
This paper is included in the Proceedings of the
17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI ’20)
February 25–27, 2020 • Santa Clara, CA, USA

978-1-939133-13-7

Open access to the Proceedings of the
17th USENIX Symposium on Networked

Systems Design and Implementation
(NSDI ’20) is sponsored by

ABC: A Simple Explicit Congestion Controller
for Wireless Networks

Prateesh Goyal, MIT CSAIL; Anup Agarwal, CMU; Ravi Netravali, UCLA;
Mohammad Alizadeh and Hari Balakrishnan, MIT CSAIL

https://www.usenix.org/conference/nsdi20/presentation/goyal

ABC: A Simple Explicit Congestion Controller for Wireless Networks

Prateesh Goyal1, Anup Agarwal2∗, Ravi Netravali3†, Mohammad Alizadeh1, Hari Balakrishnan1

1MIT CSAIL, 2CMU, 3UCLA

Abstract
We propose Accel-Brake Control (ABC), a simple and deploy-
able explicit congestion control protocol for network paths
with time-varying wireless links. ABC routers mark each
packet with an “accelerate” or “brake”, which causes senders
to slightly increase or decrease their congestion windows.
Routers use this feedback to quickly guide senders towards
a desired target rate. ABC requires no changes to header
formats or user devices, but achieves better performance
than XCP. ABC is also incrementally deployable; it operates
correctly when the bottleneck is a non-ABC router, and can
coexist with non-ABC traffic sharing the same bottleneck
link. We evaluate ABC using a Wi-Fi implementation and
trace-driven emulation of cellular links. ABC achieves
30-40% higher throughput than Cubic+Codel for similar
delays, and 2.2× lower delays than BBR on a Wi-Fi path. On
cellular network paths, ABC achieves 50% higher throughput
than Cubic+Codel.

1 Introduction
This paper proposes a new explicit congestion control pro-
tocol for network paths with wireless links. Congestion
control on such paths is challenging because of the rapid
time variations of the link capacity. Explicit control proto-
cols like XCP [29] and RCP [43] can in theory provide
superior performance on such paths compared to end-to-
end [10,13,14,16,23,24,46,50] or active queue management
(AQM) [36,37] approaches (§2). Unlike these approaches, ex-
plicit control protocols enable the wireless router to directly
specify a target rate for the sender, signaling both rate de-
creases and rate increases based on the real-time link capacity.

However, current explicit control protocols have two limita-
tions, one conceptual and the other practical. First, existing ex-
plicit protocols were designed for fixed-capacity links; we find
that their control algorithms are sub-optimal on time-varying
wireless links. Second, they require major changes to packet
headers, routers, and endpoints to deploy on the Internet.

Our contribution is a simple and deployable protocol,
called Accel-Brake Control (ABC), that overcomes these
limitations, building on concepts from a prior position
paper [22]. In ABC (§3), a wireless router marks each packet
with one bit of feedback corresponding to either accelerate or
brake based on a measured estimate of the current link rate.
Upon receiving this feedback via an ACK from the receiver,
the sender increases its window by one on an accelerate
(sends two packets in response to the ACK), and decreases

∗Work done largely while a visiting student at MIT CSAIL.
†Work done largely while a PhD student at MIT CSAIL.

it by one on a brake (does not send any packet). This simple
mechanism allows the router to signal a large dynamic range
of window size changes within one RTT: from throttling the
window to 0, to doubling the window.

Central to ABC’s performance is a novel control algorithm
that helps routers provide very accurate feedback on
time-varying links. Existing explicit schemes like XCP
and RCP calculate their feedback by comparing the current
enqueue rate of packets to the link capacity. An ABC router,
however, compares the dequeue rate of packets from its
queue to the link capacity to mark accelerates or brakes. This
change is rooted in the observation that, for an ACK-clocked
protocol like ABC, the current dequeue rate of packets at the
router provides an accurate prediction of the future incoming
rate of packets, one RTT in advance. In particular, if the
senders maintain the same window sizes in the next RTT,
they will send one packet for each ACK, and the incoming
rate in one RTT will be equal to the current dequeue rate.
Therefore, rather than looking at the current enqueue rate,
the router should signal changes based on the anticipated
enqueue rate in one RTT to better match the link capacity.
The impact of this subtle change is particularly significant
on wireless links, since the enqueue and dequeue rates can
differ significantly when the link capacity varies.

ABC also overcomes the deployability challenges of
prior explicit schemes, since it can be implemented on top
of the existing explicit congestion notification (ECN) [41]
infrastructure. We present techniques that enable ABC to
co-exist with non-ABC routers, and to share bandwidth fairly
with legacy flows traversing a bottleneck ABC router (§4).

We have implemented ABC on a commodity Wi-Fi router
running OpenWrt [18]. Our implementation (§5.1) reveals an
important challenge for implementing explicit protocols on
wireless links: how to determine the link rate for a user at a
given time? The task is complicated by the intricacies of the
Wi-Fi MAC’s batch scheduling and block acknowledgements.
We develop a method to estimate the Wi-Fi link rate and
demonstrate its accuracy experimentally. For cellular links,
the 3GPP standard [1] shows how to estimate the link rate;
our evaluation uses emulation with cellular packet traces.

We have experimented with ABC in several wireless
network settings. Our results are:
1. In Wi-Fi, compared to Cubic+Codel, Vegas, and Copa,

ABC achieves 30-40% higher throughput with similar
delays. Cubic, PCC Vivace-latency and BBR incur
70%–6× higher 95th percentile packet delay with similar
throughput.

2. The results in emulation over 8 cellular traces are

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 353

Scheme Norm. Utilization Norm. Delay (95%)

ABC 1 (78%) 1 (242ms)
XCP 0.97 2.04

Cubic+Codel 0.67 0.84
Copa 0.66 0.85
Cubic 1.18 4.78

PCC-Vivace 1.12 4.93
BBR 0.96 2.83

Sprout 0.55 1.08
Verus 0.72 2.01

summarized below. Despite relying on single-bit feedback,
ABC achieves 2× lower 95th percentile packet delay
compared to XCP.

3. ABC bottlenecks can coexist with both ABC and non-
ABC bottlenecks. ABC flows achieve high utilization and
low queuing delays if the bottleneck router is ABC, while
switching to Cubic when the bottleneck is a non-ABC
router.

4. ABC competes fairly with both ABC and non-ABC flows.
In scenarios with both ABC and non-ABC flows, the
difference in average throughput of ABC and non-ABC
flows is under 5%.

2 Motivation
Link rates in wireless networks can vary rapidly with time;
for example, within one second, a wireless link’s rate can
both double and halve [46].1 These variations make it difficult
for transport protocols to achieve both high throughput and
low delay. Here, we motivate the need for explicit congestion
control protocols that provide feedback to senders on both
rate increases and decreases based on direct knowledge of
the wireless link rate. We discuss why these protocols can
track wireless link rates more accurately than end-to-end
and AQM-based schemes. Finally, we discuss deployment
challenges for explicit control protocols, and our design goals
for a deployable explicit protocol for wireless links.

Limitations of end-to-end congestion control: Traditional
end-to-end congestion control schemes like Cubic [23] and
NewReno [24] rely on packet drops to infer congestion and ad-
just their rates. Such schemes tend to fill up the buffer, causing
large queuing delays, especially in cellular networks that use
deep buffers to avoid packet loss [46]. Fig. 1a shows perfor-
mance of Cubic on an LTE link, emulated using a LTE trace
with Mahimahi [35]. The network round-trip time is 100 ms
and the buffer size is set to 250 packets. Cubic causes signifi-
cant queuing delay, particularly when the link capacity drops.

Recent proposals such as BBR [14], PCC-Vivace [16] and
Copa [10] use RTT and send/receive rate measurements to es-
timate the available link rate more accurately. Although these
schemes are an improvement over loss-based schemes, their
performance is far from optimal on highly-variable links. Our
experiments show that they either cause excessive queuing or

1We define the link rate for a user as the rate that user can achieve if it
keeps the bottleneck router backlogged (see §5).

underutilize the link capacity (e.g., see Fig. 7). Sprout [46] and
Verus [50] are two other recent end-to-end protocols designed
specifically for cellular networks. They also have difficulty
tracking the link rate accurately; depending on parameter
settings, they can be too aggressive (causing large queues)
or too conservative (hurting utilization). For example, Fig. 1b
shows how Verus performs on the same LTE trace as above.

The fundamental challenge for any end-to-end scheme is
that to estimate the link capacity, it must utilize the link fully
and build up a queue. When the queue is empty, signals such
as the RTT and send/receive rate do not provide information
about the available capacity. Therefore, in such periods, all
end-to-end schemes must resort to some form of “blind” rate
increase. But for networks with a large dynamic range of
rates, it is very difficult to tune this rate increase correctly: if it
is slow, throughput suffers, but making it too fast causes over-
shoots and large queuing delays.2 For schemes that attempt to
limit queue buildup, periods in which queues go empty (and
a blind rate increase is necessary) are common; they occur,
for example, following a sharp increase in link capacity.
AQM schemes do not signal increases: AQM schemes like
RED [19], PIE [37] and CoDel [2] can be used to signal
congestion (via ECN or drops) before the buffer fills up at the
bottleneck link, reducing delays. However, AQM schemes
do not signal rate increases. When capacity increases, the
sender must again resort to a blind rate increase. Fig. 1c
shows how CoDel performs when the sender is using Cubic.
Cubic+CoDel reduces delays by 1 to 2 orders of magnitude
compared to Cubic alone but leaves the link underutilized
when capacity increases.

Thus, we conclude that, both end-to-end and AQM-based
schemes will find it difficult to track time-varying wireless
link rates accurately. Explicit control schemes, such as
XCP [29] and RCP [43] provide a compelling alternative. The
router provides multiple bits of feedback per packet to senders
based on direct knowledge of the wireless link capacity. By
telling senders precisely how to increase or decrease their
rates, explicit schemes can quickly adapt to time-varying
links, in principle, within an RTT of link capacity changes.
Deployment challenges for explicit congestion control:
Schemes like XCP and RCP require major changes to packet
headers, routers, and endpoints. Although the changes are
technically feasible, in practice, they create significant
deployment challenges. For instance, these protocols require
new packet fields to carry multi-bit feedback information. IP
or TCP options could in principle be used for these fields. But
many wide-area routers drop packets with IP options [20], and
using TCP options creates problems due to middleboxes [25]
and IPSec encryption [30]. Another important challenge
is co-existence with legacy routers and legacy transport

2BBR attempts to mitigate this problem by periodically increasing its rate
in short pulses, but our experiments show that BBR frequently overshoots
the link capacity with variable-bandwidth links, causing excessive queuing
(see Appendix A).

354 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

5

10

15
Th

ro
ug

hp
ut

(M
bp

s)

0 5 10 15 20 25 30
Time (s)

0
500

1000
1500

Qu
eu

in
g

De
la

y
(m

s) Bufferbloat

(a) Cubic

0

5

10

15

Th
ro

ug
hp

ut
(M

bp
s)

0 5 10 15 20 25 30
Time (s)

0
500

1000
1500

Qu
eu

in
g

De
la

y
(m

s)

(b) Verus

0

5

10

15

Th
ro

ug
hp

ut
(M

bp
s)

Underutilization

0 5 10 15 20 25 30
Time (s)

0
500

1000
1500

Qu
eu

in
g

De
la

y
(m

s)

(c) Cubic+CoDel

0

5

10

15

Th
ro

ug
hp

ut
(M

bp
s)

0 5 10 15 20 25 30
Time (s)

0
500

1000
1500

Qu
eu

in
g

De
la

y
(m

s)

(d) ABC
Figure 1: Performance on a emulated cellular trace — The dashed blue in the top graph represents link capacity, the solid orange line
represents the achieved throughput. Cubic has high utilization but has very high delays (up to 1500 milliseconds). Verus has large rate variations
and incurs high delays. Cubic+CoDel reduces queuing delays significantly, but leaves the link underutilized when capacity increases. ABC
achieves close to 100% utilization while maintaining low queuing delays (similar to that of Cubic+CoDel).

protocols. To be deployable, an explicit protocol must handle
scenarios where the bottleneck is at a legacy router, or when it
shares the link with standard end-to-end protocols like Cubic.

Design goals: In designing ABC, we targeted the following
properties:
1. Control algorithm for fast-varying wireless links: Prior ex-

plicit control algorithms like XCP and RCP were designed
for fixed-capacity links. We design ABC’s control algo-
rithm specifically to handle the rapid bandwidth variations
and packet transmission behavior of wireless links (e.g.,
frame batching at the MAC layer).

2. No modifications to packet headers: ABC repurposes the
existing ECN [41] bits to signal both increases and de-
creases to the sender’s congestion window. By spreading
feedback over a sequence of 1-bit signals per packet, ABC
routers precisely control sender congestion windows over
a large dynamic range.

3. Coexistence with legacy bottleneck routers: ABC is robust
to scenarios where the bottleneck link is not the wireless
link but a non-ABC link elsewhere on the path. Whenever
a non-ABC router becomes the bottleneck, ABC senders
ignore window increase feedback from the wireless link,
and ensure that they send no faster than their fair share of
the bottleneck link.

4. Coexistence with legacy transport protocols: ABC routers
ensure that ABC and non-ABC flows share a wireless bot-
tleneck link fairly. To this end, ABC routers separate ABC
and non-ABC flows into two queues, and use a simple
algorithm to schedule packets from these queues. ABC
makes no assumptions about the congestion control algo-
rithm of non-ABC flows, is robust to the presence of short
or application-limited flows, and requires a small amount
of state at the router.

Fig. 1d shows ABC on the same emulated LTE link. Using
only one bit of feedback per packet, the ABC flow is able
to track the variations in bottleneck link closely, achieving
both high throughput and low queuing delay.

3 Design
ABC is a window-based protocol: the sender limits the
number of packets in flight to the current congestion window.
Window-based protocols react faster to the sudden onset of

congestion than rate-based schemes [11]. On a wireless link,
when the capacity drops and the sender stops receiving ACKs,
ABC will stop sending packets immediately, avoiding further
queue buildup. In contrast, a rate-based protocol would take
time to reduce its rate and may queue up a large number of
packets at the bottleneck link in the meantime.

ABC senders adjust their window size based on explicit
feedback from ABC routers. An ABC router uses its current
estimate of the link rate and the queuing delay to compute
a target rate. The router then sets one bit of feedback in each
packet to guide the senders towards the target rate. Each bit
is echoed to a sender by a receiver in an ACK, and it signals
either a one-packet increase (“accelerate”) or a one-packet
decrease (“brake”) to the sender’s congestion window.

3.1 The ABC Protocol
We now present ABC’s design starting with the case where
all routers are ABC-capable and all flows use ABC. We later
discuss how to extend the design to handle non-ABC routers
and scenarios with competing non-ABC flows.

3.1.1 ABC Sender
On receiving an “accelerate” ACK, an ABC sender increases
its congestion window by 1 packet. This increase results
in two packets being sent, one in response to the ACK and
one due to the window increase. On receiving a “brake,” the
sender reduces its congestion window by 1 packet, preventing
the sender from transmitting a new packet in response to
the received ACK. As we discuss in §4.3, the sender also
performs an additive increase of 1 packet per RTT to achieve
fairness. For ease of exposition, let us ignore this additive
increase for now.

Though each bit of feedback translates to only a small
change in the congestion window, when aggregated over
an RTT, the feedback can express a large dynamic range of
window size adjustments. For example, suppose a sender’s
window size is w, and the router marks accelerates on a
fraction f of packets in that window. Over the next RTT,
the sender will receive w· f accelerates and w−w· f brakes.
Then, the sender’s window size one RTT later will be
w+w f−(w−w f)=2w f packets. Thus, in one RTT, an ABC
router can vary the sender’s window size between zero (f =
0) and double its current value (f =1). The set of achievable

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 355

0

5

10

15

Th
ro

ug
hp

ut
(M

bp
s)

0 10 20 30 40 50 60
Time (s)

0
50

100
150
200

Qu
eu

in
g

De
la

y
(m

s)

(a) Dequeue

0

5

10

15

Th
ro

ug
hp

ut
(M

bp
s)

0 10 20 30 40 50 60
Time (s)

0
50

100
150
200

Qu
eu

in
g

De
la

y
(m

s)

(b) Enqueue
Figure 2: Feedback — Calculating f (t) based on enqueue rate
increases 95th percentile queuing delay by 2×.

window changes for the next RTT depends on the number
of packets in the current window w; the larger w, the higher
the granularity of control.

In practice, ABC senders increase or decrease their conges-
tion window by the number of newly acknowledged bytes cov-
ered by each ACK. Byte-based congestion window modifica-
tion is a standard technique in many TCP implementations [8],
and it makes ABC robust to variable packet sizes and delayed,
lost, and partial ACKs. For simplicity, we describe the design
with packet-based window modifications in this paper.

3.1.2 ABC Router
Calculating the target rate: ABC routers compute the target
rate tr(t) using the following rule:

tr(t)=ηµ(t)− µ(t)
δ

(x(t)−dt)
+, (1)

where µ(t) is the link capacity, x(t) is the observed queuing
delay, dt is a pre-configured delay threshold, η is a constant
less than 1, δ is a positive constant (in units of time), and y+

is max(y,0). This rule has the following interpretation. When
queuing delay is low (x(t)<dt), ABC sets the target rate to
ηµ(t), for a value of η slightly less than 1 (e.g., η = 0.95).
By setting the target rate a little lower than the link capacity,
ABC aims to trade a small amount of bandwidth for large
reductions in delay, similar to prior work [7,27,32]. However,
queues can still develop due to rapidly changing link capacity
and the 1 RTT of delay it takes for senders to achieve the
target rate. ABC uses the second term in Equation (1) to
drain queues. Whenever x(t)>dt , this term reduces the target
rate by an amount that causes the queuing delay to decrease
to dt in at most δ seconds.

The threshold dt ensures that the target rate does not react
to small increases in queuing delay. This is important because
wireless links often schedule packets in batches. Queuing
delay caused by batch packet scheduling does not imply con-
gestion, even though it occurs persistently. To prevent target
rate reductions due to this delay, dt must be configured to be
greater than the average inter-scheduling time at the router.

ABC’s target rate calculation requires an estimate of the
underlying link capacity, µ(t). In §5, we discuss how to
estimate the link capacity in cellular and WiFi networks, and
we present an implementation for WiFi.

Packet marking: To achieve a target rate, tr(t), the router
computes the fraction of packets, f (t), that should be marked
as accelerate. Assume that the current dequeue rate — the

rate at which the router transmits packets — is cr(t). If the
accelerate fraction is f (t), for each packet that is ACKed, the
sender transmits 2 f (t) packets on average. Therefore, after
1 RTT, the enqueue rate — the rate at which packets arrive
to the router — will be 2cr(t) f (t). To achieve the target rate,
f (t) must be chosen such that 2cr(t) f (t) is equal to tr(t).
Thus, f (t) is given by:

f (t)=min
{1

2
· tr(t)
cr(t)

,1
}
. (2)

An important consequence of the above calculation is that
f (t) is computed based on the dequeue rate. Most explicit
protocols compare the enqueue rate to the link capacity to
determine the feedback (e.g., see XCP [29]).

ABC uses the dequeue rate instead to exploit the ACK-
clocking property of its window-based protocol. Specifically,
Equation (2) accounts for the fact that when the link capacity
changes (and hence the dequeue rate changes), the rate at the
senders changes automatically within 1 RTT because of ACK
clocking. Fig. 2 demonstrates that computing f (t) based on
the dequeue rate at the router enables ABC to track the link
capacity much more accurately than using the enqueue rate.

ABC recomputes f (t) on every dequeued packet, using
measurements of cr(t) and µ(t) over a sliding time window of
length T . Updating the feedback on every packet allows ABC
to react to link capacity changes more quickly than schemes
that use periodic feedback updates (e.g., XCP and RCP).

Packet marking can be done deterministically or probabilis-
tically. To limit burstiness, ABC uses the deterministic method
in Algorithm 1. The variable token implements a token
bucket that is incremented by f (t) on each outgoing packet
(up to a maximum value tokenLimit), and decremented
when a packet is marked accelerate. To mark a packet acceler-
ate, token must exceed 1. This simple method ensures that no
more than a fraction f (t) of the packets are marked accelerate.

token = 0;
for each outgoing packet do

calculate f (t) using Equation (2);
token = min(token + f (t), tokenLimit);
if packet marked with accelerate then

if token > 1 then
token = token− 1;
mark accelerate;

else
mark brake;

Algorithm 1: Packet marking at an ABC router.

Multiple bottlenecks: An ABC flow may encounter multiple
ABC routers on its path. An example of such a scenario
is when two smartphone users communicate over an
ABC-compliant cellular network. Traffic sent from one
user to the other will traverse a cellular uplink and cellular
downlink, both of which could be the bottleneck. To support
such situations, an ABC sender should send traffic at the
smallest of the router-computed target rates along their path.
To achieve this goal, each packet is initially marked accelerate

356 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

by the sender. ABC routers may change a packet marked
accelerate to a brake, but not vice versa (see Algorithm 1).
This rule guarantees that an ABC router can unilaterally
reduce the fraction of packets marked accelerate to ensure
that its target rate is not exceeded, but it cannot increase this
fraction. Hence the fraction of packets marked accelerate will
equal the minimum f (t) along the path.

3.1.3 Fairness
Multiple ABC flows sharing the same bottleneck link
should be able to compete fairly with one another. However,
the basic window update rule described in §3.1.1 is a
multiplicative-increase/multiplicative-decrease (MIMD)
strategy,3 which does not provide fairness among contending
flows (see Fig. 3a for an illustration). To achieve fairness,
we add an additive-increase (AI) component to the basic
window update rule. Specifically, ABC senders adjust their
congestion window on each ACK as follows:

w←
{

w+1+1/w if accelerate
w−1+1/w if brake (3)

This rule increases the congestion window by 1 packet
each RTT, in addition to reacting to received accelerate and
brake ACKs. This additive increase, coupled with ABC’s
MIMD response, makes ABC a multiplicative-and-additive-
increase/multiplicative-decrease (MAIMD) scheme. Chiu and
Jain [15] proved that MAIMD schemes converge to fairness
(see also [5]). Fig. 3b shows how with an AI component,
competing ABC flows achieve fairness.

To give intuition, we provide a simple informal argument
for why including additive increase gives ABC fairness. Con-
sider N ABC flows sharing a link, and suppose that in steady
state, the router marks a fraction f of the packets accelerate,
and the window size of flow i is wi. To be in steady state,
each flow must send 1 packet on average for each ACK that it
receives. Now consider flow i. It will send 2 f +1/wi packets
on average for each ACK: 2 f for the two packets it sends
on an accelerate (with probability f), and 1/wi for the extra
packet it sends every wi ACKs. Therefore, to be in steady
state, we must have: 2 f +1/wi=1 =⇒ wi=1/(1−2 f). This
shows that the steady-state window size for all flows must be
the same, since they all observe the same fraction f of accel-
erates. Hence, with equal RTTs, the flows will have the same
throughput, and otherwise their throughput will be inversely
proportional to their RTT. Note that the RTT unfairness in
ABC is similar to that of schemes like Cubic, for which the
throughput of a flow is inversely proportional to its RTT. In
§7.5, we show experiments where flows have different RTTs.

3.1.4 Stability Analysis
ABC’s stability depends on the values of η and δ. η deter-
mines the target link utilization, while δ controls how long

3All the competing ABC senders will observe the same accelerate fraction,
f , on average. Therefore, each flow will update its congestion window, w, in
a multiplicative manner, to 2 f w, in the next RTT.

0 50 100 150 200 250
Time (s)

0

5

10

15

20

Th
ro

ug
hp

ut
(M

bp
s)

(a) ABC w/o AI

0 50 100 150 200 250
Time (s)

0

5

10

15

20

Th
ro

ug
hp

ut
(M

bp
s)

(b) ABC with AI
Figure 3: Fairness among competing ABC flows — 5 flows with
the same RTT start and depart one-by-one on a 24 Mbit/s link. The
additive-increase (AI) component leads to fairness.

it will take for a queue to drain. In Appendix C, we prove the
following result for a fluid model of the ABC control loop.

Theorem 1. Consider a single ABC link, traversed by N ABC
flows. Let τ be the maximum round-trip propagation delay of
the flows. ABC is globally asymptotically stable if

δ>
2
3
·τ. (4)

Specifically, if µ(t)= µ for t > t0 (i.e., the link capacity stops
changing after some time t0), the enqueue/dequeue rate and
the queuing delay at the ABC router will converge to certain
values r∗ and x∗ that depend on the system parameters and
the number of flows. In all cases: ηµ<r∗≤µ.

This stability criterion is simple and intuitive. It states that
δ should not be much smaller than the RTT (i.e, the feedback
delay). If δ is very small, ABC reacts too forcefully to queue
build up, causing under-utilization and oscillations.4 Increas-
ing δ well beyond 2/3τ improves the stability margins of the
feedback loop, but hurts responsiveness. In our experiments,
we used δ=133 ms for a propagation RTT of 100 ms.

4 Coexistence
An ABC flow should be robust to presence of non-ABC
bottlenecks on its path and share resources fairly with
non-ABC flows sharing the ABC router.

4.1 Deployment with non-ABC Routers
An ABC flow can encounter both ABC and non-ABC routers
on its path. For example, a Wi-Fi user’s traffic may traverse
both a Wi-Fi router (running ABC) and an ISP router (not run-
ning ABC); either router could be the bottleneck at any given
time. ABC flows must therefore be able to detect and react
to traditional congestion signals—both drops and ECN—and
they must determine when to ignore accelerate feedback from
ABC routers because the bottleneck is at a non-ABC router.

We augment the ABC sender to maintain two congestion
windows, one for tracking the available rate on ABC
routers (wabc), and one for tracking the rate on non-ABC
bottlenecks (wnonabc). wabc obeys accelerates/brakes
using Equation (3), while wnonabc follows a rule such as

4Interestingly, if the sources do not perform additive increase or if the
additive increase is sufficiently “gentle,” ABC is stable for any value of δ. See
the proof in Appendix C for details.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 357

0

10

20
Th

ro
ug

hp
ut

(M
bp

s) ABC Wireless Wired

0

50

100

Qu
eu

in
g

De
la

y
(m

s)

0 20 40 60 80 100 120 140 160 180
Time (s)

0
200
400
600

CW
ND

(p
ac

ke
ts

) wabc wcubic

Figure 4: Coexistence with non-ABC bottlenecks — When the
wired link is the bottleneck, ABC becomes limited by wcubic and
behaves like a Cubic flow. When the wireless link is the bottleneck,
ABC uses wabc to achieve low delays and high utilization.

Cubic [23] and responds to drop and ECN signals.5 An
ABC sender must send packets to match the lower of the
two windows. Our implementation mimics Cubic for the
non-ABC method, but other methods could also be emulated.

With this approach, the window that is not the bottleneck
could become large. For example, when a non-ABC router
is the bottleneck, the ABC router will continually send
accelerate signals, causing wabc to grow. If the ABC router
later becomes the bottleneck, it will temporarily incur large
queues. To prevent this problem, ABC senders cap both wabc
and wnonabc to 2× the number of in-flight packets.

Fig. 4 shows the throughput and queuing delay for an ABC
flow traversing a path with an ABC-capable wireless link and
a wired link with a droptail queue. For illustration, we vary the
rate of the wireless link in a series of steps every 5 seconds.
Over the experiment, the bottleneck switches between the
wired and wireless links several times. ABC is able to adapt
its behavior quickly and accurately. Depending on which link
is the bottleneck, either wnonabc (i.e., wcubic) or wabc be-
comes smaller and controls the rate of the flow. When the
wireless link is the bottleneck, ABC maintains low queuing
delay, whereas the queuing delay exhibits standard Cubic be-
havior when the wired link is the bottleneck. wcubic does not
limit ABC’s ability to increase its rate when the wireless link
is the bottleneck. At these times (e.g., around the 70 s mark),
as soon on wabc increases, the number of in-flight packets and
the cap on wcubic increases, and wcubic rises immediately.

4.2 Multiplexing with ECN Bits
IP packets have two ECN-related bits: ECT and CE. These
two bits are traditionally interpreted as follows:

5We discuss how ABC senders distinguish between accelerate/brake and
ECN marks in §4.2.

ECT CE Interpretation
0 0 Non-ECN-Capable Transport
0 1 ECN-Capable Transport ECT(1)
1 0 ECN-Capable Transport ECT(0)
1 1 ECN set

Routers interpret both 01 and 10 to indicate that a flow is
ECN-capable, and routers change those bits to 11 to mark
a packet with ECN. Upon receiving an ECN mark (11), the
receiver sets the ECN Echo (ECE) flag to signal congestion to
the sender. ABC reinterprets the ECT and CE bits as follows:

ECT CE Interpretation
0 0 Non-ECN-Capable Transport
0 1 Accelerate
1 0 Brake
1 1 ECN set

ABC send all packets with accelerate (01) set, and ABC
routers signal brakes by flipping the bits to 10. Both 01 and
10 indicate an ECN-capable transport to ECN-capable legacy
routers, which will continue to use (11) to signal congestion.

With this design, receivers must be able to echo both
standard ECN signals and accelerates/brakes for ABC.
Traditional ECN feedback is signaled using the ECE flag.
For ABC feedback, we repurpose the NS (nonce sum) bit,
which was originally proposed to ensure ECN feedback
integrity [17] but has been reclassified as historic [31] due
to lack of deployment. Thus, it appears possible to deploy
ABC with only simple modifications to TCP receivers.
Deployment in proxied networks: Cellular networks com-
monly split TCP connections and deploy proxies at the
edge [42, 45]. Here, it is unlikely that any non-ABC router
will be the bottleneck and interfere with the accel-brake mark-
ings from the ABC router. In this case, deploying ABC may
not require any modifications to today’s TCP ECN receiver.
ABC senders (running on the proxy) can use either 10 or 01 to
signal an accelerate, and routers can use 11 to indicate a brake.
The TCP receiver can echo this feedback using the ECE flag.

4.3 Non-ABC flows at an ABC Router
ABC flows are potentially at a disadvantage when they
share an ABC bottleneck link with non-ABC flows.6 If the
non-ABC flows fill up queues and increase queuing delay, the
ABC router will reduce ABC’s target rate. To ensure fairness
in such scenarios, ABC routers isolate ABC and non-ABC
packets in separate queues.

We assume that ABC routers can determine whether
a packet belongs to an ABC flow. In some deployment
scenarios, this is relatively straightforward. For example, in
a cellular network deployment with TCP proxies at the edge
of the network [42, 45], the operator can deploy ABC at the
proxy, and configure the base station to assume that all traffic
from the proxy’s IP address uses ABC. Other deployment

6ABC and non-ABC flows may also share a non-ABC link, but in such
cases, ABC flows will behave like Cubic and compete fairly with other traffic.

358 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

scenarios may require ABC senders to set a predefined value
in a packet field like the IPv6 flow label or the IPv4 IPID.

The ABC router assigns weights to the ABC and non-ABC
queues, respectively, and it schedules packets from the
queues in proportion to their weights. In addition, ABC’s
target rate calculation considers only ABC’s share of the link
capacity (which is governed by the weights). The challenge
is to set the weights to ensure that the average throughput
of long-running ABC and non-ABC flows is the same, no
matter how many flows there are.

Prior explicit control schemes address this problem using
the TCP loss-rate equation (XCP) or by estimating the
number of flows with Zombie Lists (RCP). Relying on the
TCP equation requires a sufficient loss rate and does not
handle flows like BBR. RCP’s approach does not handle short
flows. When one queue has a large number of short flows (and
hence a low average throughput), RCP increases the weight
of that queue. However, the short flows cannot send faster,
so the extra bandwidth is taken by long-running flows in the
same queue, which get more throughput than long-running
flows in the other queue (see §7.5 for experimental results).

To overcome these drawbacks, a ABC router measures the
average rate of the K largest flows in each queue using the
Space Saving Algorithm [34], which requires O(K) space. It
considers any remaining flow in either queue to be short, and
it calculates the total rate of the short flows in each queue by
subtracting the rate of the largest K flows from the queue’s
aggregate throughput. ABC uses these rate measurements to
estimate the rate demands of the flows. Using these demands,
ABC periodically computes the max-min fair rate allocation
for the flows, and it sets the weight of each of the two
queues to be equal to the total max-min rate allocation of its
component flows. This algorithm ensures that long-running
flows in the two queues achieve the same average rate, while
accounting for demand-limited short flows.

To estimate the demand of the flows, the ABC router
assumes that the demand for the top K flows in each queue
is X% higher than the current throughput of the flow, and
the aggregate demand for the short flows is the same as
their throughput. If a top-K flow is unable to increase its
sending rate by X%, its queue’s weight will be larger than
needed, but any unfairness in weight assignment is bounded
by X%. Small values of X limit unfairness but can slow down
convergence to fairness; our experiments use X =10%.

5 Estimating Link Rate
We describe how ABC routers can estimate the link capacity
for computing the target rate (§3.1.2). We present a technique
for Wi-Fi that leverages the inner workings of the Wi-Fi
MAC layer, and we discuss options for cellular networks.

5.1 Wi-Fi
We describe how an 802.11n access point (AP) can estimate
the average link rate. For simplicity, we first describe our

solution when there is a single user (client) connected to the
AP. Next, we describe the multi-user case.

We define link rate as the potential throughput of the user
(i.e., the MAC address of the Wi-Fi client) if it was backlogged
at the AP, i.e., if the user never ran out of packets at the AP.
In case the router queue goes empty at the AP, the achieved
throughput will be less than the link rate.

Challenges: A strawman would be to estimate the link rate
using the physical layer bit rate selected for each transmission,
which would depend on the modulation and channel code
used for the transmission. Unfortunately, this method will
overestimate the link rate as the packet transmission times
are governed not only by the bitrate, but also by delays for
additional tasks (e.g., channel contention and retransmis-
sions [12]). An alternative approach would be to use the
fraction of time that the router queue was backlogged as a
proxy for link utilization. However, the Wi-Fi MAC’s packet
batching confounds this approach. Wi-Fi routers transmit
packets (frames) in batches; a new batch is transmitted
only after receiving an ACK for the last batch. The AP may
accumulate packets while waiting for a link-layer ACK; this
queue buildup does not necessarily imply that the link is fully
utilized. Thus, accurately measuring the link rate requires a de-
tailed consideration of Wi-Fi’s packet transmission protocols.

Understanding batching: In 802.11n, data frames, also
known as MAC Protocol Data Units (MPDUs), are transmit-
ted in batches called A-MPDUs (Aggregated MPDUs). The
maximum number of frames that can be included in a single
batch, M, is negotiated by the receiver and the router. When
the user is not backlogged, the router might not have enough
data to send a full-sized batch of M frames, but will instead
use a smaller batch of size b<M. Upon receiving a batch, the
receiver responds with a single Block ACK. Thus, at a time
t, given a batch size of b frames, a frame size of S bits,7 and
an ACK inter-arrival time (i.e., the time between receptions
of consecutive block ACKs) of TIA(b,t), the current dequeue
rate, cr(t), may be estimated as

cr(t)=
b·S

TIA(b,t)
. (5)

When the user is backlogged and b=M, then cr(t) above
will be equal to the link capacity. However, if the user is not
backlogged and b < M, how can the AP estimate the link
capacity? Our approach calculates T̂IA(M,t), the estimated
ACK inter-arrival time if the user was backlogged and had
sent M frames in the last batch.

We estimate the link capacity, µ̂(t), as

µ̂(t)=
M ·S

T̂IA(M,t)
. (6)

To accurately estimate T̂IA(M,t), we turn to the relationship
between the batch size and ACK inter-arrival time. We can

7For simplicity, we assume that all frames are of the same size, though
our formulas can be generalized easily for varying frame sizes.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 359

0 5 10 15 20
A-MPDU Size, x (frame)

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

In
te

r-A
CK

 T
im

e
T I

A
(x

,t)
 (m

s)

Figure 5: Inter-ACK time v. batch (A-MPDU) size — Inter-ACK
times for a given batch size exhibits variation. The solid black line
represents the average Inter-ACK time. The slope of the line is S/R,
where S is the frame size in bits and R is the link rate in bits per second.

decompose the ACK interval time into the batch transmission
time and “overhead” time, the latter including physically
receiving an ACK, contending for the shared channel, and
transmitting the physical layer preamble [21]. Each of these
overhead components is independent of the batch size. We
denote the overhead time by h(t). If R is the bitrate used for
transmission, the router’s ACK inter-arrival time is

TIA(b,t) =
b·S
R

+h(t). (7)

Fig. 5 illustrates this relationship empirically. There are
two key properties to note. First, for a given batch size, the
ACK inter-arrival times vary due to overhead tasks. Second,
because the overhead time and batch size are independent,
connecting the average values of ACK inter-arrival times
across all considered batch sizes will produce a line with slope
S/R. Using this property along with Equation (7), we can
estimate the ACK inter-arrival time for a backlogged user as

T̂IA(M,t) =
M ·S

R
+h(t)

= TIA(b,t)+
(M−b)·S

R
· (8)

We can then use T̂IA(M, t) to estimate the link capacity
with Equation (6). This computation is performed for each
batch transmission when the batch ACK arrives, and passed
through a weighted moving average filter over a sliding
window of time T to estimate the smoothed time-varying
link rate. T must be greater than the inter-ACK time (up to
20 ms in Fig. 5); we use T = 40 ms. Because ABC cannot
exceed a rate-doubling per RTT, we cap the predicted link
rate to double the current rate (dashed slanted line in Fig. 5).

To evaluate the accuracy of our link rate estimates, we
transmit data to a single client through our modified ABC
router (§7.1) at multiple different rates over three Wi-Fi
links (with different modulation and coding schemes). Fig. 6
summarizes the accuracy of the ABC router’s link rate
estimates. With this method, the ABC Wi-Fi router is able
to predict link rates within 5% of the true link capacities.
Extension to multiple users. In multi-user scenarios, each
receiver will negotiate its own maximum batch size (M) with
the router, and different users can have different transmission

Figure 6: Wi-Fi Link Rate Prediction — ABC router link rate
predictions for a user that was not backlogged and sent traffic at
multiple different rates over three different Wi-Fi links. Horizontal
lines represent the true link capacity, solid lines summarize the ABC
router’s link capacity prediction (each point is an average over 30
seconds of predictions), and the dashed slanted line represents the
prediction rate caps. ABC’s link rate predictions are within 5% of
the ground truth across most sending rates (given the prediction cap).

rates. We now present two variants of our technique for (1)
when the router uses per-user queues to schedule packets of
different users, and (2) when the users share a single FIFO
(first-in first-out) queue at the router.
Per-user queues. In this case each user calculates a separate
link rate estimate. Recall that the link rate for a given user
is defined as the potential throughput of the user if it was
backlogged at the router. To determine the link rate for a
user x, we repeat the single-user method for the packets and
queue of user x alone, treating transmissions from other users
as overhead time. Specifically, user x uses Equations (8)
and (6) to compute its link rate (µ̂x(t)) based on its own values
of the bit rate (Rx) and maximum batch size (Mx). It also
computes its current dequeue rate (crx(t)) using Equation (5)
to calculate the accel-brake feedback. The inter-ACK time
(TIAx(b,t)), is defined as the time between the reception of
consecutive block-ACKs for user x. Thus, the overhead time
(hx(t)) includes the time when other users at the same AP
are scheduled to send packets. Fairness among different users
is ensured via scheduling users out of separate queues.
Single queue. In this case the router calculates a single
aggregate link rate estimate. The inter-ACK time here is the
time between two consecutive block-ACKs, regardless of the
user to which the block-ACKs belong to. The router tries to
match the aggregate rate of the senders to the aggregate link
rate, and uses the aggregate current dequeue rate to calculate
accel-brake feedback.

5.2 Cellular Networks
Cellular networks schedule users from separate queues to
ensure inter-user fairness. Each user will observe a different
link rate and queuing delay. As a result, every user requires a
separate target rate calculation at the ABC router. The 3GPP
cellular standard [1] describes how scheduling information at
the cellular base station can be used to calculate per-user link
rates. This method is able to estimate capacity even if a given
user is not backlogged at the base station, a key property for

360 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the target rate estimation in Equation (1).

6 Discussion
We discuss practical issues pertaining to ABC’s deployment.
Delayed Acks: To support delayed ACKs, ABC uses byte
counting at the sender; the sender increases/decreases its
window by the new bytes ACKed. At the receiver, ABC uses
the state machine from DCTCP [6] for generating ACKs
and echoing accel/brake marks. The receiver maintains the
state of the last packet (accel or brake). Whenever the state
changes, the receiver sends an ACK with the new state. If
the receiver is in the same state after receiving m packets
(the number of ACKs to coalesce), then it sends a delayed
ACK with the current state. Our TCP implementation and
the experiments in §7 use delayed ACKs with m=2.
Lost ACKs: ABC’s window adjustment is robust to ACK
losses. Consider a situation where the sender receives a
fraction p< 1 of the ACKs. If the accelerate fraction at the
router is f , the current window of the sender is wabc, then in
the next RTT, the change in congestion window of the sender
is f pwabc− (1− f)pwabc = (2 f −1)pwabc. As a result, lost
ACKs only slow down the changes in the congestion window,
but whether it increases or decreases doesn’t depend on p.
ABC routers don’t change prior ECN marks: ABC routers
don’t mark accel-brake on incoming packets that contain ECN
marks set by an upstream non-ABC router. Since packets with
ECN set can’t convey accel-brake marks, they can slow down
changes in wabc (similar to lost ACKs). In case the fraction of
packets with ECN set is small, then, the slow down in changes
to wabc will be small. If the fraction is large, then the non-ABC
router is the likely bottleneck, and the sender will not use wabc.
ECN routers clobbering ABC marks: An ECN router can
overwrite accel-brake marks. The ABC sender will still track
the non-ABC window, wnonabc, but such marks can slow
down adjustment to the ABC window, wabc.
ABC on fixed-rate links: ABC can also be deployed on
fixed-rate links. On such links, its performance is similar to
prior explicit schemes like XCP.

7 Evaluation
We evaluate ABC by considering the following properties:
1. Performance: We measure ABC’s ability to achieve

low delay and high throughput and compare ABC to
end-to-end schemes, AQM schemes, and explicit control
schemes (§7.3).

2. Multiple Bottlenecks: We test ABC in scenarios with
multiple ABC bottlenecks and mixtures of ABC and
non-ABC bottlenecks (§7.4).

3. Fairness: We evaluate ABC’s fairness while competing
against other ABC and non-ABC flows (§7.5).

4. Additional Considerations: We evaluate how ABC
performs with application-limited flows and different
network delays. We also demonstrate ABC’s impact on
a real application’s performance (§7.6).

7.1 Prototype ABC Implementation

ABC transport: We implemented ABC endpoints in Linux
as kernel modules using the pluggable TCP API.

ABC router: We implemented ABC as a Linux queuing dis-
cipline (qdisc) kernel module using OpenWrt, an open source
operating system for embedded networked devices [18]. We
used a NETGEAR WNDR 3800 router configured to 802.11n.
We note that our implementation is portable as OpenWrt is
supported on many other commodity Wi-Fi routers.

ABC’s WiFi link rate estimation exploits the inner
workings of the MAC 802.11n protocol, and thus requires
fine-grained values at this layer. In particular, the ABC qdisc
must know A-MPDU sizes, Block ACK receive times, and
packet transmission bitrates. These values are not natively ex-
posed to Linux router qdiscs, and instead are only available at
the network driver. To bridge this gap, we modified the router
to log the relevant MAC layer data in the cross-layer socket
buffer data structure (skb) that it already maintains per packet.

7.2 Experimental Setup
We evaluated ABC in both Wi-Fi and cellular network settings.
For Wi-Fi, experiments we used a live Wi-Fi network and the
ABC router described in §7.1. For cellular settings, we use
Mahimahi [35] to emulate multiple cellular networks (Veri-
zon LTE, AT&T, and TMobile). Mahimahi’s emulation uses
packet delivery traces (separate for uplink and downlink) that
were captured directly on those networks, and thus include
outages (highlighting ABC’s ability to handle ACK losses).

We compare ABC to end-to-end protocols designed for
cellular networks (Sprout [46] and Verus [50]), loss-based
end-to-end protocols both with and without AQM (Cubic [23],
Cubic+Codel [36], and Cubic+PIE [37]), recently-proposed
end-to-end protocols (BBR [14], Copa [10], PCC Vivace-
Latency (referred as PCC)) [16]), and TCP Vegas [13]), and
explicit control protocols (XCP [29], RCP [43] and VCP [47]).
We used TCP kernel modules for ABC, BBR, Cubic, PCC, and
Vegas; for these schemes, we generated traffic using iperf [44].
For the end-to-end schemes that are not implemented as TCP
kernel modules (i.e., Copa, Sprout, Verus), we used the UDP
implementations provided by the authors. Lastly, for the
explicit control protocols (i.e., XCP, RCP, and VCP), we used
our own implementations as qdiscs with Mahimahi to ensure
compatibility with our emulation setup. We used Mahimahi’s
support of Codel and Pie to evaluate AQM.

Our emulated cellular network experiments used a mini-
mum RTT of 100 ms and a buffer size of 250 MTU-sized pack-
ets. Additionally, ABC’s target rate calculation (Equation (1))
used η = 0.98 and δ = 133 ms. Our Wi-Fi implementation
uses the link rate estimator from §5, while our emulated cel-
lular network setup assumes the realistic scenario that ABC’s
router has knowledge of the underlying link capacity [1].

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 361

200 500 800 1100 1400
95th percentile packet delay (ms)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ut
iliz

at
io

n

Better

ABC

Cubic+Codel
Cubic+PIE

Copa

Sprout

Vegas
Verus

BBR
PCC

Cubic

XCPXCPW

(a) Downlink

200 400 600 800 1000
95th percentile packet delay (ms)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ut
iliz

at
io

n

ABC

Cubic+Codel

Cubic+PIE

Copa

Sprout

Vegas
Verus

BBR PCC
Cubic

XCP
XCPW

(b) Uplink

200 600 1000 1400 1800
95th percentile packet delay (ms)

1.5

2.0

2.5

3.0

3.5

4.0

Th
ro

ug
hp

ut
 (M

bi
ts

/s
ec

)

ABC

Cubic+Codel
Cubic+PIE

Copa

Sprout

Vegas
Verus

BBR PCC
Cubic

XCP
XCPW

(c) Uplink+Downlink
Figure 7: ABC vs. previous schemes on three Verizon cellular network traces — In each case, ABC outperforms all other schemes and
sits well outside the Pareto frontier of previous schemes (denoted by the dashed lines).

7.3 Performance
Cellular: Fig. 7a and 7b show the utilization and 95th per-
centile per packet delay that a single backlogged flow achieves
using each aforementioned scheme on two Verizon LTE cel-
lular link traces. ABC exhibits a better (i.e., higher) through-
put/delay tradeoff than all prior schemes. In particular, ABC
sits well outside the Pareto frontier of the existing schemes,
which represents the prior schemes that achieve higher
throughput or lower delay than any other prior schemes.

Further analysis of Fig. 7a and 7b reveals that Cubic+Codel,
Cubic+PIE, Copa, and Sprout are all able to achieve low
delays that are comparable to ABC. However, these schemes
heavily underutilize the link. The reason is that, though
these schemes are able to infer and react to queue buildups
in a way that reduces delays, they lack a way of quickly
inferring increases in link capacity (a common occurrence
on time-varying wireless links), leading to underutilization.
In contrast, schemes like BBR, Cubic, and PCC are able to
rapidly saturate the network (achieving high utilization), but
these schemes also quickly fill buffers and thus suffer from
high queuing delays. Unlike these prior schemes, ABC is able
to quickly react to both increases and decreases in available
link capacity, enabling high throughput and low delays.

We observed similar trends across a larger set of 8 different
cellular network traces (Fig. 8). ABC achieves 50% higher
throughput than Cubic+Codel and Copa, while only incurring
17% higher 95th percentile packet delays. PCC and Cubic
achieve slightly higher link utilization values than ABC
(12%, and 18%, respectively), but incur significantly higher
per-packet delays than ABC (394%, and 382%, respectively).
Finally, compared to BBR, Verus, and Sprout, ABC achieves
higher link utilization (4%, 39%, and 79%, respectively).
BBR and Verus incur higher delays (183% and 100%,
respectively) than ABC. Appendix E shows mean packet
delay over the same conditions, and shows the same trends.

Comparison with Explicit Protocols: Fig. 7 and 8 also show
that ABC outperforms the explicit control protocol, XCP, de-
spite not using multi-bit per-packet feedback as XCP does. For
XCP we used α=0.55 and β=0.4, the highest permissible
stable values that achieve the fastest possible link rate conver-

�9�X�M�P�M�^�E�X�M�S�R���������������������������%�&�’�<�’�4�<�’�4�[�’�Y�F�M�G���’�S�H�I�P�’�Y�F�M�G���4�-�)�’�S�T�E�7�T�V�S�Y�X�:�I�K�E�W���:�I�V�Y�W�&�&�6�4�’�’�’�Y�F�M�G�:�I�V�M�^�S�R�����:�I�V�M�^�S�R�����8�1�S�F�M�P�I�������%�8�8�����:�I�V�M�^�S�R�����:�I�V�M�^�S�R�����8�1�S�F�M�P�I�����%�8�8�����%�:�)�6�%�+�)

(a) Utilization
95

%
ile

 D
el

ay
 (m

s)

100

200

400

800

2000

ABC XCP
XCPw

Cubic+Codel

Cubic+PIE
Copa

Sprout
Vegas

Verus
BBR PCC

Cubic

Verizon 1 Verizon 2 TMobile 1 ATT 1 Verizon 3 Verizon 4
TMobile 2 ATT 2 AVERAGE

(b) 95th percentile per-packet delay

Figure 8: 95th percentile per-packet delay across 8 cellular link
traces — On average, ABC achieves similar delays and 50% higher
utilization than Copa and Cubic+Codel. PCC and Cubic achieve
slightly higher throughput than ABC, but incur 380% higher 95th

percentile delay than ABC.

gence. XCP achieves similar average throughput to ABC, but
with 105% higher 95th percentile delays. This performance
discrepancy can be attributed to the fact that ABC’s control
rule is better suited for the link rate variations in wireless net-
works. In particular, unlike ABC which updates its feedback
on every packet, XCP computes aggregate feedback values (φ)
only once per RTT and may thus take an entire RTT to inform
a sender to reduce its window. To overcome this, we also con-
sidered an improved version of XCP that recomputes aggre-
gate feedback on each packet based on the rate and delay mea-
surements from the past RTT; we refer to this version as XCPw
(short for XCP wireless). As shown in Fig. 7 and Fig. 8, XCPw
reduces delay compared to XCP, but still incurs 40% higher
95th percentile delays (averaged across traces) than ABC.
We also compared with two other explicit schemes, RCP and
VCP, and found that ABC consistently outperformed both,
achieving 20% more utilization on average. (Appendix F).

362 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

300 400 600 800 1000 1500 2000
95 percentile per packet delay (ms)

0

5

10

15

Th
ro

ug
hp

ut
 (M

bp
s) ABC_20ABC_60ABC_100

Cubic+CodelCOPAVegas

BBR PCCCubic

(a) Single user

400 600 800 1000 1500 2000 2500
95 percentile per packet delay (ms)

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

bp
s)

Better

ABC_20ABC_60 ABC_100

Cubic+CodelCOPAVegas

BBR
PCC

Cubic

(b) Two users, shared queue
Figure 9: Throughout and mean delay on Wi-Fi — For the
multi-user scenario, we report the sum of achieved throughputs and
the average of observed 95th percentile delay across both users. We
consider three versions of ABC (denoted ABC _*) for different delay
thresholds. All versions of ABC outperform all prior schemes and
sit outside the pareto frontier.

Wi-Fi: We performed similar evaluations on a live Wi-Fi
link, considering both single and multi-user scenarios. We
connect senders to a WiFi router via Ethernet. Each sender
transmits data through the WiFi router to one receiver. All
receivers’ packets share the same FIFO queue at the router.
In this experiment, we excluded Verus and Sprout as they are
designed specifically for cellular networks. To mimic com-
mon Wi-Fi usage scenarios where endpoints can move and
create variations in signal-to-noise ratios (and thus bitrates),
we varied the Wi-Fi router’s bitrate selections by varying
the MCS index using the Linux iw utility; we alternated the
MCS index between values of 1 and 7 every 2 seconds. In
Appendix 16, we also list results for an experiment where we
model MCS index variations as Brownian motion—results
show the same trends as described below. This experiment
was performed in a crowded computer lab with contention
from other Wi-Fi networks. We report average performance
values across three, 45 second runs. We considered three
different ABC delay threshold (dt) values of 20 ms, 60 ms,
and 100 ms; note that increasing ABC’s delay threshold will
increase both observed throughput and RTT values.

Fig. 9 shows the throughput and 95th percentile per-packet
delay for each protocol. For the multi-user scenario, we
report the sum of achieved throughputs and the average
95th percentile delay across all users. In both the single and
multi-user scenarios, ABC achieves a better throughput/delay
tradeoff than all prior schemes, and falls well outside
the Pareto frontier for those schemes. In the single user
scenario, the ABC configuration with dt =100 ms achieves

0

5

10

Th
ro

ug
hp

ut
(M

bp
s)

ABC
Cross tfk

Ideal
Wireless

Wired

0 10 20 30 40 50 60 70 80
Time (s)

50
100
150

Qu
eu

in
g

De
la

y
(m

s)

Figure 10: Coexistence with non-ABC bottlenecks — ABC
tracks the ideal rate closely (fair share) and reduces queuing delays
in the absence of cross traffic (white region).

up to 29% higher throughput than Cubic+Codel, Copa
and Vegas. Though PCC-Vivace, Cubic and BBR achieve
slightly higher throughput (4%) than this ABC configuration,
their delay values are considerably higher (67%-6×). The
multi-user scenario showed similar results. For instance,
ABC achieves 38%, 41% and 31% higher average throughput
than Cubic+Codel, Copa and Vegas, respectively.

7.4 Coexistence with Various Bottlenecks
Coexistence with ABC bottlenecks: Fig. 7c compares ABC
and prior protocols on a network path with two cellular
links. In this scenario, ABC tracks the bottleneck link rate
and achieves a better throughput/delay tradeoff than prior
schemes, and again sits well outside the Pareto frontier.

Coexistence with non-ABC bottlenecks: Fig. 10 illustrates
throughput and queuing delay values for an ABC flow travers-
ing a network path with both an emulated wireless link and
an emulated 12 Mbits/s fixed rate (wired) link. The wireless
link runs ABC, while the wired link operates a droptail buffer.
ABC shares the wired link with on-off cubic cross traffic. In
the absence of cross traffic (white region), the wireless link is
always the bottleneck. However, with cross traffic (yellow and
grey regions), due to contention, the wired link can become
the bottleneck. In this case, ABC’s fair share on the wired link
is half of the link’s capacity (i.e., 6 Mbit/s). If the wireless
link rate is lower than the fair share on the wired link (yellow
region), the wireless link remains the bottleneck; otherwise,
the wired link becomes the bottleneck (grey region).

The black dashed line in the top graph represents the ideal
fair throughput for the ABC flow throughout the experiment.
As shown, in all regions, ABC is able to track the ideal rate
closely, even as the bottleneck shifts. In the absence of cross
traffic, ABC achieves low delays while maintaining high link
utilization. With cross traffic, ABC appropriately tracks the
wireless link rate (yellow region) or achieves its fair share of
the wired link (grey region) like Cubic. In the former cross
traffic scenario, increased queuing delays are due to conges-
tion caused by the Cubic flow on the wired link. Further, devi-
ations from the ideal rate in the latter cross traffic scenario can

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 363

200 300 400 500
95 percentile per packet delay (ms)

0.4

0.6

0.8

1.0

Ut
iliz

at
io

n

124816

1
2

4816 124816

1 2
4816

1
2

4
8 16

ABC Cubic+Codel Cubic BBR Vegas

Figure 11: Coexistence among ABC flows — ABC achieves
similar aggregate utilization and delay irrespective of the number
of connections. ABC outperforms all previous schemes.

be attributed to the fact that the ABC flow is running as Cubic,
which in itself takes time to converge to the fair share [23].

7.5 Fairness among ABC and non-ABC flows
Coexistence among ABC flows: We simultaneously run
multiple ABC flows on a fixed 24 Mbits/s link. We varied
the number of competing flows from 2 to 32 (each run was
60 s). In each case, the Jain Fairness Index [28] was within
5% from the ideal fairness value of 1, highlighting ABC’s
ability to ensure fairness.

Fig. 11 shows the aggregate utilization and delay for con-
current flows (all flows running the same scheme) competing
on a Verizon cellular link. We varied the number of com-
peting flows from 1 to 16. ABC achieves similar aggregate
utilization and delay across all scenarios, and, outperforms
all other schemes. For all the schemes, the utilization and
delay increase when the number of flows increases. For ABC,
this increase can be attributed to the additional packets that
result from additive increase (1 packet per RTT per flow).
For other schemes, this increase is because multiple flows
in aggregate ramp-up their rates faster than a single flow.
RTT Unfairness: We simultaneously ran 2 ABC flows on a
24 Mbits wired bottleneck. We varied the RTT of flow 1 from
20ms to 120ms. RTT of flow 2 was fixed to 20ms. Fig. 12
shows the ratio of the average throughput of these 2 flows
(average throughput of flow 2 / flow 1, across 5 runs) against
the ratio of their RTTs (RTT of flow 1 / flow 2). Increasing
the RTT ratio increases the throughput ratio almost linearly
and the throughput is inversely proportional to the RTT. Thus,
the unfairness is similar to existing protocols like Cubic.

Next, we simultaneously ran 6 ABC flows. The RTT of
the flows vary from 20ms to 120ms. Table 1 shows the RTT
and the average throughput across 5 runs. Flows with higher
RTTs have lower throughput. However, note that the flow
with the highest RTT (120ms) still achieves ∼35 % of the
throughput as flow with the lowest RTT (20ms).
Coexistence with non-ABC flows: We consider a scenario
where 3 ABC and 3 non-ABC (in this case, Cubic) long-lived
flows share the same 96 Mbits/s bottleneck link. In addition,
we create varying numbers of non-ABC short flows (each
of size 10 KB) with Poisson flow arrival times to offer a fixed
average load. We vary the offered load values, and report

0 2 4 6
RTT Ratio

0
1
2
3
4
5
6

Th
ro

ug
hp

ut
 R

at
io

Figure 12: RTT unfairness

RTT (ms) Tput (Mbps)

20 6.62
40 4.94
60 4.27
80 3.0

100 2.75
120 2.40

Table 1: RTT unfairness

502512.56.25
Offered Load (%)

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

bi
ts

/s
ec

)

ABC Cubic

(a) ABC

502512.56.25
Offered Load (%)

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

bi
ts

/s
ec

)

ABC Cubic

(b) RCP’s Zombie List
Figure 13: Coexistence with non-ABC flows — Across all
scenarios, the standard deviation for ABC flows is small and the
flows are fair to each other. Compared to RCP’s Zombie List strategy,
ABC’s max-min allocation provides better fairness between ABC
and non-ABC flows. With ABC’s strategy, the difference in average
throughput of ABC and Cubic flows is under 5%.

results across 10 runs (40 seconds each). We compare ABC’s
strategy to coexist with non-ABC flows to RPC’s Zombie
list approach (§4.3).

Fig. 13 shows the mean and standard deviation of
throughput for long-lived ABC and Cubic flows. As shown in
Fig. 13a, ABC’s coexistence strategy allows ABC and Cubic
flows to fairly share the bottleneck link across all offered
load values. Specifically, the difference in average throughput
between the ABC and Cubic flows is under 5%. In contrast,
Fig. 13b shows that RCP’s coexistence strategy gives higher
priority to Cubic flows. This discrepancy increases as the
offered load increases, with Cubic flows achieving 17-165%
higher throughput than ABC flows. The reason, as discussed
in §4.3, is that long-lived Cubic flows receive higher through-
put than the average throughput that RCP estimates for Cubic
flows. This leads to unfairness because RCP attempts to
match average throughput for each scheme.Fig. 13 also shows
that the standard deviation of ABC flows is small (under
10%) across all scenarios. This implies that in each run of the
experiment, the throughput for each of the three concurrent
ABC flows is close to each other, implying fairness across
ABC flows. Importantly, the standard deviation values for
ABC are smaller than those for Cubic. Thus, ABC flows
converge to fairness faster than Cubic flows do.

7.6 Additional Results
ABC’s sensitivity to network latency: Thus far, our emula-
tion experiments have considered fixed minimum RTT values
of 100 ms. To evaluate the impact that propagation delay on
ABC’s performance, we repeated the experiment from Fig. 8
on the RTT values of 20 ms, 50 ms, 100 ms, and 200 ms.
Across all RTTs, ABC outperforms all prior schemes, again

364 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

achieving a more desirable throughput/latency trade off (see
Appendix G).
Application-limited flows: We created a single long-lived
ABC flow that shared a cellular link with 200 application-
limited ABC flows that send traffic at an aggregate of 1
Mbit/s. Despite the fact that the application-limited flows do
not have traffic to properly respond to ABC’s feedback, the
ABC flows (in aggregate) still achieve low queuing delays
and high link utilization. See Appendix G for details.
Perfect future capacity knowledge: We considered a variant
of ABC, PK-ABC, which knows an entire emulated link trace
in advance. This experiment reflects the possibility of resource
allocation predictions at cellular base stations. Rather than us-
ing an estimate of the current link rate to compute a target rate
(as ABC does), PK-ABC uses the expected link rate 1 RTT
in the future. On the same setup as Fig. 7b, PK-ABC reduces
95th percentile per-packet-delays from 97 ms to 28 ms, com-
pared to ABC, while achieving similar utilization (∼90%).
ABC’s improvement on real applications: We evaluated
ABC’s improvement for real user-facing applications on
a multiplayer interactive game, Slither.io [3]. We loaded
Slither.io using a Google Chrome browser which ran inside
an emulated cellular link with a background backlogged flow.
We considered three schemes for the backlogged flow: Cubic,
Cubic+Codel, and ABC. Cubic fully utilizes the link, but adds
excessive queuing delays hindering gameplay. Cubic+Codel
reduces queuing delays (improving user experience in the
game), but underutilizes the link. Only ABC is able to achieve
both high link utilization for the backlogged flow and low
queuing delays for the game. A video demo of this experiment
can be viewed at https://youtu.be/Dauq-tfJmyU.
Impact of η: This parameter presents a trade-off between
throughput and delay. Increasing η increases the throughput
but at the cost of additional delay (see Appendix B).

8 Related Work
Several prior works have proposed using LTE infrastructure to
infer the underlying link capacity [26, 33, 48]. CQIC [33] and
piStream [48] use physical layer information at the receiver
to estimate link capacity. However, these approaches have sev-
eral limitations that lead to inaccurate estimates. CQIC’s esti-
mation approach considers historical resource usage (not the
available physical resources) [48], while piStream’s technique
relies on second-level video segment downloads and thus does
not account for the short timescale variations in link rate re-
quired for per-packet congestion control. These inaccuracies
stem from the opacity of the base station’s resource alloca-
tion process at the receiver. ABC circumvents these issues by
accurately estimating link capacity directly at the base station.

In VCP [47], router classifies congestion as low, medium,
or high, and signals the sender to either perform a mul-
tiplicative increase, additive increase, or multiplicative
decrease in response. Unlike an ABC sender, which reacts
to ACKs individually, VCP senders act once per RTT.

This coarse-grained update limits VCP’s effectiveness on
time-varying wireless paths. For instance, it can take 12
RTTs to double the window. VCP is also incompatible with
ECN, making it difficult to deploy.

In BMCC [39, 40], a router uses ADPM [9] to send link
load information to the receiver on ECN bits, relying on
TCP options to relay the feedback from the receiver to the
sender. MTG proposed modifying cellular base stations
to communicate the link rate explicitly using a new TCP
option [26]. Both approaches do not work with IPSec
encryption [30], and such packet modifications trigger the
risk of packets being dropped silently by middleboxes [25].
Moreover, unlike ABC, MTG does not ensure fairness among
multiple flows for a user, while BMCC has the same problem
with non-BMCC flows [38, 39].

XCP-b [4] is a variant of XCP designed for wireless links
with unknown capacity. XCP-b routers use the queue size to
determine the feedback. When the queue is backlogged, the
XCP-b router calculates spare capacity using the change in
queue size and uses the same control rule as XCP. When the
queue goes to zero, XCP-b cannot estimate spare capacity, and
resorts to a blind fixed additive increase. Such blind increase
can cause both under-utilization and increased delays (§2.)

Although several prior schemes (XCP, RCP, VCP, BMCC,
XCP-b) attempt to match the current enqueue rate to the
capacity, none match the future enqueue rate to the capacity,
and so do not perform as well as ABC on time-varying links.

9 Conclusion
This paper presented a simple new explicit congestion control
protocol for time-varying wireless links called ABC. ABC
routers use a single bit to mark each packet with “accelerate”
or “brake”, which causes senders to slightly increase or
decrease their congestion windows. Routers use this succinct
feedback to quickly guide senders towards a desired target
rate. ABC outperforms the best existing explicit flow control
scheme, XCP, but unlike XCP, ABC does not require mod-
ifications to packet formats or user devices, making it simpler
to deploy. ABC is also incrementally deployable: ABC can
operate correctly with multiple ABC and non-ABC bottle-
necks, and can fairly coexist with ABC and non-ABC traffic
sharing the same bottleneck link. We evaluated ABC using
a WiFi router implementation and trace-driven emulation
of cellular links. ABC achieves 30-40% higher throughput
than Cubic+Codel for similar delays, and 2.2× lower delays
than BBR on a Wi-Fi path. On cellular network paths, ABC
achieves 50% higher throughput than Cubic+Codel.
Acknowledgments. We thank Anirudh Sivaraman, Peter
Iannucci, and Srinivas Narayana for useful discussions. We
are grateful to the anonymous reviewers and our shepherd
Jitendra Padhye for their feedback and useful comments.
This work was supported in part by DARPA under Contract
No. HR001117C0048, and NSF grants CNS-1407470,
CNS-1751009, and CNS-1617702.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 365

https://youtu.be/Dauq-tfJmyU

References
[1] 3GPP technical specification for lte. https://www.

etsi.org/deliver/etsi_ts/132400_132499/
132450/09.01.00_60/ts_132450v090100p.pdf.

[2] sfqCoDel. http://www.pollere.net/Txtdocs/
sfqcodel.cc.

[3] Slither.io interactive multiplayer game. http://
slither.io.

[4] F. Abrantes and M. Ricardo. XCP for shared-access
multi-rate media. Computer Communication Review,
36(3):27–38, 2006.

[5] A. Akella, S. Seshan, S. Shenker, and I. Stoica. Explor-
ing congestion control. Technical report, CMU School
of Computer Science, 2002.

[6] M. Alizadeh, A. G. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.
Data center TCP (DCTCP). In S. Kalyanaraman, V. N.
Padmanabhan, K. K. Ramakrishnan, R. Shorey, and
G. M. Voelker, editors, Proceedings of the ACM SIG-
COMM 2010 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communica-
tions, New Delhi, India, August 30 -September 3, 2010,
pages 63–74. ACM, 2010.

[7] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,
A. Vahdat, and M. Yasuda. Less is more: Trading a
little bandwidth for ultra-low latency in the data center.
In S. D. Gribble and D. Katabi, editors, Proceedings
of the 9th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2012, San Jose, CA,
USA, April 25-27, 2012, pages 253–266. USENIX
Association, 2012.

[8] M. Allman. Tcp congestion control with appropriate
byte counting (abc)", rfc 3465. 2003.

[9] L. L. H. Andrew, S. V. Hanly, S. Chan, and T. Cui.
Adaptive deterministic packet marking. IEEE
Communications Letters, 10(11):790–792, 2006.

[10] V. Arun and H. Balakrishnan. Copa: Practical delay-
based congestion control for the internet. In S. Banerjee
and S. Seshan, editors, 15th USENIX Symposium
on Networked Systems Design and Implementation,
NSDI 2018, Renton, WA, USA, April 9-11, 2018, pages
329–342. USENIX Association, 2018.

[11] D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker.
Dynamic behavior of slowly-responsive congestion con-
trol algorithms. In R. L. Cruz and G. Varghese, editors,
Proceedings of the ACM SIGCOMM 2001 Conference on
Applications, Technologies, Architectures, and Protocols

for Computer Communication, August 27-31, 2001, San
Diego, CA, USA, pages 263–274. ACM, 2001.

[12] J. C. Bicket. Bit-rate selection in wireless networks. PhD
thesis, Massachusetts Institute of Technology, 2005.

[13] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP
vegas: New techniques for congestion detection and
avoidance. In J. Crowcroft, editor, Proceedings of the
ACM SIGCOMM ’94 Conference on Communications Ar-
chitectures, Protocols and Applications, London, UK, Au-
gust 31 - September 2, 1994, pages 24–35. ACM, 1994.

[14] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh,
and V. Jacobson. BBR: congestion-based congestion
control. ACM Queue, 14(5):20–53, 2016.

[15] D. Chiu and R. Jain. Analysis of the increase and de-
crease algorithms for congestion avoidance in computer
networks. Computer Networks, 17:1–14, 1989.

[16] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad,
B. Godfrey, and M. Schapira. PCC vivace: Online-
learning congestion control. In S. Banerjee and
S. Seshan, editors, 15th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI 2018,
Renton, WA, USA, April 9-11, 2018, pages 343–356.
USENIX Association, 2018.

[17] D. Ely, N. Spring, D. Wetherall, S. Savage, and
T. Anderson. Robust congestion signaling. In Network
Protocols, 2001. Ninth International Conference on,
pages 332–341. IEEE, 2001.

[18] F. Fainelli. The openwrt embedded development
framework. In Proceedings of the Free and Open Source
Software Developers European Meeting, 2008.

[19] S. Floyd and V. Jacobson. Random early detection
gateways for congestion avoidance. IEEE/ACM Trans.
Netw., 1(4):397–413, 1993.

[20] R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica.
Ip options are not an option. University of California at
Berkeley, Technical Report UCB/EECS-2005-24, 2005.

[21] B. Ginzburg and A. Kesselman. Performance analysis
of a-mpdu and a-msdu aggregation in ieee 802.11 n. In
Sarnoff symposium, 2007 IEEE, pages 1–5. IEEE, 2007.

[22] P. Goyal, M. Alizadeh, and H. Balakrishnan. Rethinking
congestion control for cellular networks. In S. Banerjee,
B. Karp, and M. Walfish, editors, Proceedings of the
16th ACM Workshop on Hot Topics in Networks, Palo
Alto, CA, USA, HotNets 2017, November 30 - December
01, 2017, pages 29–35. ACM, 2017.

366 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.etsi.org/deliver/etsi_ts/132400_132499/132450/09.01.00_60/ts_132450v090100p.pdf
https://www.etsi.org/deliver/etsi_ts/132400_132499/132450/09.01.00_60/ts_132450v090100p.pdf
https://www.etsi.org/deliver/etsi_ts/132400_132499/132450/09.01.00_60/ts_132450v090100p.pdf
http://www.pollere.net/Txtdocs/sfqcodel.cc
http://www.pollere.net/Txtdocs/sfqcodel.cc
http://slither.io
http://slither.io

[23] S. Ha, I. Rhee, and L. Xu. CUBIC: a new tcp-friendly
high-speed TCP variant. Operating Systems Review,
42(5):64–74, 2008.

[24] J. C. Hoe. Improving the start-up behavior of a
congestion control scheme for TCP. In D. Estrin,
S. Floyd, C. Partridge, and M. Steenstrup, editors,
Proceedings of the ACM SIGCOMM 1996 Conference
on Applications, Technologies, Architectures, and
Protocols for Computer Communication, Stanford, CA,
USA, August 26-30, 1996, pages 270–280. ACM, 1996.

[25] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh,
M. Handley, and H. Tokuda. Is it still possible to extend
tcp? In P. Thiran and W. Willinger, editors, Proceedings
of the 11th ACM SIGCOMM Internet Measurement
Conference, IMC ’11, Berlin, Germany, November 2-,
2011, pages 181–194. ACM, 2011.

[26] A. Jain, A. Terzis, H. Flinck, N. Sprecher, S. Arunacha-
lam, and K. Smith. Mobile throughput guidance inband
signaling protocol. IETF, work in progress, 2015.

[27] R. Jain. Congestion control and traffic management in
ATM networks: Recent advances and a survey. Com-
puter Networks and ISDN Systems, 28(13):1723–1738,
1996.

[28] R. Jain, A. Durresi, and G. Babic. Throughput fairness
index: An explanation. In ATM Forum contribution,
volume 99, 1999.

[29] D. Katabi, M. Handley, and C. E. Rohrs. Congestion
control for high bandwidth-delay product networks. In
M. Mathis, P. Steenkiste, H. Balakrishnan, and V. Pax-
son, editors, Proceedings of the ACM SIGCOMM 2002
Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, August
19-23, 2002, Pittsburgh, PA, USA, pages 89–102. ACM,
2002.

[30] S. T. Kent and K. Seo. Security architecture for the
internet protocol. RFC, 4301:1–101, 2005.

[31] M. Kühlewind and R. Scheffenegger. Design and
evaluation of schemes for more accurate ECN feedback.
In Proceedings of IEEE International Conference on
Communications, ICC 2012, Ottawa, ON, Canada, June
10-15, 2012, pages 6937–6941. IEEE, 2012.

[32] S. S. Kunniyur and R. Srikant. Analysis and design of an
adaptive virtual queue (AVQ) algorithm for active queue
management. In R. L. Cruz and G. Varghese, editors,
Proceedings of the ACM SIGCOMM 2001 Conference on
Applications, Technologies, Architectures, and Protocols
for Computer Communication, August 27-31, 2001, San
Diego, CA, USA, pages 123–134. ACM, 2001.

[33] F. Lu, H. Du, A. Jain, G. M. Voelker, A. C. Snoeren,
and A. Terzis. CQIC: revisiting cross-layer congestion
control for cellular networks. In J. Manweiler and
R. R. Choudhury, editors, Proceedings of the 16th
International Workshop on Mobile Computing Systems
and Applications, HotMobile 2015, Santa Fe, NM, USA,
February 12-13, 2015, pages 45–50. ACM, 2015.

[34] A. Metwally, D. Agrawal, and A. El Abbadi. Efficient
computation of frequent and top-k elements in data
streams. In T. Eiter and L. Libkin, editors, Database
Theory - ICDT 2005, 10th International Conference,
Edinburgh, UK, January 5-7, 2005, Proceedings, volume
3363 of Lecture Notes in Computer Science, pages
398–412. Springer, 2005.

[35] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Win-
stein, J. Mickens, and H. Balakrishnan. Mahimahi:
Accurate record-and-replay for HTTP. In S. Lu and
E. Riedel, editors, 2015 USENIX Annual Technical
Conference, USENIX ATC ’15, July 8-10, Santa Clara,
CA, USA, pages 417–429. USENIX Association, 2015.

[36] K. M. Nichols and V. Jacobson. Controlling queue
delay. Commun. ACM, 55(7):42–50, 2012.

[37] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Sub-
ramanian, F. Baker, and B. VerSteeg. PIE: A lightweight
control scheme to address the bufferbloat problem.
In IEEE 14th International Conference on High
Performance Switching and Routing, HPSR 2013, Taipei,
Taiwan, July 8-11, 2013, pages 148–155. IEEE, 2013.

[38] I. A. Qazi, L. Andrew, and T. Znati. Incremental
deployment of new ecn-compatible congestion control.
In Proc. PFLDNeT, 2009.

[39] I. A. Qazi, L. L. H. Andrew, and T. Znati. Congestion
control with multipacket feedback. IEEE/ACM Trans.
Netw., 20(6):1721–1733, 2012.

[40] I. A. Qazi, T. Znati, and L. L. H. Andrew. Congestion
control using efficient explicit feedback. In INFOCOM
2009. 28th IEEE International Conference on Computer
Communications, Joint Conference of the IEEE Com-
puter and Communications Societies, 19-25 April 2009,
Rio de Janeiro, Brazil, pages 10–18. IEEE, 2009.

[41] K. K. Ramakrishnan, S. Floyd, and D. L. Black. The
addition of explicit congestion notification (ECN) to
IP. RFC, 3168:1–63, 2001.

[42] L. Ravindranath, J. Padhye, R. Mahajan, and H. Balakr-
ishnan. Timecard: controlling user-perceived delays in
server-based mobile applications. In M. Kaminsky and
M. Dahlin, editors, ACM SIGOPS 24th Symposium on
Operating Systems Principles, SOSP ’13, Farmington,

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 367

PA, USA, November 3-6, 2013, pages 85–100. ACM,
2013.

[43] C. Tai, J. Zhu, and N. Dukkipati. Making large scale
deployment of RCP practical for real networks. In INFO-
COM 2008. 27th IEEE International Conference on Com-
puter Communications, Joint Conference of the IEEE
Computer and Communications Societies, 13-18 April
2008, Phoenix, AZ, USA, pages 2180–2188. IEEE, 2008.

[44] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs.
Iperf: The TCP/UDP bandwidth measurement tool.
http://dast.nlanr.net/Projects, 2005.

[45] Z. Wang, Z. Qian, Q. Xu, Z. M. Mao, and M. Zhang.
An untold story of middleboxes in cellular networks.
In S. Keshav, J. Liebeherr, J. W. Byers, and J. C. Mogul,
editors, Proceedings of the ACM SIGCOMM 2011
Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, Toronto,
ON, Canada, August 15-19, 2011, pages 374–385. ACM,
2011.

[46] K. Winstein, A. Sivaraman, and H. Balakrishnan.
Stochastic forecasts achieve high throughput and
low delay over cellular networks. In N. Feamster
and J. C. Mogul, editors, Proceedings of the 10th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2013, Lombard, IL, USA, April
2-5, 2013, pages 459–471. USENIX Association, 2013.

[47] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman.
One more bit is enough. In R. Guérin, R. Govindan,
and G. Minshall, editors, Proceedings of the ACM
SIGCOMM 2005 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer
Communications, Philadelphia, Pennsylvania, USA,
August 22-26, 2005, pages 37–48. ACM, 2005.

[48] X. Xie, X. Zhang, S. Kumar, and L. E. Li. pistream:
Physical layer informed adaptive video streaming over
LTE. In S. Fdida, G. Pau, S. K. Kasera, and H. Zheng,
editors, Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking,
MobiCom 2015, Paris, France, September 7-11, 2015,
pages 413–425. ACM, 2015.

[49] J. A. Yorke. Asymptotic stability for one dimensional
differential-delay equations. Journal of Differential
equations, 7(1):189–202, 1970.

[50] Y. Zaki, T. Pötsch, J. Chen, L. Subramanian, and
C. Görg. Adaptive congestion control for unpredictable
cellular networks. In S. Uhlig, O. Maennel, B. Karp,
and J. Padhye, editors, Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Commu-
nication, SIGCOMM 2015, London, United Kingdom,
August 17-21, 2015, pages 509–522. ACM, 2015.

368 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://dast.nlanr.net/Projects

0

5

10

15

Ra
te

 (M
bp

s)

0 5 10 15 20 25 30
Time (s)

0
200
400
600
800

Qu
eu

in
g

De
la

y
(m

s)

(a) BBR

0

5

10

15

Ra
te

 (M
bp

s)

0 5 10 15 20 25 30
Time (s)

0
200
400
600
800

Qu
eu

in
g

De
la

y
(m

s)

(b) ABC
Figure 14: Comparison with BBR — BBR overshoots the link
capacity, causing excessive queuing. Same setup as Fig. 1.

150 160 170 180 190 200 210 220 230
95 percentile per packet delay (ms)

0.4

0.6

0.8

1.0

Ut
iliz

at
io

n 0.8
0.9 0.950.98 1.0

Figure 15: Impact of η — Performance of ABC with various values
of η (target utilization). η presents a trade-off between throughput
and delay. Same setup as Fig. 1.

A BBR overestimates the sending rate
Fig. 14 shows the throughput and queuing delay of BBR on a
Verizon cellular trace. BBR periodically increases its rate in
short pulses, and frequently overshoots the link capacity with
variable-bandwidth links, causing excessive queuing.

B Impact of η

Fig. 15 shows the performance of ABC with various values
of η on a Verizon cellular trace. Increasing η increases the
link utilization, but, also increases the delay. Thus, η presents
a trade-off between throughput and delay.

C Stability Analysis
This section establishes the stability bounds for ABC’s
control algorithm (Theorem 1).
Model: Consider a single ABC link, traversed by N ABC
flows. Let µ(t) be the link capacity at time t. As µ(t) can be
time-varying, we define stability as follows. Suppose that
at some time t0, µ(t) stops changing, i.e., for t > t0 µ(t)= µ
for some constant µ. We aim to derive conditions on ABC’s
parameters which guarantee that the aggregate rate of the
senders and the queue size at the routers will converge to
certain fixed-point values (to be determined) as t→∞.

Let τ be the common round-trip propagation delay on the
path for all users. For additive increase (§4.3), assume that
each sender increases its congestion window by 1 every l
seconds. Let f (t) be the fraction of packets marked accelerate,
and, cr(t) be the dequeue rate at the ABC router at time t. Let
τr be time it takes accel-brake marks leaving the ABC router
to reach the sender. Assuming that there are no queues other
than at the ABC router, τr will be the sum of the propagation
delay between ABC router and the receiver and the propa-
gation delay between receiver and the senders. The aggregate
incoming rate of ACKs across all the senders at time t, R(t),

will be equal to the dequeue rate at the router at time t−τr:

R(t) = cr(t−τr). (9)

In response to an accelerate, a sender will send 2 packets,
and, for a brake, a sender won’t send anything. In addition
to responding to accel-brakes, each sender will also send an
additional packet every l seconds (because of AI). Therefore,
the aggregate sending rate for all senders at time t, S(t), will be

S(t) = R(t)·2· f (t−τr)+
N
l

= 2cr(t−τr) f (t−τr)+
N
l
. (10)

Substituting f (t−τr) from Equation (2), we get

S(t) = tr(t−τr)+
N
l
. (11)

Let τ f be the propagation delay between a sender and the
ABC router, and eq(t) be the enqueue rate at the router at
time t. Then eq(t) is given by

eq(t) = S(t−τ f)

= tr(t−(τr+τ f))+
N
l

= tr(t−τ)+
N
l
. (12)

Here, τ=τr+τ f is the round-trip propagation delay.
Let q(t) be the queue size, and, x(t) be the queuing delay

at time t:

x(t) =
q(t)

µ
.

Ignoring the boundary conditions for simplicity (q(t) must
be ≥ 0), the queue length has the following dynamics:

q̇(t) = eq(t)−µ

= tr(t−τ)+
N
l
−µ

=

(
(η−1)·µ+N

l

)
− µ

δ
(x(t−τ)−dt)

+,

where in the last step we have used Equation (1). Therefore
the dynamics of x(t) can be described by:

ẋ(t) =
(
(η−1)+

N
µ·l

)
− 1

δ
(x(t−τ)−dt)

+

= A− 1
δ
(x(t−τ)−dt)

+, (13)

where A =
(
(η−1)+ N

µ·l

)
, and, A is a constant given a

fixed number of flows N. The delay-differential equation in
Equation (13) captures the behavior of the entire system. We

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 369

use it to analyze the behavior of the queuing delay, x(t), which
in turn informs the dynamics of the target rate, tr(t), and
enqueue rate, eq(t), using Equations (1) and (12) respectively.
Stability: For stability, we consider two possible scenarios
1) A<0, and 2) A≥0. We argue the stability in each case.
Case 1: A< 0. In this case, the stability analysis is straight-
forward. The fixed point for queuing delay, x∗, is 0. From
Equation (13), we get

ẋ(t) = A− 1
δ
(x(t−τ)−dt)

+ ≤ A <0. (14)

The above equation implies that the queue delay will decrease
at least as fast as A. Thus, the queue will go empty in a
bounded amount of time. Once the queue is empty, it will
remain empty forever, and the enqueue rate will converge to
a fixed value. Using Equation (12), the enqueue rate can will
converge to

eq(t) = tr(t−τ)+
N
l

= ηµ+
N
l
− µ

δ
(x(t−τ)−dt)

+

= ηµ+
N
l

= (1+A)µ. (15)

Note that ηµ<(1+A)µ<µ. Since both the enqueue rate and
the queuing delay converge to fixed values, the system is
stable for any value of δ.

Case 2: A>0: The fixed point for the queuing delay in this
case is x∗ = A ·δ+dt . Let

∼
x(t) = x(t)− x∗ be the deviation

of the queuing delay from its fixed point. Substituting in
Equation (13), we get

∼̇
x(t) = A− 1

δ
(
∼
x(t−τ)+A·δ)+

=−max(−A,
1
δ

∼
x(t−τ))

=−g(
∼
x(t−τ)), (16)

where g(u)=max(−A, 1
δ
u) and A>0.

In [49] (Corollary 3.1), Yorke established that delay-
differential equations of this type are globally asymptotically
stable (i.e.,

∼
x(t) → 0 as t → ∞ irrespective of the initial

condition), if the following conditions are met:

1. H1: g is continuous.

2. H2: There exists some α, s.t. α ·u2 > ug(u)> 0 for all
u 6=0.

3. H3: α·τ< 3
2 .

The function g(·) trivially satisfies H1. H2 holds for any
α∈(1

δ
,∞). Therefore, there exists an α∈(1

δ
,∞) that satisfies

300 400 600 800 1000 1500300 400 500 600 700 800900
95 percentile per packet delay (ms)

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

bp
s)

ABC Cubic+CodelCOPA
Vegas

BBR

PCC
Cubic

Figure 16: Throughput and 95th percentile delay for a single
user in WiFi — We model changes in MCS index as bownian motion,
with values changing every 2 seconds. We limit the MCS index
values to be between 3 and 7. ABC outperforms all other schemes.

both H2 and H3 if

1
δ
·τ< 3

2
=⇒ δ>

2
3
·τ. (17)

This proves that ABC’s control rule is asymptotically stable if
Equation (17) holds. Having established that x(t) converges
to x∗ = A ·δ+dt , we can again use Equation (12) to derive
the fixed point for the enqueue rate:

eq(t)=ηµ+
N
l
− µ

δ
(x(t−τ)−dt)

+→µ, (18)

as t→∞.
Note while, we proved stability assuming that the feedback

delay τ is a constant and the same value for all the senders, the
proof works even if the senders have different time-varying
feedback delays (see Corollary 3.2 in [49]). The modified
stability criterion in this case is δ > 2

3 · τ
∗, where τ∗ is the

maximum feedback delay across all senders.

D Wi-Fi Evaluation
In this experiment we use the setup from Fig. 9a. To emulate
movement of the receiver, we model changes in MCS index
as brownian motion, with values changing every 2 seconds.
Fig. 16 shows throughput and 95th percentile per packet delay
for a number of schemes. Again, ABC outperforms all other
schemes achieving better throughput and latency trade off.

E Low Delays and High Throughput
Fig. 17 shows the mean per packet delay achieved by various
schemes in the experiment from Fig. 8. We observe the trend
in mean delay is similar to that of 95th percentile delay (
Fig. 8b). ABC achieves delays comparable to Cubic+Codel,
Cubic+PIE and Copa. BBR, PCC Vivace-latency and Cubic
incur 70-240% higher mean delay than ABC.

F ABC vs Explicit Control Schemes
In this section we compare ABC’s performance with explicit
congestion control schemes. We consider XCP, VCP, RCP
and our modified implementation of XCP (XCPw). For XCP

370 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

M
ea

n
De

la
y

(m
s)

100

200

400

600

800
1000

ABC
XCP

XCP_W

Cubic+
Codel

Cubic+
PIE

Copa

Sprout

Vegas

Verus
BBR

PCC
Cubic

Verizon 1 Verizon 2 TMobile 1 ATT 1 Verizon 3 Verizon 4
TMobile 2 ATT 2 AVERAGE

Figure 17: Utilization and mean per-packet delay across 8
different cellular network traces — On average, ABC achieves
similar delays and 50% higher utilization than Copa and Cubic+Codel.
BBR, PCC, and Cubic achieve slightly higher throughput than ABC,
but incur 70-240% higher mean per-packet delays.

Ut
ili

za
tio

n

0

0.25

0.5

0.75

1

ABC XCP
XCP_W VCP RCP

Verizon 1 Verizon 2 TMobile 1
 ATT 1 Verizon 3 Verizon 4
TMobile 2 ATT 2 AVERAGE

(a) Utilization

95
%

ile
 D

el
ay

 (m
s)

200

400

600

800

1000

ABC XCP
XCP_W VCP RCP

Verizon 1 Verizon 2 TMobile 1
 ATT 1 Verizon 3 Verizon 4
TMobile 2 ATT 2 AVERAGE

(b) Delay

Figure 18: ABC vs explicit flow control — ABC achieves similar
utilization and 95th percentile per-packet delay as XCP and XCPw
across all traces. Compared to RCP and VCP, ABC achieves 20%
more utilization.

and XCPw, we used constant values of α=0.55 and β=0.4,
which the authors note are the highest permissible stable
values that achieve the fastest possible link rate convergence.
For RCP and VCP, we used the author-specified parameter
values of α = 0.5 and β = 0.25, and α = 1, β = 0.875
and κ = 0.25, respectively. Fig. 18 shows utilizations and
mean per packet delays achieved by each of these schemes
over eight different cellular link traces. As shown, ABC is
able to achieve similar throughput as the best performing

explicit flow control scheme, XCPw, without using multibit
per-packet feedback. We note that XCPw’s 95th percentile
per-packet delays are 40% higher than ABC’s. ABC is
also able to outperform RCP and VCP. Specifically, ABC
achieves 20% higher utilization than RCP. This improvement
stems from the fact that RCP is a rate based protocol (not
a window based protocol)—by signaling rates, RCP is
slower to react to link rate fluctuations (Figure 19 illustrates
this behavior). ABC also achieves 20% higher throughput
than VCP, while incurring slightly higher delays. VCP also
signals multiplicative-increase/multiplicative-decrease to the
sender. But unlike ABC, the multiplicative increase/decrease
constants are fixed. This coarse grained feedback limits
VCP’s performance on time varying links.

Fig. 19 shows performance of ABC, RCP and XCPw on a
simple time varying link. The capacity alternated between 12
Mbit/sec and 24 Mbit/sec every 500 milliseconds. ABC and
XCPw adapt quickly and accurately to the variations in bottle-
neck rate, achieving close to 100% utilization. RCP is a rate
base protocol and is inherently slower in reacting to conges-
tion. When the link capacity drops, RCP takes time to drain
queues and over reduces its rates, leading to under-utilization.

G Other experiments
Application limited flows

We created a single long-lived ABC flow that shared a
cellular link with 200 application-limited ABC flows that
send traffic at an aggregate of 1 Mbit/s. Fig. 20 shows that,
despite the fact that the application-limited flows do not have
traffic to properly respond to ABC’s feedback, the ABC flows
(in aggregate) are still able to achieve low queuing delays
and high link utilization.
ABC’s sensitivity to network latency:

Thus far, our emulation experiments have considered fixed
minimum RTT values of 100 ms. To evaluate the impact that
propagation delay has on ABC’s performance, we used a
modified version of the experimental setup from Fig. 8. In
particular, we consider RTT values of 20 ms, 50 ms, 100 ms,
and 200 ms. Fig. 21 shows that, across all propagation delays,
ABC is still able to outperform all prior schemes, again achiev-
ing a more desirable throughput/latency trade off. ABC’s
benefits persist even though schemes like Cubic+Codel and
Cubic+PIE actually improve with decreasing propagation
delays. Performance with these schemes improves because
bandwidth delay products decrease, making Cubic’s additive
increase more aggressive (improving link utilization).

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 371

0

10

20
Th

ro
ug

hp
ut

(M
bp

s)

0 2 4 6 8 10
Time (s)

0
50

100
150
200

Qu
eu

in
g

De
la

y
(m

s)

(a) ABC

0

10

20

Th
ro

ug
hp

ut
(M

bp
s)

0 2 4 6 8 10
Time (s)

0
50

100
150
200

Qu
eu

in
g

De
la

y
(m

s)

(b) RCP

0

10

20

Th
ro

ug
hp

ut
(M

bp
s)

0 2 4 6 8 10
Time (s)

0
50

100
150
200

Qu
eu

in
g

De
la

y
(m

s)

(c) XCPw

Figure 19: Time series for explicit schemes — We vary the link capacity every 500ms between two rates 12 Mbit/sec and 24 Mbit/sec.The
dashed blue in the top graph represents bottleneck link capacity. ABC and XCPw adapt quickly and accurately to the variations in bottleneck
rate, achieving close to 100% utilization. RCP is a rate base protocol and is inherently slower in reacting to congestion. When the link capacity
drops, RCP takes time to drain queues and over reduces its rates, leading to under-utilization.

0

5

10

15

Th
ro

ug
hp

ut
(M

bp
s)

24 26 28 30 32 34 36
Time (s)

0
20
40
60
80

100

Qu
eu

ing
De

lay
 (m

s)

Figure 20: ABC’s robustness to flow size — With a single
backlogged ABC flow and multiple concurrent application-limited
ABC flows, all flows achieve high utilization and low delays.

Ut
ili

za
tio

n

0

0.25

0.5

0.75

1

ABC
XCP

XCPw
Codel

PIE
Copa

Sprout

Vegas

Verus
BBR

PCC
Cubic

RTT 20ms RTT 50ms RTT 100ms RTT 200ms AVERAGE

(a) Utilization

95
%

ile
 Q

ue
ui

ng
 D

el
ay

 (m
s)

50

100

500

1000

ABC
XCP

XCPw
Codel

PIE
Copa

Sprout

Vegas

Verus
BBR

PCC
Cubic

RTT 20ms RTT 50ms RTT 100ms RTT 200ms AVERAGE

(b) per-packet queuing delay
Figure 21: Impact of propagation delay on performance — On a
Verizon cellular network trace with different propagation delays, ABC
achieves a better throughput/delay tradeoff than all other schemes.

372 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Motivation
	Design
	The ABC Protocol
	ABC Sender
	ABC Router
	Fairness
	Stability Analysis

	Coexistence
	Deployment with non-ABC Routers
	Multiplexing with ECN Bits
	Non-ABC flows at an ABC Router

	Estimating Link Rate
	Wi-Fi
	Cellular Networks

	Discussion
	Evaluation
	Prototype ABC Implementation
	Experimental Setup
	Performance
	Coexistence with Various Bottlenecks
	Fairness among ABC and non-ABC flows
	Additional Results

	Related Work
	Conclusion
	BBR overestimates the sending rate
	Impact of
	Stability Analysis
	Wi-Fi Evaluation
	Low Delays and High Throughput
	ABC vs Explicit Control Schemes
	Other experiments

