
Parrot: Efficient Serving of LLM-based
Applications with Semantic Variable

Chaofan Lin, Zhenhua Han, Chengruidong Zhang

Yuqing Yang, Fan Yang, Chen Chen, Lili Qiu

Generated by DALL·E

18th USENIX Symposium on Operating Systems Design and Implementation

1

https://github.com/microsoft/ParrotServe

Paradigm Shift of Computer Programs

• A novel type of program (LLM + Code) are shaping the future
• Ability of understanding semantics beyond bits

• Complex planning

Gartner Trending Questions
About Generative AI 2024

Increased Adoption of GenAI in
production

2

Paradigm Shift of Computer Programs

• A novel type of program (LLM + Code) are shaping the future
• Ability of understanding semantics beyond bits

• Complex planning

Hot!

3

Diverse Workflows of LLM Apps (or Agents)

• High-quality LLM apps often need multiple LLM requests to
collaborate in different workflows

4

From the view of Multi-tenant LLM Services

Public LLM Services
(e.g., Azure, OpenAI)

• Face a lot of independent prompt requests through OpenAI-style APIs

Prompt

Prompt

Prompt

Prompt

Prompt

Prompt

PromptPrompt

Prompt
Prompt

Prompt

5

From the view of Multi-tenant LLM Services

Public LLM Services
(e.g., Azure, OpenAI)

• Face a lot of independent prompt requests through OpenAI-style APIs

Prompt

Prompt

Prompt

Prompt

PromptPrompt

Prompt

Prompt
Prompt

Prompt

Prompt

No knowledge about
Type of Applications

6

?

From the view of Multi-tenant LLM Services

Public LLM Services
(e.g., Azure, OpenAI)

• Face a lot of independent prompt requests through OpenAI-style APIs

Prompt

Prompt

Prompt

Prompt

PromptPrompt

Prompt

Prompt
Prompt

Prompt

Prompt

No knowledge about
Request Dependencies

7

?

Problems of Lacking Application Knowledge

High Excessive Latency
• 50~70% Non-GPU Time

• High Internet Latency
• Excessive Queuing Delay

8

Public LLM Services
(e.g., Azure, OpenAI)

Step 1

Step 2

Step 3

Step 4

Internet Multi-Request App has to use chatty submission

Problems of Request-centric LLM APIs

Misaligned
Scheduling Objectives

Small Batch Size for Low Per-Request Latency Large Batch Size for Map Stage

9

Problem of Unknown Prompt Structure

Public LLM Services
(e.g., Azure, OpenAI)

• Existing LLM services receive ”rendered” prompt without structure info

Prompt

No knowledge about
Shared Prompt Structure

Role Definition

Few-shot Examples

User Query

Prompt

Prompt

Same for all user
queries

10

Some apps use same prompt prefix for different user queries

Many Optimizations Not Applicable in Public LLM Services

• Public LLM Services face diverse applications

• Although there have some system optimizations
• Sticky routing, DAG Scheduling, Prefix Sharing, ……

• But lacking essential information about applications
• Have to blindly use a universal treatment for all requests

11

Our Goals in Parrot

• A unified abstraction to expose application-level knowledge

• Uncover correlation of multiple requests

• End-to-end optimization of LLM applications

12

Insight from Prompt Engineering

• Developers usually use prompt template to program LLM apps

• {{Placeholders}} are often used for inputs/outputs

You are expert QA engineer, given code for {{input:task}}
{{input:code}}
Your write test cases: {{output:test}}

You are an expert software engineer
Write the python code of {{input:task}}
Your Code: {{output:code}}

13

Key Abstraction: Semantic Variables

Semantic Variables
Data pipe that connects

multiple LLM calls

14

Semantic Variables in Parrot Front-end

PromptInput: task
Output: code

Input: task
Input: code

Output: test

w/ Semantic Variables as Placeholders

Prompt

Data pipeline by connecting LLM Requests
using Semantic Variables

Performance Criteria

15

Exposing Semantic Variable to Parrot LLM Service

Semantic Variable brings:

- DAG construction between requests

- Prompt structure analysis

- Data pipelining between requests

…

task

code

WritePythonCode

WriteTestCode

test

Cloud
LLM

Service
LLM requests

APIs w/
Semantic Variable

Parrot Overview

16

Optimization: App-centric Scheduling

• With DAG of application requests & E2E requirement

• Derive the performance requirement of each LLM call

From the DAG, derive requests can be executed in parallel

17

Evaluation: Chain/Map-Reduce Summary

Chain Summary Map-Reduce Summary

18

Optimization: Multi-app Serving

• Public LLM Service w/ apps with different performance criteria

19

Chatbot: Low Latency Data Analytics: High Throughput

Batch Size Small Large

Conflict when scheduled to the same GPU engine

Optimization: Multi-app Serving

• Public LLM Service w/ apps with different performance criteria

20

Parrot can derive request-level scheduling goal
from end-to-end requirement

Chat Prompt

response.get(perf=LATENCY)

Response

response.get(perf=LATENCY)

Chunk 1 Chunk 2 Chunk 3 High Throughput

Response

Chatbot: Low Latency Data Analytics: High Throughput

Batch Size Small Large

Application
DAG

Evaluation: Scheduling Mixed Workloads

• Mixed workloads
• Map-reduce Summary

• Latency-sensitive Chat Slow Chat Decode!
Slow JCT of both Tasks!

21

Chat
E2E Latency

Chat
Per-token Latency

Summary
JCT

Evaluation: Scheduling Mixed Workloads

• Mixed workloads
• Map-reduce Summary

• Latency-sensitive Chat

22

Chat
E2E Latency

Chat
Per-token Latency

Summary
JCT

Parrot achieves low latency and high-
throughput for both apps

Optimization: Sharing Prompt Prefix

• With prompt structure, Parrot can automatically detect shared prefix

• Optimized CUDA Kernel
• Two-phase attention: avoid recomputing and reloading shared prefix

Your are expert of {task}, here are some examples: {example}, your
response: {response}

Prefix 1 Prefix 2

Standard Attention Our Algorithm

Step 1: FlashAttention Step 2: PagedAttention

23

Q

Key Value Tokens

Evaluation: Popular Apps (Bing Copilot, GPTs)

12x

2.4x

Synthesized requests from 4 different popular
GPTs applications

24

Synthesized requests following Bing
Copilot length distribution

Summary

25

• Multi-tenant cloud LLM services running diverse apps
• Lacking app knowledge misses many optimization opportunities

• Parrot: uses a unified abstraction Semantic Variable
• To expose essential application-level information

• End-to-end optimizations with dataflow analysis

• Evaluation shows order-of-magnitude efficiency improvement for practical use-
cases

Microsoft Research Asia is hiring
Beijing, Shanghai, Vancouver, Singapore, Hong Kong, Tokyo, Seoul

Thanks

Zhenhua Han
hzhua201@gmail.com

26

	Slide 1: Parrot: Efficient Serving of LLM-based Applications with Semantic Variable
	Slide 2: Paradigm Shift of Computer Programs
	Slide 3: Paradigm Shift of Computer Programs
	Slide 4: Diverse Workflows of LLM Apps (or Agents)
	Slide 5: From the view of Multi-tenant LLM Services
	Slide 6: From the view of Multi-tenant LLM Services
	Slide 7: From the view of Multi-tenant LLM Services
	Slide 8: Problems of Lacking Application Knowledge
	Slide 9: Problems of Request-centric LLM APIs
	Slide 10: Problem of Unknown Prompt Structure
	Slide 11: Many Optimizations Not Applicable in Public LLM Services
	Slide 12: Our Goals in Parrot
	Slide 13: Insight from Prompt Engineering
	Slide 14: Key Abstraction: Semantic Variables
	Slide 15: Semantic Variables in Parrot Front-end
	Slide 16: Exposing Semantic Variable to Parrot LLM Service
	Slide 17: Optimization: App-centric Scheduling
	Slide 18: Evaluation: Chain/Map-Reduce Summary
	Slide 19: Optimization: Multi-app Serving
	Slide 20: Optimization: Multi-app Serving
	Slide 21: Evaluation: Scheduling Mixed Workloads
	Slide 22: Evaluation: Scheduling Mixed Workloads
	Slide 23: Optimization: Sharing Prompt Prefix
	Slide 24: Evaluation: Popular Apps (Bing Copilot, GPTs)
	Slide 25: Summary
	Slide 26: Microsoft Research Asia is hiring Beijing, Shanghai, Vancouver, Singapore, Hong Kong, Tokyo, Seoul Thanks Zhenhua Han hzhua201@gmail.com

