
AUDIBLE: A Convolution-Based Resource Allocator
for Oversubscribing Burstable Virtual Machines
Seyedali Jokar Jandaghi

saj@cs.toronto.edu
University of Toronto

Canada

Kaveh Mahdaviani
mahdaviani@cs.toronto.edu

University of Toronto
Canada

Amirhossein Mirhosseini
miramir@umich.edu
University of Michigan

USA

Sameh Elnikety
samehe@microsoft.com

Microsoft Research
USA

Cristiana Amza
amza@ece.utoronto.ca
University of Toronto

Canada

Bianca Schroeder
bianca@cs.toronto.edu
University of Toronto

Canada

Abstract
In an effort to increase the utilization of data center resources
cloud providers have introduced a new type of virtual ma-
chine (VM) offering, called a burstable VM (BVM). Our work
is the first to study the characteristics of burstable VMs
(based on traces from production systems at a major cloud
provider) and resource allocation approaches for BVM work-
loads. We propose new approaches for BVM resource allo-
cation and use extensive simulations driven by field data to
compare them with two baseline approaches used in prac-
tice. We find that traditional approaches based on using a
fixed oversubscription ratio or based on the Central Limit
Theorem do not work well for BVMs: They lead to either
low utilization or high server capacity violation rates. Based
on the lessons learned from our workload study, we develop
a new approach to BVM scheduling, called Audible, using a
non-parametric statistical model, which makes the approach
light-weight and workload independent, and obviates the
need for training machine learning models and for tuning
their parameters.We show that Audible achieves high system
utilizationwhile being able to enforce stringent requirements
on server capacity violations.

ACM Reference Format:
Seyedali Jokar Jandaghi, Kaveh Mahdaviani, Amirhossein Mirhos-
seini, Sameh Elnikety, Cristiana Amza, and Bianca Schroeder. 2024.
AUDIBLE: A Convolution-Based Resource Allocator for Oversub-
scribing Burstable Virtual Machines. In 29th ACM International
Conference on Architectural Support for Programming Languages

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0386-7/24/04. . . $15.00
https://doi.org/10.1145/3620666.3651376

and Operating Systems, Volume 3 (ASPLOS ’24), April 27-May 1,
2024, La Jolla, CA, USA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3620666.3651376

1 Introduction
The under-utilization of data center resources has been a
long-standing problem. In public cloud platforms, a common
reason for the low utilization of resources is that the resource
demands of most applications vary over time, while the size
of a regular virtual machine (VM) is fixed (e.g. 2 virtual CPU
cores) forcing customers to size their VMs for application
peak usage. To combat this problem cloud providers have
over the last years introduced a new type of virtual machine
offering, called a burstable virtual machine (BVM), which is
intended to accommodate workloads with time-varying CPU
demands. In particular, a BVM accumulates credit while its
resource usage stays below some specified baseline and can
use these credits to occasionally burst above the baseline up
to some specified Peak CPU Usage.
BVMs have the potential to benefit both customers and

cloud providers. Customers with time-varying workloads
benefit financially as they no longer have to pay for cores
that they do not use most of the time (which is the case
with fixed-sized regular VMs sized for peak usage). In fact,
there are already a number of examples in the literature
for how different applications can make use of BVMs [2, 3,
19, 23, 25, 27, 30, 31]. For cloud providers, BVMs provide
an opportunity to increase resource utilization by packing
VMs more tightly, as the BVM type makes it explicit to the
resource allocator that a customer’s workload is expected to
stay below some baseline for most of the time and there is
a mechanisms in place that limits how often it might burst
above this baseline.
Realizing the potential of BVMs for improving resource

utilization in cloud platforms critically hinges on the re-
source allocator. In particular, the resource allocator in a
public cloud platform has to carefully balance the trade-off
between increasing utilization and limiting server capacity
violations, i.e. a situation where the available server capacity
is not sufficient to meet the Service Level Objectives (SLOs)

https://doi.org/10.1145/3620666.3651376
https://doi.org/10.1145/3620666.3651376
https://doi.org/10.1145/3620666.3651376

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jokar Jandaghi et al.

of all VMs running on it. In the case of servers running
BVMs, a server capacity violation refers to a scenario where
a BVM has accumulated credit that it wants to use to burst,
but the server has no capacity to accommodate the burst.
With resource oversubscription, the cloud operator specifies
a limit on the acceptable rate of server capacity violations
(e.g., below 1% to reduce negative impact on customer ex-
perience) for the servers in a cluster, and the goal of the
resource allocator is to maximize utilization while keeping
server capacity violations below the specified limit.

While there is a large body of work on resource allocation
in cloud platforms, we are not aware of any work on resource
allocation policies for BVMs. The goal of this paper is to close
this gap. Our paper makes the following contributions:
•We provide the first study of BVM workloads, based on
data collected from production systems in Microsoft Azure,
spanning more than 4 million virtual machine. Our study
provides lessons to guide resource allocator design and high-
lights some key differences to regular VM workloads.
•We use large-scale simulations, driven by production traces
from Microsoft Azure to evaluate several state-of-the-art
resource allocators designed for regular VMs, as well as the
current allocator used at Microsoft Azure for BVMs. We
find that existing methods either result in low utilization
or are not able to reliably ensure limits on server capacity
violations.
•We identify some fundamental reasons why previous ap-
proaches fall short. For example, we observe that approxima-
tions based on the Central Limit Theorem, which are often
used to model server utilization [4, 6, 8], are not sufficiently
accurate in the tail of the distribution of BVM workloads.
•Wedesign and evaluate a new approach to BVM scheduling,
called Audible, and show that it achieves high system utiliza-
tion while being able to enforce even stringent requirements
on server capacity violations. Audible is a non-parametric
statistical model based on observed empirical distributions.
This approach makes Audible light-weight and workload
independent, and obviates the need for training of machine
learning models or tuning of magic parameters.
• For the benefit of others working in this area, we also
outline lessons learned from our work, including “negative
results” from alternative novel approaches, besides Audible,
that we explored and why they failed.
•We provide an artifact with this paper that includes the
first dataset of BVMs from a public cloud and the simula-
tor we designed to evaluate different scheduling algorithms,
making our results reproducible and providing a framework
for future work in this area.

2 Background and Motivation
BVMs: A BVM is a new type of virtual machine that has
dynamic CPU assignment over its life-cycle and is designed
for workloads that burst on occasion. BVM offerings in both

Peak CPU
(CPU Core(s))

Baseline(s)
(Token per Minute)

Bucket Size(s)
(Token)

Initial Tokens
(Token)

1 0.05, 0.1, 0.2 72, 144, 288 30
2 0.4, 0.6 576, 864 60
4 0.9 1296 120
8 1.35 1944 240
12 2.02 2909 360
16 2.70 3888 480
20 3.37 4860 600

Table 1. BVM Configurations at Microsoft and Amazon.

Microsoft and Amazon are defined by four parameters: the
baseline CPU, the bucket size, the peak CPU, and the number
of initial tokens. While a BVM is running it collects tokens at
a constant rate, which is specified by the baseline parameter.
The bucket size determines the maximum number of tokens
that can be accumulated. Each token represents a credit
allowing the BVM to use one core at full capacity for one
minute. CPU credits can be used in fractions, e.g., half a credit
can be spent to use a core for half a minute. Table 1 shows
the BVM configurations offered by Microsoft and Amazon.
VM Scheduling: VM scheduling typically involves three
levels of decision making. The first level chooses which one
of many clusters an incoming VM should be placed on. This
decision is often based on load balancing or geographical
considerations. The next step is to narrow down the servers
in the chosen cluster to a set of candidate servers, based on
a number of considerations. One of the most important con-
straints and the focus of this paper is to determine whether a
candidate server has sufficient free capacity to host the VM.
We call a candidate server a valid candidate if it has sufficient
free capacity to host the incoming VM. (Other considerations
include for example the type of hardware requested by the
incoming VM or placement restrictions based on fault do-
mains – these are orthogonal to our work and not topic of
this paper). The third level of decision making determines
which valid candidate server to place the VM on. This could
be based on a heuristic like worst-fit for load balancing, best-
fit for tighter packing or random selection. If there is no valid
candidate server (i.e. no server in the cluster has sufficient
capacity) the VM placement request is rejected.
Goals: The focus of our paper is to provide methods to in-
crease server utilization in a public cloud platform while
enforcing bounds on server capacity violations. At the core
of this problem is determining for a given BVM and candidate
server, whether the candidate server is a valid candidate, i.e.
given the other BVMs already running on the server can we
place the new BVM on this server without creating a signifi-
cant risk of future server capacity violations. In the context
of BVMs a capacity violation refers to a situation where the
aggregate demand of all the VMs within the boundaries of
their available tokens and Peak CPU Usages exceeds the ca-
pacity of the server. In such cases at least some BVMs have
to be throttled despite having accumulated tokens, which
violates the SLO for a BVM and negatively impacts customer

AUDIBLE: A Convolution-Based Resource Allocator for Oversubscribing Burstable Virtual Machines ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

 Burstable Regular0

20

40

60

80

100

Br
ea

kd
ow

n
of

 N
um

be
r

of
 V

M
s

by
 V

M
 T

yp
es

 Burstable Regular0

20

40

60

80

100

Br
ea

kd
ow

n
of

 U
ti

liz
ed

Co
re

-h
ou

r
by

 V
M

 T
yp

es CPU Core(s)

32.0
24.0
20.0
16.0
12.0
8.0
4.0
2.0
1.0

Figure 1. Breakdown of the number of VMs and CPU-hours
based on VM sizes (number of virtual cores) for burstable VMs
(left) and regular VMs (right).

satisfaction. Cloud providers therefore strive to keep the rate
of capacity violations very low.

A resource allocator for BVMs needs to ensure that the rate
of capacity violations stays within a limit that the provider
has specified for that cluster or server, i.e., it needs to en-
force an upper bound on the fraction of time periods that a
server is allowed to experience a capacity violation, while
also allowing for maximal utilization of server resources.
VM placement decisions need to be made conservatively

as poor decisions are hard to correct later: VM migration is
expensive and negatively impacts customer experience and
is therefore avoided if at all possible. At the same time overly
conservative decisions will hurt utilization.

3 BVMWorkload Study
In this section, we present the first study of Burstable Virtual
Machines (BVMs) production workloads. Our study is based
on data collected on production machines at Microsoft Azure
over a one-week period in 2021, as well as an older BVM trace
and traces of regular VMs. The dataset comprises records
from 4 million BVMs, that include, for example, the average
and maximum CPU utilization, logged at five-minute inter-
vals, as well as information regarding BVM configurations
and the creation/termination events.

3.1 CPU utilization of BVMs
We begin by categorizing the BVMs in our dataset based
on the number of virtual CPUs they have. Figure 1 shows
the breakdown for burstable VMs (left) in comparison with
regular VMs (right). Each graph shows both the frequency
of each VM size as well as a breakdown of the aggregate
CPU-hours consumed by VMs of each size. We observe that
BVMs tend to be small. For example, nearly 20% of BVMs
have only 1 virtual core compared to 5% of regular VMs. That
is good news from a scheduling point of view as summarized
in the lesson below:

Lesson 1: As the majority of BVMs are small, a server will
be able to host a large number of them. Multiplexing across
a large number of VMs creates potential for oversubscription.

Next, we consider how BVMs make use of the CPU re-
sources allocated to them. Microsoft Azure currently allo-
cates 2X the BVM’s baseline for all BVM types, which on
average corresponds to 38% of the BVM type’s specified CPU

0 10 20 30 40 50 60
Normalized Average CPU Utilization

0.00

0.25

0.50

0.75

1.00

CD
F

2021 Burstable
2019 Burstable
2021 Regular

Figure 2. CDF of Average CPU Utilization, normalized by
the size of the (B)VM and weighted according to the lifetime
of each VM. The vast majority of BVMs greatly underutilizes
resources.

Figure 3. CDF of CPU utilization at different stages of a BVM’s
lifecycle. We observe that CPU utilization is higher early in
life compared to the rest of the lifetime.

peak. We convert the average CPU usage measured for each
BVM in our dataset into a percentage of the total CPU al-
located for the BVM. Figure 2 shows the resulting CDF, as
well as the corresponding CDF for regular VMs. We observe
that VMs and BVMs utilize only a small fraction of the CPU
resources allocated to them. The BVM in the median uses
only 7.5% of its allocated CPU and even the BVM in the 95th
percentile uses only 38.9% of its allocated resources.
Lesson 2: BVMs greatly underutilize the CPU resources
allocated to them further increasing the potential for over-
subscription of resources.

Next we look at how stable a BVM’s CPU usage is over its
lifetime. Figure 3 shows the CDF of the average CPU utiliza-
tion during the first 0.5, 6 and 12 hours of lifetime compared
to the entire lifetime for BVMs and VMs. The figure reveals
a distinct trend: BVMs’ CPU utilization is higher during the
first hours of lifetime compared to the rest of the lifetime.
The same trend does not exist for regular VMs. The reason is
likely that BVMs are instantiated with a set of initial tokens,
which allow them to run at a higher utilization in the begin-
ning. Static allocation methods that assume a fixed resource
usage throughout a BVMs lifetime will likely be wasteful of
resources (or underestimate resources during the early life
of a BVM).
Lesson 3: Efficient resource allocation methods need to be
aware of the dynamically changing CPU demands of BVMs,
in particular their higher resource usage early in life.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jokar Jandaghi et al.

0 50 100 150 200 250 300
Excess Kurtosis

For VMs that lived more than a day

0.00
0.25
0.50
0.75
1.00

CD
F 2021 Burstable

2019 Burstable
2021 Regular

Figure 4. CDF of the Kurtosis of CPU utilization of burstable
versus regular VMs. Kurtosis is a measure of the "tailedness"
of a probability distribution.

One aspect that makes tight packing of VM workloads
hard is high variability and spikes in resource usage. Since
burstable VMs are designed for workloads with time-varying
CPU demands a natural question is how much burstier their
workloads are than regular VMs. Towards this end, Figure 4
plots the CDF of the kurtosis of the BVM workloads and the
regular VM workloads in our datasets. Kurtosis is a measure
of the "tailedness" of a probability distribution. We observe
significantly higher kurtosis for the burstable VMworkloads,
in particular for the more recent dataset. The mean and me-
dian kurtosis of BVMs in the 2021 BVM dataset is 147 and
50, respectively, compared to a mean of 71.46 and median
of 36.23 for regular VMs, and this trend is rapidly shifting
towards more burstiness as is evident when comparing the
2021 dataset with that of 2019.
Lesson 4: BVM workloads exhibit higher skewdness, which
is a measure of distribution asymmetry, than regular BVM
workloads. A VM scheduler needs to be able to handle this
additional burstiness.
Finally, we pay some special attention to the character-

istics of the distribution of the resource usage of an aggre-
gate of BVMs. One common approach to oversubscribing
resources is to rely on a Gaussian approximation of the ag-
gregate resource usage of a group of VMs using the Central
Limit Theorem (CLT). While some of the assumptions of
the CLT might not always hold in practice (independent
and identical distribution of the resource usage of different
BVMs on a server) previous work has found approximation
based on the CLT to be useful for scheduling datacenter
workloads [4, 8, 14, 16].

In contrast, we find that while the normal distribution cap-
tures the overall shape of the CDF well, the fit is not tight at
the tail of the distribution. We take a closer look at the tail be-
havior of the resource usage distribution of BVM aggregates
in Figure 5. For this figure we repeatedly packed servers of
different sizes (36, 48, 64 cores) with BVMs and compared
the excess kurtosis of the resulting CPU usage distribution
with that of a normal distribution. (The excess kurtosis of
the normal distribution is zero, and positive values for excess

Figure 5. Analyzing the skewness in the CPU usage of servers
of different sizes packed with burstable VMs. The excess kurtosis
of a normal distribution is 0, and positive values indicate right-
skewness in the aggregate CPU usage.

Figure 6. Breakdown of the number of VMs and CPU-hours
based on VM lifetimes for burstable (left) and regular VMs
(right).

kurtosis indicate right-skewness of a distribution). We see
that in nearly 93% of the servers the aggregate CPU usage
exhibits a rightward skew, with some servers exhibiting a
significant deviation from the expected skewness of a normal
distribution. This discrepancy highlights a limitation in the
Gaussian model employed by CLT in effectively represent-
ing extreme events on the right side of the tail, specifically
rare bursts in aggregate usages. These bursts that the tail of
the distribution represents might be critical when trying to
enforce stringent upper bounds on server capacity violations.

Lesson 5: Approximations of server CPU usage based on
the Central Limit Theorem might not be sufficiently accu-
rate to enforce stringent requirements on the server capacity
violations, where the tail of the distribution matters most.

3.2 Lifetime
Next we analyze the lifetime (duration) of BVMs. Figure 6
breaks down the number of VMs and the associated CPU-
hours based on the lifetime of the VM, for burstable VMs and
regular VMs. We observe that for both burstable and regular
VMs the short-running VMsmake up the majority of all VMs,
however long-running VMs account for the majority of CPU
hours. For example, while burstable VMs longer than a day

AUDIBLE: A Convolution-Based Resource Allocator for Oversubscribing Burstable Virtual Machines ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Figure 7. CDF of the percentage of all running VMs that are
long-running (longer than a day) at each 5-minute sampling
time.

make up less than 30% of all BVMs, they account for more
than 90% of total CPU hours.

The observation above has implications on what the break-
down of VMs, based on lifetime, looks like if we take a snap-
shot of a data center at a given point in time. Figure 7 shows
the CDF of the percentage of all active BVMs that are long
(lifespan of more than a day) at any given sampling interval
in our data set (5-minute intervals). We observe that both
on average and in the median long BVMs constitute around
94% of all active BVMs and there is relatively little variation.

Lesson 6:While the majority of all VMs are short-running,
at any given point in time the vast majority of VMs running
in a cluster will be long-running VMs. Because of the differ-
ent CPU usage characteristics of short and long VMs it is
important to realistically reflect this ratio in simulations.

4 Adapting Traditional Schedulers to BVMs
In this section, we describe three different approaches for
scheduling BVMs that we use as baselines. Each of the three
approaches is representative of a larger family of algorithms.
The first approach is currently used by Microsoft Azure for
scheduling their BVMs and is similar to the predictor used
by Borg [28, 29]. This approach essentially decides on a fixed
factor and oversubscribes CPU resources by that factor. The
other two approaches are approaches that have been used
in different contexts and that we adapted and optimized for
the use with BVMs. One is based on the approach used by
Microsoft Azure for their regular VMs [7]. The other one is
based on the general idea of estimating a server’s aggregate
CPU usage using the Central Limit Theorem (which has been
successfully used in other resource allocation problems [4, 8,
14]), but with a few optimizations that we add based on our
observations in Section 3.

.

4.1 Scheduling BVMs based on fixed
oversubscription ratios

This heuristic is currently being used by Microsoft Azure
to schedule BVMs and is similar to the predictor used by

Borg [28, 29]. The scheduler takes as input parameter (speci-
fied by the operator) a coefficient and reserves for each BVM
its baseline multiplied by the coefficient. When placing a
new VM, a candidate server is considered valid only if the
coefficient multiplied with the sum of the baselines of BVMs
already allocated on the server and the new BVM is not
larger than the number of cores on the server.

The advantage of this approach is its simplicity as it relies
on only one parameter (the oversubscription coefficient) and
requires only information that is part of the BVM configura-
tion (its baseline), rather than measurement data.

The downside of this approach is that it does not allow a
provider to directly specify a threshold on server capacity
violations. Instead the provider indirectly controls server
capacity violations through the choice of the coefficient. A
more conservative coefficient reduces server capacity viola-
tions, but also limits achievable server utilization.

We experiment with two versions of this approach:

Microsoft Azure baseline: In this version we set the coef-
ficient to 2, as this is the value currently used at Microsoft
Azure.

Oversubscription Oracle: In this version we (unrealisti-
cally) assume a clairvoyant oracle that chooses for a given
threshold on server capacity violations and a given work-
load (trace) the smallest coefficient that ensures capacity
violations below the threshold. We implement this oracle-
aided approach by applying binary search for a given trace
to identify the smallest coefficient that keeps server capac-
ity violations just below the specified threshold. While this
oracle-aided approach is clearly not achievable in practice
it enables us to establish an upper bound for any outcome
achievable with the general approach of fixed oversubscrip-
tion ratio.

4.2 A baseline scheduler from the world of regular
VMs: Adapting Resource Central

The other baseline approach is an adaptation of the sched-
uling algorithm employed by Microsoft Azure for regular
VMs, as described in two existing papers [7, 12]. At a high-
level, its placement decisions rely on an ML engine, called
Resource Central [7], which predicts (among other things)
the 95th-percentile of CPU utilization of the VM to be placed.
A candidate server is considered valid only if the sum of the
95th-percentile predictions of VMs already allocated and the
new VM are less than the server capacity.

We have optimized the original approach described in [7]
for the BVM environment based on extensive experiments
as follows. Instead of predicting the 95th-percentile of CPU
utilization as the upper bound of one of four buckets (0–25%,
25–50%, etc.) our implementation utilizes eight more fine-
grained buckets. Each BVM configuration is divided into
four equally sized buckets ranging from 0 to the baseline

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jokar Jandaghi et al.

value, and another four equally sized buckets between the
baseline and peak CPU utilization. In addition, we equip this
approach with an oracle that provides perfect predictions
of which bucket a VM falls into. While this is clearly not
achievable in practice it provides us the best possible results
that can be achieved with this method (without being limited
by prediction accuracy). We refer to this method as RC.

4.3 Adapting CLT-based methods for scheduling
BVMs

The central limit theorem (CLT) tells us that the sum of 𝑛
i.i.d. random variables approaches a Gaussian distribution
with mean and variance equal to the sum of the means and
variances of the 𝑛 variables as 𝑛 approaches infinity. Unlike
the two baseline heuristics we presented, an approach based
on the CLT allows us to directly determine whether a server
is a valid candidate as follows:

Assuming we have an estimate of the mean and variance
of the VMs running on a server and the mean and variance
of an arriving VMwe can use the Gaussian distribution to de-
termine the probability that their combined CPU usage will
exceed server capacity and create a violation. If that proba-
bility is below the specified violation threshold the server is
a valid candidate. The following equation shows this proba-
bility. In this equation 𝑆𝑛 is a random variable representing
the aggregate CPU usage and 𝐶 is the capacity of the server.
This equation shows that we can calculate the mean and
variance of the 𝑆𝑛 by summing the mean and variances of
the 𝑛 active BVMs on this server. 𝜖 is the limit on the rate of
server capacity violations.

𝑃 (𝑆𝑛 > 𝐶) < 𝜖 where 𝜇𝑆𝑛 =

𝑛∑︁
𝑖=1

𝜇𝑖 and 𝜎2
𝑆𝑛

=

𝑛∑︁
𝑖=1

𝜎2
𝑖

While not all the assumptions the CLT relies on might hold
in practice, previous work [4, 8, 14] has found approaches
based on the CLT to be effective in a different, but related
context, for co-locating long-running data center tasks while
limiting capacity violations.
Based on extensive experimentation we designed an ap-

proach for scheduling BVMs using the CLT as follows.
First, we find that it is important to use a conservative

estimate for the mean and variance of a new incoming BVM,
because of Lesson 3 in Section 3: resource utilization is higher
early in a BVM’s life. We determine this conservative esti-
mate by computing the 95th percentile of the mean and
variance of BVMs with the same configuration based on
historical data.

Second, after a VM has been running for some time, i.e. its
resource usage has stabilized and we have actual utilization
data for this BVM, we update the estimate of its mean and
variance based on observed usage data. We use the first 6
hours of usage data for a conservative estimate. We refer to
this method simply as CLT.

5 Audible: Adaptive Utilization-driven
Burstable VM Placement

This section presents Audible, a novel algorithm for Adaptive
Utilization-driven Burstable VM Placement. We begin by
detailing Audible’s key design ideas, which are based on the
lessons learned in Section 3 and the use of non-parametric
statistics. Next we describe the algorithm’s workflow inmore
detail and within the context of a BVM scheduler. We then
discuss the data collection processes that support Audible’s
functionality. Lastly, we examine the adaptations required
to integrate Audible into existing scheduler frameworks.

5.1 Audible Design: Insights from BVMWorkload
Analysis

Our design of Audible is guided by several of the lessons
presented in Section 3. First, based on Lesson 5 we are wary
of relying on CLT-based estimates of the aggregate CPU
utilization as they risk underestimating the tail of the aggre-
gate demand distribution. Second, based on Lesson 3 and 4
we are steering clear of the one-size-fits-all approach of a
fixed oversubscription ratio, as BVM workloads are highly
variable over time and across BVMs. Instead we rely on the
observed empirical aggregate CPU utilization distribution on
each server. Finally, based on Lesson 3 we make conservative
assumptions about the CPU demands of arriving BVMs.

At a high level, when deciding whether a server is a valid
candidates Audible approximates the distribution 𝐷total of
the aggregate CPU demand of the BVMs currently running
on the server and the distribution 𝐷new of the CPU demands
of the incoming BVM to be placed. It then estimates the
distribution of aggregate CPU demands that would result
from placing the new VM on this server by convolution of
𝐷new and 𝐷total (reflecting the sum of the two corresponding
random variables).
Audible approximates 𝐷total, i.e. the aggregate CPU de-

mand of currently running BVMs, using the empirical dis-
tribution of the server’s CPU measurements over the last 24
hours that is recorded at 5-minute intervals at each server
at Microsoft Azure.
Audible approximates 𝐷new based on historical data for

BVMs of the same configuration (same baseline and peak
parameters). Particularly, we used the empirical CPU demand
distribution of the 95th percentile highest demanding BVMs
from the same configuration, when CPU demands are ranked
based on the sum of their mean and standard deviation.

Based on the above approximations of 𝐷total and 𝐷new, Au-
dible estimates the probability of server capacity violations
if the new BVM were to be added to the server based on the
joint demand distribution of the new BVM and the aggregate
demands of all the currently running BVMs using the con-
volution of 𝐷total and 𝐷new. Audible deems a server a valid
server only if the estimated probability of capacity violation
is below a predefined acceptable threshold 𝜖 on violations.

AUDIBLE: A Convolution-Based Resource Allocator for Oversubscribing Burstable Virtual Machines ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

In other words if the following condition is satisfied.

𝑃 (𝑋 > 𝐶) < 𝜖, where 𝑋 ∼ (𝐷total ∗ 𝐷new)

⇔
∫ ∞

𝐶

(𝐷total ∗ 𝐷new) (𝑥) 𝑑𝑥 < 𝜖

To implement Audible each server keeps track of the CPU
utilization measurements over the past 24 hours. Assuming
a measurement interval of 5 minutes (as used by Microsoft
Azure) this corresponds to 288 data points. The server pe-
riodically precomputes the convolution for each BVM type
and the recent window of CPU measurements to determine
the maximum BVM type it could host. Computing the convo-
lution on this limited number of data points poses minimal
overheads. The information of the largest BVM type that the
server can accept could then be relayed to the scheduler, e.g.
by piggy-backing on the regular heartbeat messages.

5.2 Audible Workflow
Algorithm 1 outlines the core components of Audible’s work-
flow for allocating BVMs.
In the offline phase, the algorithm maintains a conserva-

tive estimate of the CPU usage distribution—or Probability
Mass Function (PMF)—for each BVM configuration by ana-
lyzing historical CPU usage data for BVMs of each configu-
ration (available in a database called BVMConfigsUsage), as
described in Section 5.1. The PMFs for all configurations are
stored in a hash table referred to as confPMFs in the pseudo
code.

In the online phase, the algorithm schedules a set of BVMs
by obtaining for each BVM a list of candidate servers through
getCandidateServers (provided by accessing a separate sched-
uler module that considers for example hardware require-
ments of the BVM and load balancing heuristics, see for
example [12]) and then using Audible’s logic to determine
for each candidate server whether it is a valid candidate
for the BVM: the algorithm computes the convolution of
the estimated conservative PMF of the BVM (obtained from
confPMFs through getConfPMF) and the PMF of the server
(obtained from ServerUsage through getServerPMF). The al-
gorithm places the BVM on the first server where the chance
that the combined load of server and new BVM exceeds
server capacity is below the specified threshold. In the event
that none of the servers in the list of candidate servers are
capable of hosting the BVM, the systemwill reroute the BVM
to a different cluster.

5.3 Sourcing Data for Audible
Audible depends on two main data sources. The first data
source tracks historical CPU usage across all BVM configura-
tions to create a detailed distribution table for each configu-
ration. This is the information that Audible accesses through
the createPMF method. Collecting this data requires a moni-
toring system capable of recording and updating the CPU
usage distribution for each BVM configuration according

Algorithm 1 Audible Scheduling workflow
Require: 𝐵𝑉𝑀𝐶𝑜𝑛𝑓 𝑖𝑔𝑠𝑈𝑠𝑎𝑔𝑒 : Database of historical data on CPU

usage for each BVM configuration. 𝑆𝑒𝑟𝑣𝑒𝑟𝑈𝑠𝑎𝑔𝑒: Database of
most recently reported CPU usages for each server
Offline part

1: Initialize 𝑐𝑜𝑛𝑓 𝑃𝑀𝐹𝑠 ← []
2: for each 𝑔𝑟𝑜𝑢𝑝 in 𝐵𝑉𝑀𝐶𝑜𝑛𝑓 𝑖𝑔𝑠𝑈𝑠𝑎𝑔𝑒 do
3: 𝑠𝑜𝑟𝑡𝑒𝑑 ← 𝑠𝑜𝑟𝑡 (𝑔𝑟𝑜𝑢𝑝) ⊲ sort based on std+avg
4: 𝑡𝑒𝑚𝑝 ← 𝑔𝑒𝑡𝑇𝑜𝑝𝑃𝑒𝑟𝑐𝑒𝑛𝑡 (𝑠𝑜𝑟𝑡𝑒𝑑, 5)
5: 𝑐𝑜𝑛𝑓 𝑃𝑀𝐹𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑐𝑟𝑒𝑎𝑡𝑒𝑃𝑀𝐹 (𝑡𝑒𝑚𝑝))
6: end for

Online part
7: for 𝑏𝑣𝑚 in 𝑛𝑒𝑤𝐵𝑉𝑀𝑠 do
8: 𝑏𝑣𝑚𝑃𝑀𝐹 ← 𝑔𝑒𝑡𝐶𝑜𝑛𝑓 𝑃𝑀𝐹 (𝑏𝑣𝑚, 𝑐𝑜𝑛𝑓 𝑃𝑀𝐹)
9: 𝑠𝑒𝑟𝑣𝑒𝑟𝑠 ← 𝑔𝑒𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑒𝑟𝑣𝑒𝑟𝑠 (𝑏𝑣𝑚)
10: for 𝑠𝑒𝑟𝑣𝑒𝑟 in 𝑠𝑒𝑟𝑣𝑒𝑟𝑠 do
11: 𝑠𝑒𝑟𝑣𝑒𝑟𝑃𝑀𝐹 ← 𝑔𝑒𝑡𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑀𝐹 (𝑠𝑒𝑟𝑣𝑒𝑟, 𝑆𝑒𝑟𝑣𝑒𝑟𝑈𝑠𝑎𝑔𝑒)
12: 𝑗𝑜𝑖𝑛𝑡𝑃𝑀𝐹 ← 𝑐𝑜𝑛𝑣𝑜𝑙𝑣𝑒 (𝑠𝑒𝑟𝑣𝑒𝑟𝑃𝑀𝐹,𝑏𝑣𝑚𝑃𝑀𝐹)
13: if 𝑐ℎ𝑒𝑐𝑘𝐿𝑜𝑎𝑑 (𝑗𝑜𝑖𝑛𝑡𝑃𝑀𝐹) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
14: 𝑝𝑙𝑎𝑐𝑒𝑉𝑀 (𝑏𝑣𝑚, 𝑠𝑒𝑟𝑣𝑒𝑟)
15: 𝑢𝑝𝑑𝑎𝑡𝑒𝑆𝑡𝑎𝑡𝑢𝑠 (𝑠𝑒𝑟𝑣𝑒𝑟)
16: break ⊲ BVM placed, move to next BVM
17: end if
18: 𝑟𝑒𝑠𝑢𝑏𝑚𝑖𝑡 (𝑏𝑣𝑚) ⊲ if not placed, resubmit to different

cluster
19: end for
20: end for

the historical data. This process can be performed offline.
The second required data source involves the real-time CPU
usage distribution for each server, identified in the pseudo
code as serverPMF. This data can be gathered by utilizing
the regular heartbeat signals emitted by servers. Both types
of data are data that are commonly collected and stored by
cloud platform management systems.

5.4 System Modifications for Audible Integration
The following modifications to the allocator are necessary
for incorporating Audible into Azure’s existing framework
[12]. The allocator should designate a server as "ready" for
VM allocation only if its status has been recently updated,
including the real-time CPU distribution data, thus allowing
Audible to access the server’s recent CPU usage distribution.
Moreover, the allocator should be able to access the CPU us-
age distribution for each BVM configuration. Once Audible
finalizes its analysis, its decisions are incorporated into the
allocator rules. An example rule might state, "Server x can
accommodate BVM configurations with baseline usage up to
1.35". It is crucial to recognize that while these guidelines are
informed by Audible’s analysis for CPU oversubscription,
they are applied in conjunction with other criteria that con-
sider other resources like storage and network bandwidth
during the allocation process.

Complexity analysis: Evaluating Audible’s deployability
necessitates understanding the complexities it introduces,

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jokar Jandaghi et al.

both in its offline and online parts. In the offline part, the
objective is to refine CPU usage data for each BVM config-
uration through the analysis of the highest 5% CPU usage
patterns from past records. This task requires calculating
the CPU usage distribution among a representative batch of
historical BVMs, where both computational and space com-
plexity depends on the size of data for the historical BVMs.
We saw in our experiments that this size can be relatively
be small, in the order of a few hundreds of BVMs.

In the online part, the major computational effort for Audi-
ble comes from the convolution operation, with a complexity
of O(𝑛2), where 𝑛 indicates the precision level in calculating
a VM’s CPU usage distribution, equating to 100𝐶 bins for a
BVMpossessing a peak CPU capability of𝐶 . The online space
complexity is limited to recording the CPU usage distribution
for each server, requiring 100𝑆 bins for a server equipped
with 𝑆 cores, to capture full representation of server CPU
usage distribution. Collectively, these complexity considera-
tions demonstrate practicality of Audible, and substantiate
its viability for production implementation.

6 Experimental Setup
6.1 The trace-driven simulator
We implemented an event-driven simulator in Python that
replays VM arrivals based on our VM traces. We implement
in our simulator a version of each of the algorithms described
in Section 4. The simulated allocator uses these algorithms
to determine whether a server is a valid candidate for an
arriving VM, i.e. whether the VM can be placed on the server
while staying within the specified limit for violations. In our
experiments we use the 2021 VM dataset, since it is more
recent, and we experiment with servers that have either
36, 48 or 64 cores. Servers with 48 cores are currently the
most common server configuration at Microsoft Azure. We
parameterize the algorithms with threshold of 0.5%, 1%, 2.5%
and 5% on the rate of server capacity violations.

Our simulator also needs to support policies for choosing
which server of the pool of valid candidate servers that was
identified by our methods above to place a VM on. These
policies are orthogonal to our policies for identifying valid
servers and we have implemented in our simulator different
standard bin packing methods, including best-fit, worst-fit
and random. All results in this paper are based on a policy
that selects a server from the least busy 10% of valid servers
currently available.
If at any time the aggregate CPU demands of the BVMs

placed on a server exceed server capacity, we conservatively
assume that the excess demand accumulates and the backlog
is being executed once there is sufficient server capacity
available (rather than shedding the excess demand). The
local resource manager on a server would decide in such
a situation, which VMs get throttled. In practice, different
policies exist, for example based on fairness considerations.

The metrics we report in this work are not affected by the
policy used for deciding which VM to throttle and as such
those policies are orthogonal to our work.

6.2 Reaching Steady State
A key aspect of any simulation setup is to ensure that the sim-
ulation has reached steady state at the point when measure-
ments are being taken, i.e. results are not being influenced
by transient behavior during the warm-up period of the sim-
ulator. We found this aspect to be particularly critical when
simulating BVM cluster schedulers. As we have observed
in our analysis of field data in Section 3 (Lesson 5), at any
point in time about 90–98% of all currently-running BVMs
are long-running BVMs despite the fact that the majority of
the arriving VMs are short-running VMs. We also observe
that long running and short running VMs differ in their re-
source usage characteristics, so it is important to accurately
reflect this ratio in simulation. When starting a simulation,
initially the VMs running will be mostly short-running VMs,
as they make up the majority of VM arrivals. In all our exper-
iments we make sure that the simulation runs long enough
to reach steady state (where around 94% of running BVMs
are long-running) before starting to take measurements. We
are emphasizing this point as a word of caution for others
performing research in this area as we found that results can
be significantly different when the system is not carefully
warmed up.

6.3 Performance Metrics
Each experiment consists of simulating 10 months of VM
arrivals to reach the steady state (as explained in section 6.2),
and recording the following metrics over the last week when
steady state has been reached:
Server utilization:We record for each server the average CPU
utilization in the steady state.
Server capacity violation Rate: For each server, the fraction of
all steady state time-periods with a server capacity violation
(BVM CPU demand exceeded server capacity).
Violation magnitude: The average CPU shortage value for
each server at every time step throughout the steady state.
For each algorithm we run trace-based simulations with

different arrival rates and determine the maximum VM ar-
rival rate that each algorithm can sustain without VMs get-
ting rejected (because no valid candidate server can be found).
Once the maximum arrival rate is reached and VMs get re-
jected the scheduler will determine that the cluster is at
capacity and stop routing VMs to that cluster. Therefore the
cluster utilization during the maximum arrival rate is the
highest utilization the cluster can achieve.

7 Evaluation
In this section, we are asking two questions: (1) which of the
algorithms can reliably enforce limits on the rate of server

AUDIBLE: A Convolution-Based Resource Allocator for Oversubscribing Burstable Virtual Machines ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

0.0 0.5 1.0 1.5 2.0
Violation Rate (%)

0.90

0.92

0.94

0.96

0.98

1.00

CD
F

Audible
RC
Oversubscription
Oracle
2Xbaseline
CLT
Violation\Threshold

0 20 40 60 80
Violation Magnitude (%)

0.90

0.92

0.94

0.96

0.98

1.00

CD
F

Audible
Oversubscription
Oracle
CLT

0 20 40 60
Average Utilization (%)

Al
go

ri
th

m
 N

am
e

Audible

RC

Oversubscription Oracle

2Xbaseline

CLT

Figure 8. Comparing server capacity violations and utilization for different algorithms for 48-core servers and a 1% threshold on
violations. (Microsoft Azure-baseline and RC had no servers with capacity violations and hence don’t appear in the violation plots.)

capacity violations and (2) what is the utilization each algo-
rithm can achieve. Our evaluation compares the five algo-
rithms we introduced in Section 4: Microsoft Azure-baseline,
Oversubscription-Oracle, RC, CLT, and Audible.

7.1 Baseline Experiments
In this section, we consider an experimental setup with 48-
core servers (currently the most common server configura-
tion at Microsoft Azure) and set a limit of 1% on the rate of
server capacity violations. Figure 8 shows the results.

Server capacity violations The left-most graph shows the
CDF of the server capacity violation rates across servers in
the cluster for the different algorithms. We observe that the
two approaches used in practice, Microsoft Azure-baseline
and RC, are very conservative and as a result none of the
servers ever experiences any capacity violations under them
(and hence there is no corresponding line in the graph).

We also observe that under Audible no server ever comes
close to reaching the 1% limit on capacity violations. The
highest violation rate of any server is 0.45%, i.e. less than half
the allowed limit. In contrast, under CLT a significant num-
ber of servers (2.5%) experience capacity violations above
the threshold. The worst server under CLT sees a capacity
violation rate of 1.9%. We note that these experiments are
based on one-week periods. So over a longer time period
even more servers under CLT are likely to violate the limit
on capacity violations.
(Servers under Oversubscription-Oracle by definition do

not exceed the violation threshold as the Oracle sets its pa-
rameters such that the threshold is always met.)

Server Utilization We make several interesting observa-
tions when looking at the server CPU utilization achieved
by different approaches (Figure 8 (right)). First, the utiliza-
tion achieved by Audible is slightly higher than that of even
the Oversubscription-Oracle. This is despite the fact that
Oversubscription-Oracle has the unfair advantage of clair-
voyance and does experience higher violation rates (albeit by
definition none above the limit). This shows that an approach

based on a fixed oversubscription ratio, even when that ra-
tio is optimally chosen, is not flexible enough to allow for
maximum utilization. In contrast, Audible takes the recent
behavior of BVMs running on a server into account when
making placement decisions, while also reliably maintaining
the limit on server violations (unlike CLT). Audible’s utiliza-
tion is also only slightly lower than CLT, which did violate
the limit on server violations to achieve its high utilization.
Due to their overly conservative nature the utilization under
Microsoft Azure-baseline and RC is very low.

7.2 Exploration of other server configurations and
violation thresholds

Figure 9 provides a summary of our results. Each column
in Figure 9 corresponds to a different violation threshold,
ranging from 0.5% to 5%. Each graph shows result for three
different server configurations, 36, 48, and 64 cores. We omit
results for Microsoft Azure-baseline and RC as they were not
competitive with respect to utilization. For each unique ex-
periment setting—defined by the algorithm, violation thresh-
old, and server capacity—10 sets of experiments were con-
ducted to capture the variation in the results, which is repre-
sented by the range bar on top of each bar in the figure.

Ability to enforce limits on capacity violations We first
focus on the ability of the three algorithms to enforce the
limit on server capacity violations. The second row of graphs
in Figure 9 shows the fraction of servers that exceeded the
limit on server capacity violations. We observe that Audible
is able to keep server capacity violations below the required
threshold for all of the 12 settings (the percentage of servers
that exceed the violation limit is zero for all settings, hence
no bars in the figure). In contrast, CLT leads to excessive
capacity violations in 7 of the 12 scenarios CLT. Only when
we relax the limit on the capacity violations to 5%, CLT is
consistently able to enforce the limit on violations.

CLT struggles particularly for smaller server sizes. For ex-
ample, for a 36-core server there are consistently servers that
experience a violation rate close to 4%, independent of the
target for the violation rate (see row 4 in the figure). Smaller

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jokar Jandaghi et al.

0

20

40

60

Av
er

ag
e

Ut
ili

za
tio

n
(%

)

32
.6

1

47
.2

5 57
.5

8

53
.2

7

X

57
.3

7

X
60

.1
4

X

42
.6

5 54
.5

0 63
.6

7

Violation Cap: 0.5%

36
.8

2

51
.1

2 62
.6

3

54
.7

1

X

58
.6

4

X

61
.1

7

44
.5

2 56
.7

4 65
.7

7Violation Cap: 1.0%

45
.1

6 57
.3

7 66
.4

0

56
.7

4

X

60
.9

7

X

62
.8

4

48
.5

5 60
.3

4 68
.7

4Violation Cap: 2.5%

54
.2

9 62
.0

1 71
.4

4

58
.8

5

61
.8

0

64
.0

9

53
.0

7 64
.5

1 72
.4

6Violation Cap: 5.0%

0

50

100

150

%
ag

e
of

 S
er

ve
rs

Ex
ce

ed
in

g
Th

re
sh

ol
d

X
X

X

X

X

X

X

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Av
g.

 V
io

la
tio

n
Ra

te
 (%

)

X
X X

X
X

X
X

0

1

2

3

4

5

M
ax

 V
io

la
tio

n
Ra

te
 (%

)

X

X
X

Violation Threshold:
0.5%

X

X

Violation Threshold:
1.0% X

X

Violation Threshold:
2.5%

Violation Threshold:
5.0%

36 48 64
Server Capacity (Cores)

0

1

2

3

4

5

99
%

-il
e

Vi
ol

at
io

n
Ra

te
 (%

)

X
X X

Violation Threshold:
0.5%

36 48 64
Server Capacity (Cores)

X

X

Violation Threshold:
1.0%

36 48 64
Server Capacity (Cores)

X
X

Violation Threshold:
2.5%

36 48 64
Server Capacity (Cores)

Violation Threshold:
5.0%

Tag for exceeded
threshold
experiments

Oversubscription-Oracle CLT Audible

Figure 9. Comparing server capacity violations metrics and utilization for for different server configurations and violation
thresholds.

AUDIBLE: A Convolution-Based Resource Allocator for Oversubscribing Burstable Virtual Machines ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

servers can host fewer VMs and multiplexing resource usage
over a smaller number of VMs increases the chance that
estimates based on the central limit theorem are not accu-
rate. CLT also struggles for more stringent thresholds on the
capacity violations. For thresholds of 0.5% CLT cannot meet
targets for any of the server sizes. The reason is likely that at
low thresholds it becomesmore important to estimate the tail
of the aggregate resource distribution accurately. We have
seen in Lesson 5 that the Gaussian distribution struggles to
capture the tail of BVM resource usage.

The Oversubscription-Oracle experiences no servers that
exceed violation threshold, since the clairvoyant oracle chooses
the oversubscription ratio for each scenario such that no
server experiences violations above the threshold. When
looking at the server with the highest violation rate (see the
fourth row of the graphs in Figure 9), we see that under the
Oversubscription-Oracle the violation rate of this server is
quite close to the specified threshold. In comparison, Audible
maintains a safe margin from the threshold, with the worst
server seeing violations rates of around 50% of the threshold.
Also the average violation rate (see Row 3 in Figure 9) is
lower under Audible than under Oversubscription-Oracle.

Ability to maximize utilization We begin with a compar-
ison of the utilization under the Oversubscription-Oracle
versus Audible. Interestingly, we observe that, across all set-
tings, Audible is able to achieve higher utilization levels than
the Oversubscription-Oracle. This is despite the fact that the
Oversubscription-Oracle (unrealistically) works with perfect
a-priori knowledge of the optimal oversubscription ratio for
each of the settings, i.e. the ratio that maximizes utilization
while still meeting capacity violation targets.

The fact that Audible beats the Oversubscription-Oracle
consistently with respect to utilization is particularly impres-
sive given that Audible keeps violations rates quite low com-
pared to the Oversubscription-Oracle. Intuitively, Audible
needs to keep a safety margin on violation rates as it needs to
deal with statistical uncertainty, while the Oversubscription-
Oracle is clairvoyant and can afford to push the violations
and therefore its utilization to the limit.
When comparing the utilization of CLT and Audible we

only consider the 5 settings where CLT was actually able to
meet violation thresholds. (Setting where CLT did not meet
the threshold are marked with a red star and are excluded for
a fair comparison.) We observe that Audible achieves higher
utilization than CLT in 3 of the 5 settings.

BVM quality of experienceWe also looked at the impact
on BVM quality of experience on servers that experienced
capacity violations. Table 2 shows what percentage of VMs
active on a server during a capacity violation are still able
to achieve at least 4 times their baseline CPU, even though
they are not able to achieve their peak. Under Audible the
percentage of VMs that is still able to burst to at least 4𝑋

Algorithm 36 cores 48 cores 64 cores

Oversubscription-Oracle 99.98% 99.76% 99.75%
CLT 98.04% 99.14% 99.74%
Audible 100% 100% 99.91%

Table 2. Average percentage of active VMs capable of bursting
up to 4 times their baseline across various algorithms.

their baseline during a server capacity violation is higher
than for CLT and Oversubscription-Oracle.

7.3 Summary of Evaluation Results
Audible consistently achieves higher utilization than other
methods while also meeting stringent violation thresholds.
Compared to approaches currently used in practice, Audible
increases cluster utilization by more than a factor of 2.5.

In contrast, approaches based on a fixed oversubscription
ratio barely achieve utilization levels comparable to Audible,
even in their (unrealistic) best case scenario with perfect
knowledge of the optimal oversubscription ratio. We con-
clude that approaches based on a fixed oversubscription ratio,
even when that ratio is optimally chosen, are not flexible
enough to allow for maximum utilization.
Another standard approach, relying on the CLT for ap-

proximating aggregate server utilization, is not consistently
able to enforce threshold on server capacity violations. We
will look into reasons for this shortcoming in the next section.
In addition, CLT does also not result in higher utilization
than Audible. Finally, in our design of CLT-based approaches
we found that they are more sensitive to design and imple-
mentation choices. In combination, this makes CLT-based
approaches less attractive than Audible.

8 Lessons learned
Can we pinpoint the underlying causes of violations?

We are interested in identifying the key factors contribut-
ing to the CPU bursts involved in server capacity viola-
tions. When closely examining the server state during ca-
pacity violations, we observe that 40-43% of the observed
bursts originate from larger VMs (with more than 8 cores). In
essence, a marginal subset of the overall active VMs, consti-
tuting around 1-2% of all VMs (VMs with 12, 16, or 20 cores),
causes considerable performance degradation during burst-
ing events. The reason is that when these large VMs burst
they have the potential to dominate overall server utilization.
In BVM workloads, which have a higher tendency towards
burstiness (recall Lesson 4), bursts of large VMs create risk of
server capacity violations. While Audible is able to capture
this risk, the CLT approach is not.

Why did CLT fail?
From a theoretical perspective, satisfying the Central Limit

Theorem (CLT) for an aggregate random variable involves

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jokar Jandaghi et al.

fulfilling two sets of conditions regarding its random compo-
nents. The first condition pertains to probabilistic indepen-
dence of co-located VMs. A scheduler could try to increase
independence, e.g. by avoiding co-location of VMs from the
same user, however diurnal patterns in workload might still
create correlations. The second condition relates to either the
random components being identically distributed, or none
of the components have a significantly large variance [9]. In
practice obviously the random components are not identi-
cally distributed due to the variations in configuration and
workload among co-located instances. In the case of BVMs,
we observed that the variance condition is also not satisfied
mainly due to CPU usage bursts from large BVMs.

To demonstrate and validate that the variance condition is
primarily influenced by CPU usage bursts from large BVMs,
leading to an inadequate Gaussian approximation of the
aggregate, we test the Gaussian approximation hypothesis
for the aggregate distribution twice. First, for a randomly
selected sets of BVM components, and second, for the same
sets with the CPU usage bursts of large BVMs limited to
their baseline. In each case, we calculate the P-value for
the samples from the 99th percentile tail of the distribution.
Remarkably, the P-values unequivocally support the earlier
discussion, as the aggregate without bounded CPU usage
bursts from large BVMs exhibits a notably low P-value.

Also, recall that the probability distribution the aggregate
CPU usage for a server exhibits a pronounced right skew, i.e.
the tail extends beyond standard normal distribution limits
(Lesson 5). For BVM schedulers, the lesson is clear: the con-
sideration of non-Gaussian behavior in the tail distribution
of aggregate CPU usage, especially during bursts, is critical.

Attempts at adapting the CLT approach: We performed
extensive experiments trying to improve CLT’s ability to
meet violation thresholds. These attempts included, for ex-
ample, the use of a “black-list”, where a server is removed
from consideration as a valid server (black-listed) for some
period of time once it starts experiencing capacity violations;
using more conservative initial estimates; obtaining more
accurate estimates of mean and variance, steering large VMs
away from servers that are already hosting other large VMs,
adding a safety margin around large VMs, among others. In
the end we found that (1) these fixes reduce the utilization
that CLT can achieve, and/or are still limited in their ability
to control server capacity violations and (2) that it is some-
what of a black art to find the right combination of fixes that
will make CLT work for a given configuration. Compared
to Audible which consistently works without tuning of any
parameters and achieves high utilization the CLT approach
seems unattractive in comparison.

Experiences with alternative approaches: We studied
alternative approaches that seem to be a natural fit for sched-
uling BVMs, but in the end did not perform well and were

therefore not included in our results. For the benefit of others
working in this area we briefly summarize these “negative
results” below:
• Dual Token Bucket Models for BVM Scheduling: One
idea we explored is the use of Dual Token Bucket (DTB)
models, inspired by network calculus, as BVMs can be rep-
resented as combinations of two token buckets. The chal-
lenge is to set bounds on cumulative CPU demands for mul-
tiple BVMs on a server. We considered two approaches: a
conservative deterministic bound and a stochastic bound
using Gaussian processes [10]. However, the deterministic
bound proves overly cautious, assumingmaximal CPU usage,
leading to very low utilization. While the stochastic bound
achieves higher utilization, around 10%, it remains low as
it fails to account for empirical BVM behavior. Real-world
observations show that BVMs, especially long-running ones,
vary significantly. Despite offering a tighter bound, the ana-
lytical stochastic approach leads to very low utilization. In
conclusion, the DTB model’s dynamic resource assignment
doesn’t align well with BVMs’ actual CPU usage, rendering
their configuration inadequate as an indicator.
• Configuration-Based Probabilistic Modeling:Another
idea we explored was to adapt the models of BVM resource
usage that Jiang et al. [15] developed for a different purpose.
Their specific models made some assumptions on CPU usage
that we found to be unrealistic. Instead we tried to populate
their models based on empirical CPU distributions. However,
despite our best efforts the algorithms based on these models
resulted in very high rates (25%) of server capacity violations.
As observed earlier in this section, we found that also here
large VMs emerged as the primary contributors to the vio-
lations. Another issue was the approach’s struggle to adapt
to variations in CPU usage distribution over a BVM’s life-
time, particularly between short-running and long-running
instances, leading to underestimated total CPU usage and
frequent server resource violations.

9 Ongoing work: Generalizing Audible
While we designed Audible specifically for BVMs, we note
that at its core Audible’s approach is broadly applicable: its
non-parametric method of using the convolution of observed
empirical distributions means it makes no specific assump-
tions about the underlying workloads and their distributions.
An obvious question is therefore whether Audible can also
effectively oversubscribe regular virtual machines, rather
than BVMs.
We have been exploring this question in on-going work

and have made some promising observations. We find that
Audible can greatly improve server utilization in data centers
running regular VMs over existing approaches. However,
for regular VM workloads we observe some rare cases (one
in a thousand servers) where servers experience capacity
violations above the specified threshold. We identified as

AUDIBLE: A Convolution-Based Resource Allocator for Oversubscribing Burstable Virtual Machines ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

the key reason the bigger (negative) impact that large VMs,
i.e. VM types with large core counts, have when scheduling
regular VM workloads. Large VMs are generally harder to
handle in oversubscription scenarios than small VMs as one
(or a few) large VMs have a higher chance of dominating
the workload of a server than individual smaller VMs. This
effect is exacerbated for regular VM workloads where large
VMs are relatively more frequent (recall Figure 1) than for
BVM workloads, and are also more likely to utilize all their
cores simultaneously (something BVMs can only do when
they have accumulated tokens). We’re currently working
on a generalization of Audible that uses a decay factor to
keep some memory of the original conservative estimate
of the violation probability for a newly arrived large VM.
Initial results indicate that this simple extension of Audible
can successfully enforce limits on server capacity violations
and we expect it to still achieve high server utilization. Full
results will be presented in an extended publication.

10 Related work
We are not aware of prior work on policies for data center
resource allocation for BVMs. The BVMwork that is closest is
by Jiang et al. [15]. The focus of their work is different, as they
aim to provide models that can be used for cloud provider
revenue maximization. But aspects of their model could be
used to determine the risk of server capacity violations for
VM placement. We attempted to adapt their ideas for this
purpose as described in Section 8, without success.

There are several papers that look at burstable VMs from
the point of view of how applications can make use of BVMs.
This includes, for example, work on how to use BVMs for
auto scaling [3]; for in memory caches [30, 31]; for run-
ning bags of tasks (on a combination of burstable and spot
instances) [27]; how to use burstable instances in mobile
computing [25]; how to make distributed data processing
frameworks aware of credits to run more efficiently inside
burstable VMs [23]; how to control an application’s resource
usage, e.g. through throttling, so they make optimal use of
burstable resources [2]; and how storage applications can
make use of cheap IOPS through burstable storage [19].

There are also papers on choosing the most suitable BVM
configurations for a given workload using application per-
formance predictors [1, 20]. This work is complimentary to
our work (which assumes a customer has already chosen the
type of BVM for their workload).
When considering general work for regular VMs, there

are a number of studies that focus on CPU usage predic-
tions of individual VMs rather than server aggregates. For
example, PRESS [11], CloudScale [24] and AGILE [18] predict
usage over short time horizons in order to make decisions on
VM migrations, or adjusting allocated resources accordingly.
There are also a number of studies [5, 13, 17, 21, 22, 26] on
resource prediction that use more heavy-weight statistical

methods, e.g. time series-based analysis. Those approaches
are more expensive in the amount of data and computation
they require and not suitable for our problem setting.
The work on resource prediction that is closest to ours

work is a recent paper by Bashir et al. [4]. Bashir et al. are
interested in oversubscription of server resources through
predictions of aggregate server utilization for machines in
Google’s data centers. They build a predictor that utilizes
predictions from three methods: RC-based estimates, CLT-
based estimates and fixed oversubscription ratio. We find
that these methods do not work well for BVM workloads,
likely due to differences in workload characteristics (recall
Section 3) and the more stringent limits on violations.

11 Conclusion
We provide the first study of resource allocation for BVMs,
including the first study of BVM workloads on production
machines at a major cloud provider. We derive lessons to
guide resource allocation for BVMs and identify some key
differences to regular VM workloads. We use those insights
to design Audible, a new approach for scheduling BVMs
based on non-parametric statistics, that is light-weight and
workload independent, and obviates the need for training of
MLmodels or tuningmagic parameters.We show through ex-
tensive simulations driven by production traces that Audible
achieves higher utilization than state-of-the art approaches
while being able to enforce stringent requirements on server
capacity violations. Given its effectiveness and its attractive
features, it will be worth exploring the use of Audible in
other resource management settings, such as regular VMs
or general data center tasks.
As part of this paper, we are making available an arte-

fact, which will allow others to reproduce and build on top
of our work and which will hopefully foster research in
this area. The accompanying artifact consists of two sig-
nificant datasets and a simulator specifically designed to
assess the "Audible" VM scheduling technique highlighted
in our investigation. The datasets include two main collec-
tions of burstable VMs data: one from 2019, which encap-
sulates information from hundreds of thousands of VMs
over a three-day period, and another from 2021 that doc-
uments the activities of millions of VMs across an entire
week. Additionally, to support the replication of our study’s
findings, the entire Python codebase used in our research
is made available. The codebase is accessible on GitHub
at https://github.com/seyedali14/audible-artifact-asplos24.
This complete package of datasets and simulation tools will
hopefully provide a helpful foundation for further research
on VM scheduling.

References
[1] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. CEDULE:

A scheduling framework for burstable performance in cloud comput-
ing. In IEEE International Conference on Autonomic Computing (ICAC),

https://github.com/seyedali14/audible-artifact-asplos24

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jokar Jandaghi et al.

pages 141–150. IEEE, 2018.
[2] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. It’s not

a sprint, it’s a marathon: Stretching multi-resource burstable perfor-
mance in public clouds. In Dejan S. Milojicic and Vinod Muthusamy,
editors, Proceedings of the 20th International Middleware Conference
Industrial Track, pages 36–42. ACM, 2019.

[3] Ataollah Fatahi Baarzi, Timothy Zhu, and Bhuvan Urgaonkar. Burscale:
Using burstable instances for cost-effective autoscaling in the public
cloud. In Proceedings of the ACM Symposium on Cloud Computing,
SoCC 2019, Santa Cruz, CA, USA, November 20-23, 2019, pages 126–138.
ACM, 2019.

[4] Noman Bashir, Nan Deng, Krzysztof Rzadca, David Irwin, Sree Kodak,
and Rohit Jnagal. Take it to the limit: peak prediction-driven resource
overcommitment in datacenters. In Proceedings of the Sixteenth Euro-
pean Conference on Computer Systems (EuroSys), pages 556–573, 2021.

[5] R.N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya. Workload pre-
diction using arima model and its impact on cloud applications’ QoS.
IEEE Transactions on Cloud Computing, 2014.

[6] Maxime C. Cohen, Philipp Keller, Vahab Mirrokni, and Morteza Zadi-
moghaddam. Overcommitment in cloud services - bin packing with
chance constraints. Management Science, 2019.

[7] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus
Fontoura, and Ricardo Bianchini. Resource central: Understanding
and predicting workloads for improved resource management in large
cloud platforms. In Proceedings of the 26th Symposium on Operating
Systems Principles (SoSP), pages 153–167. ACM, 2017.

[8] Nan Deng, Zichen Xu, Christopher Stewart, and Xiaorui Wang. Tell-
tale tails: Decomposing response times for live internet services. In
Sixth International Green and Sustainable Computing Conference, IGSC,
pages 1–8. IEEE Computer Society, 2015.

[9] Rick Durrett. Probability: Theory and Examples. Cambridge, 4 edition,
2010.

[10] Paolo Giacomazzi, Luigi Musumeci, Gabriella Saddemi, and Giacomo
Verticale. Analytical methods for resource allocation and admission
control with dual-leaky-bucket regulated traffic. In Proceedings of IEEE
International Conference on Communications ICC, pages 499–505. IEEE,
2007.

[11] Z. Gong, X. Gu, and J. Wilkes. Press: Predictive elastic resource scaling
for cloud systems. In Proceedings of IEEE International Conference on
Network and Service Management, 2010.

[12] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan, Esaias E.
Greeff, David Dion, Star Dorminey, Shailesh Joshi, Yang Chen, Mark
Russinovich, and Thomas Moscibroda. Protean: VM allocation service
at scale. In 14th USENIX Symposium on Operating Systems Design and
Implementation, OSDI, pages 845–861. USENIX Association, 2020.

[13] S. Islam, J. Keung, K. Lee, and A. Liu. Empirical prediction models
for adaptive resource provisioning in the cloud. Future Generation
Computer Systems, 2012.

[14] Pawel Janus and Krzysztof Rzadca. SLO-aware colocation of data
center tasks based on instantaneous processor requirements. In Pro-
ceedings of the 2017 Symposium on Cloud Computing (SoCC), pages
256–268. ACM, 2017.

[15] Yuxuan Jiang, Mohammad Shahrad, David Wentzlaff, Danny H. K.
Tsang, and Carlee Joe-Wong. Burstable instances for clouds: Perfor-
mance modeling, equilibrium analysis, and revenue maximization. In
2019 IEEE Conference on Computer Communications (INFOCOM), pages
1576–1584. IEEE, 2019.

[16] SeyedAli Jokar Jandaghi, Kaveh Mahdaviani, and Cristiana Amza. Vir-
tual instance resource usage modeling: A method for efficient resource
provisioning in the cloud. In Proceedings of IFIP/IEEE IM 2017 Work-
shop: 2nd International Workshop on Analytics for Network and Service
Management (AnNet), pages 917–922, 2017.

[17] A. Khan, X. Yan, S. Tao, and N. Anerousis. Workload characterization
and prediction in the cloud: A multiple time series approach. In

Proceedings of IEEE Network Operations and Management Symposium,
2012.

[18] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes. AGILE: Elastic
distributed resource scaling for infrastructure-as-a-service. In Pro-
ceedings of International Conference on Autonomic Computing (ICAC),
2013.

[19] Hojin Park, Gregory R. Ganger, and George Amvrosiadis. More IOPS
for less: Exploiting burstable storage in public clouds. In Amar Phan-
ishayee and Ryan Stutsman, editors, 12th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud). USENIX Association, 2020.

[20] Riccardo Pinciroli, Ahsan Ali, Feng Yan, and Evgenia Smirni. CED-
ULE+: resource management for burstable cloud instances using pre-
dictive analytics. IEEE Transactions on Network and Service Manage-
ment, 18(1):945–957, 2021.

[21] Olga Poppe, Tayo Amuneke, Dalitso Banda, Aritra De, Ari Green,
Manon Knoertzer, Ehi Nosakhare, Karthik Rajendran, Deepak Shankar-
gouda,MeinaWang, et al. Seagull: An infrastructure for load prediction
and optimized resource allocation. arXiv preprint arXiv:2009.12922,
2020.

[22] N. Roy, A. Dubey, and A. Gokhale. Efficient autoscaling in the cloud
using predictive models for workload forecasting. In Proceedings of
IEEE International Conference on Cloud Computing, 2011.

[23] Aakash Sharma, Saravanan Dhakshinamurthy, George Kesidis, and
Chita R. Das. CASH: A credit aware scheduling for public cloud plat-
forms. In Laurent Lefèvre, Stacy Patterson, Young Choon Lee, Haiying
Shen, Shashikant Ilager, Mohammad Goudarzi, Adel Nadjaran Toosi,
and Rajkumar Buyya, editors, 21st IEEE/ACM International Symposium
on Cluster, Cloud and Internet Computing (CCGrid), pages 227–236.
IEEE, 2021.

[24] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloudscale: Elastic resource
scaling for multi-tenant cloud systems. In Proceedings of European
Conference on Computer Systems (EuroSys), 2011.

[25] Bo Sun, Yuxuan Jiang, and Danny H. K. Tsang. When burstable in-
stances meet mobile computing: Performance modeling and economic
analysis. In 40th IEEE International Conference on Distributed Comput-
ing Systems (ICDCS), pages 1179–1180. IEEE, 2020.

[26] X. Sun, N. Ansari, and R.Wang. Optimizing resource utilization of a
data center. IEEE Communications Surveys & Tutorials, 2016.

[27] Luan Teylo, Luciana Arantes, Pierre Sens, and Lúcia Maria de A Drum-
mond. Scheduling bag-of-tasks in clouds using spot and burstable
virtual machines. IEEE Transactions on Cloud Computing, 11(1):984–
996, 2021.

[28] M. Tirmazi, A. Barker, N. Deng, M.E. Haque, Z.G. Qin, S. Hand,
M. Harchol-Balter, and J. Wilkes. Borg: The next generation. In
Proceedings of European Conference on Computer Systems (EuroSys),
2020.

[29] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes. Large-scale cluster management at google with borg. In
Proceedings of European Conference on Computer Systems (EuroSys),
2015.

[30] Cheng Wang, Bhuvan Urgaonkar, Aayush Gupta, George Kesidis, and
Qianlin Liang. Exploiting spot and burstable instances for improving
the cost-efficacy of in-memory caches on the public cloud. In Gustavo
Alonso, Ricardo Bianchini, and Marko Vukolic, editors, Proceedings of
the Twelfth European Conference on Computer Systems (EuroSys), pages
620–634. ACM, 2017.

[31] Cheng Wang, Bhuvan Urgaonkar, Neda Nasiriani, and George Kesidis.
Using burstable instances in the public cloud: Why, when and how?
Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 1(1):11:1–11:28, 2017.

	Abstract
	1 Introduction
	2 Background and Motivation
	3 BVM Workload Study
	3.1 CPU utilization of BVMs
	3.2 Lifetime

	4 Adapting Traditional Schedulers to BVMs
	4.1 Scheduling BVMs based on fixed oversubscription ratios
	4.2 A baseline scheduler from the world of regular VMs: Adapting Resource Central
	4.3 Adapting CLT-based methods for scheduling BVMs

	5 Audible: Adaptive Utilization-driven Burstable VM Placement
	5.1 Audible Design: Insights from BVM Workload Analysis
	5.2 Audible Workflow
	5.3 Sourcing Data for Audible
	5.4 System Modifications for Audible Integration

	6 Experimental Setup
	6.1 The trace-driven simulator
	6.2 Reaching Steady State
	6.3 Performance Metrics

	7 Evaluation
	7.1 Baseline Experiments
	7.2 Exploration of other server configurations and violation thresholds
	7.3 Summary of Evaluation Results

	8 Lessons learned
	9 Ongoing work: Generalizing Audible
	10 Related work
	11 Conclusion
	References

