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Abstract—Although speech is a simple and effective way for
humans to communicate with the outside world, a more realistic
speech interaction contains multimodal information, e.g., vision,
text. How to design a unified framework to integrate different
modal information and leverage different resources (e.g., visual-
audio pairs, audio-text pairs, unlabeled speech, and unlabeled
text) to facilitate speech representation learning was not well
explored. In this paper, we propose a unified cross-modal repre-
sentation learning framework VATLM (Visual-Audio-Text Lan-
guage Model). The proposed VATLM employs a unified backbone
network to model the modality-independent information and
utilizes three simple modality-dependent modules to preprocess
visual, speech, and text inputs. In order to integrate these three
modalities into one shared semantic space, VATLM is optimized
with a masked prediction task of unified tokens, given by our
proposed unified tokenizer. We evaluate the pre-trained VATLM
on audio-visual related downstream tasks, including audio-visual
speech recognition (AVSR), visual speech recognition (VSR) tasks.
Results show that the proposed VATLM outperforms previous
the state-of-the-art models, such as audio-visual pre-trained AV-
HuBERT model, and analysis also demonstrates that VATLM is
capable of aligning different modalities into the same space. To
facilitate future research, we release the code and pre-trained
models at https://aka.ms/vatlm.

Index Terms—visual-audio-text pre-training, speech represen-
tation learning, unified masked prediction.

I. INTRODUCTION

HUMAN perception of the world is multi-dimensional,
including speech, text, pictures, video, touch, taste, etc

[1]–[4]. Among them, speech is the most natural, simple and
effective communication way. Meanwhile, speech is unique
because speech inputs are continuous without a predefined
dictionary and vary in the sentence length without segment
boundaries [5]. To alleviate the data scarcity problem of
labeled speech, many studies have been dedicated to learning
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speech representations using self-supervised pre-training meth-
ods [6]–[12], which were shown to be beneficial to a variety of
spoken language tasks. Generally speaking, speech represen-
tation learning methods can be implemented in contrastive [6],
[7], [11], predictive [8]–[10] and generative fashions [12]–
[14]. For example, wav2vec2.0 [7] utilizes a bidirectional
Transformer [15] structure and performs a contrastive learning
task over a quantization of speech representations. HuBERT
[8] iteratively clusters MFCC features or the representation
output from the middle layer of the pre-trained model to gen-
erate targets for self-supervised pre-training, like BERT pre-
training [16]. Audio-MAE [14] extends image-based masked
auto-encoder (MAE) [17] to self-supervised speech represen-
tation learning by reconstructing audio spectrograms.

Recent years have also witnessed a remarkable progress in
the enhanced speech representations learning by using addi-
tional visual or textual information [18]–[21]. On the one hand,
speech production is accompanied by lip movements, where
both audio and visual information facilitate speech understand
process of human [22]. Additional visual information has
shown to be able to improve the automatic speech recognition
(ASR) performance, especially in noisy environments [18],
[19], [23]–[27]. Moreover, visual information can facilitate
communication for people with speech disorders. On the other
hand, text and speech have a natural alignment relationship
[21], although they are two different modalities. Joint pre-
training of speech and text is therefore beneficial for speech
representation learning as well as subsequent cross-modal
tasks, such as speech recognition, speech translation, and
speech synthesis [20], [21], [28], [29]. Based on the previous
discussion, one question should be asked: how to effectively
integrate both visual information and textual information into
the single speech representation learning model?

To answer this question, multimodal speech pre-training is
explored in these years, and usually categorized into audio-
visual representation learning and audio-text representation
learning. For the audio-visual representation learning, the
complementary information contained in the video modality
can be exploited to enhance the speech representation [30]–
[34]. Based on a self-supervised pre-training method, AV-
HuBERT [30] learns the representations of two modalities
by masked prediction of automatically discovered and iter-
atively refined multimodal hidden units. The authors in [34]
aim at improving the robustness of AV-HuBERT with noise-
augmented pre-training and fine-tuning approaches. In these
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audio-visual representation learning methods, the text infor-
mation was not considered, despite the text data are abundant
and might be beneficial for audio-visual learning tasks. For
the audio-text speech representation learning, the goal is to
boost the quality of the speech representation with additional
unlabeled text data [21], [28], [29], [35], [36]. For example,
in SLAM [28] a single encoder is constructed in a multi-task
learning framework with the BERT objective for unlabeled
text together with the w2v-BERT [16] objective for unlabeled
speech. Besides, SpeechLM [21] aligns unlabeled speech and
text pre-training in a pre-defined discrete representation with a
shared encoder network. Similarly, previous audio-text speech
representation learning methods can only leverage speech and
text data without considering visual information. With the
visual or text information, previous multimodal speech pre-
training enhances the speech representation and improves the
performance of downstream tasks. However, they exhibit the
following disadvantages.

• Previous multimodal (visual, speech, text) pre-training
approaches [37]–[39] mainly focus on visual-language
tasks and cannot be extended to other spoken language
processing tasks, such as AVSR.

• Previous speech representation learning methods can not
make full use of diverse corpora, e.g., visual-audio pairs,
audio-text pairs, and unlabeled speech and text, without
considering both the visual and textual information.

• Previous methods mostly depend on a complicated model
architecture and pre-training objects, lacking a unified
multimodal framework for different modalities modeled
in the same semantic space.

To address these problems, we propose a unified pre-training
framework, Visual-Audio-Text Language Model (VATLM), to
model the representations of three modalities using a unified
architecture and masked prediction objectives. More specifi-
cally, we first design a multipath Transformer consisting of
three pre-processing modules for visual, audio and text, re-
spectively, and a shared Transformer model to learn modality-
independent representation. Second, we propose a unified
tokenizer to convert the corpora from different modalities
to hidden units in the same semantic space. Following AV-
HuBERT [30], visual and audio samples are discretized with
the audio-visual clustering model of the fourth iteration AV-
HuBERT. Inspired by SpeechLM [21], we introduce a text-
to-unit model trained on a small speech-transcription dataset
to translate unpaired text data to discrete units. Third, with
the converted hidden units as targets, we adapt a simple
but effective masked prediction pre-training task, like BERT
[16], for unimodal and multimodal data (unlabeled audio and
unlabeled text, paired visual-speech, and paired speech-text).

Our proposed VATLM is evaluated on AVSR and VSR
tasks, and experimental results show the superiority and ef-
fectiveness of our proposed VATLM comparing with existing
methods, e.g., the state-of-the-art AV-HuBERT model. Partic-
ularly, with only 30h labeled LRS3 data, VATLM Base obtains
the 10.5% and 8.4% word error ratio (WER) reduction than
AV-HuBERT in AVSR (3.4 vs. 3.8) and VSR (42.6 vs. 46.1)
tasks, and VATLM Large achieves the performance of 2.7 and

31.6 WER for AVSR and VSR, respectively. Following the
experiment results, ablation study, robustness evaluation, and
visualization analysis are conducted for deep analyses.

The contributions of this paper are summarized as follows,
• We propose a unified visual-audio-text speech represen-

tation model (VATLM), which employs a shared Trans-
former network and a masked prediction task to learn a
unified representation of visual, audio, and text.

• We empirically evaluate the proposed VATLM on dif-
ferent downstream tasks, including audio-visual speech
recognition and visual speech recognition tasks. Experi-
mental results and analysis demonstrate the effectiveness
and superiority of our VATLM.

• The proposed VATLM is simple but very effective, and
this framework is easy to extend to more corpora from
different modalities and larger model capacity with more
parameters. Code and models are available at https://aka.
ms/vatlm.

The remainder of the paper is organized as follows. We
discuss the related work in Section II. We describe the pro-
posed method in Section III in detail. Section IV and Section V
shows the experimental setup and results, respectively. Finally,
we give a brief conclusion in Section VI.

II. RELATED WORK

Our work is based on self-supervised speech representation
learning, and it is also related to cross-modal representation
learning with visual, audio, and text. We discuss these topics
in the following.

A. Speech Representation Learning

Self-supervised pre-training approaches have made remark-
able success in speech representation learning in recent years.
Based on the training objectives, these approaches can be
categorized into contrastive methods, predictive methods, and
generative methods [6], [8]–[11], [13], [14]. Autoregressive
predictive coding (APC) [13] was proposed to reconstruct
the future frames based on the past frames. Contrastive
predictive coding (CPC) [11] and wav2vec [6] perform the
next-step prediction in a similar way but using a contrastive
loss. wav2vec2.0 [7] utilizes a bidirectional Transformer [15]
structure, and performs mask prediction task via a contrastive
task on the quantized representation. In wav2vec2.0 [7], lo-
cal features are employed as targets for self-supervised pre-
training, where the contextual information is not fully lever-
aged. This problem was then considered in HuBERT [8] and
data2vec [10]. Like BERT pre-training, HuBERT is optimized
with self-supervised masked prediction task, where the target
labels come from offline clusters of the representations of
previous pre-trained model or MFCC features. On the basis
of HuBERT, WavLM [9] utilizes a sentence-level mixing data
augmentation approach to enhance the speaker information,
which performs very well on the SUPERB benchmark [40].
Inspired by image-based Masked Autoencoders (MAE) [17],
Audio-MAE [14] reconstructs audio spectrograms to learn
self-supervised speech representation.

https://aka.ms/vatlm
https://aka.ms/vatlm
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Fig. 1. An illustration of the VATLM model: (a) pre-training structure of VATLM and (b) fine-tuning structure for AVSR/VSR tasks.

B. Cross-Modal Learning

Visual-Audio Learning Visual information is complemen-
tary to the audio signal in many scenarios, so visual-audio
speech representation learning has obtained more and more
attention, especially for speech recognition tasks [32], [33],
[41]–[43]. In [41], A VSR model is trained on a large
amount of unlabeled data, which is achieved by distilling
the trained ASR model. LiRA [42] leverages audio modality
as a training objective to learn visual speech representations
via a self-supervised approach. AV-BERT [43] focuses on
learning utterance-level multimodal environment embedding
that serves as the global context for ASR. Both AV-HuBERT
[30] and u-HuBERT [31] are self-supervised audio-visual rep-
resentation learning frameworks, which predict target cluster
labels consuming masked visual and audio frames, and achieve
the state-of-the-art performance on AVSR and VSR tasks.
u-HuBERT [31] utilizes noise augmentation methods with
additional unimodal audio data in the pre-training phase, and
pre-trains the model with more updates (1000k). In [34], the
authors further improve the robustness of audio-visual speech
recognition against different types of noises.

Audio-Text Learning Although there is a large difference
between speech modality and text modality, speech and text
are two expressions of language. Hence, it is a promising di-
rection to investigate how to bridge the modality gap between
speech and text [21], [28], [29], [35], [44]. The authors in [29]
propose a unified-modal encoder-decoder pre-training frame-
work SpeechT5, which converts most spoken language tasks
into speech/text to speech/text tasks, and utilizes large-scale
unlabeled speech and text data to pre-train the model. Based
on RNN-T framework [45], MAESTRO [46] model tries to
learn a unified representation of speech and text through a
modality matching algorithm. SLAM [28] and mSLAM [20]
are proposed to model speech and text with a single encoder,
which utilizes the paired speech-transcription corpus to learn
the alignment relationship. In [21], the authors propose a
text-augmented speech pre-trained model SpeechLM, which
utilizes phoneme units or hidden units as the bridge of speech

and text modalities to achieve excellent performance.
Visual-Audio-Text Learning There is a big convergence in

model architectures and training objects for different modal-
ities, e.g., visual, audio, and text [37]–[39]. The authors in
[47] propose a VATT model, which takes original signals
of different modalities as inputs and employs multli-modal
contrastive learning to optimize the model. The proposed
VATT model outperforms ConvNet-based architectures in
video action recognition, audio event classification, image
classification, and text-to-video retrieval tasks. BEIT-3 [37] is a
general-purpose multimodal foundation model, which models
image as a foreign language, and employs a masked language
modeling task for unpaired images, unpaired texts, and paired
image-text. To address the challenge that the algorithms and
objects usually differ widely in different modalities, a general
self-supervised learning framework data2vec [10] is proposed
to separately predict the latent representation of original input
by the base model based on a masked view of the input.

Different from existing work, the goal in this paper is
to design a universal multimodal (visual, speech, and text)
model for speech representation learning, with a unified pre-
training object to leverage different data sources, including
paired visual-audio, audio-text, and unpaired audio and text1.

III. VATLM

In this section, we will introduce the overall framework of
VATLM and how to pre-train VATLM in the same semantic
space. As shown in Fig. 1, VATLM model contains a visual
preprocessing module, an audio preprocessing module, a text
preprocessing module (Section III-A) and a shared multipath
Transformer module (Section III-B). Using a unified tokenizer
(Section III-C), we can pre-train VATLM as a unified masked
prediction task (III-D) for different modalities. Followed with
fine-tuning, the pre-trained VATLM can be adapted to various
downstream tasks, such as AVSR and VSR.

1We do not consider unpaired visual corpus because visual data usually
contains audio data, and they forms paired visual-audio data.
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Fig. 2. The unified tokenizer that generates the shared hidden units from different modalities and data resources, including (a) paired visual-audio, (b) paired
audio-text, (c) unpaired audio, and (d) unpaired text.

A. Preprocessing Module: Visual/Audio/Text Encoder
Visual, audio and text modalities have very different char-

acteristics. For example, visual is a three-dimensional (3D)
continuous signal, but both audio and text are 1D continuous
and discrete signals. Besides, unlike textual data, speech and
visual inputs do not have segment boundaries and prede-
fined dictionaries. Hence, following [29], [30], we introduce
three modality-independent pre-processing modules, i.e., vi-
sual/audio/text encoders.

More specifically, for the image frames in the video data,
we use dlib [48] to detect 68 facial keypoints and extract
a 96×96 region-of-interest (ROI) centered by the mouth,
which are then fed to the visual encoder to compute the
visual features zv . Similarly to [25], [30], [49], we use a
modified ResNet-18 as the visual encoder, where the first
convolution layer is replaced by a 3D convolution with a
kernel size of 5×7×7. Finally, we flatten the visual features
corresponding to each video frame into a 1D vector by a
two-dimensional average pooling layer. For the audio data,
we extract the 26-dimensional log-filterbank features from the
original waveform. Since the lip frames sampled at 25 Hz
and the filterbank feature frames at 100 Hz, we concatenate
four adjacent filterbank frames to synchronize the audio and
video modalities. The concatenated filterbank frames are fed
to the audio encoder to get the audio features za. To avoid the
over-reliance issue on the audio stream, we use a single linear
project layer as in [30] to encode the audio input, forcing the
audio encoder to learn simple features. Moreover, we integrate
textual data into the pre-trained model by introducing a text
encoder module, implemented with an embedding layer. To
ensure that the text feature granularity is approximately the
same as the audio feature granularity, we first convert the text
sequence into a phoneme sequence, which is then fed to the
text encoder to generate the phoneme features zp.

B. Backbone Network: Multipath Transformer
The big convergence of model architecture across vision,

audio, text and multimodal pre-training has become a main-
stream trend [37]. In this work, we use improved multipath
Transformer from [30] as the basic backbone model to encode
different modalities, including visual, audio and text. Multi-
path Transformer contains a visual-audio-text fusion module

and a Transformer encoder, as shown in Fig. 1(a). Each
Transformer encoder block consists of a self-attention network
and a feed-forward network, which are boosted with positional
embedding and layer normalization [15].

In order to better integrate different modalities in pre-
training and be applied to various downstream tasks, we adapt
an audio-visual-text fusion module, which simply concatenates
the vector representations of visual, audio and text. Visual
features zv , audio features za and text features zp are con-
catenated to obtain zf , i.e., zf = concat(zv, za, zp). For
the multimodal features, in case the data of one modality
is not available, we replace the corresponding features with
zero vectors. In addition, we also adapt the modality dropout
strategy as in [30], where the input of a modality is randomly
dropped during training and the input of the dropped modality
is replaced with a zero vector. The masked feature zf is sent
to the Transformer encoder to learn the contextual feature
hf = Transformer(zf ).

C. Discretization Method: Unified Tokenizer

To align visual, audio, and text into the same semantic
space, we propose a unified tokenizer to tokenize three-
modality data into the shared discrete hidden units. These
multimodal discrete units serve as targets in the pre-training
stage. Specifically, we generate a unified unit for video-audio
data, audio-text data, unimodal audio data and unimodal text
data. First, for video-audio data, the features are obtained by
feeding the video-audio data into the AV-HuBERT model pre-
trained in the fourth iteration2 and generating the hidden units
uav by k-means clustering [8], as shown in Fig. 2(a), consistent
with [30]. For ease of presentation, we denote the input data
and the target label data in brackets (⟨video input, audio input,
text input⟩, target), and we obtain pairs of data (⟨zv, za, 0⟩,
uav), where 0 means zero vectors in case the text input is
not available. Second, for unimodal audio data, we replace
the video modal data with zero vectors, feed the audio data
into the pre-trained AV-HuBERT model to get the features,
and use the shared k-means model to generate the features
into unit ua, such that the paired data (⟨0, za, 0⟩, ua) can be

2The reason for using the fourth iteration of AV-HuBERT is that the AV-
HuBERT pre-training was done for a total of five iterations, while we trained
our VATLM model only once to save the pre-training time.
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constructed as shown in the Fig. 2(c). Third, for paired audio-
text data (see Fig. 2(b)), we similarly use the unimodal audio
data to obtain unit uap regardless of the text in extracting target
labels, where the corresponding text data is converted into a
sequence of phonemes, such that data pairs (⟨0, za, zp⟩, uap)
are formed.

Finally, for unpaired text data, we employ a sequence-to-
sequence phoneme2unit model to unify the text data to the
same hidden-unit space, like [21], [50]. Concretely, following
FastSpeech [51], the phoneme2unit model contains a text
encoder and a unit decoder, as shown in Fig. 2(d). We first
train the phoneme2unit model using a small amount of paired
phoneme-unit data from the paired ASR speech-transcription
data, where the ASR transcription sequence is converted into
a phoneme sequence by looking up the lexicon, and the ASR
speech data is converted to hidden units using a tokenizer as in
Fig 2 (c). Based on the pre-trained phoneme2unit model, the
large-scale unpaired text data are transformed into phoneme
sequence, and are fed into the phoneme2unit model to generate
the corresponding units. As such, the paired data (⟨0, 0,
zp⟩, up) can be obtained. For the different-modality data, the
corresponding hidden units are obtained by using a unified
tokenizer with the shared semantic labels, which will facilitate
our unified masked prediction task.

D. Pre-Training Task: Unified Masked Prediction

Existing multimodal pre-training work usually employs
multiple pre-training objectives, such as masked language
modeling, contrastive learning, speech-text matching, image-
text matching, and so on. In contrast, we pre-train VATLM
via a unified masked prediction objective on both mono-modal
(i.e., audio and texts) and multimodal data (i.e., audio-visual
pairs and audio-text pairs). The masked prediction objective
uses a unit-based masking language modeling task similarly
to HuBERT [8]. The masked multimodal feature zf is fed into
the Transformer encoder to learn the contextual representation
hf . For the contextual representation hf = (hf

1 , ..., h
f
M ), we

aim to predict the hidden unit u = (u1, ..., uM ) of the corre-
sponding modality at the masked position. The probability of
the predicted unit can be calculated by

p
(
u | hf

t

)
=

exp
(

sim
(
Whf

t , e(u)
)
/τ

)
∑

u′∈U exp
(

sim
(
Whf

t , e (u
′)
)
/τ

) , (1)

where sim(·) denotes the cosine similarity between two vec-
tors, W is a projection matrix, e(·) is an embedding matrix, τ
is a temperature coefficient, and U is the set of hidden units.
The VATLM pre-training loss can be formulated as

L = −
∑
t∈M

(
log p(ut|hf

t )
)
, (2)

where ut denotes the hidden unit corresponding to the modal-
ity at position t and M is the set of masked positions. The
overall loss function can be expressed as

Ltotal = Lav + λ1La + λ2Lap + λ3Lp, (3)

where Lav is the loss function for the video-audio data, La for
the unimodal audio data, Lap for the paired audio-text data,

and Lp for the unimodal text data, respectively, and λ1, λ2,
λ3 are the weight hyperparameters.

IV. EXPERIMENTAL SETTING

A. Data Description

Pre-training data: The LRS33 [52] and Voxceleb24 [53]
datasets are utilized as our video-audio data. LRS3 is a
publicly available sentence-level lip-reading dataset containing
433 hours of videos extracted from TED English talks. The
original dataset contains two parts: pretrain (403 hours) and
trainval (30 hours), both of which are transcribed at the
sentence level and have the same source as the test set. In
the pre-training phase, a total of 433 hours of data is used
as unlabeled data. The Voxceleb2 dataset is originally created
for multilingual audio-visual speaker recognition, containing
2442-hour data in total and extracted from YouTube videos
without ground-truth transcriptions. The Voxceleb2 dataset
has significant domain differences from LRS3, because it
is multilingual and contains interviews, talks, etc., in both
indoor and outdoor environments. Therefore, we only use the
1326-hour English part of Voxceleb2 for pre-training. For the
unpaired audio data, we use the GigaSpeech5 [54] dataset
containing multi-domain audios. GigaSpeech contains a total
of 10,000 hours of transcribed English data with 5 training
subsets, namely XS, S, M, L, and XL. Since most of the
LRS3 and Voxceleb2 data are originated from YouTube, we
only use 3846 hours of YouTube unlabeled audio data from
the GigaSpeech training subset XL. For the paired audio-text
data, we use the TED-LIUM36 [55] dataset, which contains
452 hours of talk audios (extracted from the TED website)
in English with ground-truth transcriptions. For the unlabeled
text data, we use the English text dataset Cantab-TEDLIUM
Release 1.17 [56] published by Cantab Research for training
neural language models, which contains a total of about 600M
English sentences.

Fine-tuning data: For the AVSR/VSR downstream task, to
validate the performance of the pre-trained model in a low-
resource scenario, we fine-tune the pre-trained model with 30
hours of LRS3 labeled subset data. In addition, we utilize 433
hours of LRS3 labeled data for fine-tuning in order to compare
with other methods. To verify the robustness of the model in
noisy scenarios, we also fine-tune it on noisy datasets to test
the performance in different tasks. As in [57], we adopt the
noise dataset MUSAN8 [58], which contains a total of 109
hours of speech, music and babble noise. Besides, we also
validate our method on the LRS29 [24] dataset, which contains
224 hours of audio-visual transcribed data extracted from BBC
television programs.

3https://www.robots.ox.ac.uk/∼vgg/data/lip reading/lrs3.html
4https://www.robots.ox.ac.uk/∼vgg/data/voxceleb/vox2.html
5https://github.com/SpeechColab/GigaSpeech
6https://lium.univ-lemans.fr/ted-lium3/
7https://www.openslr.org/27/
8http://www.openslr.org/17/
9https://www.robots.ox.ac.uk/∼vgg/data/lip reading/lrs2.html

https://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrs3.html
https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox2.html
https://github.com/SpeechColab/GigaSpeech
https://lium.univ-lemans.fr/ted-lium3/
https://www.openslr.org/27/
http://www.openslr.org/17/
https://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrs2.html
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TABLE I
COMPARISON OF THE AVSR/VSR PERFORMANCE IN WER WITH PREVIOUS WORKS ON THE LRS3 DATASET.

Method Backbone Criterion Extra
labeled (hrs)

Fine-tuned
data (hrs)

Pre-trained
AV data (hrs)

AVSR
WER (%)

VSR
WER (%)

Supervised
Zhang et al. [59] CNN CE 157 698 - - 60.1
Afouras et al. [24] Transformer CE 157 1362 - 7.2 58.9
Xu et al. [18] RNN CE 157 433 - 7.2 57.8
Shillingford et al. [60] RNN CTC - 3886 - - 55.1
Ma et al. [25] Conformer CTC+CE - 433 - - 46.9
Ma et al. [25] Conformer CTC+CE 157 433 - 2.3 43.3
Makino et al. [19] RNN Transducer - 31000 - - 33.6
Self-supervised & Semi-supervised
Afouras et al. [41] CNN CTC 157 433 334 59.8
Zhang et al. [33] Transformer-Base CTC - 30 433 9.1 67.8

Ma et al. [42] Transformer-Base CE - 30 433 - 71.9
- 433 1759 - 49.6

AV-HuBERT [30], [34]

Transformer-Base CE
- 30 433 - 51.8
- 30 1759 4.0 46.1
- 433 1759 - 34.8

Transformer-Large CE - 30 1759 3.3 32.5
- 433 1759 1.4 28.6

AV-HuBERT (w/ self-training) [30] Transformer-Large CE - 30 1759 - 28.6
- 433 1759 - 26.9

VATLM (ours)
Transformer-Base CE

- 30 433 3.6 48.0
- 30 1759 3.4 42.6
- 433 1759 1.7 34.2

Transformer-Large CE - 30 1759 2.7 31.6
- 433 1759 1.2 28.4

VATLM (w/ self-training) Transformer-Large CE - 30 1759 2.7 27.6
- 433 1759 1.2 26.2

B. Pre-Training Setup

Our model is implemented using Fairseq [61]. The visual
encoder is a modified ResNet-18, the audio encoder uses a
linear project layer, and the text encoder contains an em-
bedding layer. We consider two model configurations: a 12-
layer Transformer block for the base model and a 24-layer
Transformer block for the large model. For the base and
large models, the embedding layer dimension/feed-forward
neural network dimension/number of attention heads in each
transformer block are 768/3072/12 and 1024/4096/16, respec-
tively. The inputs to the visual encoder are lip ROIs, and
the inputs to the audio encoder are log-fbank features with
104 dimensions and a frame shift of 40 ms (obtained by
concatenating 4 adjacent fbank features with 26 dimensions
and a frame shift of 10 ms), and the input to the text encoder
is a sequence of phonemes. The parameter amounts of the
base and large models are 107M and 332M, respectively. The
two models are pre-trained on 32 GPUs with 400k and 600k
updates. The number of k-means units is set to be 2000. Both
λ1, λ2 and λ3 in Equa.3 are empirically set to be 1.0. We
employ the same modality dropout and input mask strategies
as in [30] in the pre-training stage. The model is trained
using the Adam optimizer. Since we utilize different types of
datasets, the mini-batches of our model and AV-HuBERT are
kept consistent by controlling the sampling ratio of different
data. The phoneme2unit model contains a 4-layer encoder and
a 4-layer decoder, which are the same as Fastspeech. The
dimensions of the model are 256. The number of phoneme
categories is 41, and the number of unit categories is 2000.
We train 40k updates for 433 hours of TED-LIUM3 data, with
a learning rate of 5e-4 and a mini-batch of 10K phonemes.

C. Fine-Tuning and Evaluation

After pre-training, we fine-tune the VATLM model with
labeled data. For the AVSR task, we remove the text encoder
and replace its output with zero vectors. The base model
is followed by a 6-layer Transformer decoder, and the large
model is followed by a 9-layer Transformer decoder. For the
VSR task, we remove the audio encoder and the text encoder
and replace their outputs with zero vectors. The decoder is
the same as that for the AVSR task. The modeling unit for the
30-hour/433-hour AVSR task and the VSR task adopts 1000
subword units, which are obtained using the sentencepiece [62]
toolkit. After fine-tuning, we decode the test set with a beam
size of 50 and without any language model. The WER is
used as the performance metric to evaluate the model. To
evaluate the performance in noisy scenarios, we utilize 30
hours of noisy labeled data to fine-tune the VATLM base
model that is obtained using 433 hours data for pre-training.
During fine-tuning, the training data of the LRS3 dataset is
dynamically mixed with MUSAN noise data at a signal-to-
noise ratio (SNR) in [0,25] dB to generate noisy speech. Then
we generate the noisy test and validation sets by mixing the
noise at SNRs of {-10, -5, 0, 5, 10} dB, where the noise types
are babble, speech, and music.

V. EXPERIMENTAL RESULTS

A. Evaluation on AVSR

Comparison methods: As one of the supervised meth-
ods, Afouras et al. [24] employes 1362 hours of labeled
data, trained the AVSR model based on the Transformer and
sequence-to-sequence cross-entropy (CE)/connectionist tem-
poral classification (CTC) criterion, and decoded the test set
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TABLE II
THE PERFORMANCE COMPARISON IN WER OF VARIOUS MODELS FOR

AVSR AND VSR ON THE LRS2 DATASET.

Method LM VSR
WER(%)

AVSR
WER(%)

Supervised
LIBS [63] - 65.3 -
TM-CTC [24] - 54.7 8.2
Conv-seq2seq [59] - 51.7 -
TM-seq2seq [24] - 50.0 8.5
KD-TM [64] - 49.2 -
LF-MMI TDNN [65] ✓ 48.9 5.9
E2E Conformer [25] ✓ 37.9 3.7
Self-supervised
Pan et al. [32] - 43.2 2.6
AV-HuBERT Base [30] - 31.2 3.6
AV-HuBERT Large [30] - 25.5 2.5
VATLM Base (ours) - 30.6 2.9
VATLM Large (ours) - 24.3 2.3

using an additional recurrent neural network (RNN) based
language model. Xu et al. [18] uses a 3D residual convolution
to encode visual information and an element-wise attention
gated recurrent unit to model long sequence information. Ma et
al. [25] trains the AVSR model based on the Conformer model
under the CTC and CE criterion and decoded the test set using
an additional Transformer-based language model. As a self-
supervised approach, Zhang et al. [33] uses a contrastive loss
function for self-supervised pre-training. AV-HuBERT [30]
uses both audio and visual features for clustering to generate
hidden units, and the masked prediction and fine-tuning are
similarly incorporated as HuBERT.

Table I shows the performance of the proposed VATLM
model in comparison to previously published supervised and
self-supervised AVSR models on the LRS3 dataset using
different amounts of fine-tuning and pre-training data. Using
433 hours of unlabeled visual-audio LRS3 data, paired audio
data, unpaired text data, and unpaired audio data for pre-
training together with 30 hours of transcribed visual-audio
data for fine-tuning, our VATLM model can achieve a WER
of 3.6 on the AVSR task. Using 1759 hours of unlabeled
visual-audio data, paired audio data, unpaired text data, and
unpaired audio data for pre-training together with 30 hours
of transcribed visual-audio data for fine-tuning, our VATLM
model is capable of achieving a WER of 3.4. When using 433
hours of transcribed visual-audio data, our VATLM model is
able to achieve a WER of 1.7 on the AVSR task, which out-
performs existing supervised and self-supervised models. This
shows that pre-training with more labeled/unlabeled unimodal
data can improve the performance of downstream multimodal
tasks. When the large model is used, AVSR performance can
be consistently improved and exceeds or is comparable to other
methods.

B. Evaluation on VSR

Comparison methods: In order to show the efficacy of the
proposed method on VSR, we also involve several state-of-the-
art supervised and self-supervised approaches for comparison.
For instance, Zhang et al. [59] utilizes the spatial-temporal
fusion module to model the short-range temporal dependence

TABLE III
PERFORMANCE COMPARISON OF OUR PRE-TRAINED VATLM MODEL

USING DIFFERENT TRAINING LOSSES.

# Fine-tuned
dataset Pre-training loss VSR

WER (%)
AVSR

WER (%)
1 30 LRS3 Ltotal 48.0 3.6
2 30 LRS3 −Lp 48.3 3.7
3 30 LRS3 −La 48.3 3.9
4 30 LRS3 −Lp − La 49.2 4.2
5 30 LRS3 −Lp − La − Lap 51.8 4.9

6 30 LRS3 +
TED-LIUM3 −Lp − La − Lap - 4.7

and local spatial information of lip sequences, which depends
on extra 157 hours of labeled LRW data to train the model.
Afouras et al. [24] uses 1362 hours of labeled data to train
a supervised VSR model. Shillingford et al. [60] constructs
3889 hours of video clips of transcribed speech faces and
trained a VSR model using an RNN-based model structure and
CTC loss function. Makino et al. [19] constructs 31k hours
of transcribed audio-visual data by extracting videos from
YouTube and trained an RNN-based VSR model. For semi-
supervised and self-supervised methods, we mainly choose the
models from [30], [33], [41], [42].

Table I lists the performance of our VATLM model and pre-
viously published supervised and self-supervised VSR models
on the LRS3 dataset using different amounts of fine-tuning
and pre-training data. Using 433 hours of unlabeled visual-
audio data, paired audio data, unpaired text data, and unpaired
audio data for pre-training as well as 30 hours of transcribed
visual data for fine-tuning, our VATLM model is capable
of achieving a WER of 48.0. Using more unlabeled visual-
audio data, the VSR performance of VATLM can be improved,
which implies that pre-training with more visual-audio data is
beneficial for VSR, particularly under low-resource conditions.
Comparing the WER (46.1 vs. 42.6) performance of the VSR
task between AV-HuBERT and VATLM, the VATLM model
does not utilize more visual data and has further performance
gains on VSR, indicating that the use of visual irrelevant data
in the pre-training stage can also improve the performance of
the VSR task. We believe that the performance of modality-
independent tasks can be improved to some extent when the
data of different modalities can be aligned to the same space
(see V-F). When using 433 hours of transcribed visual data for
fine-tuning, our VATLM model can achieve a WER of 34.2
on the VSR task, which becomes comparable to AV-HuBERT.
The performance of VSR can be consistently improved by
using large model compared to using base model. When the
self-training approach is used to decode the untranscribed
Voxceleb2 dataset to obtain pseudo labels and add them to the
training set, our model achieves a WER of 26.2 on the 433-
hour VSR task. It is worth mentioning that short sentences are
not beneficial for the VSR task. Filtering out short sentences
smaller than two seconds can improve the quality of pseudo
labels.

C. More Evaluation on LRS2 Dataset
To verify the generality of the pre-trained model, we fine-

tune the VATLM model on the transcribed LRS2 dataset,
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TABLE IV
THE PERFORMANCE COMPARISON IN WER BETWEEN OUR MODEL AND AV-HUBERT MODEL UNDER DIFFERENT SNR NOISE CONDITIONS.

Model Mode Babble, SNR= Speech, SNR= Music, SNR= Clean
-10 -5 0 5 10 avg -10 -5 0 5 10 avg -10 -5 0 5 10 avg ∞

AV-HuBERT ASR 120.1 93.2 44.7 18.1 9.6 57.1 120.0 93.0 59.2 30.9 15.0 63.6 72.1 44.9 21.8 12.3 8.4 31.9 6.2
AVSR 49.9 34.4 18.8 10.4 7.7 24.2 49.7 34.5 16.9 11.5 7.9 24.1 29.9 19.2 11.9 8.8 6.7 15.3 4.9

VATLM ASR 118.0 91.4 34.1 12.3 6.6 52.5 117.9 91.5 41.7 20.4 10.3 56.4 65.0 35.2 14.7 7.9 5.7 25.7 4.1
AVSR 45.8 30.6 13.4 6.8 4.9 20.3 45.6 30.8 10.9 7.1 5.0 19.9 25.2 13.9 7.7 5.5 4.8 11.4 3.6

Fig. 3. The 2D t-SNE visualization of representations obtained from data with different modalities, where ‘av’ in the figure denotes data of audio-visual
modality, ‘a’ denotes data of audio modality, ‘v’ denotes data of visual modality, and ‘p’ denotes data of text modality

which is not used in the pre-training phase. The corresponding
results are shown in Table II. We can see that the supervised
method E2E conformer [25] shows an excellent performance,
e.g., a WER of 3.7 on AVSR and a WER of 37.9 on VSR,
however it incorporates an additional language model for
decoding. For the self-supervised approach, Pan et al. [32] uses
a unimodal visual pre-trained model and a unimodal audio
pre-trained model to improve the AVSR/VSR performance.
Since the results of AV-HuBERT were not reported on the
LRS2 dataset, we fine-tuned the AV-HuBERT Base model,
which reaches a WER of 3.6 on AVSR and a WER of 31.2 on
VSR. The performance of the AV-HuBERT model on the VSR
task is significantly improved compared to previous work. Our
VATLM Base model achieves a WER of 2.9 on the AVSR task
and 30.6 on the VSR task, with a large performance gain for
the AVSR task and a small gain for the VSR task compared
to the AV-HuBERT Base model. When using the large model,
the AVSR and VSR tasks are able to achieve WERs of 24.3
and 2.3, respectively, which is the best known performance.
Experimental results show that utilizing multimodal data in
the pre-training phase can improve the generalizability of the
model for downstream tasks.

D. Ablation Study

To better illustrate the impact of using different training
objectives (as Equa. 3) in the pre-training stage on the
performance of downstream tasks, we conduct comparative
experiments and the results are shown in Table III. We list the
performance of our VATLM in line 1 with pre-training loss
Ltotal, including Lav , La, Lap, and Lp. On this basis, we
first individually remove the loss Lp or La from Ltotal. The
results reported in line 2 and line 3 demonstrate that without
pre-training of unpaired audio or text data, the performance of
VSR and VSR degrades, indicating the usefulness of Lp and
La. Besides, the combination of Lp and La is more beneficial
for VATLM, because WER rises significantly when removing

them simultaneously. We further pre-train the model without
Lap (line 5), which achieves 51.8% WER and 4.9% WER,
and underperforms the quality of line 4, demonstrating the
importance of Lap. Finally, we utilize additional paired audio-
text data (TED-LIUM3) together with 30 hours of transcribed
visual-audio data (LRS3) to fine-tune the pre-trained model of
line 5, resulting in a WER of 4.7 on the AVSR task. Comparing
the results of line 6 and line 4, which utilizes the paired audio-
text data TED-LIUM3 in the pre-training stage, we can draw
a conclusion that in case additional paired audio-text data are
available, performing a uniform masked prediction task in the
pre-training phase makes fuller usage of the data than fine-
tuning in the downstream task.

E. Robustness Evaluation

To evaluate the noise robustness of the model in different
noise scenarios and the effect of different modalities on the
model performance, we utilize 30 hours of noisy data to fine-
tune the pre-trained model obtained from 433 hours of data.
Note that we do not employ noise augmentation in pre-training
stage. We then test on the babble, speech, and music noisy
datasets with {-10, -5, 0, 5, 10} dB, and the experimental
results are shown in Table IV. As can be seen from the table,
our VATLM model outperforms the AV-HuBERT model under
the same noise type and SNRs. In addition, the model with
visual-audio modality (AVSR) has a lower WER than the
model with a single audio modality (ASR) under the noise
scenario, which indicates that the multimodal model has an
advantage compared to the single-modal model in the noise
scenario.

F. Visualization Analysis

Our VATLM model attempts to map data from different
modalities to the same space. To analyze whether the data
of different modalities are aligned in one space, we sample
the data of different modalities from the test set. Then the
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representations corresponding to different modalities output
from the Transformer encoder are reduced to 2D using t-
SNE for visualization, as shown in Fig. 3. The distribution of
audio-visual, audio, visual, and text representations in Fig. 3
is approximately the same, indicating that the representations
of different modalities are aligned in the same space. When
data from different modalities can be aligned in one space, it
is possible to improve the performance of tasks with different
modalities using data from a single modality.

VI. CONCLUSION

In this paper, we present VATLM, a visual-audio-text
self-supervised speech representation learning model, which
achieves competitive even state-of-the-art performance on
audio-visual/visual speech recognition tasks. To the best of
our knowledge, this is the first work to integrate both visual
information and textual information into speech representation
learning in a unified framework. We tokenize the data sources
from different modalities into shared hidden units, and employ
a multipath Transformer to model the latent representation of
visual, speech, and text. Particularly, the model is optimized
by learning to predict the hidden units of different modalities
with a unified masked prediction task. For future work, we
are planning to extend to more downstream tasks and model a
rich variety of videos with the proposed VATLM. We are also
interested in integrating masked autoencoder methods into our
model.
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