservationSpace) with
two additional concepts, instruction and feedback, that are explained below.

• reset: After an environment is initialized using make, it should be reset to receive the initial
Observation from the Environment. LLF-Bench Observation is a python dictionary containing
gym.Observation (i.e., an observation that is contained in the environment.ObservationSpace)
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as well as instruction and feedback keys. If the environment uses randomization, then the
random number generator can be seeded with the seed parameter as input.

• step: Takes as input an action that is contained in the environment.ActionSpace, and re-
turns a LLF-Bench Observation dictionary which includes the instruction and feedback keys.
In addition to the Observation, step also returns scalar reward, boolean flags truncated and
terminated and a miscellaneous info dictionary which have the same semantics as Gymnasium
environments. An agent for LLF-Bench is expected to solve tasks using the feedback contained
within Observation, without using the reward signal. Signals like reward and info are provided
for backward compatibility with Gymnasium and for automated evaluation.

Note that under the hood, LLF-Bench implements all Environment objects as compatible with the
Gymnasium standard. We provide EnvironmentCompatibility wrappers if the Environment is in-
stead otherwise compatible with the deprecated Gym (pre-0.21 version) standard. We similarly include
TextWrapper wrappers that can convert any LLF-Bench Environment with bespoke ObservationSpace
and ActionSpace into one with text as the observation and action spaces. This wrapper allows one
to directly interface LLM-based agents with LLF-Bench environments and assess their learning and
decision-making behavior.

1 import llfbench as gym

2

3 # Environments in the benchmark are registered following

4 # the naming convention of verbal -*

5 env = gym.make(’verbal -gridworld -v0’)

6

7 done = False

8 cumulative_reward = 0.

9

10 # First observation is acquired by resetting the environment

11 observation = env.reset()

12

13 while not done:

14

15 # Observation is dict having ’observation ’, ’instruction ’, ’feedback ’

16 # Here we print the observation and ask the user for an action

17 action = input( observation[’observation ’] + ’\n’ +

18 observation[’instruction ’] + ’\n’ +

19 observation[’feedback ’] + ’\n’ +

20 ’Action: ’ )

21

22 # Gridworld has a text action space , so TextWrapper is not needed

23 # to parse a valid action from the input string

24 observation , reward , terminated , truncated , info = env.step(action)

25

26 # reward is never revealed to the agent; only used for evaluation

27 cumulative_reward += reward

28

29 # terminated and truncated follow the same semantics as in Gymnasium

30 done = terminated or truncated

31

32 print(f’Episode reward: {cumulative_reward}’)

Listing 1: Sample python code snippet for interacting with LLF-Bench environments.

Although each step also returns a scalar reward, the convention we follow (and recommend to
users of LLF-Bench) is that the agent never sees the reward. It can only access the information in
observation, instruction and feedback to decide its actions (e.g., see line 17 in Listing 1).

3.1 Instruction and Feedback

Instruction is a string that is defined inside the Environment and describes in natural language the
problem that a decision-maker must solve. We recommend that agent-designers should not inspect
and overfit to a specific instruction describing the desired task in an environment; the default be-
havior of LLF-Bench environments is to paraphrase instructions in different ways to minimize the
chances of prompt overfitting. Three different types of Instruction are supported in LLF-Bench, and
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can be toggled by passing an appropriate instruction_type to the make command of a LLF-Bench
environment:

• Basic: instruction_type = ‘b’. This is the default instruction type for LLF-Bench environ-
ments. The instructions provide an agent with the goal, semantics of its action space, as well
as the expected syntax of its responses. The instruction provides enough information for a
competent agent (e.g., a literate human) to begin interacting with the environment.

• Complete: instruction_type = ‘c’. The instructions additionally provide information to re-
liably infer (e.g., by a literate human) an optimal policy for achieving the goal.

• Practical: instruction_type = ‘p’. It contains the Basic instructions, and additionally in-
cludes Feedback for previously executed actions. The goal of a learning agent is to infer the
optimal policy (i.e., comparable in performance to the one with instruction_type = ‘c’) as
quickly as possible.

Feedback is a string that provides the signal for an agent to learn from its interaction. LLF-Bench
implements two kinds of feedback: an atomic feedback, and a composite feedback. The type of feedback
an environment provides to an agent is set by passing an appropriate feedback_type parameter to
make. Atomic feedbacks are inspired by the education research literature (Shute, 2008). LLF-Bench
currently supports 5 different types and we plan to include new styles (to include e.g., questioning) in
the future:

• feedback_type = ‘r’: This is the textualization of the scalar reward signal or success signal
from classical RL. By using the text-wrapper and this feedback type, several classical RL envi-
ronments (implemented in OpenAI Gym or Gymnasium) can be comparably tested with LLF
agents in LLF-Bench.

• feedback_type = ‘hp’: This hindsight positive feedback provides an explanation about a past
action by the agent that was desirable.

• feedback_type = ‘hn’: This hindsight negative feedback provides an explanation about a past
action by the agent that was undesirable.

• feedback_type = ‘fp’: This future positive feedback provides a suggestion for a potential future
action that could be desirable.

• feedback_type = ‘fn’: This future negative feedback provides a suggestion for potential future
actions that should be avoided.

feedback_type = ‘r’ corresponds to the current performance evaluation from the education
research literature, whereas feedback_type = ‘fp’, ‘fn’ correspond to future behavior sugges-
tion. Finally, feedback_type = ‘hp’, ‘hn’ correspond to the past behavior explanation style of
feedback studied in the education research literature.

Composite feedback types allow the environment to provide the agent multiple kinds of atomic
feedbacks. This makes for a more realistic learning problem, rather than the same type of atomic
feedback at every step of the environment.

• feedback_type = ‘a’: All of the Atomic feedback types that are supported by the environment
are provided to the agent at each round of interaction.

• feedback_type = ‘m’: The agent receives aMix of different atomic feedbacks. A random subset
of the supported feedback types are sampled by LLF-Bench to provide to the agent at each step.

• feedback_type = ‘n’: The agent receives No feedback, this mode is provided for debugging
purposes.

The make API accepts any of the composite feedback types, or any subset of the atomic feedback
types to allow fine-grained control of the learning signal that an agent can receive from LLF-Bench
environments. The default behavior in make for any environment uses feedback_type = ’a’. See
Listing 1 for sample code that creates a LLF-Bench environment and instantiates an agent to interact
with it using make, reset and step API calls.
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Problem Set Action Space Horizon Stateful Instruction Feedback
llf-bandit Discrete 1 No b, p, c all
llf-poem Text 1 No b all
llf-reco-movie Text 1 No b all
llf-optimization Continuous 10 Yes b all
llf-parking Continuous 100 Yes b r, hp, hn
llf-gridworld Finite 20 Yes b, p, c all
llf-alfworld Text 100 Yes b all
llf-metaworld Continuous 30 Yes b r, hp, hn, fp

Table 2: Properties of problem sets included in LLF-Bench. Instruction and Feedback column denote
the types of instruction and feedback that are supported by the environment. If feedback is all, then
it means that all 5 feedback (r, hn, hp, fn, and fp) are supported.

3.2 Instruction and Feedback Randomization

To reduce the sensitivity of learning agents to a specific text realization, LLF-Bench implements a
template-based paraphrasing system, by which users can randomize the instruction and the feedback
that the agent receives. For each problem in LLF-Bench, we implement about 4-20 paraphrased
templates for each instruction and each feedback type. When the randomization options are turned
on, the LLF-Bench environment will randomly choose one from these curated templates to formulate
the language instruction and feedback returned to the agent. LLF-Bench also provides the option
to deterministically use a particular template. The randomness of paraphrasing can be controlled by
setting the seed parameter in the OpenAI Gym reset function.

4 Tasks in LLF-Bench

LLF-Bench consists of 8 different problem sets, ranging from user-recommendation, poem-writing,
navigation, to robot control. In the LLF setup, the reward is masked out (though the environments
in LLF-Bench still return rewards for evaluation purposes). To solve these problem efficiently, an LLF
agent needs to have sufficient common sense understanding of the natural language instruction and
the feedback. In addition, the agent needs to be able to learn from environmental interactions and
feedback. We intentionally design these suites of problems such that, while the agent can tell success
from the instruction and the environmental observation, it is difficult for the agent to infer the optimal
policy from them without additional learning.

These problem sets feature different action spaces, problem horizons, and test different abilities of
LLF agents. We provide a summary in Table 2 and next describe each problem set in more detail.

4.1 llf-bandit

llf-bandit is a verbalized version of the classic multi-armed bandit problem. We built llf-bandit
based on gym-bandits by adding natural language task instruction and feedback. There are a total of
8 bandit problems in llf-bandit. For each problem, the task instruction tells the task name from
the underlying gym-bandits, that the goal is a bandit problem, as well as the feasible actions. While
being a bandit problem, llf-bandit’s feedback does not necessarily convey the reward value in text
(it depends on the configuration of the feedback type). When reset, the environment randomizes
the order of actions and, if applicable, the underlying reward function. The agent here needs to learn
to explore and exploit in multiple rounds of interactions to find the best arm as fast as possible with
small regret (measured in terms of the hidden rewards). Overall, llf-bandit tests the agent’s learning
ability in an unknown environment with a finite number of actions.

4.2 llf-poem

llf-poem is a collection of text-generation tasks requiring a poem to be written that conforms to a
particular number of lines and number of syllables for each line. Even though there are many types
of formal poems, the current set of tasks supports basic types that follow syllable and line-based
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constraints. Such formal poems include Haiku (a three-line short poem following a 5-7-5 syllable
pattern), Tanka (a five-line short poem following a 5-7-5-7-7 pattern), and custom environments where
a user can specify the number of lines and how many syllables per line. We use the CMU Pronouncing
Dictionary for syllable verification3. llf-poem provides detailed fine-grained feedback on each line –
a good environment to test whether the LLM-based agents can improve quickly given feedback.

4.3 llf-reco-movie

llf-reco-movie is an environment that simulates user-recommendation system interactions on the
topic of recommending movies. To simulate a user, the environment will first randomly sample a
user preference profile over a set of attributes such as the type of entertainment (TV show or movie),
year range (80s, 90s, 2000s, or recent), preferred genres (Action, Comedy, Documentary, etc.), and age
restriction (child/family-friendly or R-rated). An agent needs to recommend a few items (no restriction
on the number of items) that all satisfy the stated preference. An item-by-item feedback is provided
in this environment to point out detailed preference violations that can allow LLMs to improve their
recommendations.

4.4 llf-optimization

llf-optimization provides an easy-to-use interface with automatic procedurally generated feedback
that examines LLMs’ ability to make a series of proposals x to minimize a particular loss function
y = f(x). The feedback provided in this environment is created by computing gradient dy

dx and then
verbalizing this information based on the change in input between the previously proposed x and the
current chosen x. We provide implementations of 8 classic loss functions (Rosenbrock, Bohachevsky,
etc.), and the base class is easily extendable to cover other loss functions. This is an environment
where we can measure LLM’s ability to make decisions with observed information on an unknown loss
landscape.

4.5 llf-parking

llf-parking extends the Highway gym environment to LLF-Bench. It is a long horizon goal-conditioned
continuous control task where the agent can manipulate the throttle and steering input to an ego-
vehicle. It must park the ego-vehicle in a given location without colliding with any obstacles in the
environment. We extended the environment by (1) describing the observation and action spaces in
text, and (2) verbalizing the per-time-step reward (distance to goal) to provide text feedback about
goal progress and obstacle collisions. An agent must learn how its control inputs affect the vehicle’s
dynamics, and plan to accomplish the eventual parking goal.

4.6 llf-gridworld

The llf-gridworld domain models a navigation agent in a graph-based gridworld. The world is
represented by a graph where rooms are denoted by nodes and edges denote doors. A room can have
at most 4 doors along the north, south, east and west direction. These directions form the agent’s
action space. At any given time, the agent is in exactly one of the rooms. If the agent takes an action,
such as a = north, then it will transition from its current room, to the room connected by the door
along the north direction, if one exists. If no such door exists, then the agent stays in the same room.
All transitions are deterministic. A room can contain many different types of objects. A unique room,
called the treasure room, contains the treasure object. The agent starts in a start room and its goal
is to navigate to the treasure room. The number of rooms, objects, object type, and distance to the
treasure, can be easily customized.

The agent’s observation describes the current room including all the objects in it, and the different
doors that are available. The agent can get all 5 types of feedback: r, hn, hp, fn, and fp. For example,
for the fn feedback, the agent will be told which action, i.e., a door, to avoid going through in the
next step.

3http://www.speech.cs.cmu.edu/cgi-bin/cmudict

11

https://github.com/Farama-Foundation/HighwayEnv
http://www.speech.cs.cmu.edu/cgi-bin/cmudict


4.7 llf-alfworld

The llf-alfworld environment is a wrapper built on top of the popular AlfWorld text-game environ-
ment (Shridhar et al., 2021) which itself is built as a parallel to the embodied Alfred dataset (Shridhar
et al., 2020). llf-alfworld contains multi-step reasoning tasks, where in each episode, the agent is
given an instruction in a house setting and must take a sequence of actions to fulfill this instruction. In
each step, the agent is given a textual description of what it sees and a list of valid actions. The agent
generates a text action (e.g., open drawer 1 ), which if it is valid can change the agent’s observation,
and if it is invalid then results in no change. The agent additionally gets a reward for each action.
The goal of the agent is to maximize the total reward by solving the task. Unlike the llf-gridworld
setting, the agent is tested for generalization as each episode can contain a new task in a possibly new
house environment.

The main addition in llf-alfworld is the capability to provide text feedback instead of reward.
The text feedback is generated using an optimal trajectory for that episode, as well as the instantaneous
reward and the list of valid commands for each time step. Similar to llf-gridworld, the agent can
get all 5 types of feedback: r, hn, hp, fn, and fp.

4.8 llf-metaworld

llf-metaworld wraps the low-dimensional fully observable state-based version of the existing Meta-
World v2 benchmark (Yu et al., 2019) into a textual interface. Meta-World consists of 50 simulated
robotic manipulation tasks, in each of which a robotic Sawyer arm needs to move an object into a
specified position, e.g., push a puck to a goal location or press a button. An agent trying to accomplish
an llf-metaworld task is presented with an instruction stating that the task is about getting a robotic
manipulator to successfully handle an object and explaining what each dimension of the agent’s 4D
state space means. By default, the environment interprets an agent’s action as a target pose where
the arm should move4, and tries to move the arm there using Meta-World’s built-in P-controller. At
each time step, the agent receives as observation a description of the current state, mentioning the
pose of the arm, and all relevant objects in the scene. The language feedback here may include advice
on where to move the arm next and where not to move it.

5 Related Work

Grounded Language Learning Reinforcement learning with textual information has been studied
under the branch of multi-modal representation learning. This branch of study has several focuses that
are both similar and different from our goal with LLF-Bench. One focus deals with ambiguity and
difficulty in understanding instructions or goals specified by natural language (Bahdanau et al., 2019;
Chaplot et al., 2018; Wang et al., 2016). While the ambiguity of instructions is a concern, we focus more
on robustly behaving under different instructions that all represent the same underlying goal. Another
focus of this body of work is to ground visual information with textual instruction – a core aim of
multi-modal representation learning (Bisk et al., 2016; Misra et al., 2017), with an extension to robotic
interaction (Karamcheti et al., 2022, 2023). Language provides a natural shared representation that
enables easier transfer between different tasks (Hanjie et al., 2021) or supplies important information
such as safety constraints for a policy (Yang et al., 2021). In previous work, feedback is often not
considered. When feedback is considered, it is usually framed as error messages from a syntax parser
(if the action space is text) and can indeed be incorporated into learning (Côté et al., 2019). This type
of feedback corresponds to feedback_type = ‘hn’ in our setup.

Text-based Games Extending from using reinforcement learning for solving complex games, there
are many text-based games that include challenges such as the navigation of space, manipulation of the
environment to achieve goals, and reaction to random events. Narasimhan et al. (2015) repurposed a
classic text adventure game, Zork, where both observation and action space are text. Côté et al. (2019)

4The dynamics of llf-metaworld differs from the one in the original Meta-World. Here the agent controls the target
location (the simulator runs the P-controller to act in the original Meta-World environment for several steps until the
target location is reached or it is timed out), whereas in the original environment the agent controls force to incrementally
change the end-effector. This design is to make the problem horizon shorter and more closely mimic the common use
cases of industrial robotic manipulators.
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proposed a set of text-based game environments and included a few carefully designed challenges for
RL to solve, such as large state and action space (determined by the vocabulary size) and long credit
assignment. On the other spectrum, Küttler et al. (2020) created a learning environment from the
game NetHack. Although the game state is represented with hundreds of text symbols, policy learning
is conducted on the screenshot of the terminal. Similarly, BabyAI (Chevalier-Boisvert et al., 2019)
is a set of procedurally generated grid-like maze environments – the objects and representation in
the environment are a fixed set of symbols. None of these environments consider providing language
feedback on the agent’s action.

Learning from Language Feedback Providing feedback to an RL agent’s action as part of the
learning signal beyond task rewards has been studied in robotics. However, most of the efforts
were limited to eliciting binary preference feedback (Biyik and Sadigh, 2018; Sadigh et al., 2017)
or ranking-based feedback from real people (Basu et al., 2019). Sumers et al. (2021) crowd-sourced
a small feedback dataset on a small game. They considered three types of feedback, evaluative
feedback (which corresponds to feedback_type = ‘r’), descriptive feedback (which in our setup
is decomposed into feedback_type = ‘hp’, ‘hn’), and imperative feedback (which corresponds to
feedback_type = ‘fp’, ‘fn’). They then used a sentiment classifier to extract coarse information
from this feedback to improve the policy’s behavior. Nguyen et al. (2021) proposed an approach to
map textual instructions to trajectories in embodied settings by assuming that a user can label a
generated trajectory with the instruction that is likely to generate the trajectory under the optimal
policy. More recently, Cui et al. (2023); Liu et al. (2023a) studied the case of language feedback as
corrections to a robotic arm at any time of the task execution, which is an instance of the LLF setup
that we are considering.

LLM Sensitivity to Prompts A long line of work has investigated smaller-scale language-based
systems’ sensitivity to different expressions that have the same underlying meaning. They can be
categorized as adversarial attacks to text-based systems (Ribeiro et al., 2018; Wallace et al., 2019) or
as mechanisms to improve language-based systems’ output via self-consistency (Edunov et al., 2018).
More recently, the lack of robustness to prompts has been found on large language models as well (Liu
et al., 2023c; Wolf et al., 2023). Zhu et al. (2023) proposed a benchmark dataset to investigate the
robustness of LLMs on different types of prompts that can contain user errors for tasks related to
natural language.

LLM Agent Benchmarks Unlike previous efforts to incorporate language to develop RL policies,
building agents using LLM has ushered in a new set of challenges. In general, the environments
included in these benchmarks only concern planning and information retrieval with sparse reward
signals at the end. Very few of these benchmarks measure the ability of an agent to learn and adapt
to a task (e.g., the Abstraction and Reasoning Corpus by Chollet (2019)). Liu et al. (2023b) proposed
a set of environments that cover a few popular types of task setups, such as web browsing, game, and
code generation. Their focus is on the diversity of tasks, not the robustness of LLMs or how well they
can incorporate feedback, which is dissimilar to how LLMs are currently being used in a user-centered
environment. Ge et al. (2023) constructed a set of tasks where LLMs are prompted to use language
or vision-related models to solve a complex task that requires multiple steps. The task-level feedback
they provide is a numerical score from a domain-specific evaluation method. MINT (Wang et al.,
2023b) is a benchmark that also offers natural language style feedback. However, MINT synthesizes
user feedback by prompting LLMs. This incurs additional costs, introduces additional variability in
the evaluation process, and makes it challenging to represent the diversity of human feedback styles.
LMRL Gym (Abdulhai et al., 2023) provides a set of 8 environments that include full and partial
observability. The tasks are similar to language-grounding tasks and text games. However, no interim
feedback is provided during multi-round interactions.
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