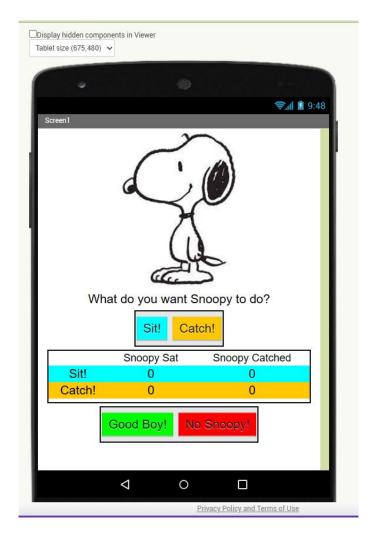
Physical Computing with App Inventor

David Kim


App Inventor

A **free open-source** web platform that allows young people to create mobile applications.

Backed by **10+ years of research** from MIT and Google.

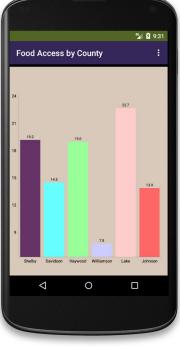
After just 1 year of learning, engages students as creators of technology, not just consumers.

Helps students activate **effective change** in their communities.

Cutebot Demo

Sensor

Internet of Things

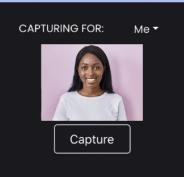

Senso	C
-------	---

Internet of Things

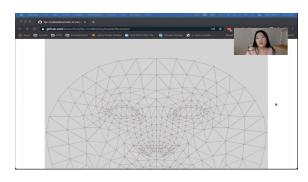
Data Science

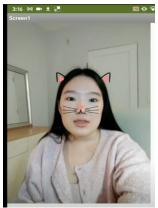
MIT App Inventor's Mobile Data Science Toolkit

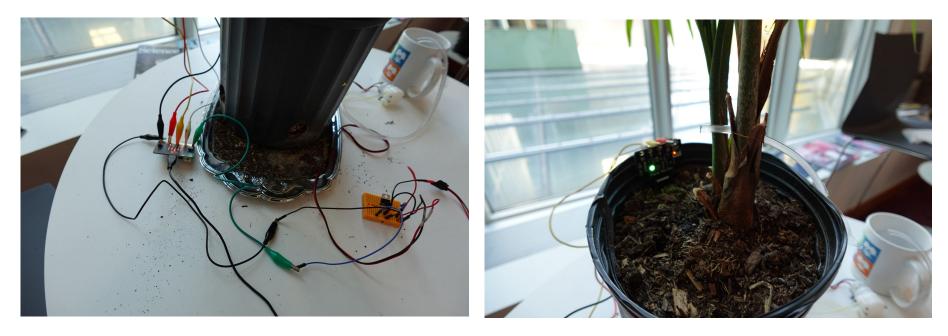
RAISE Initiative Responsible AI for Social Empowerment and Education


<u>https://drive.google.com/drive/folders/1MfFAdQqUjfiLsq</u> jXcwj0xeUjB6qnBpwC

	Recognition/Classification
Brain	
Canaar	Internet of Things
Sensor	
	Data Science







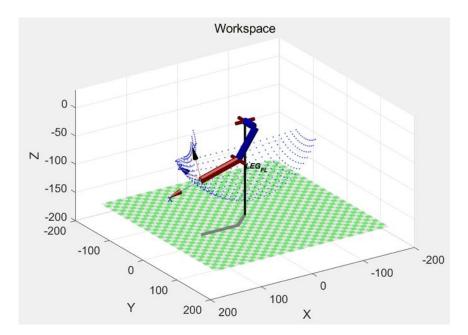
	Recognition/Classification
Brain	Conversational AI
Sensor	Internet of Things
	Data Science

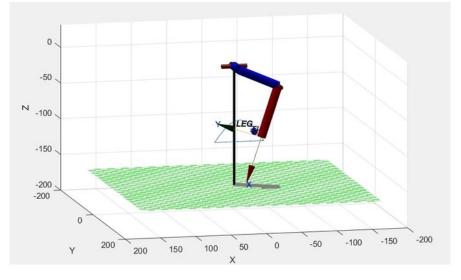
Plant GPT

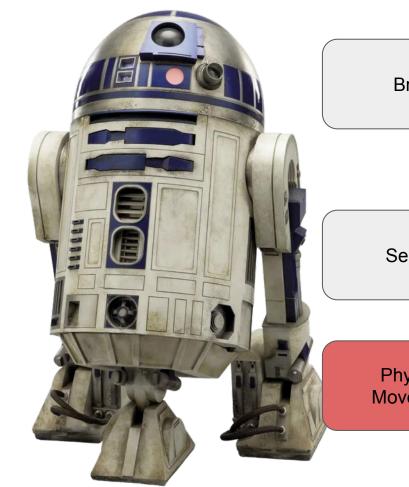
Plant GPT

	Recognition/Classification
Brain	Conversational AI
)	
	Reinforcement Learning
Sensor	Internet of Things
	Data Science

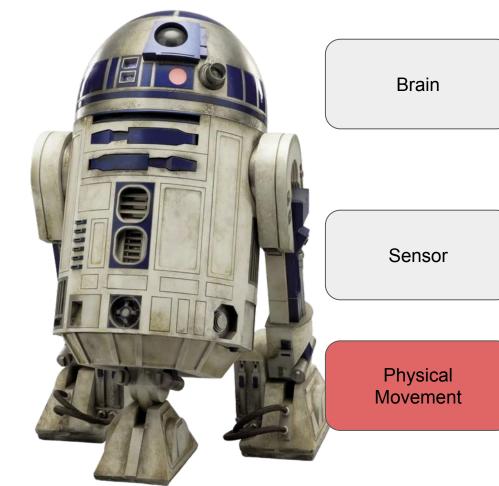
XGO Demo






	Recognition/Classification
Brain	Conversational AI
	Reinforcement Learning
Sensor	Internet of Things
Sensor	Data Science
Physical Movement	

	Recognition/Classification
Brain	Conversational AI
	Reinforcement Learning
Sensor	Internet of Things
	Data Science
Physical	Mechanics
Movement	



	Recognition/Classification
rain	Conversational AI
	Reinforcement Learning
ensor	Internet of Things
	Data Science
/sical	Mechanics
ement	Materials

Drone

Recognition/Classification
Conversational AI
Reinforcement Learning
Internet of Things
Data Science
Mechanics
Materials
Building Robot

Plant GPT

VIEWPOINT

From Computational Thinking to Computational Action

-

By Mike Tissenbaum, Josh Sheldon, Hal Abelson Communications of the ACM, March 2019, Vol. 62 No. 3, Pages 34-36 10.1145/3265747 Comments

VIEWAS: 🖳 🔲 🐽 📰 SHARE: 🔽

Credit: Boyko Pictures

Computational action, a new framing for computing education, proposes that while learning about computing, young people should also have opportunities to create with computing that have direct impact on their lives and their communities. In this Viewpoint, we outline two key dimensions of computational action—computational identity and digital empowerment—and further argue that by focusing on computational action in addition to computational thinking, we can make computing education more inclusive, motivating, and empowering for young learners. Learners have the capacity to develop computational products that can have authentic impact in their lives from the moment they begin learning to code, all they need is to be situated in contexts that allow them to do so.

+

in

0

Too often, K-12 computing education has been driven by an

emphasis on kids learning the "fundamentals" of programming. Even more progressive CS education that centers around the development of learners' computational thinking has largely focused on learners understanding the nuanced elements of computation, such as variables, loops, conditionals, parallelism,

operators, and data handling.¹⁰ This initial focus on the concepts and processes of computing, leaving realworld applications for "later" runs the risk of making learners feel that computing is not important for them to learn. It begs the question far too many math or physics students have asked, "When will we use this in our lives?"¹ ..., young people should also have opportunities to create with computing that have direct impact on their lives and their communities. ...

Computational Action

Robotic Rover for Chemical Sensing

