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Paradigm Shift of Computer Programs

• A novel type of program (LLM + Code) are shaping the future 
• Ability of understanding semantics beyond bits

• Complex planning

Gartner Trending Questions 
About Generative AI 2024

Increased Adoption of GenAI in 
production
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Paradigm Shift of Computer Programs

• A novel type of program (LLM + Code) are shaping the future 
• Ability of understanding semantics beyond bits

• Complex planning

Hot!
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Diverse Workflows of LLM Apps (or Agents)

• High-quality LLM apps often need multiple LLM requests to
collaborate in different workflows
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From the view of Multi-tenant LLM Services

Public LLM Services
(e.g., Azure, OpenAI)

• Face a lot of independent prompt requests through OpenAI-style APIs

Prompt

Prompt

Prompt

Prompt

Prompt

Prompt
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Prompt

Prompt
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From the view of Multi-tenant LLM Services

Public LLM Services
(e.g., Azure, OpenAI)
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No knowledge about 
Type of Applications
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From the view of Multi-tenant LLM Services

Public LLM Services
(e.g., Azure, OpenAI)

• Face a lot of independent prompt requests through OpenAI-style APIs

Prompt

Prompt

Prompt

Prompt

PromptPrompt

Prompt

Prompt
Prompt

Prompt

Prompt

No knowledge about 
Request Dependencies
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Problems of Lacking Application Knowledge

High Excessive Latency
• 50~70% Non-GPU Time

• High Internet Latency
• Excessive Queuing Delay

8

Public LLM Services
(e.g., Azure, OpenAI)

Step 1

Step 2

Step 3

Step 4

Internet Multi-Request App has to use chatty submission



Problems of Request-centric LLM APIs

Misaligned
Scheduling Objectives

Small Batch Size for Low Per-Request Latency Large Batch Size for Map Stage
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Problem of Unknown Prompt Structure

Public LLM Services
(e.g., Azure, OpenAI)

• Existing LLM services receive ”rendered” prompt without structure info

Prompt

No knowledge about 
Shared Prompt Structure

Role Definition

Few-shot Examples

User Query

Prompt

Prompt

Same for all user 
queries
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Some apps use same prompt prefix for different user queries



Many Optimizations Not Applicable in Public LLM Services

• Public LLM Services face diverse applications

• Although there have some system optimizations
• Sticky routing, DAG Scheduling, Prefix Sharing, ……

• But lacking essential information about applications 
• Have to blindly use a universal treatment for all requests
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Our Goals in Parrot

• A unified abstraction to expose application-level knowledge

• Uncover correlation of multiple requests

• End-to-end optimization of LLM applications
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Insight from Prompt Engineering

• Developers usually use prompt template to program LLM apps

• {{Placeholders}} are often used for inputs/outputs

You are expert QA engineer, given code for {{input:task}}
{{input:code}}
Your write test cases: {{output:test}}

You are an expert software engineer
Write the python code of {{input:task}}
Your Code: {{output:code}}
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Key Abstraction: Semantic Variables

Semantic Variables
Data pipe that connects 

multiple LLM calls
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Semantic Variables in Parrot Front-end

PromptInput: task
Output: code

Input: task
Input: code

Output: test

w/ Semantic Variables as Placeholders

Prompt

Data pipeline by connecting LLM Requests 
using Semantic Variables

Performance Criteria
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Exposing Semantic Variable to Parrot LLM Service

Semantic Variable brings:

- DAG construction between requests

- Prompt structure analysis

- Data pipelining between requests

…

task

code

WritePythonCode

WriteTestCode

test

Cloud
LLM

Service
LLM requests

APIs w/ 
Semantic Variable

Parrot Overview
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Optimization: App-centric Scheduling

• With DAG of application requests & E2E requirement

• Derive the performance requirement of each LLM call

From the DAG, derive requests can be executed in parallel
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Evaluation: Chain/Map-Reduce Summary

Chain Summary Map-Reduce Summary
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Optimization: Multi-app Serving

• Public LLM Service w/ apps with different performance criteria

19

Chatbot: Low Latency Data Analytics: High Throughput

Batch Size Small Large

Conflict when scheduled to the same GPU engine



Optimization: Multi-app Serving

• Public LLM Service w/ apps with different performance criteria
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Parrot can derive request-level scheduling goal 
from end-to-end requirement

Chat Prompt

response.get(perf=LATENCY)

Response

response.get(perf=LATENCY)

Chunk 1 Chunk 2 Chunk 3 High Throughput

Response

Chatbot: Low Latency Data Analytics: High Throughput

Batch Size Small Large

Application
DAG



Evaluation: Scheduling Mixed Workloads

• Mixed workloads 
• Map-reduce Summary

• Latency-sensitive Chat Slow Chat Decode!
Slow JCT of both Tasks!
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Chat
E2E Latency

Chat
Per-token Latency

Summary
JCT



Evaluation: Scheduling Mixed Workloads

• Mixed workloads 
• Map-reduce Summary

• Latency-sensitive Chat
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Chat
E2E Latency

Chat
Per-token Latency

Summary
JCT

Parrot achieves low latency and high-
throughput for both apps



Optimization: Sharing Prompt Prefix

• With prompt structure, Parrot can automatically detect shared prefix

• Optimized CUDA Kernel
• Two-phase attention: avoid recomputing and reloading shared prefix

Your are expert of {task}, here are some examples: {example}, your 
response: {response}

Prefix 1 Prefix 2

Standard Attention Our Algorithm

Step 1: FlashAttention Step 2: PagedAttention
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Q

Key Value Tokens



Evaluation: Popular Apps (Bing Copilot, GPTs)

12x

2.4x

Synthesized requests from 4 different popular 
GPTs applications
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Synthesized requests following Bing 
Copilot length distribution



Summary
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• Multi-tenant cloud LLM services running diverse apps
• Lacking app knowledge misses many optimization opportunities

• Parrot: uses a unified abstraction Semantic Variable
• To expose essential application-level information

• End-to-end optimizations with dataflow analysis

• Evaluation shows order-of-magnitude efficiency improvement for practical use-
cases



Microsoft Research Asia is hiring
Beijing, Shanghai, Vancouver, Singapore, Hong Kong, Tokyo, Seoul

Thanks

Zhenhua Han
hzhua201@gmail.com

26


	Slide 1: Parrot: Efficient Serving of LLM-based Applications with Semantic Variable
	Slide 2: Paradigm Shift of Computer Programs
	Slide 3: Paradigm Shift of Computer Programs
	Slide 4: Diverse Workflows of LLM Apps (or Agents)
	Slide 5: From the view of Multi-tenant LLM Services
	Slide 6: From the view of Multi-tenant LLM Services
	Slide 7: From the view of Multi-tenant LLM Services
	Slide 8: Problems of Lacking Application Knowledge
	Slide 9: Problems of Request-centric LLM APIs
	Slide 10: Problem of Unknown Prompt Structure
	Slide 11: Many Optimizations Not Applicable in Public LLM Services
	Slide 12: Our Goals in Parrot
	Slide 13: Insight from Prompt Engineering
	Slide 14: Key Abstraction: Semantic Variables
	Slide 15: Semantic Variables in Parrot Front-end
	Slide 16: Exposing Semantic Variable to Parrot LLM Service
	Slide 17: Optimization: App-centric Scheduling
	Slide 18: Evaluation: Chain/Map-Reduce Summary
	Slide 19: Optimization: Multi-app Serving
	Slide 20: Optimization: Multi-app Serving
	Slide 21: Evaluation: Scheduling Mixed Workloads
	Slide 22: Evaluation: Scheduling Mixed Workloads
	Slide 23: Optimization: Sharing Prompt Prefix
	Slide 24: Evaluation: Popular Apps (Bing Copilot, GPTs)
	Slide 25: Summary
	Slide 26: Microsoft Research Asia is hiring Beijing, Shanghai, Vancouver, Singapore, Hong Kong, Tokyo, Seoul  Thanks  Zhenhua Han hzhua201@gmail.com

