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Deep Learning and Theory

Deep learning has caused 
theoreticians to _______

GPT-4: reexamine the fundamentals 
of machine learning…

Neural networks have exhibited a lot of 
surprising phenomena that defy classical 
theory



Grokking

[Power et al. 2022]

• Originally observed in transformers trained on modular arithmetic problems [Power et al. 2022], 
e.g., 𝑎 + 𝑏	mod	𝑝, 𝑎! − 𝑏!	mod	𝑝

• Grokking happens for many other tasks (group operations, sparse parity, etc.) and is robust 
to training methods (architectures, loss functions, optimizers)

• This talk: theoretical understanding of grokking

“The team member who was training 
the network went on vacation and 
forgot to stop the training…”
(https://www.quantamagazine.org/how-do-machines-
grok-data-20240412/)



Prior Work

[Liu et al. 2023; Varma et al. 2023]
• Related to parameter norm & initialization scale
[Thilak et al. 2022; Notsawo Jr et al. 2023]
• Related to oscillation in loss curves
[Nanda et al. 2023; Chughtai et al. 2023; Gromov. 2023]
• Found special structure in grokked nets, e.g., sin/cos for modular addition
[Žunkovič & Ilievski. 2022; Levi et al. 2024]
• Dynamical analysis for linear models + data assumptions

Limitations:
1. No rigorous theoretical analysis for neural networks
2. No quantitative explanation for why the transition is sharp in grokking



Prior Work: Goldilocks Zone

[Liu et al. 2023]

Questions:
1. What determines the norm of the Goldilocks zone?
2. Why is the Goldilocks zone narrow?
3. Many neural networks are homogeneous wrt the weights… Why does the norm matter?



Motivating Experiment

Grokking is most prominent with large initialization and small weight decay



Our Result: Dichotomy of Early and Late Phase Implicit Biases
• GD on Logistic loss with L2 regularization/weight decay: ℒ 𝜃 = !

"
∑#$!" ℓ(𝑦#𝑓 𝜃, 𝑥# ) +

%
& 𝜃 &

• Take limit (large init and small weight decay): 𝜃'(') = 𝛼 → ∞, 𝜆 → 0

Early-phase implicit bias:
kernel learning (NTK)

𝑡! =
log𝛼
𝜆

Grokking! Late-phase implicit bias:
feature learning (max margin)

𝑡
𝑡 = 0

fit

𝑡 = 𝑜(1)

Theorem. At 𝑡 = 0.999 *+, -% , the network
implements kernel SVM with 𝐾 𝑥, 𝑥′
= ∇𝑓 𝜃'('), 𝑥 , ∇𝑓 𝜃'('), 𝑥′

Theorem. At 𝑡 = 1.001 *+, -% , the network attains first-
order optimal conditions for margin maximization

min 𝜃 &
& s. t. 𝑦#𝑓 𝜃, 𝑥# ≥ 1, ∀𝑖

[Lyu*, Jin*, Li, Du, Lee, H. 2024]

𝑥 ∈ ℝ!

𝜃

𝑓 𝜃, 𝑥 ∈ ℝ



𝑥 ∈ ℝ.

𝜃

𝑓 𝜃, 𝑥 ∈ ℝA neural net is 𝐿-homogeneous if  𝑓(𝑐𝜃, 𝑥) = 𝑐(𝑓(𝜃, 𝑥) for any 𝑐 > 0
• e.g., 𝐿-layer ReLU networks and CNNs (without bias terms)

Property: Only the direction of 𝜃 matters for classification

linear

𝑊" 𝑊#𝜎 𝑊"𝑥𝜎 𝑊"𝑥𝑊"𝑥𝑥
ReLU linear

𝑊#

linear

𝑐𝑊" 𝑐#𝑊#𝜎 𝑊"𝑥𝑐𝜎 𝑊"𝑥𝑐𝑊"𝑥𝑥
ReLU linear

𝑐𝑊#

𝜃:

𝑐𝜃:

Background: Homogeneous Networks

“2-homogeneous”



Neural Tangent Kernel (NTK) Regime
A series of work: [Jacot et al. 2018; Du et al. 2019; Allen-Zhu et al. 2019; Lee et al. 2019; Arora, Du, H, Li, Salakhudinov, Wang. 2019; 
Chizat et al. 2019; ...]

“Kernel regime”:
• Gradient descent converges to global min while the network stays close to its linearization:

𝑓 𝜃, 𝑥 ≈ 𝑓 𝜃$%$&, 𝑥 + ∇𝑓 𝜃$%$&, 𝑥 , 𝜃 − 𝜃$%$&
• Little change in network weights:

𝜃 − 𝜃$%$&
𝜃$%$&

≈ 0	 (∗)

• Neural network at convergence ⟺ linear model on gradient feature 𝜙 𝑥 = ∇𝑓 𝜃$%$&, 𝑥  ⟺  kernel 
learning with the NTK: 𝐾 𝑥, 𝑥′ = 𝜙 𝑥 , 𝜙 𝑥′

Setting 1: Random initialization & width of hidden layers → ∞
Setting 2: large initialization 𝜃'(') → ∞

What’s new in our result?
• Due to L2 regularization, the weights will change a lot, so (*) doesn’t hold anymore
• We need to carefully track how the norm and direction of 𝜃 evolves; turns out the norm will decrease 

exponentially, but the direction doesn’t change much up to time 𝑡 = 0.999 *+, -%



Margin Maximization in Homogeneous Networks

Prior work [Wei et al. 2019]: If 𝜆 → 0, the global minimum of logistic loss with L2 regularization
!
"
∑#$!" ℓ(𝑦#𝑓 𝜃, 𝑥# ) +

%
& 𝜃 & is the max-margin solution.

What’s new in our result?
• We precisely characterize the GD convergence time to the max-margin solution: 𝑡 = 1.001 *+, -%
• We only show the first-order optimality (KKT) conditions of margin maximization instead of global 

optimality

Intention: Hope to understand generalization of deep neural networks using similar ideas as classical 
linear models like SVMs.

min 𝜃 "
"

 s. t. 𝑦#𝑓 𝜃, 𝑥# ≥ 1, ∀𝑖
max	 min

#
𝑦#𝑓 𝜃, 𝑥#

 s. t. 𝜃 ≤ 1

Homogeneous modelMargin 
maximization

cf. SVM:     min 𝜃 !
! s. t. 𝑦"𝜃#𝑥" ≥ 1, ∀𝑖



Concrete Example I: Two-Layer Diagonal Linear Network
Two-layer Diagonal Net: A reparameterization of linear model [Woodworth et al. 2020]

• 𝑓 𝜃, 𝑥 = 𝜃 ⊙ 𝜃, 𝑥

Consider training a two-layer diagonal net on linearly separable data
• Early phase: Kernel SVM ⟺ L2 max-margin linear classifier

• Late phase: Max-margin solution ⟺ L1 max-margin linear classifier (good for learning sparse models)

𝑦 = sign 𝑥$ + 𝑥! + 𝑥%
⇒ grokking

the ground-truth data has large L2 margin
⇒ “misgrokking”



Concrete Example II: Matrix Completion / Multiplication Table
Matrix Completion: given a partially observed low-rank matrix, complete the matrix
• Two-layer model: Parameterize 𝑊 = 𝑈𝑈A − 𝑉𝑉A, 𝑈, 𝑉 ∈ ℝ.×.. Use MSE loss on observed entries.

1 ? 3
? ? 6
3 6 ?

1 0 3
0 0 6
3 6 0

Early phase: 
NTK

1 2 3
2 4 6
3 6 9

Late phase: min 
nuclear norm

(Extended our result to regression)



Summary for Part I 

Early-phase implicit bias:
kernel learning (NTK)

𝑡! =
log𝛼
𝜆

Grokking! Late-phase implicit bias:
feature learning (max margin)

𝑡
𝑡 = 0

fit

𝑡 = 𝑜(1)

A dichotomy of early and late phase implicit biases can provably induce grokking

• Sharp transition from kernel learning to margin maximization



Part II: Generalization While Fitting Noisy Labels

[Power et al. 2022]

The neural network still groks to perfect generalization even if 
some of the training datapoints have random labels



Benign Overfitting

Classical overfitting Benign overfitting

Benign overfitting: a model interpolates noisily labeled training data, but still 
achieves near-optimal generalization
• Linear regression and classification: [Bartlett et al. 2020; Chatterji and Long 2021; Wang and 

Thrampoulidis, 2021; …]
• Neural network trained on linearly separable data: [Frei et al. 2022; Xu and Gu 2023; Cao et al. 

2022; Kou et al. 2023; …]
• Open question: Neural network trained on non-linearly separable data???



Coming Next

• We characterize a synthetic setting in which benign overfitting and grokking provably occur
- A two-layer ReLU network trained on XOR cluster data

• The first theoretical characterization of benign overfitting in a truly non-linear setting



XOR Cluster Data
• Binary classification

- Class +1: !
&
𝒩 𝜇!, 𝐼 + !

&
𝒩 −𝜇!, 𝐼

- Class −1: !
&𝒩 𝜇&, 𝐼 + !

&𝒩 −𝜇&, 𝐼
- 𝜇!, 𝜇& ∈ ℝC are orthogonal

• Flip label 𝑦 ↦ −𝑦 with probability 𝜂
• 𝑛 i.i.d. examples 𝑥; , 𝑦; ;<=

>

Not linearly 
separable

Key assumptions (𝐶 is a large constant)
• Norm of the mean satisfies

𝐶𝑛D.E!𝑝 ≤ 𝜇! & = 𝜇& & ≤
𝑝
𝐶𝑛&

• Label flipping rate satisfies

𝜂 ≤
1
𝐶

Key property: Near orthogonality
𝑥#, 𝑥F

𝑥# ⋅ 𝑥F
≪ 1, ∀𝑖 ≠ 𝑗



Two-Layer ReLU Neural Network

𝑓 𝑥;𝑊 =Z
F$!

G

𝑎F𝜙 𝑤F, 𝑥

• Second layer 𝑎? ∼ unif ±1/ 𝑚  i.i.d., not trained
• First layer 𝑊 is trained by gradient descent on logistic loss:

𝑤F
(IJ!) = 𝑤F

(I) − 𝛼∇L!𝐿 𝑊 I , 𝑗 ∈ [𝑚]

𝐿 𝑊 =
1
𝑛
Z

#$!

"
log 1 + exp −𝑦#𝑓(𝑥#;𝑊)

• Initialization 𝑤?
(A) ∼ 𝒩 0,𝜔!𝐼  i.i.d.

ReLU: 𝜙 𝑧 = max{𝑧, 0}

Key assumptions (𝐶 is a large constant)
• Small step size: 𝛼 ≤ 1/(𝐶𝑛𝑝)
• Small initialization scale: 𝜔 ≤ H I! "

>J#/"K
• Not so small width: 𝑚 ≥ 𝐶𝑛A.A!



Empirical Behavior

Catastrophic overfitting

grokking

Benign overfitting



Theoretical Results

Theorem [Xu, Wang, Frei, Vardi, H. 2024]
With probability 1 − 𝑜(1) over the dataset and the random initialization of the weights:
1. Perfect fitting to noisy training data points for 1 ≤ 𝑡 ≤ 𝑛:

𝑦# = sign 𝑓(𝑥#;𝑊(I)) , ∀𝑖 ∈ [𝑛]

2. Near-random test error at 𝑡 = 1:

Pr
M,N ∼P"#$%&

𝑦 ≠ sign 𝑓(𝑥;𝑊(!)) =
1
2
± 𝑜(1)

3. Near-optimal generalization for 𝐶𝑛A.A= ≤ 𝑡 ≤ 𝑛:
Pr

M,N ∼P"#$%&
𝑦 ≠ sign 𝑓(𝑥;𝑊(I)) = 𝑒QR("')



Proof Sketch

At 𝑡 = 1, the network approximately learns a linear classifier

𝑓 𝑥;𝑊(!) =Z
F$!

G

𝑎F𝜙 𝑤F
(!), 𝑥 ≈

𝛼
8𝑛

Z
#$!

"

𝑦#𝑥# , 𝑥

• This linear classifier can perfectly fit all the training data 𝑥; , 𝑦; ;<=
> , 

but only achieves ~50% accuracy on the XOR distribution

At a later time, the network learns the correct features
• If 𝑎? > 0, 𝑤?

(L) aligns with ±𝜇=
• If 𝑎? < 0, 𝑤?

(L) aligns with ±𝜇!
𝑚𝑓 𝑥;𝑊(I) = Z

F:T!UD

𝜙 𝑤F
(I), 𝑥 − Z

F:T!VD

𝜙 𝑤F
(I), 𝑥



Visualizations
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Closing Thoughts

• Deep learning exhibits intriguing phenomena that defy classical statistical wisdom, 
e.g., grokking & benign overfitting

• Understanding these phenomena likely requires “opening the black box” of neural 
networks and their training processes

• Questions
• Understanding grokking in Transformers and modular arithmetic problems
• How to make neural network inductive biases better “aligned” with the tasks of 

interest?


