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Algorithms on restructuring binary search trees are typically presented in imperative pseudocode. Understand-

ably so, as their performance relies on in-place execution, rather than the repeated allocation of fresh nodes in

memory. Unfortunately, these imperative algorithms are notoriously difficult to verify as their loop invariants

must relate the unfinished tree fragments being rebalanced. This paper presents several novel functional

algorithms for accessing and inserting elements in a restructuring binary search tree that are as fast as their

imperative counterparts; yet the correctness of these functional algorithms is established using a simple

inductive argument. For each data structure, move-to-root, splay, and zip trees, this paper describes both a

bottom-up algorithm using zippers and a top-down algorithm using a novel first-class constructor context

primitive. The functional and imperative algorithms are equivalent: we mechanise the proofs establishing this

in the Coq proof assistant using the Iris framework. This yields a first fully verified implementation of well

known algorithms on binary search trees with performance on par with the fastest implementations in C.
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1 INTRODUCTION
In his book on purely functional data structures, Okasaki [1999b] presents several implementations

of binary search trees. The inductive nature of these purely functional algorithms makes them

amenable to reasoning and verification. A typical exercise in verification courses asks for a formal

proof that insertions or deletions preserve the binary search tree properties [Appel 2018]. It is

even possible to synthesize such implementations automatically [Albarghouthi et al. 2013; Polikar-

pova et al. 2016] or mechanically compute their amortized time complexity [Leutgeb et al. 2022;

Schoenmakers 1993]. Unfortunately, the absolute performance of these functional algorithms is

often worse than the imperative implementations published in papers and textbooks. While the

functional algorithms have the same semantic behaviour as their imperative counterparts, their

operational behaviour differs substantially. The functional algorithms suffer from asymptotically

worse heap allocation (due to copying immutable data) and stack usage (due to non-tail calls).
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This paper presents novel functional algorithms on binary search trees with absolute performance on
par with the best known imperative implementations. Enabled by recent advancements, including fully

in-place functional programming [Lorenzen et al. 2023b] and Perceus reference counting [Reinking,

Xie et al. 2021; Ullrich and de Moura 2019], our algorithms perform in-place updates whenever

possible, without sacrificing their purely functional nature. Additionally, our algorithms execute in

constant stack space: they are defined in a tail recursive manner, storing incomplete trees as heap-

allocated one-hole contexts. Each of these algorithms is proven to be equivalent to the established

functional version using a simple inductive argument. Yet these algorithms have a close operational

correspondence to the published imperative code—we show how the one-hole contexts are an

essential part of the loop invariant necessary to verify their imperative counterparts.

A one-hole context is typically represented by a zipper [Huet 1997], storing the path from the

hole back up to the root. Our zipper-based algorithms navigate through the tree, accumulating a

zipper of unvisited subtrees along the way. Upon encountering the key we were looking for, the

zipper is unrolled to reconstruct a complete binary search tree. For example, our implementation

of the ‘zig-zag’ case for splay trees (Section 5) looks something like this:

fip fun splay( accz, b, x, c )
match accz

NodeR(a,y,NodeL(up,z,d)) ->
splay( up, Node(a,y,b), x, Node(c,z,d) )

...

The zipper we have accumulated, accz, stores the path back to the root, where each constructor

NodeR/NodeL records whether the traversal down the tree went right or left. Our algorithm is readily

calculated from the standard definition by means of a defunctionalized CPS-transformation [Danvy

and Nielsen 2001; Reynolds 1972]. At the same time, it corresponds exactly to Figure 3 of Sleator

and Tarjan [1985], given on the right. It is the essence of an imperative bottom-up algorithm,

implemented with pointer reversal [Schorr and Waite 1967].

However, zippers are not the only way to represent one hole contexts. To give a functional

account of imperative top-down algorithms, zippers are an asymptotically worse choice of data

structure—much in the same way that lists are a poor implementation of queues. To address this,

we introduce a novel language feature, first-class constructor contexts, that safely encapsulate the

required mutation behind a purely functional interface. These contexts follow a design proposed

by Minamide [1998], but we are the first to give an implementation that requires neither a linear

type system nor reference counting. Using these constructor contexts, we can implement the

corresponding zig-zag step of top down splay trees as follows:

fip fun splay( t, k, accl, accr )
match t

Node(ayzb,x,c) -> if x > k then match ayzb
Node(a,y,zb) -> if y < k then

splay(zb, k, accl ++ ctx Node(a,y,_),
accr ++ ctx Node(_,x,c))

...

Here we traverse the tree and accumulate two constructor contexts accl and accr. Once again, this

code can be calculated from the direct recursive definition, in this case using a tail recursion modulo

context transformation [Leijen and Lorenzen 2023]. At the same time, it corresponds exactly to

Figure 11 of Sleator and Tarjan [1985], given on the right, describing the imperative top-down

algorithm that accesses a given key, whilst restructuring the tree in-place.

We illustrate our techniques by studying three particular implementations of restructuring binary

search trees:move-to-root trees [Allen and Munro 1978; Stephenson 1980] (Section 2), self-adjusting

splay trees [Sleator and Tarjan 1985] (Section 5) and the more recently published randomized zip
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trees [Tarjan et al. 2021] (Section 6). For each of these data structures, we can derive both functional

top-down and bottom-up algorithms whose performance is on par with the implementations

proposed in the original papers. Yet correspondence of the functional and imperative versions

goes even further: the functional algorithms capture the key loop invariants required to verify the

imperative algorithms.

Tomake this precise, we formalize the imperative algorithms from the original papers in (a variant

of) HeapLang, the imperative language used by the separation logic framework Iris [Jung et al. 2018].

After defining the loop-invariants relating the functional and imperative algorithms, functional

correctness follows fully automatically thanks to our proof automation built with Diaframe [Mulder

et al. 2023 2022], yielding a novel and formal correctness proof of these imperative algorithms. The

proofs built on these loop invariants not only verify the correctness of the imperative algorithms,

but also provide further evidence that the techniques presented here elucidate the inductive nature

lurking hidden beneath their imperative shell: the functional essence of the imperative algorithms.

More specifically, we make the following contributions in this paper:

• We show that first-class constructor contexts (Section 3.2) enable true functional top-down

algorithms to be implemented efficiently. We are the first to present an efficient implementation

that does not require a linear type system or reference counting.

• Wepresent several novel functional algorithms for binary search tree insertion (Sections 2, 5 and 6)

and provide benchmarks that show that their performance in the Koka language [Leijen 2021] is

on par with the best known imperative implementations written in C and several times faster

than the corresponding implementations in OCaml and Haskell (Section 7).

• To the best of our knowledge, we give the first formal machine-checked correctness proofs for

the imperative insertion algorithms of move-to-root, splay, and zip trees, exactly as published in

the original papers (Sections 4, 5, and 6 together with Appendix C in the tech report).

Moreover, this work also gives novel insights into the design of imperative algorithms:

• We show that bottom-up algorithms can be calculated from a recursive specification using

a defunctionalized CPS-transformation, while top-down algorithms can be derived using tail

recursion modulo cons with product contexts (Section 2).

• We give new insights into splay trees by showing that they differ from move-to-root trees in only

one balancing step, and characterizing how the bottom-up and top-down splay tree algorithms

differ (Section 5).

• We derive an algorithm for top-down zip tree insertion which is simpler, but as efficient as the

original algorithm given by Tarjan et al. [2021]. Furthermore, we also derive a bottom-up zip

tree insertion algorithm. We are not aware of any previous bottom-up algorithm for zip tree

insertion prior to the implementation given here (Section 6).

We include all programs and proofs in our artifact [Lorenzen et al. 2024].

2 MOVE-TO-ROOT TREES
To introduce our techniques, we consider Move-to-root trees, independently described by both

Allen and Munro [1978] and Stephenson [1980], which are binary search trees, where accessing a

particular key ensures it moves to the tree’s root. These trees are rarely used in practice since they

can become unbalanced, but their simplicity makes them well suited to illustrate our key ideas.

2.1 A Recursive Functional Algorithm
All our examples in this paper are written in the Koka language [Leijen 2014] (v3.1.1). In Koka, we

can declare a datatype for binary trees as:
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type tree
Node( left : tree, key : key, right : tree )
Leaf

We use an abstract type key for the keys stored in the tree but this is usually instantiated to be

an int. The main operation on binary trees is the insert function that takes a tree and a key as its

arguments. If the key is not yet in the tree, the insert function inserts it; otherwise no elements

are inserted or deleted. We can elegantly express move-to-root tree insertion inductively in a pure

functional way using direct recursion, where we ensure in each branch that the inserted key always

ends up at the root of the resulting tree:

fun insert( t : tree, k : key ) : tree
match t

Node(l,x,r) -> if x < k then match insert(r,k)
Node(s,y,b) -> Node( Node(l,x,s), y, b)

elif x > k then match insert(l,k)
Node(s,y,b) -> Node( s, y, Node(b,x,r))

else Node(l,k,r)
Leaf -> Node(Leaf,k,Leaf)

This version performs a single traversal over the input tree. It is straightforward to verify various

correctness properties of this function using a proof assistant such as Coq [2017]. For instance, we

have proven that (1) whenever t is a binary search tree, so is insert(t,k); (2) every key in t also

occurs in insert(t,k); and (3) the key stored at the root of insert(t,k) is equal to k.

Even though this recursive functional definition is simple enough, it does have its drawbacks.

Firstly, it is not tail-recursive and can use stack space linear in the size of the tree in the worst-case.

Depending on the implementation, its execution may also allocate many nodes in the process

leading to (much) worse performance when compared to the imperative algorithms. We now

proceed to derive efficient fully in-place bottom-up and top-down variants that remedy both these

issues.

2.2 Bottom-Up Move-To-Root Using Zippers
A bottom-up algorithm first traverses down the tree to the insertion point and then restructures the

tree on the way back up. This can be derived by a standard defunctionalized CPS transformation

of the direct recursive definition of the insert function [Danvy and Nielsen 2001; Reynolds 1972].

Doing so, uncovers a familiar functional data structure, the zipper (or ‘one hole context’) [Huet 1997;
McBride 2001] on binary trees:

type zipper
Done
NodeL(up : zipper, key : key, right : tree )
NodeR(left : tree, key : key, up : zipper )

Note that the zipper stores the traversed path down in reverse, such that we can rebuild a new tree

bottom-up in constant space in a single traversal:

fip fun rebuild( z : zipper, t : tree )
match z

Done -> t
NodeR(l,x,up) -> match t // we came from the right

Node(s,y,b) -> rebuild( up, Node( Node(l,x,s), y, b))
NodeL(up,x,r) -> match t // we came from the left

Node(s,y,b) -> rebuild( up, Node( s, y, Node(b,x,r)))

The rebuild function repeatedly moves up through the zipper, reassembling the original tree. This

function may be executed fully in-place, as indicated by the fip keyword, a point we discuss more

extensively in the next section. Using these definitions, we now specify the complete tail-recursive

bottom-up insert function:
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fip(1) fun insert-bu( t : tree, k : key )
down-bu(t,k,Done)

fip(1) fun down-bu( t : tree, k : key, z : zipper )
match t

Node(l,x,r) -> if x < k then down-bu( r, k, NodeR(l,x,z) )
elif x > k then down-bu( l, k, NodeL(z,x,r) )
else rebuild( z, Node(l,k,r) )

Leaf -> rebuild( z, Node(Leaf,k,Leaf) )

The insert-bu function is both fast and correct. It is tail recursive; the fip property ensures no

unnecessary new memory is allocated. In this case, the fip(1) annotation allows allocation of a

single constructor when the inserted key is not yet present; otherwise no memory is allocated or

freed. This addresses the two performance issues associated with the direct recursive definition we

saw previously. To prove the insert-bu function is correct, we prove the following theorem relating

the two algorithms:

Theorem 1. (Correctness of bottom-up move-to-root insertion)
The recursive- and the bottom-up algorithms coincide:

down-bu(t,k,z) ≡ rebuild(z, insert(t,k))

Proof. The proof proceeds by induction on the tree t. The base case, when t is a leaf, is trivial. If

the tree is non-empty, we distinguish three cases, depending on the key x stored at t is less than,

greater than, or equal to k. We cover the first case – the others are similar – where we need to show:

down-bu(r, k, NodeR(l,x,z)) ≡ rebuild(NodeR(l,x,z), insert(r,k))

which follows immediately from our induction hypothesis.

An obvious corollary of this theorem is that the recursive version calculated at the beginning of

this section coincides with the tail-recursive bottom-up insert function presented here: for all trees

t and keys k, we have insert-bu(t,k) ≡ insert(t,k).

2.3 Intermezzo: First-Class Constructor Contexts
A top-down algorithm traverses a structure down in a single pass and directly returns the result

structure when reaching the final position. Unfortunately, in a purely functional language is not

always possible to express such algorithms directly. Consider the map function for example:

fun map( xs : list<a>, f : a -> b ) : list<b>
match xs

Cons(x,xx) -> Cons( f(x), map(xx,f) )
Nil -> Nil

Naively, this function would use stack space linear in the size of the first list. A well-known solution

to derive a tail-recursive version is to use an accumulator for the result list, as:
fun map-acc( xs : list<a>, f : a -> b, acc : list<b> ) : list<b>

match xs
Cons(x,xx) -> map-acc( xx, f, Cons(f(x), acc) )
Nil -> reverse(acc)

fun map(xs,f)
map-acc(xs,f,Nil)

Yet the resulting algorithm is no longer top-down, as eventually we need to traverse back through

the accumulator to reverse it in O(n) time. Similarly, using a function (or difference list [Clark and

Tärnlund 1977; Hughes 1986]) as the accumulator, requires a final application of the functional

accumulator, essentially traversing back up through the composite Cons operations.

To express true top-down algorithms, we introduce the concept of first-class constructor contexts.
This abstraction can safely encapsulate the limited form of mutation necessary to define top-down

algorithms, while still having a purely functional interface. We define a constructor context as a
sequence of constructor applications that ends in a single hole. We can describe such contexts using

the following grammar:

v : := . . . | ctx K K : := □ | Ck v1 . . . K . . . vk
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where we use v for values, and Ck
for a constructor that takes k arguments. In Koka, the key-

word ctx starts a constructor context and the hole □ is written as an underscore _. For example,

we can write a list constructor context as ctx Cons(1,_) or a binary tree constructor context as

ctx Node(Node(Leaf,1,Leaf),2,_).

Constructor contexts support two operations: we can compose (or “append”) two contexts,

written c1 ++ c2, or apply a value to a context to fill the hole, written (c ++. v). For example, the

expression (ctx Cons(1,_)) ++ (ctx Cons(2,_)) ++. Nil evaluates to (ctx Cons(1,Cons(2,_))) ++. Nil and

then to [1,2]. Similarly:

(ctx Node(Node(Leaf,1,Leaf),2,_)) ++ (ctx Node(_,4,Node(Leaf,5,Leaf))) ++. Node(Leaf,3,Leaf)

appends and applies binary tree contexts. This can be visualised as follows:

2

1

++ 4

5

++. 3 = 2

1 4

5

++. 3 = 2

1 4

3 5

A natural implementation of contexts is as lambda expressions where context composition and

application correspond to function composition and application:

ctx K = 𝜆x . K[x] with x ̸∈ fv(K) c1 ++ c2 = c1 ◦ c2 c ++. e = c e
We will sometimes use this naive implementation when reasoning about programs, but it is rather

inefficient. Section 3.2 presents a novel technique for implementing contexts efficiently where

composition and application become constant time operations.

Using constructor contexts, we are now able to define a true top-down functional version of map

using an accumulating constructor context:
fun map-td( xs : list<a>, f : a -> b, acc : ctx<list<b>> ) : list<b>

match xs
Cons(x,xx) -> map-td( xx, f, acc ++ ctx Cons(f(x),_) )
Nil -> acc ++. Nil

fun map(xs,f)
map-td(xs, f, ctx _)

The map function now uses a single tail-recursive traversal down the list and returns the final list

directly (in constant time) when reaching the end of the list.

2.4 Top-Down Move-To-Root Using Accumulating Constructor Contexts
Using accumulating constructor contexts, we now also define a true top-down functional version

of move-to-root insertion. The very first recursive version of insert matches on the result of a

recursive call, adding a constructor to either the left or right subtree:

... match insert(r,k)
Node(s,y,b) -> Node( Node(l,x,s), y, b)

We can make this tail-recursive by passing two accumulating constructor contexts for each of the

left- and right subtrees of the root. For example, in the case outlined above, we extend the context

we have accumulated so far with an additional ctx Node(l,x,_). In the base cases, we then use the

accumulated contexts to construct the final tree:

fip(1) fun insert-td( t : tree, k : key ) : tree
down-td(t,k,ctx _, ctx _)

fip(1) fun down-td( t : tree, k : key, accl : ctx<tree>, accr : ctx<tree> ) : tree
match t

Node(l,x,r) -> if x < k then down-td( r, k, accl ++ ctx Node(l,x,_), accr )
elif x > k then down-td( l, k, accl, accr ++ ctx Node(_,x,r) )
else Node( accl ++. l, x, accr ++. r )

Leaf -> Node( accl ++. Leaf, k, accr ++. Leaf )

We start with two empty contexts ctx _, and we can see that in each branch we extend either the left

context with a tree of smaller elements, or the right context with a tree of larger elements. There is
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no need to traverse a zipper “back up” as we did for the bottom-up algorithm. It is straightforward

to prove the following equality, relating the recursive version of move-to-root trees calculated at

the beginning of this section to top-down version using constructor contexts:

Theorem 2. (Correctness of top down move to root insert)
For all trees t, keys k and constructor contexts accl and accr,

down-td(t,k,accl,accr) ≡ val Node(l,x,r) = insert(t,k) in Node(accl ++. l, x, accr ++. r)

Proof. The proof proceeds by induction on the tree t. The base case, when t is a leaf, is trivial. If

the tree is non-empty, we distinguish three cases, depending on the key x stored at t is less than,

greater than, or equal to k. For the first case, we need to show:

down-td(r, k, accl ++ Node(l,x,_), accr) ≡
val Node(l’,x’,r’) = insert(r,k) in Node(accl ++ Node(l,x,_) ++. l’, x’, accr ++. r’)

This follows from our induction hypothesis for the right subtree, where we use the (dist) law. The
other cases are similar. A corollary of this result is that that the recursive insertion coincides with

top-down insertion algorithm: for all trees t, keys k, insert-td(t,k) ≡ insert(t,k)

3 MAKING IT FAST: FULLY IN-PLACE AND CONSTRUCTOR CONTEXTS
The previous section has shown three different implementations of the same algorithm: a direct

recursive definition; an efficient bottom-up implementation using a zipper; and an efficient top-down

implementation using first-class constructor contexts. To achieve performance that is competitive

with the imperative algorithms, we need two fundamental techniques: fully in-place functions (fip)

and efficient constructor context operations.

3.1 Fully In-Place Functional Programming
Throughout this paper, we write purely functional programs, but the goal is always to derive fully
in-place or fip functions that can be compiled to efficient code. This section highlights the key

principles underlying this recent paradigm of fully-in place functional programming [Lorenzen et

al. 2023b]. Consider for example the function that swaps the left and right subtrees:

fip fun swap (t : tree) : tree
match t

Leaf -> Leaf
Node(l,x,r) -> Node(r,x,l)

Lorenzen et al. [2023b] define a linear calculus characterizing fip programs and prove that any

program in the fip fragment can be compiled to code that does not use any (de)allocations and

uses constant stack space: it can be executed fully in-place. The fip keyword asserts that a given

function is in this linear fragment. The Koka compiler statically checks that each fip function does

not duplicate or discard its arguments; when a function is erroneously marked as fip, the Koka

compiler gives a warning statically.

Intuitively, we can check if a function is fip by ensuring that in each branch the constructors

matched on use the same memory layout as the constructors “allocated” on the right hand side

of the function definition, thereby ensuring every heap cell is reused. The reuse analysis allows

constructors from different datatypes to reuse the same memory cells, illustrated by the following

case from the earlier down-bu function:

Node(l,x,r) -> if x < k then down-bu( r, k, NodeR(l,x,z))

More formally, in each branch of a case expression, the constructor that is matched provides us with

a reuse credit of a certain size k, written as ⋄k (similar to the space credits of Aspinall et al. [2008]).

These reuse credits are consumed when space of that size is required: in down-bu the NodeR(l,x,z)

consumes the reuse credit ⋄3 obtained by matching on the Node constructor. Constructors without

arguments, like Nil, True, or Leaf, and primitive types like integers, are called atoms and require no
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allocation. Furthermore, value types like tuples are always unboxed and passed as registers or on

the stack.

Nevertheless, it is only safe to reuse these memory locations if the original parameters are owned
and unique at runtime! Inside fip functions the linear use of owned parameters is guaranteed, but

when fip functions are called from a non-fip context, the arguments may be shared. Consider the

following example:

fun mirror( t : tree, k : key ) : tree
Node(t,k,swap(t))

Here the tree t is now shared. Any in-place update on t would be unsound and change the

meaning of this program. To ensure fip functions are executed safely, Koka uses precise reference

counting [Reinking, Xie et al. 2021; Ullrich and de Moura 2019] to determine dynamically whether

or not arguments can be reused in-place. In particular, for a function like swap, the generated code

becomes:

fip fun swap(t : tree) : tree
match t

Leaf -> Leaf
Node(l,x,r) -> val p = if unique(t) then &t else {dup(l); dup(r); decref(t); alloc(3)}

in Node@p(r,x,l)

That is, if t does have a unique reference count of 1 at runtime, the allocated space is reused.

Otherwise, t is shared: the reference counts are adjusted and a fresh heap cell is allocated.

The fip annotation in Koka only guarantees that no (de)allocation occurs if the parameters

are unique at runtime. This may be viewed as weakness – we do not guarantee statically that a

function will actually be executed in-place – but it does offer greater flexibility where we can use

fip functions in both modes. In particular, for the tree algorithms in this paper, we not only get the

efficient in-place updating behaviour for unique trees, but we can also use them persistently where

any shared (sub)trees are copied as needed.

The fip check provides a strong guarantee: constant stack usage and no (de)allocation at all.

Throughout this paper, we also use the fip(n) variant which allows a function to allocate at most n

constructors. This is useful for tree insertion algorithms, as we may need to allocate a constant

amount of memory for the single node storing the new key.

Improving Bottom-Up. The swap function may seem trivial – but consider the following slight

variation that rotates a binary tree, moving subtrees from the left to the right:

fip fun rotate-right( t : tree ) : tree
match t

Node(Node(ll,lx,lr),x,r) -> Node(ll,lx,Node(lr,x,r))
Node(Leaf,x,Leaf) -> Node(Leaf,x,Leaf)
Leaf -> Leaf

It is easy to check that this function is fully in-place. As fip functions can safely call other fip

functions, we can rewrite our rebuild function as follows:

fip fun rebuild( z : zipper, t : tree ) : tree
match z

Done -> t
NodeL(up,x,r) -> rebuild( up, rotate-right(Node(t,x,r)) )
NodeR(l,x,up) -> rebuild( up, rotate-left(Node(l,x,t)) )

This now corresponds closely to the published algorithm by Allen and Munro [1978] where they

also use a bottom-up traversal using left- and right rotations. We formalise the precise relation

between our bottom-up insert-bu function and the published algorithms shortly (Section 4), but

first turn our attention to the top-down version of the same algorithm.
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3.2 Efficient First Class Constructor Contexts
As mentioned previously, constructor contexts can be implemented using functions, but such

implementation is unnecessarily inefficient. Minamide [1998] describes a linear hole calculus for

constructor contexts. In Minamide’s system, a context has an affine type and it is safe to update

the hole in-place. A context is represented by a Minamide tuple, written as {x, h}, where the first
element x points to the top of the data structure, and the second element h points directly to the

hole inside that structure. Composition and application can now directly update the hole in-place

and are constant time.

Unfortunately, it is not easy to extend an existing language with Minamide’s system as it requires

an affine type system for contexts (and also uses linear derivations and evaluation under-lambda

for contexts). In particular, this is problematic for the some of the proofs we do in this paper that

rely on referential transparency and do not rule out sharing or duplication of contexts.

Context Paths. There is a way though to have efficient in-place mutating context operations

without requiring affine types. The key to this is the use of runtime context paths, which store the

path from the root to the hole, first described by Leijen and Lorenzen [2023].

Their use of context paths is internal and not exposed to the user, but we can use a similar

runtime mechanism to implement our first-class constructor contexts.

In essence, we compile constructor contexts to a runtime representation storing the context path

down from the top to the hole in the data structure. To enable this, we use extra bits in the header

of each object where we store the index of the child that leads to the (single) hole in the structure.

Koka re-uses an 8-bit field for this purpose which is normally used for stackless freeing.

The context path indices can be constructed in constant time when compiling constructor

contexts. Writing Ci for the constructor C decorated with child index i, we compile a constructor

context into a Minamide tuple as follows:

ctx □ = {□,NULL}
ctx C x1 . . . xi−1 □ xi+1 . . . xk = let x = Ci x1 . . . xi−1 □ xi+1 . . . xk in {x, &x .i}
ctx C x1 . . . xi−1 K xi+1 . . . xk = let {x, h} = ctx K in {Ci x1 . . . xi−1 x xi+1 . . . xk, h} (K ≠ □)
where &x .i denotes the address of field i in x. At runtime, a constructor allocation of C typically

initializes the header fields, including the tag. Adding in the context path index yields a single

constant, eliminating any overhead associated with this representation. For example, the Koka

compiler compiles a context like ctx Node(Node(Node(Leaf,1,Leaf),2,_),5,Leaf) internally into:

val x = Node3(Node(Leaf,1,Leaf),2,□) in { Node1(x,5,Leaf), &x.3 }

where each constructor along the context path is annotated with a child index (1 and 3).

With these context paths, we can now follow the path from the top of a context to the hole

in that structure at runtime, and thus we are able to copy the linear context path dynamically at

runtime when required. When we compose or apply a context we can now copy shared contexts

only when needed. In a language with precise reference counts (like Koka or Lean) we copy the

contexts at runtime along the context paths whenever they are not unique.

We can also support this in languages without precise reference counts though. In particular, we

can use a special distinguished value for a runtime hole □ that is never used by any other object.

A substitution now first checks the value at the hole: if it is a □ value, the hole is substituted for

the first time and we just overwrite the hole in-place (in constant time). However, any subsequent

substitution on the same context will find some object instead of □. At this point, we first dynamically

copy the context path (in linear time) and then update the copy in-place.

If the contexts happen to be used linearly, then all operations execute in constant time, just as in

Minamide’s approach; but we now have full functional semantics and any subsequent substitutions

on the same context work correctly (but will take linear time in the length of the context path). The
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Fig. 1. Applying a shared context where the context path is denoted with a bold edge. In the second update
the nodes along the context path are copied.

expression val c = ctx Cons(1,_) in (c ++. [2] , c ++. [3]), where the context c is shared, evaluates

correctly to ([1,2],[1,3]).

Figure 1 illustrates a more complex example of a shared tree context that is applied to two separate

nodes. In the illustration the runtime context path is denoted by bold edges. The intermediate state

is interesting as it is both a valid tree, but also a part of the tree is shared with the remaining context,

where the hole points to a regular node now. When that context is applied, only the context path

(node 5 and 2) is copied first where all other nodes stay shared (in this case, only node 1).

However, in the context composition operation c1 ++ c2 we need an extra check in order to avoid

cycles: we check if c2 has an already overwritten hole or if the hole in c2 is at the same address as in

c1. In either case, c2 is copied along the context path. Effectively, both checks ensure that the new

context that is returned always ends with a single fresh HOLE. If we compose a context with itself:

val c = ctx Cons(1,_) in (c ++ c) ++. [2]

this evaluates to [1,1,2], where the check copies the appended c. In Appendix D in the tech report,

we give an implementation of these constructor contexts in C and prove that these checks are

sufficient for avoiding cycles using a heap semantics.

4 FUNCTIONAL AND IMPERATIVE MOVE-TO-ROOT COINCIDE
In Section 2, we derived two functional implementations from our recursive specification. How

can we relate these to the imperative move-to-root algorithms published by Stephenson [1980]

and Allen and Munro [1978]? As we will see, the imperative algorithms rely heavily on pointer

manipulation: it is not at all obvious that they are correct or even represent the ‘same’ program.

These published algorithms are usually written in imperative pseudocode. To reason about

them, we formalize each algorithm precisely in Iris [Jung et al. 2018], a framework for (higher-

order concurrent) separation logic [Reynolds 2002] implemented as a library in the Coq proof

assistant [2017]. In the style of Frumin et al. [2019] and Bedrock2 [Erbsen et al. 2021; Pit-Claudel

et al. 2022], we have defined an embedded language, called AddressC, building on the standard

HeapLang language supported by Iris [2022].

The AddressC language is embedded into Coq where we use extensive Notation to have the

embedded code resemble a low-level C-style language that can match the typical pseudo-code in

published algorithms closely. Eventually, AddressC is desugared into a standard HeapLang value

representing the low-level control-flow and heap operations on which the proofs operate.

While our language builds on HeapLang, we place special consideration on precisely modeling

while loops and the (untyped) low-level structure of memory. For example, we model a tree as:

Fixpoint is_tree (t : tree) (v : val) : iProp Σ :=
match t with
| Leaf => ⌜v = NULL⌝
| Node l x r => ∃(p:loc) l’ r’, ⌜v = #p⌝ ∗ p ↦→∗ [ l’; #x; r’] ∗ is_tree l l’ ∗ is_tree r r’
end.
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Definition heap_mtr_insert_td : val :=
fun: ( name, root ) {

var: left_dummy := NULL in
var: right_dummy := NULL in
var: node := root in
var: left_hook := &left_dummy in
var: right_hook := &right_dummy in
while: ( true ) {
if: ( node != NULL) {
if: ( node->value == name ) {

∗left_hook = node->left;;
∗right_hook = node->right;;
root = node;;
break

}
else {
if: ( node->value > name )
{

∗right_hook = node;;
right_hook = &(node->left);;
node = node->left

}

else
{
∗left_hook = node;;
left_hook = &(node->right);;
node = node->right

} } }
else {
∗left_hook = NULL;;
∗right_hook = NULL;;
root = AllocN #3 NULL;;
root->value = name;;
break

}
};;
root->left = left_dummy;;
root->right = right_dummy;;
ret: root

}.

Fig. 2. The move-to-root top-down algorithm formalized in AddressC on the left, versus a screenshot of
Stephenson’s published algorithm on the right (© Springer Nature)

This states that a Leaf is represented by a null address (the constant NULL). To represent a non-empty

tree, Node(l,x,r), requires having some address #p, pointing to a heap cell of 3 fields containing an

address for the left tree (l’), its key #x, and an address for the right tree r’. The separating conjunction,

∗, ensures that the tree is indeed inductively defined and that there are no cycles. For the bottom-up

algorithms we additionally need to model zippers, which requires us to distinguish between NodeL

and NodeR. To do so, we include an additional tag field in the heap cells, as p ↦→∗ [ #1; l’; #x; r’].

Variables typically denote memory locations, and just as in C, we use & to take an address of

a location and we use ∗ to dereference an address. We can also dereference at an offset, writing

nodeJ2K to dereference the second field of the node address. We usually define notation for constant

offsets so we can write node->right instead of nodeJ2K to get the value of the right child.

4.1 Proving Stephenson’s Top-Down Algorithm
Stephenson [1980] presents an imperative top-down insertion algorithm for top-down move-to-

root trees in pseudocode. Figure 2 shows both Stephenson’s top-down algorithm as published

and our formal AddressC implementation. We can see that our formal AddressC implementation

corresponds to the published algorithm almost line-by-line. Using Iris, we can now formally relate

the functional algorithm and AddressC implementation:

Theorem 3. (Stephenson’s imperative top-down move-to-root algorithm is correct)
Lemma heap_mtr_insert_td_correct (k : Z) (tv : val) (t : tree) :

{{{ is_tree t tv }}}
heap_mtr_insert_td (ref #k) (ref tv)
{{{ v, RET v; is_tree (mtr_insert_td t k) v }}}.
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The pre-condition requires that the argument address tv points to a valid in-memory tree cor-

responding to t, and the post-condition establishes that the result address v points to a valid

in-memory tree that corresponds to mtr_insert_td t k. The proof goes through because we can

directly relate the loop invariant of this algorithm to the recursive calls of mtr_insert_td. As we see

in the next Section, this is only possible because constructor contexts precisely capture the top-down

behaviour of Stephenson’s algorithm. It would be much harder to relate the AddressC code to our

original recursive definition. As is often the case in verification, finding the right formulation of

our theorem is vital – this proof would not be possible without constructor contexts.

4.2 Representing Constructor Contexts
Stephenson’s algorithm uses intricate pointer manipulation and even goto-statements that make

it non-trivial to verify formally. The key insight is that Stephenson builds the smaller and bigger
trees using the left_hook and right_hook variables. For example, for the case where the key in the

current node is larger than the argument key (name), we have:

if: ( node->value > name ) {
∗right_hook = node;;
right_hook = &(node->left);;
node = node->left }

Here the current node address is written to ∗right_hook which is then itself updated to point to the

left child of the current node (right_hook = &(node->left)). Afterwards the current node is advanced

to the left child. This corresponds to the functional version, where the current node is written into

the right context (accr) and the hole is set to its left child:

down( l, k, accl, accr ++ ctx Node(_,x,r) )

At this point though, we have all kinds of problems in the formal setting. Not only have we

overwritten the value that right_hook was previously pointing to, but we have introduced aliasing

where both the current bigger tree’s left-child and node point to the same location. The bigger tree
is not even a valid constructor context as the left child is “dangling” pointer (that will eventually be

overwritten). Yet we can still prove these pointer manipulations correct by relating them to the

constructor contexts used in our functional algorithm.

First, we implement our functional algorithms in Coq using a slow, but purely functional repre-

sentation of constructor contexts, where append and composition take time linear in the depth of

the first context. Such a context can be modelled similar to a zipper, but with the pointers going

from the root to the hole:

Fixpoint comp (z1 : ctx) (z2 : ctx) : ctx :=
Inductive ctx : Set := match z1 with
| Node0 (l : ctx) (x : Z) (r : tree) | Node0 zl x r => Node0 (comp zl z2) x r
| Node2 (l : tree) (x : Z) (r : ctx) | Node2 l x zr => Node2 l x (comp zr z2)
| Hole. | Hole => z2 end.

We can then define an is_ctx z p h predicate that represents the context z in heap memory, with

root pointer p and hole pointer h. However, we take care to ensure that the predicate does not

take ownership of the hole h. This is different from the usual presentation [Charguéraud 2016]

and allows us to change the value of the hole without inspecting the constructor context (to allow

temporarily for a dangling pointer). For example, we can now prove the following lemma:

Lemma ctx_of_ctx (z1 : ctx) (z2 : ctx0) (zv1 : loc) (hv1 : loc) (zv2 : loc) (hv2 : loc) :
is_ctx z1 zv1 hv1 ∗ hv1 ↦→ #zv2 ∗ is_ctx0 z2 zv2 hv2 -∗ is_ctx (comp z1 z2) zv1 hv2.

This states that if the hole points to another context, together, they form the composed context.

This is the key lemma that enables checking the individual cases of the algorithms.

Loop Invariant. Using our representation of constructor contexts, we can now show the full

proof of the functional correctness of Stephenson’s top-down algorithm. We start the proof by
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introducing the variables:

Proof.
wp_begin "Ht"; name, root. wp_var left_dummy. wp_var right_dummy.
wp_load. wp_var node. wp_var left_hook. wp_var right_hook.

The main difficulty of this proof lies in specifying the loop invariants for the while-loop. The first

formula passed to the wp_while_true tactic gives the condition once the loop terminates and the

second formula gives the invariant for subsequent iterations.

wp_while_true "H"
(∃ l (x : Z) r left_dummy_v right_dummy_v (p : loc) left_dangling_v right_dangling_v,

root ↦→ #p ∗ p ↦→∗ [left_dangling_v; #x; right_dangling_v]
∗ left_dummy ↦→ left_dummy_v ∗ is_tree l left_dummy_v
∗ right_dummy ↦→ right_dummy_v ∗ is_tree r right_dummy_v
∗ ⌜mtr_insert_td t k = Node l x r⌝)%I

This first formula mirrors the return value of the functional code, which returns two trees l and

r. It specifies that left_dummy and right_dummy point to those trees, that root points to an allocation

containing x and that this final result Node l x r is equal to the result of the functional code

mtr_insert_td t k. Our second formula is:

(∃ accl accr t’ (left_hole right_hole : loc) left_hole_v right_hole_v root_v node_v,
node ↦→ node_v ∗ is_tree t’ node_v

∗ root ↦→ root_v ∗ name ↦→ #k
∗ left_hook ↦→ #left_hole ∗ left_hole ↦→ left_hole_v ∗ is_ctx accl left_dummy left_hole
∗ right_hook ↦→ #right_hole ∗ right_hole ↦→ right_hole_v ∗ is_ctx accr right_dummy right_hole
∗ ⌜mtr_insert_td t k = mtr_down_td t’ k accl accr⌝)%I.

The invariant for subsequent iterations mirrors the recursive calls of the functional code, which
calls itself in tail-position on a tree t’ and two contexts accl, accr. The invariant specifies that

left_dummy and right_dummy point to these contexts and left_hook and right_hook point to the holes,

while node points to the subtree and name stays constant. Finally, it asserts ownership over the root

location and asserts that the functional values accl, accr, t’ correspond to a loop iteration of the

functional code mtr_down_td.

With these invariants, the remaining proof of the top-down algorithm is highly automated

and we resolve all obligations associated with assignments on the heap or constructor contexts

automatically using Diaframe’s iSteps tactic [Mulder et al. 2023 2022], which performs proof search

guided by custom hints (such as our lemma ctx_of_ctx):

- iDecompose "H". iSteps. (* The claim follows once the while-loop ends *)
- iDecompose "H". rewrite H1. (* Rewrite the functional recursive call *)

unfold array. repeat (iSteps; try case_bool_decide). (* Then the invariant is maintained *)
- iSteps. (* The invariant holds when entering the loop *)

Qed.

The brevity of the proof – despite the intricate nature of Stephenson’s algorithm – provides further

evidence that these definitions capture the essence of top-down algorithms.

4.3 Proving Allen and Munro’s Bottom-Up Algorithm
While Allen and Munro [1978] do not present imperative pseudo-code, we can define an imperative

version of their algorithm in AddressC. They introduce a “simple exchange” (corresponding to

what is now called a rotation) and describe their algorithm as:

[..] perform a sequence of simple exchanges on the retrieved record so that it is moved to

the root. . . . By carefully using the coding trick of “reversing the direction of the pointers”

in performing the search, only two or three extra storage locations are required.

We can directly implement the mentioned pointer reversal technique [Schorr and Waite 1967] in

AddressC (see Appendix E.1 in the tech report). The code corresponds closely to the functional

bottom-up version we derived earlier. In particular, just as constructor contexts captured the
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top-down behavior in Stephenson’s algorithm, a zipper captures the structure of in-place pointer-
reversal. Even though the use of pointer-reversal is complex from a formal perspective, we can

use the functional zippers to relate the functional and imperative versions to make the proofs go

through.

Theorem 4. (Allen and Munro’s imperative bottom-up move-to-root algorithm is correct)
Lemma heap_rebuild_correct (z : zipper) (t : root_tree) (zipper tree : loc) (zv tv : val) :

{{{ zipper ↦→ zv ∗ is_zipper z zv ∗ tree ↦→ tv ∗ is_root_tree t tv }}}
heap_rebuild #zipper #tree
{{{ v, RET v; is_root_tree (move_to_root z t) v }}}.

Lemma heap_mtr_insert_bu_correct (i : Z) (tv : val) (t : tree) :
{{{ is_tree t tv }}}
heap_mtr_insert_bu (ref #i) (ref tv)
{{{ v, RET v; is_tree (mtr_insert_bu i t) v }}}.

The precondition of heap_mtr_rebuild requires that the argument addresses, zipper and tree, point to

a zipper z and non-leaf binary tree t. The postcondition guarantees that after execution, the memory

location that is returned, v, denotes the non-leaf binary tree arising from our functional algorithm,

rebuild. Similarly, heap_mtr_insert_bu_correct specifies that given an arbitrary binary tree t with its

heap representation tv, the imperative version returns a tree corresponding to mtr_insert_bu i t.

5 SPLAY TREES
Having looked at move-to-root trees, we can apply the same techniques to their improved sibling,

splay trees [Sleator and Tarjan 1985]. The move-to-root trees only move the accessed element to

the root of the tree but they do not restructure the tree. As such, the tree can degrade to a list in the

case of ordered accesses. Splay trees on the other hand are self-adjusting: accessing an element also

restructures the path to the root to become more balanced. Sleator and Tarjan [1985] identify six

different kinds of tree rotations that are required, zig, zigzig, zigzag and their mirrored counterparts

– is it possible to derive all of these rotations?

5.1 The Essence of Splay Tree Rebalancing
To understand the essence of splay trees, we look again at the definition of move-to-root trees since

splay trees satisfy the exact same requirements. First, we unroll the recursion in move-to-root tree

insertion once:

fun insert( t : tree, k : key )
match t

Node(l,x,r) ->
if x < k then match r

Node(rl,rx,rr) ->
if rx < k then match insert(rr,k)

Node(s,y,b) -> Node( Node(l,x,Node(rl,rx,s)), y, b) // (A)
elif rx > k then match insert(rl,k)

Node(s,y,b) -> Node( Node(l,x,s), y, Node(b,rx,rr))
...

Now we gain insight into why move-to-root trees can easily become unbalanced: when we move

twice to the right (and dually, twice to the left for the x > k case) as in the branch labelled (A), we

create a short unbalanced part with two right leaning nodes:

(Node(l,x,Node(rl,rx,rr)) -> Node(l,x,Node(rl,rx,s) // A

A splay tree though rotates those nodes instead, resulting in a more balanced result:

(Node(l,x,Node(rl,rx,rr)) -> Node(Node(l,x,rl),rx,s)

This is the essence of splay tree restructuring – and it captures the key difference between move-

to-root trees and splay trees. Using this insight, we obtain a recursive insert function (Appendix B

in the tech report) that closely mirrors the version presented by Okasaki [1999b] (Sec. 5.4).
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5.2 Top-Down Splay Trees
Just as with move-to-root trees (Section 2.4), we can again use accumulating constructor contexts

to build the ‘smaller’ and ‘bigger’ trees on the way down. In particular, a match on a recursive call:

match insert(rr,k)
Node(s,y,b) -> Node(Node(Node(l,x,rl),rx,s),y,b) // (A)

can be changed into a direct tail-recursive call, accumulating the constructor contexts:

splay(rr, k, accl ++ ctx Node(Node(l,x,rl),rx,_), accr)

The derived top-down version becomes:

fun insert-td( t : tree, k : key ) : tree
down-td( t, k, ctx _, ctx _)

fip(1) fun down-td(t : tree, k : key, accl : ctx<tree>, accr : ctx<tree> ) : tree
match t
Node(l,x,r) ->

if x < k then match r
Node(rl,rx,rr) ->

if rx < k then down-td(rr, k, accl ++ ctx Node(Node(l,x,rl),rx,_), accr)
elif rx > k then down-td(rl, k, accl ++ ctx Node(l,x,_), accr ++ ctx Node(_,rx,rr))
else Node( accl ++. Node(l,x,rl), rx, accr ++. rr )

Leaf -> Node( accl ++. Node(l,x,Leaf), k, accr ++. Leaf )
elif x > k then match l

...
else Node( accl ++. l, x, accr ++. r )

Leaf -> Node( accl ++. Leaf, k, accr ++. Leaf )

Now we have an efficient fip(1) function again. We can also formally check that top-down and

direct splay tree insertion coincide:

Theorem 5. (Correctness of top-down splay tree insertion)
down-td(t,k,accl,accr) ≡ val Node(l,x,r) = insert(t,k) in Node(accl ++. l, x, accr ++. r)

5.3 Bottom-Up Splay Trees
We can also derive a bottom-up version by reusing the zipper datatype for move-to-root trees to

keep track of the path we took when descending down the tree:

fip(1) fun insert-bu-fused( t : tree, k : key ) : tree
down-bu-fused(t,k,Done)

fip(1) fun down-bu-fused( t : tree, k : key, z : zipper ) : tree
match t

Node(l,x,r) ->
if x < k then down-bu-fused( r, k, NodeR(l,x,z) )
elif x > k then down-bu-fused( l, k, NodeL(z,x,r) )
else rebuild(z, Node(l,x,r))

Leaf -> rebuild(z, Node(Leaf,k,Leaf))

All the restructuring now takes place in the rebuild function which matches two zipper nodes at a

time to cover all rebalancing cases:

fip fun rebuild( z : zipper, t : root ) : tree
match root

Root(tl,tx,tr) -> match z
Done -> Node(tl,tx,tr)
NodeR(rl,rx,Done) -> Node(Node(rl,rx,tl),tx,tr) //zig
NodeL(Done,lx,lr) -> Node(tl,tx,Node(tr,lx,lr))
NodeR(rl,rx,NodeR(l,x,up)) -> rebuild( up, Root(Node(Node(l,x,rl),rx,tl),tx,tr) ) //zigzig
NodeL(NodeR(l,x,up),lx,lr) -> rebuild( up, Root(Node(l,x,tl),tx,Node(tr,lx,lr)) )
NodeR(rl,rx,NodeL(up,x,r)) -> rebuild( up, Root(Node(rl,rx,tl),tx,Node(tr,x,r)) ) //zigzag
NodeL(NodeL(up,x,r),lx,lr) -> rebuild( up, Root(tl,tx,Node(tr,lx,Node(lr,x,r))) )
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Even though the essence of splay tree restructuring has just two cases for rebalancing, the rebuild

function now shows the usual six rebalancing cases that are common in the splay tree literature:

zig, zigzig, zigzag, and their mirrored counterparts.

We call this the fused algorithm and it corresponds directly to Sleator and Tarjan’s published

bottom-up algorithm. However, even though it splays correctly it turns out to be not equivalent to

the recursive- or top-down algorithms. For example, if we start from a right-unbalanced tree with

nodes 1 to 4 and insert node 4, we get different results for each of the various algorithms:

initial tree:

1

2

3

★ 4

move-to-root:

4

1

2

3

top-down splay:

4

2

1 3

(fused) bottom-up splay:

4

1

3

2

That the imperative top-down and bottom-up splay algorithms are not equivalent was not widely

known [Lucas 2004], but when trying to prove equivalence on the functional specifications it

becomes immediately apparent that down-bu-fused(t,k,z) ≡ rebuild(z, insert(t,k)) does not hold.

5.4 Functional and Imperative Splay Trees Coincide
Using our AddressC embedded language in Iris we formalized the published top-down and bottom-

up algorithms by Sleator and Tarjan [1985], where we use pointer-reversal for bottom-up. Once

again, there is a line-by-line correspondence between the published pseudocode and formal Ad-

dressC implementations that we have written (Appendix E.2 and E.3 in the tech report). Using

the same techniques as for move-to-root trees we have formally established that the functional

implementations accurately model the published imperative algorithms:

Theorem 6. (Sleator and Tarjan’s imperative top-down splay algorithm is correct)
Lemma heap_splay_insert_td_correct (k : Z) (tv : val) (t : tree) :

{{{ is_tree t tv }}}
heap_splay_insert_td (ref #k) (ref tv)
{{{ v, RET v; is_tree (splay_insert_td k t) v }}}.

Theorem 7. (Sleator and Tarjan’s imperative bottom-up splay algorithm is correct)
Lemma heap_splay_insert_bu_correct (k : Z) (tv : val) (t : tree) :

{{{ is_tree t tv }}}
heap_splay_insert_bu (ref #k) (ref tv)
{{{ v, RET v; is_tree (splay_insert_bu_fused k t) v }}}.

It is worth repeating that the proofs of these theorems are direct, requiring no additional lemmas.

This is possible because the functional implementations precisely capture the iterative behaviour of

their imperative counterparts through constructor contexts and zippers. Furthermore, these results

are novel—to the best of our knowledge there is no formal correctness proof of these algorithms.

6 ZIP TREES
In recent work, Tarjan et al. [2021] introduce zip trees which can be seen as the functional equivalent
of skip lists [Pugh 1990]. A zip tree is a binary search tree where every node also has a rank.

type ztree alias key = int
Leaf alias rank = int
Node(rank : rank, left : ztree, key : key, right : ztree)

We choose node ranks independently from a geometric distribution, where the rank of a node is

non-negative integer k with probability 1/2k+1. Besides being a binary search tree for the keys, the

tree is now also max heap-ordered with respect to the ranks with ties broken in favor of smaller

keys. We define is-higher-rank as:
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Fig. 3. Inserting a node with key 15 and rank 3 into a zip tree (with ranks shown as single digits in blue).
Once the insertion point is found (as the right child of node 12), the tree at node 17 is unzipped along the key
15, and the resulting trees become the left- and right child of the inserted node. Deletion is the inverse where
the children are zipped instead.

fip fun is-higher-rank( ^(r1,k1) : (rank,key), ^(r2,k2) : (rank,key) ) : bool
(r1 > r2 || (r1 == r2 && k1 < k2))

Any parent node always is-higher-rank than its children. Since a zip tree is also a binary search

tree, we can also see that the rank of a parent is always greater than the rank of its left-child, and

greater than or equal to the rank of its right child. Interestingly, the shape of a zip tree is now

fully determined by just the rank/key pairs in the tree and independent of the insertion order. See

Figure 3 for an example of two valid zip trees. Intuitively we can see that given the geometric

distribution of ranks, the shape of a tree naturally tends to be well balanced, with twice as many

nodes at each lower rank. This means that the zip tree operations never need to do any explicit

rebalancing, simplifying their implementation compared to usual balanced tree algorithms

The rank can be chosen independently at random, but in order to combine search and insertion,

we can also derive the rank pseudo randomly from the key. To insert an element into a zip tree, we

first calculate the rank of the node. We can now traverse down until we find the fixed insertion

point, as it is fully determined by the rank and key:

pub fun insert( t : ztree, k : key ) : ztree
down( t, rank-of(k), k )

fun down( t : ztree, rank : rank, k : key ) : ztree
match t

Node(rnk,l,x,r) | is-higher-rank( (rnk,x), (rank,k) ) // go down while node is higher rank
-> if (x < k) then Node(rnk, l, x, down(r,rank,k) )

else Node(rnk, down(l,rank,k ), x, r)
_ -> val (s,b) = unzip(t,k) in Node(rank,s,k,b)

Once we reach the insertion point where we are of higher rank than the current tree t, we unzip
the tree t into two trees: one with elements smaller than k and one with bigger elements:

fun unzip( t : ztree, k : key ) : (ztree,ztree)
match t

Node(rnk,l,x,r) ->

if (x < k) then val (s,b) = unzip(r,k) in (Node(rnk,l,x,s),b)
elif (x > k) then val (s,b) = unzip(l,k) in (s,Node(rnk,b,x,r))
else (l,r)

Leaf -> (Leaf,Leaf)

Figure 3 illustrates inserting a node into a tree and the resulting unzip operation. Since the shape of

a zip tree is always fixed by its rank/key pairs, deletion is the inverse of insertion which zips child
trees back together. Like before, it is straightforward to formally prove that our specification of
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insert maintains the expected properties of a zip tree.

6.1 Top-Down Zip Trees
To derive the top-down algorithm, we can again accumulate the smaller and bigger trees in

constructor contexts. The unzip function becomes:

fun unzip( t : ztree, k : key, accl : ctx<ztree>, accr : ctx<ztree> ) : (ztree,ztree)
match t

Node(rnk,l,x,r) -> if (x < k) then unzip( r, k, accl ++ ctx Node(rnk,l,x,_), accr )
elif (x > k) then unzip( l, k, accl, accr ++ ctx Node(rnk,_,x,r) )
else (accl ++. l, accr ++. r)

Leaf -> (accl ++. Leaf, accr ++. Leaf)

Unfortunately, this is not quite fip since in the case that the key is present in the unzipped tree, the

else branch discards the Node on which we matched. However, we can avoid calling unzip in the

first place if the key is present and derive an efficient fip version:

fip(1) fun insert-td( t : ztree, k : key ) : ztree
down-td( t, rank-of(k), k, ctx _)

fip(1) fun down-td( t : ztree, rank : rank, k : key, acc : ctx<ztree> ) : ztree
match t

Node(rnk,l,x,r) | is-higher-rank( (rnk,x), (rank,k) )
-> if (x < k) then down-td( r, rank, k, acc ++ ctx Node(rnk,l,x,_) )

else down-td( l, rank, k, acc ++ ctx Node(rnk,_,x,r) )
Node(_,_,x,_) | x == k -> acc ++. t
_ -> val (s,b) = unzip-td( t, k, ctx _, ctx _) in acc ++. Node(rank,s,k,b)

fip fun unzip-td( t : ztree, k : key, accl : ctx<ztree>, accr : ctx<ztree> ) : (ztree,ztree)
match t
Node(rnk,l,x,r) -> if (x < k) then unzip-td( r, k, accl ++ ctx Node(rnk,l,x,_), accr )

else unzip-td( l, k, accl, accr ++ ctx Node(rnk,_,x,r) )
Leaf -> (accl ++. Leaf, accr ++. Leaf)

It is straightforward to prove that the derived top-down algorithm is correct:

Theorem 8. (Correctness of top-down zip tree insertion)
down-td(t,k,acc) ≡ acc ++. insert(t,k)

The proof uses the following lemma for the correctness of unzip-td:

Lemma 1. (Correctness of top-down unzip)
unzip-td(t,k,accl,accr) ≡ val (s,b) = unzip(t,k) in (accl ++. s, accr ++. b)

6.2 Bottom-Up Zip Trees
For the bottom-up algorithm, we first define a zipper for the zip tree datatype to keep track of the

path down the tree:

fip fun rebuild( z : zipper, t : ztree ) : ztree
match z type zipper

NodeR(rk,l,x,up)-> rebuild(up,Node(rk,l,x,t)) NodeR(rk:rank, l:ztree, x:key, up:zipper)
NodeL(rk,up,x,r)-> rebuild(up,Node(rk,t,x,r)) NodeL(rk:rank, up:zipper, x:key, r:ztree)
Done -> t Done

The down and unzip take the zipper(s) as an accumulating argument, where we again ensure we

never unzip trees with the key present:

fip(1) fun insert-bu( t : ztree, k : key ) : ztree
down-bu( t, rank-of(k), k, Done )

fip(1) fun down-bu( t : ztree, rank : rank, k : key, z : zipper ) : ztree
match t

Node(rnk,l,x,r) | is-higher-rank( (rnk,x), (rank,k) )
-> if (x < k) then down-bu(r, rank, k, NodeR(rnk, l, x, z))

else down-bu(l, rank, k, NodeL(rnk, z, x, r))

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 168. Publication date: June 2024.



The Functional Essence of Imperative Binary Search Trees 168:19

mtr-td mtr-bu splay-td splay-bu zip-td zip-bu rb-td rb-bu
0x

1x

2x

3x

(1
.1
8s
)

(1
.6
2s
)

(1
.2
6s
)

(1
.6
8s
)

(1
.0
2s
)

(1
.0
1s
)

(1
.2
0s
)

(1
.2
7s
)

1.
04
x

1.
49
x

1.
05
x

1.
75
x

1.
10
x

1.
10
x

0.
81
x

0.
80
x

0.
87
x 1.

30
x

1.
00
x

1.
52
x

0.
95
x

0.
92
x

0.
78
x

0.
67
x

N
A

2.
89
x

N
A

3.
02
x

N
A

4.
28
x

N
A

3.
17
x

N
A

3.
02
x

N
A

3.
05
x

N
A

4.
75
x

N
A

3.
42
x

re
la
ti
ve

ti
m
e
(lo

w
er

is
be
tt
er
)

Koka C "equalized" C (linked with mimalloc, header word on td) OCaml Haskell

Fig. 4. Benchmarks on Ubuntu 22.04.2 (AMD 7950X 4.5Ghz) comparing the relative performance of C, ML,
and Haskell against Koka for move-to-root (mtr), splay trees (splay), and zip trees (zip) for both top-down (td)
and bottom-up (bu) variants. Each benchmark performs the same sequence of 10M pseudo-random insertions
between 0 and 100 000 starting with an empty tree.

Node(_,_,x,_) | x == k -> rebuild(z, t)
_ -> val (s,b) = unzip-bu(t,k,Done,Done) in rebuild( z, Node(rank,s,k,b) )

fip fun unzip-bu( t : ztree, k : key, zs : zipper, zb : zipper ) : (ztree,ztree)
match t
Node(rnk,l,x,r) ->

if (x < k) then unzip-bu( r, k, NodeR(rnk,l,x,zs), zb)
else unzip-bu( l, k, zs, NodeL(rnk,zb,x,r))

Leaf -> (rebuild(zs,Leaf), rebuild(zb,Leaf))

We can optimize this a bit further: for the down-bu function, the zipper along the search path always

just rebuilds the exact same path since no restructuring takes place, unlike the rebuilding for

move-to-root or splay trees. It can be more efficient to use a constructor context for down-bu instead,

as this can rebuild the tree in constant time.

For the optimized bottom-up version the correctness theorem is as before:

Theorem 9. (Correctness of bottom-up zip tree insertion)
down-bu(t,k,acc) ≡ acc ++. insert(t,k) with

unzip-bu(t,k,zs,zb) ≡ val (s,b) = unzip(t,k) in (rebuild(zs,s), rebuild(zb,b))

As with move-to-root and splay trees, we can again prove the correctness of imperative zip insertion.

But this time we can even go further: In Appendix C in the tech report, we present a new imperative

insertion algorithmwhich derives directly from the functional version and is simpler, yet as-efficient

as the imperative algorithm by Tarjan et al. [2021].

7 BENCHMARKS
Figure 4 shows benchmark results for the various derived algorithms in this paper. We compare

Koka against the best known iterative C implementations. For bottom-up algorithms, we also

benchmark ML and Haskell implementations that are direct translations of the bottom-up Koka

versions. We ran the benchmarks on Ubuntu 22.04.2 using an AMD 7950X at 4.5Ghz. We used

Koka v2.4.2 (-O2), the C implementations were compiled with Clang 14 (-O3 -DNDEBUG), ML with

OCaml 4.13.1 (ocamlopt -O2), and Haskell with GHC 8.8.4 (-O2). Each bar represents the median

performance over 10 runs, with error bars for the standard error. Each benchmark performs 10M

insertions starting with an empty tree, using a pseudo random sequence of keys between 0 and

100 000. Initially the tree is populated quickly up to 100 000 elements followed by many insertions
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where the element already exists. We tested all top-down (-td) and bottom-up (-bu) versions of
move-to-root tree (mtr), splay trees (splay), and zip trees (zip). Figure 4 also includes tests for

red-black trees (rb) but we disregard those for the moment.

If we look at the performance relative to the median performance of Koka in Figure 4 we see

that our purely functional fip derived versions always outperform C for move-to-root, splay, and

zip-trees! How is that even possible? The Koka code in particular must perform more operations:

• Koka has automatic memory management, and thus everything is reference counted. The gener-

ated code also includes branches to handle potential thread shared structures (which requires

atomic reference count operations).

• Koka uses arbitrary precision integers (int) for keys and all comparisons and arithmetic operations

include branches for the case where big integer arithmetic is required.

• Context composition and application are reference counted to handle sharing, and always check

for empty contexts. In the C code empty context checks are unnecessary due to stack allocation.

• Koka reuses memory when possible, but the trees can always be used persistently as well, and

insertion can also handle shared trees where the spine to the insertion point is copied.

One factor why Koka still outperforms C is that Koka is tightly integrated with the optimized

mimalloc allocator [Leijen et al. 2019]. To gain better insight into what the actual overhead of the

above features is in our functional code, we also include “equalized” C: here we link the C programs

with mimalloc as well (overriding malloc and free), and we include an unused header word in the

top-down algorithms to ensure an equal amount of memory is allocated.
2
This is the third bar in

Figure 4. Even compared to equalized C our functional versions still perform remarkably well, being

at most 15% slower for top-down move-to-root trees, and only 6% slower for top-down zip-trees.

This is surprising, given the additional safety guarantees Koka provides. Many of these checks

are cache-local and use just few instructions in the fast path (e.g. is-unique). We conjecture that

on modern hardware small fast-path branches with cache-local accesses can be quite cheap – due

to the speculation with many parallel compute units the actual performance bottlenecks may be

somewhere else, such as a dependency on an uncached memory read.

Even with equalized C, our functional versions are still substantially faster on the bottom-up

move-to-root and splay trees. This is due to the difference in implementations: in our derived

functional versions we use zippers which are compiled essentially to use in-place pointer-reversal

at runtime. The C implementations, in contrast, are using parent pointers instead which is the

usual way of traversing back up for the bottom-up algorithms. However, for move-to-root and

splay trees the constant restructuring is now more expensive since we need to also adjust parent

pointers for each rotation. This cost is much less pronounced for zip trees for which considerably

less restructuring takes place, and so the performance difference is correspondingly smaller. As an

experiment, we also implemented a pointer-reversal version of Allen and Munro’s move-to-root

bottom-up algorithm using the lowest pointer bit to distinguish left- from right paths. In that case,

the equalized C code performs about 14% better than our functional version.

The top-down zip tree algorithm in C uses Tarjan et al.’s algorithm. We also tested this with our

derived algorithm, and the simpler version that does not have the inner repeat-until iterations (and
may thus perform extra pointer assignments as shown in Appendix C). For our benchmark though,

we could not measure any significant differences in execution times between these versions.

Red-Black Trees. Figure 4 also contains results for bottom-up [Guibas and Sedgewick 1978;

Lorenzen and Leijen 2022; Okasaki 1999a] and top-down [Tarjan 1985; Weiss 2013] red-black tree

algorithms. It is beyond the scope of this paper to discuss those in detail but we can apply the

2
This is not required for the bottom-up algorithms in C since these have parent pointers which balances out against Koka’s

header words (which uses pointer reversal through zippers and needs no parent pointers).
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same techniques that we have shown in this paper to implement the bottom-up version using

defunctionalized CPS and zippers, and the top-down version with constructor contexts. The top-

down C version is based on the GNU library tree search implementation which encodes the node

color in the least significant pointer bit [Schmidt 1997], while the bottom-up one implements the

algorithm described by Cormen et al. [2022]. The relative performance of Koka versus (equalized) C

is still good, but less impressive as for the other data structures: about 25% slower for the top-down

algorithm and almost 50% slower for the bottom-up version. This shows that there is still room for

further improvements in our compilation techniques.

Each variant performs poorly for different reasons though. We believe the functional version of

bottom-up red-black trees is slower because the C versions can use early bailout: on the way back

up as soon as a parent is no longer red, the C version can immediately return the root pointer. For

the functional version though we need to unwind the zipper completely to reconstruct the tree.

There seems no obvious way to implement such optimization on the functional side: we would

need some concept of parent pointers to achieve similar behaviour. For the top-down version the

reason for the poorer performance is less clear, but we believe it is due to the need to keep track of

extra context. Top-down red-black tree rebalancing requires access to the parent and grand-parent

of the current node for its rebalancing operations. In C we can just keep two extra pointers around

on the traversal down. In the functional version though we need two derivative node constructors

for the parent and grandparent, together with the accumulating constructor context – moving the

grand-parent into the constructor context on each iteration. We imagine that a potential path to

improving this situation is to allow a limited form of pattern matching on constructor contexts.

8 RELATEDWORK
We discuss related work of the studied algorithms in the main text. Here, we want to present an

overview of the work related to the employed techniques.

Data structures with a hole. Zippers [Huet 1997] are the canonical functional representation of

data structures with a hole. They can be defined generically [Hinze et al. 2004; McBride 2001 2008],

but also arise syntactically as the defunctionalization of the closures generated by a CPS-conversion

[Danvy and Nielsen 2001]. While they have long been known to be the functional equivalent of

backpointers [Huet 2003; Munch-Maccagnoni and Douence 2019], only recently has this insight

been exploited to actually compile them to pointer reversing code [Lorenzen et al. 2023b].

In contrast, constructor contexts, as studied in this work, have received far less attention. One

reason for this may be that previous implementations required type systems to ensure safety.

Minamide [1998] describes a linear type system for efficient one-hole contexts, while destination

passing style [Bour et al. 2021; Pottier and Protzenko 2013] requires linear or ownership types.

Huet [2003] also discusses top-down structures with a hole Ω, but he does not make an explicit

connection to top-down algorithms or present an efficient implementation.

Some top-down algorithms can also be expressed using either laziness [Wadler 1984] or tail

recursionmodulo cons (TRMC) [Bour et al. 2021; Friedman andWise 1975; Leijen and Lorenzen 2023;

Risch 1973]. However, both techniques require the programmer to provide an expression up-front

which determines the value eventually filling the hole. This makes it more cumbersome and

sometimes impossible to express top-down algorithms with these techniques. Laziness additionally

carries a performance overhead due to the creation of intermediate thunks. Conversely, TRMC

can be implemented manually with first-class constructor contexts: Leijen and Lorenzen [2023]

introduce the context transformation, which generalises Danvy and Nielsen’s [2001] approach to

constructor contexts.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 168. Publication date: June 2024.



168:22 Anton Lorenzen, Daan Leijen, Wouter Swierstra, and Sam Lindley

Compilation of functional programs. A crucial step of our compilation is to reuse [Lorenzen and

Leijen 2022; Schulte and Grieskamp 1992; Ullrich and de Moura 2019] old heap cells for new ones.

This can be performed automatically in languages with precise reference counting [Reinking, Xie

et al. 2021; Ullrich and de Moura 2019], but could also be manually implemented in languages with

uniqueness types [Barendsen and Smetsers 1996]. However, in order to achieve a fully in-place

algorithm, we also need to be sure that certain values (such as tuples) are not allocated on the

heap. Lorenzen et al. [2023b] propose a calculus for such functions which ensures that the functions

presented here do not have spurious allocations.

In this work, we study compilation as a refinement [Appel 2016] which allows us to connect the

functional implementation to published imperative code. Modulo exact choice of variable names

and helper functions, it is possible to compile functional code directly to published imperative code.

Hofmann [2000] first proposed such a scheme and Gudjónsson and Winsborough [1999] presents

an optimization to avoid updating the hole of the context in cases where it already contains the

right value, just as in the published implementation of zip tree insertion.

Verification of imperative algorithms. Insertion and deletion algorithms for binary search trees

have been verified countless times: There is a large literature on functional implementations [Nip-

kow et al. 2021 2020] as well as destructive implementations [Armborst and Huisman 2021; Pek et

al. 2014; Stefanescu et al. 2016 2016; Zhan 2018]. However, these algorithms are typically based

on recursive code and thus do not deal with the issues discussed in this paper. Surprisingly, there

seems to be far less literature on verifying idiomatic, imperative code as it appears in algorithm

papers. Schellhorn et al. [2022] and Dross and Moy [2017] formalize the text-book insertion and

deletion of red-black trees, but due to the use of inline invariants their code does not resemble the

original implementation. Lammich [2020] formalizes an array-based implementation of pattern-

defeating quicksort in the Boost C++ library. Enea et al. [2015] prove insertion algorithms for

AVL trees and red-black trees in C correct by deriving a representation for the already-traversed

segment. They do not consider a functional version and thus have to perform a proof search.

Formalizing constructor contexts. Following Charguéraud [2016], we define an inductive repre-

sentation of one-hole data structures. In the work of Enea et al. [2015], these segments also hold
additional invariants, but this is not necessary if one only wants to relate the segments to their

functional counterpart. Cao et al. [2019] formalize an idiomatic, non-balancing insertion into binary

trees and point out that a constructor context can also be represented in separation logic using a

magic wand, thereby implementing constructor contexts directly as their interface.

Tuerk [2010] demonstrates a method for proving the correctness of while-loops that recurse

on an argument by using simple pre- and post-conditions; this may be powerful enough to prove

bottom-up algorithms as well as those top-down algorithms that arise from a functional version

via TRMC.

9 CONCLUSION
This work bridges the gap between imperative algorithms and purely functional programs. The

key techniques to guarantee performant functional implementations—deriving tail recursive fip

functions from their directly recursive counterparts—are in no way restricted to binary search trees.

We fully expect them to be widely applicable to other algorithms and data structures. Furthermore,

this will enable us to adopt a wide variety of techniques designed specifically for functional

languages—ranging from program synthesis [Albarghouthi et al. 2013; Polikarpova et al. 2016] to

automatic amortized complexity analysis [Leutgeb et al. 2022; Schoenmakers 1993]—in a novel

setting, where they could not be applied easily until now.
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A PROGRAMMINGWITH CONSTRUCTOR CONTEXTS
As also shown by Minamide [1998], there are various standard functions that can be implemented

more efficiently using constructor contexts. We already saw the top-down version of map in Sec-

tion 2.4:

fip fun map-td( xs : list<a>, ^f : a -> b, acc : ctx<list<b>> ) : list<b>
match xs

Cons(x,xx) -> map-td( xx, f, acc ++ ctx Cons(f(x),_) )
Nil -> acc ++. Nil

fip fun map(xs,f)
map-td(xs, f, ctx _)

The map function is actually tail-recursive modulo cons [Bour et al. 2021; Friedman and Wise 1975;

Leijen and Lorenzen 2023; Risch 1973], and can potentially be optimized by a compiler automatically

to a form that mimics map-td. The scope of TRMC optimizations is limited though, and with first-

class contexts we can go beyond that. Consider the flatten function which concatenates a list of

lists, and is usually defined as:

fun flatten( xss : list<list<a>> ) : list<a>
match xss

Cons(xs,xxs) -> append( xs, flatten(xxs) )
Nil -> Nil

The flatten function is not tail-recursive modulo cons, and uses stack space linear in the size of

the input list. Again, we can use an accumulating constructor context to flatten the lists in one

traversal. Key to this is the ability to return the accumulator as a first-class result value from append

instead of applying it directly
3
:

fip fun append-td( xs : list<a>, acc : ctx<list<a>> ) : ctx<list<a>>
match xs

Cons(x,xx) -> append-td( xx, acc ++ ctx Cons(x,_) )
Nil -> acc

fbip fun flatten-td( xss : list<list<a>>, acc : ctx<list<a>> ) : ctx<list<a>>
match xss
Cons(xs,xxs) -> flatten-td( xxs, append-td( xs, acc ) )
Nil -> acc

fbip fun flatten( xss : list<list<a>> ) : list<a>
flatten-td( xss, ctx _) ++. Nil

Since constructor contexts are first-class, we can return them from functions like append-td and

also store them as intermediate results. In the case of lists, they are an efficient implementation of

difference lists [Clark and Tärnlund 1977; Hughes 1986] and similar techniques can be used for

functions like filter, partition, zip, etc.

A.1 Union on Zip Trees
As another interesting example of the usefulness of first-class constructor contexts, we take a look

at the union operation on zip trees. A common imperative approach is to use an intermediate

array, but we would like to do this in an in-place divide-and-conquer style for optimal efficiency

[Adams 1993; Blelloch et al. 2016]. To do this we define a variant of the top-down find, which we

call split. This splits a tree at the insertion point for a key into three parts: the tree above the

insertion point as a context, and the unzipped smaller and bigger tree:

3
The flatten function is fbip (instead of fip) as it deallocates the Cons nodes of the outer list.
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fip(1) fun split( t : ztree, rank : rank, k : key, acc : ctx<ztree> ) : (ctx<ztree>,ztree,ztree)
match t

Node(rnk,l,x,r) | is-higher-rank( (rnk,x), (rank,k) )
-> if x < k then split(r, rank, k, acc ++ ctx Node(rnk,l,x,_))

else split(l, rank, k, acc ++ ctx Node(rnk,_,x,r))
Node(_,l,x,r)

-> if x == k then (acc,l,r)
else val (s,b) = unzip(t, k, ctx _, ctx _) in (acc,s,b)

Leaf -> (acc,Leaf,Leaf)

Note that we cannot quite (re)use this function for general insertion as it may deallocate a single

node if the key is already present (and for insertion we want to reuse such a node in-place and

thus need the specialized down function). Here we return the constructor context of the tree above

the insertion as a first-class result. We can now write an efficient in-place union function:

fbip fun union( t1 : ztree, t2 : ztree ) : ztree
match t1

Node(rnk,l1,x,r1) ->
val (top,l2,r2) = split( t2, rnk, x, ctx _ )
top ++. Node(rnk, union(l1,l2), x, union(r1,r2))

Leaf -> t2

Here we use split to split the second tree around the insertion point for x. Due to the fixed shape

of a zip tree (and having the rank being determined by the key), the new node is always of higher

rank than l1,l2 and r1,r2, and must come under top – and we can recursively construct the left- and

right tree as the union of l1,l2 and r1,r2 respectively. The union function is marked fbip [Lorenzen

et al. 2023b] as it does not allocate – but it is not quite fip as it may deallocate nodes that are in

both trees, and needs stack space linear in the depth of the first tree.
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B RECURSIVE SPLAY TREE INSERTION
We can obtain a recursive splay tree insertion algorithm by adding two extra rotations to the

unrolled version of move-to-root insertion as discussed in Section 5.1:

fun insert( t : tree, k : key )
match t

Node(l,x,r) ->
if x < k then match r

Node(rl,rx,rr) ->
if rx < k then match insert(rr,k)

Node(s,y,b) -> Node(Node(Node(l,x,rl),rx,s),y,b) // (A)
elif rx > k then match insert(rl,k)

Node(s,y,b) -> Node(Node(l,x,s),y,Node(b,rx,rr))
else Node(Node(l,x,rl),rx,rr)

Leaf -> Node(Node(l,x,Leaf),k,Leaf)
elif x > k then match l

Node(ll,lx,lr) ->
if lx < k then match insert(lr,k)

Node(s,y,b) -> Node(Node(ll,lx,s),y,Node(b,x,r))
elif lx > k then match insert(ll,k)

Node(s,y,b) -> Node(s,y,Node(b,lx,Node(lr,x,r))) // (B)
else Node(ll,lx,Node(lr,x,r))

Leaf -> Node(Leaf,k,Node(Leaf,x,r))
else Node(l,x,r)

Leaf -> Node(Leaf,k,Leaf)
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Definition heap_unzip_td : val :=
fun: (x, key, cur) {

var: accl := &(x->left) in (* ctx _ *)
var: accr := &(x->right) in
while: (cur != NULL) {
if: (cur->key < key) {
∗accl = cur;; (* accl ++ ctx ... Node(rnk,l,x,_) *)
repeat: { accl = &(cur->right);; cur = cur->right }
until: ((cur == NULL) || (cur->key >= key))

} else {
∗accr = cur;;
repeat: { accr = &(cur->left);; cur = cur->left }
until: ((cur == NULL) || (cur->key < key))

}
};;
∗accl = NULL;; (* accl ++. Leaf *)
∗accr = NULL

}.

Fig. 5. Our new formal unzip algorithm in AddressC as derived from the functional version on the left, versus
a screenshot of the unzip part of Tarjan, Levy, and Timmel’s algorithm on the right.

C PROVING ZIP TREES CORRECT
The published imperative top-down zip insertion algorithm is interesting as it uses a minimal

number of pointer assignments. However, as shown on the right side of Figure 5, it is not entirely

straightforward to understand as it uses nested iterations and uses a single pointer variable fix to

point to either the left- or right hole in each iteration. At the end of each outer iteration, we need

to test whether to update the left- or right child:

This test complicates the algorithm since it resolves differently in the first iteration (where fix = x)
than subsequent ones. But perhaps we can avoid such checks in the first-place?

What we can do instead is derive an imperative algorithm by manually “compiling” to AddressC

code and removing any checks and code that deal with reference counting and handling of shared

data. The listing on the left in Figure 5 shows the AddressC code that we have produced from our

functional top-down unzip-td function (in Section 6.1), next to a screenshot of the unzip part of

the algorithm by Tarjan, Levy, and Timmel [2021, Algorithm 2]. Our derived algorithm uses two

accumulator contexts, accl and accr, instead of a single fix variable, and there is no need for an

extra test at the end of each iteration. If we translate directly from our functional unzip-td, a context

composition such as accl ++ ctx Node(rnk,l,x,_) would actually become:

*accl = cur;; (* accl ++ ctx Node(rnk,l,x,_) *)
accl = &cur->right;;
cur = cur->right (* tail-call *)

without an inner repeat-until loop. However, while we traverse right children, where cur->key < key,

we would now update the right-child hole with same right tree address on each iteration! To

minimize the number of pointer assignments, we can instead construct a larger context as a chain
of right-child nodes as long as cur->key < key. In our algorithm in Figure 5 we use a nested iteration

to move the hole as far as possible along the right children:

*accl = cur;; (* accl ++ ctx Node(rnk1,l1,x1, ... Node(rnkN,lN,xN, _) ...) *)
repeat: {

accl = &cur->right;;
cur = cur->right

} until: ((cur == NULL) || (cur->key >= key))

This is an optimization that we cannot directly express on the functional side at this time. Gud-

jónsson and Winsborough [1999] have already studied a similar optimization in their work on
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compile-time reuse in Prolog. The same situation occurs in the ubiquitous map function (see Sec-

tion 2.4): if all nodes in the mapped list are reused, the tail of each Cons is overwritten with the

same tail address.

Just like the published algorithm by Tarjan, Levy, and Timmel, our final derived algorithm (shown

fully in Appendix E.4 in the tech report) now uses minimal pointer assignments, but it is shorter

with fewer tests and branches. Furthermore, we have a machine checked proof of its correctness:

Theorem 10. (Imperative top-down zip tree insertion is correct)
Lemma heap_zip_insert_td_correct (k rank : Z) (tv : val) (t : ziptree) :

{{{ is_ziptree t tv }}}
heap_zip_insert_td (ref tv) (ref #rank) (ref #k)
{{{ v, RET v; is_ziptree (zip_down_td t rank k Hole) v }}}.

There is no published bottom-up algorithm, but just as with the top-down version we can easily

derive an efficient bottom-up algorithm in AddressC from our functional version (Appendix E.5 in

the tech report) as well and prove this correct:

Theorem 11. (Imperative bottom-up zip tree insertion is correct)

Lemma heap_zip_insert_bu_correct (tv : val) (t : ziptree) (rank : Z) (k : Z) (zv : val) (z : zipper) :
{{{ is_ziptree t tv ∗ is_zipper z zv }}}
heap_zip_insert_bu (ref tv) (ref #rank) (ref #k) (ref zv)
{{{ v, RET v; is_ziptree (zip_down_bu t rank k z) v }}}.
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struct ctx_t { // a Minamide context
heap_block_t* root;
heap_block_t** hole;

};

struct ctx_t ctx_copy( struct ctx_t c ) {
struct ctx_t d = { .root = c.root, .hole = c.hole };
if( c.root == NULL ) return d;
heap_block_t** prev = &(c.root);
heap_block_t** next = &(d.root);

while( prev != c.hole ) {
*next = heap_block_copy( *prev );
prev = (*prev)->children + ((*prev)->ctx_path);
next = (*next)->children + ((*next)->ctx_path);

}
d.hole = next;
return d;

}

// (++.) : cctx<a,b> -> b -> a
heap_block_t* ctx_apply( struct ctx_t c1, heap_block_t* x )
{

// is c1 an empty context?
if (c1.root == NULL) return x;

// copy c1 ?
struct ctx_t d1 = (*c1.hole != HOLE ? ctx_copy(c1) : c1); // (A)

*d1.hole = x;
return d1.root;

}

// (++) : cctx<a,b> -> cctx<b,c> -> cctx<a,c>
struct ctx_t ctx_compose( struct ctx_t c1, struct ctx_t c2 )
{

// is c1 or c2 an empty context?
if (c1.root == NULL) return c2;
if (c2.root == NULL) return c1;

// copy c1 ?
struct ctx_t d1 = (*c1.hole != HOLE ? ctx_copy(c1) : c1 ); // (A)

// copy c2 ? (needed to avoid cycles)
struct ctx_t d2 = ((*c2.hole != HOLE || c1.hole == c2.hole) ? ctx_copy(c2) : c2 ); // (B)

*d1.hole = d2.root;
d1.hole = d2.hole;
return d1;

}

Fig. 6. Implementing constructor composition and application in the runtime system (for languages without
precise reference counts).

D IMPLEMENTING CONSTRUCTOR CONTEXTS
Figure 6 shows a partial implemention in C code of how one can implement constructor contexts in a

runtime for languages without precise reference counting. We assume that HOLE is the distinguished

value for unfilled holes (□). When we compose two contexts we need to ensure we can handle

shared contexts as well where we copy a context along the context path if needed (using ctx_copy).
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In the application and composition functions, the check (A) sees if the hole in c1 is already

overwritten (where *c1.hole != HOLE). In that case we copy c1 along the context path as shown in

Section 3.2.0.1 to maintain referential transparency.

However, in the composition operation we also need to do a similar check for c2 as well in order

to avoid cycles: the second check (B) checks if c2 has an already overwritten hole, but also if the

hole in c2 is the same as in c1. In either case, c2 is copied along the context path. Effectively, both

checks ensure that the new context that is returned always ends with a single fresh HOLE. Let’s

consider some examples of shared contexts. A basic example is a simple shared context, as in:

val c = ctx Cons(1,_) in (c ++. [2], c ++. [3])

which evaluates to ([1,2],[1,3]). Here, during the second application, check (A) ensures the shared

context c is copied such that the list [1,2] stays unaffected.

A more tricky example is composing a context with itself:

val c = ctx Cons(1,_) in (c ++ c) ++. [2]

which evaluates to [1,1,2]. The check (B) here copies the appended c (since c1.hole == c2.hole). In

this example the potential for a cycle is immediate, but generally it can be obscured with a shared

context inside another. Consider:

val c1 = ctx Cons(1,_)
val c2 = ctx Cons(2,_)
val c3 = ctx Cons(3,_)
val c = c1 ++ c2 ++ c3 in (c ++ c2) ++. [4]

which evaluates to [1,2,3,2,4]. The check (B) again copies the appended c2 in c ++ c2 (since

*c2.hole != HOLE).

Note that the (B) check in composition is sufficient to avoid cycles. In order to create a cycle

in the context path, either c1 must be in the context path of c2 (I), or the c2 in the context path

of c1 (II). For case (I), if c1 is at the end of c2, then their holes are at the same address where

c1.hole == c2.hole. Otherwise, if c1 is not at the end, then *c1.hole != HOLE and we have copied c1

already due to check (A). For case (II) the argument is similar: if c2 is at the end of c1 we again have

c1.hole == c2.hole, and otherwise *c2.hole != HOLE.

Languages with Precise Reference Counting. In a language with precise reference counts, we do

not need a distinguished value for holes, but copy contexts eagerly whenever they are shared. The

tests (A) and (B) become:

// copy c1 ?
struct ctx_t d1 = (!is_unique(c1.root) ? ctx_copy(c1) : c1 ); // (A)

// copy c2 ? (needed to maintain context paths where each node beside the root is unique)
struct ctx_t d2 = (!is_unique(c2.root) ? ctx_copy(c2) : c2 ); // (B)

This is the implementation that is used in the Koka runtime system. The (B) check here is required

to maintain the invariant that context paths always form unique chains [Leijen and Lorenzen 2023].

From this property it follows directly that no cycles can occur in the context path. However, the

implementations differ in their runtime performance characteristics:

(1) The append operation without reference counts (w/o/rc) only needs to copy the first context

when the hole is already filled. In contrast, the implementation with reference counts (w/rc)

copies the first context whenever its reference count is not one. This matters if we use

contexts to implement a backtracking search: We want to optimistically descend into our

current guess and only pay for the backtracking if our guess turned out to be false. The

implementation w/o/rc allows us to do that, while the implementation w/rc requires copies

all the way – after all, if our guess was wrong, we need to restore the original context (and

we have to keep a reference to it around for this reason, so its reference count is not one).
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(2) But the implementation of contexts w/o/rc can show worse space usage than the one w/rc.

Consider the case where the backtracking fails. In that case, we have a reference to our

preliminary context, with its hole containing our first, wrong result. This result is garbage

and should be cleaned up, but this will not be obvious to a garbage collector or reference

counting scheme. As such, in our next attempt, we will copy the context again, and release

our reference to the old context. This will cause the old context to be garbage collected

including the first result. In contrast, the implementation w/rc is garbage-free and will clean

up all data from the first attempt immediately (where the data we wish to keep has been

copied beforehand).
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Expressions:

e ::= v (value) v ::= x (variables)

| e e (application) | 𝜆x . e (functions)

| e ++ e (ctx composition) | Ck v1 . . . vk (constructor of arity k)
| e ++. e (ctx application) | ctx C (constructor contexts)

| let x = e in e (let binding)

| match e { p ↦→ e } (matching) p ::= Ck x1 . . . xk (pattern)

Constructor Contexts:

C ::= □ | Ck
i v1 . . . vi−1 C vi+1 . . . vk

Fig. 7. Syntax of a simple functional language with first-class constructor contexts

Evaluation order:

E : := □ | E e | v E | E ++ e | v ++ E | E ++. e | v ++. E
| let x = E in e | match E { p ↦→ e }

e1 −→ e2
E[e1] ↦−→ E[e2]

step

Context composition:

(hole) □[C2] = C2

(cons) (Ck
i v1 . . . vi−1 C1 vi+1 . . . vk) [C2] = Ck

i v1 . . . vi−1 C1 [C2] vi+1 . . . vk

Context application:

(hole) □[v] = v
(cons) (Ck

i v1 . . . vi−1 C1 vi+1 . . . vk) [v] = Ck v1 . . . vi−1 C1 [v] vi+1 . . . vk

Evaluation steps:

(app) (𝜆x . e) v −→ e[x:=v]
(let) let x = v in e −→ e[x:=v]
(comp) (ctx C1) ++ (ctx C2) −→ ctx C1 [C2]
(app) (ctx C1) ++. v −→ C1 [v]
(match) match (C v) { p ↦→ e } −→ ei [y:=v] with pi = C y

Fig. 8. Functional operational semantics.

D.1 Proof of soundness
We can prove that the implementation of constructor contexts in Figure 6 is correct by modeling

a simple language and heap in the style of the Perceus heap semantics [Lorenzen et al. 2023b;

Reinking, Xie et al. 2021]. In Figure 7, we model a simple, untyped functional language with let-

bindings, constructors and match-statements. This language is augmented by explicit constructor

contexts ctx C, where C is a constructor context with explicitly an annotated context path, as well

as context application and composition as defined in the paper.

In Figure 8, we give a small-step operational semantics for this language. This is entirely standard,

except for the rules for context composition and application, which are given in the middle of the

figure. They are defined inductively and quite similar to each other, with the only difference that

context composition preserves the context path while context application forgets it.

A heap maps variables to values, which are either constructors (with a context path hint i),
lambdas or minamide tuples. A minamide tuple models a context in the heap where the first entry

points to the root of the context, while the second entry points to the memory location containing
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Heap substitution:

[H]x ::= [H]x (if x ̸∈ H)
[H]x ::= Ck [H]x1 . . . [H]xk (if x ↦→Ck

i x1 . . . xk ∈ H)
[H]x ::= 𝜆y. [H − y]e (if x ↦→𝜆y. e ∈ H)
[H]x ::= ctx □ (if x ↦→{ □, □ } ∈ H)
[H]x ::= ctx [H]hr (if x ↦→{ r, h } ∈ H)

[H]hx ::= Ck
i [H]x1 . . . [H]xi−1 □ [H]xi+1 . . . [H]xk (else if x = h and x ↦→Ck

i x1 . . . xk ∈ H)
[H]hx ::= Ck

i [H]x1 . . . [H]xi−1 [H]hxi [H]xi+1 . . . [H]xk (else if x ≠ h and x ↦→Ck
i x1 . . . xk ∈ H)

Fig. 9. Heap substitution

the hole. In Figure 9, we define a heap substitution operation on variables. This is standard, except

for the substitution of contexts. We can extend the heap substitution to expressions [H]e = e′,
where e′ is the expression e with all free variables substituted according to H.

In Figure 10 we define a heap semantics for this language. We assume the presence of a garbage

collector and do not model heap cell removal. In this heap semantics, we allow the heap to contain

contexts in the form of a minamide tuple { r, h }, which points to the root r of the context and
the block containing the hole h. Unlike in the C code, h refers not to the memory cell containing

the pointer to the hole, but rather to the block which contains said memory cell. For example, we

model the context Cons x □ as c ↦→{h, h}, h ↦→Cons x □, that is, we fill the hole with the special

□ value, which is not bound in the heap otherwise. We represent an empty context as { □, □ }.
The (conh), (lamh), (leth), (apph) and (matchh) rules are standard. We can read a context value

into the heap by using the (holeh), (hconh), (cconh) and (ctxh) rules. Using the evaluation context

E, we descend into a given context and allocate the necessary cells, returning a minamide tuple.

The outer ctx keyword then allocates the minamide tuple on the heap.

Context application and composition are defined as in the example C code given above. We copy

the contexts if necessary by first reading them out of the heap as a heap substitution. In further

evaluation, the new context value will be read back into the heap as a fresh copy.

Proofs. Our most important, and perhaps surprising, lemma is that filling a hole in a constructor

does not change the result of a heap substitution. The core idea is that heap substitution never

encounters a hole itself: Since holes are not allowed in pure values, filling a hole can not influence

any pure values. The only place where holes can occur is in contexts, but the heap substitution of

contexts also does not consider holes and instead uses the h pointer from the minamide tuple to

discover where the “logical” hole is. The one exception to this are the holes in empty minamide

tuples, which are never filled. As such, filling a hole in a constructor does not change the result of a

heap substitution:

Lemma 2. (Filling holes does not change values)
If [H, h ↦→C x1 . . . □ . . . xn]e is a valid expression,

then [H, h ↦→C x1 . . . □ . . . xn]e = [H, h ↦→C x1 . . . x . . . xn]e.
Proof. By induction over the derivation of [H, h ↦→C x1 . . . □ . . . xn]e:
Case [H]x : := [H]x where x ̸∈ H: Then x continues not to be in H after filling the hole.

Case [H]x : := Ck [H]x1 . . . [H]xk where x ↦→Ck
i x1 . . . xk ∈ H: Assume that x = h. Then [H]xi = □.

But since□ is not part of the syntax for values and [H, h ↦→C x1 . . . □ . . . xn]e is a valid expression,
contradiction. Thus x ≠ h and the claim follows by induction.

Case [H]x : := 𝜆y. [H]e where x ↦→𝜆y. e ∈ H: Then x ≠ h and the claim follows by induction.
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H : := ∅ | H, x ↦→Ck
i x1 . . . xk | H, x ↦→𝜆y. e

| H, x ↦→{ r, h } (minamide tuple)

E : := □ | Ck x1 . . . E . . . vk | ctx E | Ck
i x1 . . . E . . . vk

| E e | x E | E ++ e | x ++ E | E ++. e | x ++. E
| let x = E in e | match E { p ↦→ e }

H | e −→h H′ | e′

H | E[e] ↦−→h H′ | E[e′]
eval

(conh) H | Ck x1 . . . xk −→h H, x ↦→Ck
1
x1 . . . xk | x (fresh x)

(lamh) H | 𝜆x . e −→h H, f ↦→𝜆x . e | f (fresh f )
(leth) H | let x = y in e −→h H | e[x:=y]
(apph) H | f y −→h H | e[x:=y] (f ↦→𝜆x . e ∈ H)
(matchh) H | match x {p → e} −→h H | ei [x:=y] (x ↦→Ck y ∈ H, pi = Ck x)
(holeh) H | □ −→h H | { □, □ }
(hconh) H | Ck

i x1 . . . {□, □} . . . xk −→h H, x ↦→Ck
i x1 . . . □ . . . xk | {x, x} (fresh x)

(cconh) H | Ck
i x1 . . . {r, h} . . . xk −→h H, x ↦→Ck

i x1 . . . r . . . xk | {x, h} (fresh x)
(ctxh) H | ctx { r, h } −→h H, c ↦→{ r, h } | c (fresh c)
(happh) H | c ++. x −→h H | x (if c ↦→{□, □} ∈ H)
(hcomph) H | c1 ++ c2 −→h H | c2 (if c1 ↦→{□, □} ∈ H)
(comphh) H | c1 ++ c2 −→h H | c1 (if c2 ↦→{□, □} ∈ H)
Assuming r ↦→Ck

i x1 . . . xk ∈ H:
(hcopyh) H | copy { r, h } −→h H | Ck

i x1 . . . □ . . . xk (r = h)
(ccopyh) H | copy { r, h } −→h H | Ck

i x1 . . . (copy { xi, h }) . . . xk (r ≠ h)
Assuming c ↦→{r, h} ∈ H:
(capph) H, h ↦→Ck

i x1 . . . □ . . . xk | c ++. x −→h H, h ↦→Ck
i x1 . . . x . . . xk | r

(capph) H | c ++. x −→h H | ctx (copy { r, h }) ++. x (else)

Assuming c1 ↦→{r1, h1}, c2 ↦→{r2, h2} ∈ H:
(ccomph) H, h1 ↦→Ck

i x1 . . . □ . . . xk | c1 ++ c2
−→h H, h1 ↦→Ck

i x1 . . . r2 . . . xk | ctx {r1, h2} (if h1 ≠ h2 and h2 ↦→Ck
i x1 . . . □ . . . xk ∈ H)

(ccomph) H, h1 ↦→Ck
i x1 . . . □ . . . xk | c1 ++ c2

−→h H, h1 ↦→Ck
i x1 . . . □ . . . xk | c1 ++ ctx (copy { r2, h2 }) (else, where h1 = h2)

(ccomph) H, h1 ↦→Ck
i x1 . . . v . . . xk | c1 ++ c2

−→h H, h1 ↦→Ck
i x1 . . . v . . . xk | ctx (copy { r1, h1 }) ++ c2 (else, where v ≠ □)

Fig. 10. Heap semantics

Case [H]x : := ctx □ where x ↦→{ □, □ } ∈ H: Then x ≠ h and the claim follows.

Case [H]x : := ctx [H]hr where x ↦→{ r, h′ } ∈ H: Then x ≠ h and the claim follows by induction.

Case [H]h′x : := Ck
i [H]x1 . . . [H]xi−1 □ [H]xi+1 . . . [H]xk where x = h′ and x ↦→Ck

i x1 . . . xk ∈ H:
Then the result of the heap substitution does not depend on the content of the ith child. As such,

both if x = h or x ≠ h, the claim follows by induction.

Case [H]h′x : := Ck
i [H]x1 . . . [H]xi−1 [H]h′xi [H]xi+1 . . . [H]xk where x ≠ h′ and x ↦→Ck

i x1 . . . xk ∈ H:
If x = h, then xi = □. But the heap substitution is not defined for [H]h′□, contradiction. Thus

x ≠ h and the claim follows by induction.

Our second helper lemma asserts that the heap semantics correctly reads pure values. This lemma

is standard, except for the case of reading contexts, where it follows by simple induction.
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Lemma 3. (Heap semantics can read values)
For any value v, H | v ↦−→∗

h H′ | x with [H′]x = [H]v.
Proof. By induction over v:
Case v = x: Then H | x ↦−→∗

h H | x and [H]x = [H]x.

Case v = Ck v1 . . . vk :
Hi | vi ↦−→∗

h Hi+1 | xi and [Hi]vi = [Hi+1]xi (1), inductive hypothesis (with H1 := H)
[H]vi = [Hi]vi (2), since dom(Hi) − dom(H) only contains fresh variables

[Hi+1]xi = [Hk+1]xi (3), since dom(Hk+1) − dom(Hi+1) only contains fresh variables

Hk+1 | Ck x1 . . . xk −→h Hk+1, x ↦→Ck
1
x1 . . . xk | x (4), by (conh)

H | Ck v1 . . . vk ↦−→∗
h Hk+1, x ↦→Ck

1
x1 . . . xk | x (5), by (1) and (4)

Case v = 𝜆y. e:
H | 𝜆y. e −→h H, x ↦→𝜆y. e | x (1), by (lamh)

Case v = ctx C: By induction on C.
Case C = □:

H | ctx □ ↦−→h H | ctx { □, □ } (1), by (□h)
H | ctx { □, □ } −→h H, c ↦→{ □, □ } | c (2), by (ctxh)
[H]c = ctx □ (3), by heap substitution

Case C = Ck
i v1 . . . vi−1 □ vi+1 . . . vk :

Hi | vi ↦−→∗
h Hi+1 | xi and [Hi]vi = [Hi+1]xi (1), inductive hypothesis (with H1 := H)

[H]vi = [Hi]vi (2), since dom(Hi) − dom(H) only contains fresh variables

[Hi+1]xi = [Hk+1]xi (3), since dom(Hk+1) − dom(Hi+1) only contains fresh variables

Hk+1 | Ck
i x1 . . . xi−1 { □, □ } xi+1 . . . xk −→h Hk+1, x ↦→Ck

i x1 . . . □ . . . xk | {x, x} (4), by (hconh)
Let H′

:= Hk+1, x ↦→Ck
i x1 . . . □ . . . xk (5), define

H′ | ctx { x, x } −→h H′, c ↦→{ x, x } | c (6), by (ctxh)
[H′, c ↦→{x, x}]c = ctx [H′]xx = ctx Ck

i [H′]x1 . . . [H′]xi−1 □ [H′]xi+1 . . . [H′]xk (7), by heap substitution

= ctx Ck
i v1 . . . vi−1 □ vi+1 . . . vk (8), by (1) and (3)

Case C = Ck
i v1 . . . vi−1 C′ vi+1 . . . vk :

Hi | vi ↦−→∗
h Hi+1 | xi and [Hi]vi = [Hi+1]xi (1), inductive hypothesis (with H1 := H)

[H]vi = [Hi]vi (2), since dom(Hi) − dom(H) only contains fresh variables

[Hi+1]xi = [Hk+1]xi (3), since dom(Hk+1) − dom(Hi+1) only contains fresh variables

Hk+1 | C′ −→h H′ | {r, h} (4), by inner inductive hypothesis

H′ | Ck
i x1 . . . xi−1 { r, h } xi+1 . . . xk −→h H′, x ↦→Ck

i x1 . . . r . . . xk | {x, h} (5), by (cconh)
Let H′′

:= H′, x ↦→Ck
i x1 . . . □ . . . xk (6), define

H′′ | ctx { r, h } −→h H′′, c ↦→{ r, h } | c (7), by (ctxh)
[H′′, c ↦→{r, h}]c = ctx [H′′]hr
= ctx Ck

i [H′′]x1 . . . [H′′]xi−1 [H′′]hxi [H′′]xi+1 . . . [H′′]xk (8), by heap substitution

= ctx Ck
i v1 . . . vi−1 C′ vi+1 . . . vk (9), by (1), (3) and (5)

Our main lemma is now that our heap semantics can progress whenever the operational semantics

can progress. Thanks to the two helper lemmas above, this proof is now relatively simple. Our main

effort lies in proving that context composition and application return the right values, as discussed

earlier for the pseudo-code.

Lemma 4. (Heap semantics can progress (one step))
If [H]e −→ e′, then H | e −→∗

h H′ | e′′ with [H′]e′′ = e′.
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Proof. By cases of [H]e −→ e′:
Case (app) : [H]e = (𝜆x . e′) v −→ e′ [x:=v]
H | e ↦−→∗ H′ | f y and [H′] (f y) = [H]e (1), by lemma 3

H′ | f y −→ H′ | e′′ [x:=y] (2), by (lamh) where f ↦→𝜆x . e.′′ ∈ H
[H′] (e′′ [x:=y]) = ( [H′ − x]e′′) [x:=( [H′]y)] (3), since substitution commutes

= ( [H − x]e′′) [x:=( [H′]y)] (4), since dom(H′) − dom(H) fresh
= e′ [x:=v] (5), by (1)

Case (let) : [H]e = let x = v in e′ −→ e′ [x:=v]
H | e ↦−→∗ H′ | let x = y in e′′ and [H′]y = v (1), by lemma 3 where [H − x]e′′ = e′

H′ | let x = y in e′′ −→ H′ | e′′ [x:=y] (2), by (leth)
[H′] (e′′ [x:=y]) = ( [H′ − x]e′′) [x:=( [H′]y)] (3), since substitution commutes

= ( [H − x]e′′) [x:=( [H′]y)] (4), since dom(H′) − dom(H) fresh
= e′ [x:=v] (5), by (1)

Case (match) : [H]e = match (C v) { p ↦→ e′ } −→ e′i [x:=v]
H | e ↦−→∗ H′ | match x { p ↦→ e′′ } and [H′]x = C v (1), by lemma 3 where [H − x]e′′ = e′

H′ | match x { p ↦→ e′′ } −→ H′ | e′′i [x:=y] (2), by (matchh) where x ↦→Ck y ∈ H, pi = Ck x
[H′] (e′′i [x:=y]) = ( [H′ − x]e′′i ) [x:=( [H′]y)] (3), since substitution commutes

= ( [H − x]e′′) [x:=( [H′]y)] (4), since dom(H′) − dom(H) fresh
= e′ [x:=v] (5), by (1) and (2)

Case (app) : [H]e = (ctx C) ++. v −→ C[v]
H | e ↦−→∗ H′ | c ++. x and [H′] (c ++. x) = [H]e (1), by lemma 3

Case C = □:

[H′]c = { □, □ } (2), by (1)

H′ | c ++. x −→h H′ | x (3), by (2) and (happh)
[H′]x = v = □[v] (4), by (1)

Case C ≠ □:

[H′]c = { r, h } (2), by (1)

[H′]hr = C (3), by (1)

h ↦→Ck
i x1 . . . y . . . xk ∈ H′

(4), by (3)

Assume that y ≠ □ (5)

H′ | c ++. x −→h H′ | ctx (copy { r, h }) ++. x (6), by (capph) and (5)

H′ | ctx (copy { r, h }) ++. x −→h H′′ | c′ ++. x and [H′′]c′ = ctx C (7), by (3) and 3

Then y = □ (8), if (5) was false or by (7)

Let H1, h ↦→Ck
i x1 . . . □ . . . xk = H′

(9), define

H1, h ↦→Ck
i x1 . . . □ . . . xk | c ++. x −→h H1, h ↦→Ck

i x1 . . . x . . . xk | r (10), by (capph)
[H1, h ↦→Ck

i x1 . . . x . . . xk]r
= ( [H1, h ↦→Ck

i x1 . . . x . . . xk]hr) [( [H1, h ↦→Ck
i x1 . . . x . . . xk]x)] = C[v] (11), by (1),(3)

Case (comp) : [H]e = (ctx C1) ++ (ctx C2) −→ ctx C1 [C2]
H | e ↦−→∗ H′ | c1 ++ c2 and [H′] (c1 ++ c2) = [H]e (1), by lemma 3

Case C1 = □:

[H′]c1 = { □, □ } (2), by (1)

H′ | c1 ++ c2 −→h H′ | c2 (3), by (2) and (hcomph)
[H′]c2 = ctx C2 = ctx □[C2] (4), by (1)
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Case C2 = □:

[H′]c2 = { □, □ } (2), by (1)

H′ | c1 ++ c2 −→h H′ | c1 (3), by (2) and (comphh)
[H′]c1 = ctx C1 = ctx C1 [□] (4), by (1)

Case C1, C2 ≠ □:

[H′]c1 = { r1, h1 } (2), by (1)

[H′]c2 = { r2, h2 } (3), by (1)

[H′]h1r1 = C1 (4), by (1)

[H′]h2r2 = C2 (5), by (1)

h1 ↦→Ck
i x1 . . . y . . . xk ∈ H′

(6), by (4)

Assume that y ≠ □ (7)

H′ | c1 ++ c2 −→h H′ | ctx (copy { r1, h1 }) ++ c2 (8), by (ccomph) and (7)

H′ | ctx (copy { r1, h1 }) ++ c2 ↦−→h H′′ | c′
1
++ c2 and [H′′]c′

1
= ctx C1 (9), by (4) and 3

Then y = □ (10), if (7) was false or by (9)

Let H1, h1 ↦→Ck
i x1 . . . □ . . . xk = H′

(11), define

Assume that h1 = h2 or h2 ↦→Ck
i x1 . . . y . . . xk ∈ H and y ≠ □ (12)

H′ | c1 ++ c2 −→h H′ | c1 ++ ctx (copy { r2, h2 }) (13), by (ccomph) and (12)

H′ | c1 ++ ctx (copy { r2, h2 }) ↦−→h H′′ | c1 ++ c′
2
and [H′′]c′

2
= ctx C2 (14), by (5) and 3

Then h1 ≠ h2 and h2 ↦→Ck
i x1 . . . □ . . . xk ∈ H′

(15), if (10) was false or by (14)

H1, h1 ↦→Ck
i x1 . . . □ . . . xk | c1 ++ c2 −→h H1, h1 ↦→Ck

i x1 . . . r2 . . . xk | ctx { r1, h2 } (16), by (ccomph)
[H1, h1 ↦→Ck

i x1 . . . r2 . . . xk]h2r2 = ctx C2 (17), by (5), Lemma 2

[H1, h1 ↦→Ck
i x1 . . . r2 . . . xk]h2h1 = ctx Ck

i x1 . . . C2 .. xk (18), by (17) and h1 ≠ h2
h2 is not on the context path of C1 since h2 ↦→Ck

i x1 . . . □ . . . xk ∈ H′
(19), by (15)

[H1, h1 ↦→Ck
i x1 . . . r2 . . . xk]h2r1 = ctx C1 [C2] (20), by (18) and (19)

Finally, our main lemma is that our heap semantics can progress whenever the operational semantics

can progress. Note that we need no preservation lemma for soundness here, since any heap for

which the heap substitution [H]e succeeds is already sufficiently well-formed.

Theorem 12. (The heap semantics can progress)
If [H]e ↦−→∗ v implies H | e ↦−→∗

h H′ | x where [H′]x = v.
Proof. By induction over e ↦−→∗ v:
Case Base case e = v: By lemma 3.

Case Inductive case E[e] ↦−→ E′ [e′] ↦−→∗ v:
H | e −→∗

h H′ | e′′ and [H′]e′′ = e′ (1), by 4

H | E[e] ↦−→∗
h H′ | E[e′′] and [H′]E = E′ (2), by (1) and 2

[H′]e′′ ↦−→∗ v (3), by assumption and equality of (2)

H′ | e′′ ↦−→∗
h H′′ | x and [H′′]x = v (4), by inductive hypothesis

H | e ↦−→∗
h H′′ | x and [H′′]x = v (5), by (2) and (4)
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E FORMAL ADDRESSC IMPLEMENTATIONS
This appendix shows the formalized AddressC versions of various published insertion algorithms

that we have proven correct with respect to the corresponding functional versions in this paper.

The top-down move-to-root insertion by Stephenson [1980] is already shown in Figure 2 (Sec-

tion 4). The top-down splay tree insertion by Sleator and Tarjan [1985] is again almost line-by-line

equal to the published algorithm. Minor deviations arise from the fact that we split the simultaneous

assignment in the rotate and link functions into several single assignments (like a C programmer

would do), that we use two contexts lctx and rctx instead of the equivalent sentinels left(null)

and right(null), and that we add extra cases to the heap_splay_insert_td function to handle the case

where the key is already present in the tree.

The bottom-up splay tree insertion follows the same structure as the published, imperative

algorithm. But it is not line-by-line equal as we implement the procedure using pointer reversal.

However, this highlights the similarity to zippers and is an equally valid implementation strategy;

after all, Sleator and Tarjan [1985] introduce bottom-up splay trees as follows:

Splaying, as we have defined it, occurs during a second, bottom-up pass over an access path.

Such a pass requires the ability to get from any node on the access path to its parent. To

make this possible, we can save the access path as it is traversed (either by storing it in an

auxiliary stack or by using “pointer reversal” to encode it in the tree structure), or we can

maintain parent pointers for every node in the tree.

Finally, bottom-up move-to-root and bottom-up zip-tree insertion were not described in pseudo-

code, but our implementation is idiomatic for the pointer-reversal approach.

E.1 Bottom-Up Move-To-Root Tree Insertion
The formalized bottom-up move-to-root algorithm as described by Allen and Munro [1978].

Notation "e ’->tag’" := (Load (e%E +I #0%nat)) (at level 20) : expr_scope.
Notation "e ’->left’" := (Load (e%E +I #1%nat)) (at level 20) : expr_scope.
Notation "e ’->key’" := (Load (e%E +I #2%nat)) (at level 20) : expr_scope.
Notation "e ’->right’" := (Load (e%E +I #3%nat)) (at level 20) : expr_scope.

Definition rotate_right :=
fun: ( t ) {

var: l := t->left in
var: lr := l->right in
t->left = lr;;
l->right = t;;
t = l

}.

Definition rotate_left :=
fun: ( t ) {

var: r := t->right in
var: rl := r->left in
t->right = rl;;
r->left = t;;
t = r

}.
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Definition heap_mtr_rebuild :=
fun: ( zipper’ , tree’ ) {

while: ( true ) {
if: ( zipper’ == NULL ) { break } else {

if: ( zipper’->tag == #1 ) {
var: up := zipper’->left in
zipper’->left = tree’;;
rotate_right (&zipper’);;
zipper’ = up

} else {
var: up := zipper’->right in
zipper’->tag = #1;; (* set tag from NodeR to Node *)
zipper’->right = tree’;;
rotate_left (&zipper’);;
zipper’ = up

} } };; ret: tree’
}.

Definition heap_mtr_insert_bu :=
fun: ( i, tree’ ) {

var: zipper’ := NULL in
while: ( true ) {

if: ( tree’ == NULL ) {
tree’ = AllocN #4 NULL;;
tree’->tag = #1;;
tree’->key = i;;
break

} else {

if: ( i == tree’->key) {
break

} else {
var: tmp := NULL in
(if: ( i < tree’->key) {

tmp = tree’->left;;
tree’->left = zipper’

} else {
tmp = tree’->right;;
tree’->tag = #2;;
tree’->right = zipper’

});;
zipper’ = tree’;;
tree’ = tmp

} } };;

ret: ( heap_mtr_rebuild (&zipper’) (&tree’) )
}.

E.2 Bottom-Up Splay Insertion
The bottom-up splay tree insertion as shown by Sleator and Tarjan [1985] (Section 4, page 666).

Notation "e ’->tag’" := (Load (e%E +I #0%nat)) (at level 20) : expr_scope.
Notation "e ’->left’" := (Load (e%E +I #1%nat)) (at level 20) : expr_scope.
Notation "e ’->key’" := (Load (e%E +I #2%nat)) (at level 20) : expr_scope.
Notation "e ’->right’" := (Load (e%E +I #3%nat)) (at level 20) : expr_scope.
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Definition rotate_right : val :=
fun: ( z, t ) {

var: tmp := z->left in
z->tag = #1;;
z->left = t->right;;
t->right = z;;
z = tmp

}.

Definition rotate_left : val :=
fun: (z, t) {

var: tmp := z->right in
z->tag = #1;;
z->right = t->left;;
t->left = z;;
z = tmp

}.

Definition heap_splay_rebuild : val :=
fun: (px, x) {

while: ( true ) {
if: (px == NULL) {

break
} else {

if: (px->tag == #1) {
var: gx := px->left in
if: (gx == NULL) {

rotate_right (&px) (&x)
} else {

if: (gx->tag == #1) {
rotate_right (&gx) (&px);;
rotate_right (&px) (&x);;
px = gx

} else {
rotate_right (&px) (&x);;
rotate_left (&px) (&x)

}
}

} else {
var: gx := px->right in
if: (gx == NULL) {

rotate_left (&px) (&x)
} else {

if: (gx->tag == #1) {
rotate_left (&px) (&x);;
rotate_right (&px) (&x)

} else {
rotate_left (&gx) (&px);;
rotate_left (&px) (&x);;
px = gx

}
}

}
}

};;
ret: x

}.
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Definition heap_splay_insert_bu : val :=
fun: ( i, tree’ ) {

var: zipper’ := NULL in
while: ( true ) {

if: ( tree’ == NULL ) {
tree’ = (AllocN #4 NULL);;
tree’->tag = #1;;
tree’->key = i;;
break

} else {
if: ( i == tree’->key ) {

break
} else {

var: tmp := NULL in
(if: ( i < tree’->key ) {

tmp = tree’->left;;
tree’->left = zipper’

} else {
tmp = tree’->right;;
tree’->tag = #2;;
tree’->right = zipper’

});;
zipper’ = tree’;;
tree’ = tmp

}
}

};;
ret: heap_splay_rebuild (&zipper’) (&tree’)

}.

E.3 Top-Down Splay Insertion
The top-down splay tree insertion as shown by Sleator and Tarjan [1985] (Section 4, page 669).

Notation "e ’->left’" := (Load (e%E +I #0%nat)) (at level 20) : expr_scope.
Notation "e ’->key’" := (Load (e%E +I #1%nat)) (at level 20) : expr_scope.
Notation "e ’->right’" := (Load (e%E +I #2%nat)) (at level 20) : expr_scope.

Definition rotate_right : val :=
fun: ( tree’ ) {

var: l := tree’->left in
tree’->left = l->right;;
l->right = tree’;;
tree’ = l

}.

Definition rotate_left : val :=
fun: ( tree’ ) {

var: r := tree’->right in
tree’->right = r->left;;
r->left = tree’;;
tree’ = r

}.

Definition link_left : val :=
fun: ( tree’, lhole ) {

∗lhole = tree’;;
lhole = &(tree’->right);;
tree’ = tree’->right

}.
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Definition link_right : val :=
fun: ( tree’, rhole ) {

∗rhole = tree’;;
rhole = &(tree’->left);;
tree’ = tree’->left

}.

Definition assemble : val :=
fun: ( tree’, lhole, rhole, lctx, rctx ) {

∗lhole = tree’->left;;
∗rhole = tree’->right;;
tree’->left = lctx;;
tree’->right = rctx

}.

Definition heap_splay_insert_td : val :=
fun: ( i, tree’ ) {

var: lctx := NULL in
var: rctx := NULL in
var: lhole := &lctx in
var: rhole := &rctx in
while: ( true ) {

if: (tree’ != NULL) {
if: ( i == tree’->key) {

break
} else {

if: ( i < tree’->key) {
if: (tree’->left != NULL) {

if: ( i == tree’->left->key) {
link_right (&tree’) (&rhole);;
break

} else {
if: ( i < tree’->left->key) {

rotate_right (&tree’);;
link_right (&tree’) (&rhole)

} else {
link_right (&tree’) (&rhole);;
link_left (&tree’) (&lhole)

}
}

} else {
var: l := tree’->left in
l = AllocN #3 NULL;;
l->key = i;;
l->right = tree’;;
tree’ = l;;
break

}
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} else {
if: (tree’->right != NULL) {

if: ( i == tree’->right->key) {
link_left (&tree’) (&lhole);;
break

} else {
if: ( i > tree’->right->key) {

rotate_left (&tree’);;
link_left (&tree’) (&lhole)

} else {
link_left (&tree’) (&lhole);;
link_right (&tree’) (&rhole)

}
}

} else {
var: r := tree’->right in
r = AllocN #3 NULL;;
r->left = tree’;;
r->key = i;;
tree’ = r;;
break

}
}

}
} else {

tree’ = AllocN #3 NULL;;
tree’->key = i;;
break

}
};;
assemble (&tree’) (&lhole) (&rhole) (&lctx) (&rctx);;
ret: tree’

}.

E.4 Derived Top Down Zip Tree Insertion
This is our new top-down zip tree insertion as derived from the functional top-down algorithm in

Section 6.1 and C.

Notation "e ’->rank’" := (Load (e%E +I #0%nat)) (at level 20) : expr_scope.
Notation "e ’->left’" := (Load (e%E +I #1%nat)) (at level 20) : expr_scope.
Notation "e ’->key’" := (Load (e%E +I #2%nat)) (at level 20) : expr_scope.
Notation "e ’->right’" := (Load (e%E +I #3%nat)) (at level 20) : expr_scope.

Definition heap_is_higher_rank : val :=
rec: "is_higher_rank" "rk1" "rk2" "x1" "x2" :=

("rk2" < "rk1") || (("rk1" == "rk2") && ("x1" < "x2")).
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Definition heap_unzip_td : val :=
fun: (x, key, cur) {

var: accl := &(x->left) in (* ctx _ *)
var: accr := &(x->right) in
while: (cur != NULL) {

if: (cur->key < key) {
∗accl = cur;; (* accl ++ ctx ... Node(rnk,l,x,_) *)
repeat: { accl = &(cur->right);; cur = cur->right }
until: ((cur == NULL) || (cur->key >= key))

} else {
∗accr = cur;;
repeat: { accr = &(cur->left);; cur = cur->left }
until: ((cur == NULL) || (cur->key < key))

}
};;
∗accl = NULL;; (* accl ++. Leaf *)
∗accr = NULL

}.

Definition heap_zip_insert_td : val :=
fun: ( root, rank, key ) {

var: cur := root in
var: prev := &root in
while: ( (cur != NULL) && heap_is_higher_rank (cur->rank) rank (cur->key) key ) {

if: ( cur->key < key ) { prev = &(cur->right);; cur = cur->right }
else { prev = &(cur->left) ;; cur = cur->left }

};;
if: ( (cur != NULL) && (cur->key == key) ) {

ret: root
} else {

var: x := AllocN #4 cur in
x->rank = rank;;
x->key = key;;
∗prev = x;;
heap_unzip_td (&x) (&key) (&cur);;
ret: root

}
}.

E.5 Derived Bottom-Up Zip Tree Insertion
This is bottom-up zip tree insertion as derived from the functional bottom-up algorithm in Section 6.2

and C.

Notation "e ’->tag’" := (Load (e%E +I #0%nat)) (at level 20) : expr_scope.
Notation "e ’->rank’" := (Load (e%E +I #1%nat)) (at level 20) : expr_scope.
Notation "e ’->left’" := (Load (e%E +I #2%nat)) (at level 20) : expr_scope.
Notation "e ’->key’" := (Load (e%E +I #3%nat)) (at level 20) : expr_scope.
Notation "e ’->right’" := (Load (e%E +I #4%nat)) (at level 20) : expr_scope.

Definition heap_is_higher_rank : val :=
rec: "is_higher_rank" "rk1" "rk2" "x1" "x2" :=

("rk2" < "rk1") || (("rk1" == "rk2") && ("x1" < "x2")).
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Definition heap_rebuild : val :=
fun: ( zipper’, tree’ ) {

while: ( true ) {
if: ( zipper’ == NULL ) {

break
} else {

if: (zipper’->tag == #1) {
var: tmp := zipper’->left in
zipper’->left = tree’;;
tree’ = zipper’;;
zipper’ = tmp

} else {
var: tmp := zipper’->right in
zipper’->tag = #1;;
zipper’->right = tree’;;
tree’ = zipper’;;
zipper’ = tmp

}
}

};;
ret: tree’

}.

Definition heap_unzip_bu : val :=
fun: ( tree’, k ) {

var: zs := NULL in
var: zb := NULL in
while: ( true ) {

if: (tree’ == NULL) {
break

} else {
if: (tree’->key < k) {

var: tmp := tree’->right in
tree’->tag = #2;;
tree’->right = zs;;
zs = tree’;;
tree’ = tmp

} else {
var: tmp := tree’->left in
tree’->left = zb;;
zb = tree’;;
tree’ = tmp

}
}

};;
ret: Pair (heap_rebuild (&zs) (ref NULL)) (heap_rebuild (&zb) (ref NULL))

}.
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Definition heap_zip_insert_bu : val :=
fun: ( tree’, rank, k, acc ) {

while: ( true ) {
if: (tree’ == NULL) {

tree’ = AllocN #5 NULL;;
tree’->tag = #1;;
tree’->rank = rank;;
tree’->key = k;;
break

} else {
if: ( heap_is_higher_rank (tree’->rank) rank (tree’->key) k ) {

if: (tree’->key < k) {
var: tmp := tree’->right in
tree’->tag = #2;;
tree’->right = acc;;
acc = tree’;;
tree’ = tmp

} else {
var: tmp := tree’->left in
tree’->left = acc;;
acc = tree’;;
tree’ = tmp

}

} else {
if: (tree’->key == k) {

break
} else {

var: tmp := heap_unzip_bu (ref tree’) (ref k) in
tree’ = AllocN #5 NULL;;
tree’->tag = #1;;
tree’->rank = rank;;
tree’->left = Fst tmp;;
tree’->key = k;;
tree’->right = Snd tmp;;
break

}
}

}
};;
ret: heap_rebuild (&acc) (&tree’)

}.
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