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ABSTRACT

We address the real problem of safe, robust, adaptive resource over-

subscription in uncertain environments with our proposed novel

technique of chance-constrained imitation learning. Our objective

is to enhance resource efficiency while ensuring safety against

congestion risk. Traditional supervised or forecasting models are

ineffective in learning adaptive oversubscription policies, and con-

ventional online optimization or reinforcement learning is difficult

to deploy on real systems. Offline policy learning methods, such as

Imitation Learning (IL) can leverage historical resource utilization

telemetry data to learn effective policies if we can ensure robust-

ness and safety from the underlying uncertainty in the domain, and

thus the data. Our work investigates the nature of this uncertainty,

how it can be quantified and proposes a novel chance-constrained

IL that implicitly models such uncertainty in a principled manner

via additional knowledge in the form of stochastic constraints on

the associated risk, to learn provably safe and robust policies. We

show empirically a substantial improvement (∼ 3-4×) in capacity

efficiency and congestion safety in test as well as real deployments.
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1 INTRODUCTION

Figure 1: Resource oversubscription in real scenarios: 1. vCPU

oversub in cloud saves stranded core/memory; 2. Naive over-

sub not aligned with usage; 3. cost vs revenue for involuntary

bumping in overbooked flights [34]; 4. Voluntary vs Invol-

untary bumping frequency 2010-22 for overbooking

Resource “Oversubscription" is a prevalent strategy across the

professional services industry, including cloud services [8, 23, 43],

airlines [45], logistics [51], etc., to optimize their operating costs

(capacity efficiency) via ‘thin-provisioning. The key idea is that a

system offers more resources to users or entities than its available

capacity, assuming that not all users would simultaneously utilize

their allocated capacity, in order to diminish the sum of unutilized

resources and increase gains.

For instance, in cloud services, Virtual Machines (VMs) with

some quantum of virtual resources such as virtual cores/memory

etc. are hosted on Physical Machines (PMs). Virtual CPUs (vCPU)

represent the share of the underlying physical CPU assigned to

VMs and are the sellable billing units in cloud platforms. Oversub-

scription assigns fewer resources to a VM than what it requests,

assuming that a VM will be allowed to use extra resources beyond

its allocated limit if needed. This allows the platform to leverage

https://doi.org/10.1145/3627673.3680060
https://doi.org/10.1145/3627673.3680060
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unused physical capacity by packing more VMs in PMs (Fig. 1 1 )

as an effective way to avoid unnecessary resource waste (stranded

cores/memory) and maximize profits [3, 4]. CPU bottlenecks are

more severe and prevalent [30], so in this work we focus on vCPU

oversubscription for cloud domain. In the airline industry, over-

booking (oversubscribing) fight tickets beyond aircraft capacity

improves airline load factors and reduce revenue losses due to can-

cellations and no-shows [33, 45], while also adding risk of cost of

compensations (Fig 1). Note that, oversubscription, resource alloca-

tion, scheduling, and optimal packing are interconnected concepts

in resource management, each addressing distinct aspects. Over-

subscription arises when demand surpasses supply, while resource

allocation and scheduling optimize resource placement. Optimal

packing minimizes fragmentation.

Oversubscription policy (margin/rate i.e. how much to

overbook for an entity) is a crucial (often overlooked) sci-

entific problem. Conservative oversubscription policies lead to

resource wastage, whereas aggressive policies cause resource con-

gestion, compromising reliability. Therefore, the policies should be
adaptive to the temporal dynamics of resources usage, but safe and
robust from the underlying uncertainty of workload / utilization pat-
terns in real platforms. To that end, we need to address the following
challenges - 1 Appropriate data/information to learn adaptive poli-

cies 2 Identify the nature and impact of the uncertainty 3 Learn

policies that are safe and robust to the risks due to this uncertainty

but leads to optimum benefit as well.

Most existing research have limited outlook. Some cloud over-

subscription work focus on resource allocation problem via on-

line bin-packing [20] or reactive user migration for overload mit-

igation [27, 50]. Others leverage online Reinforcement learning

(RL) [14], often with constraints [31, 36] to design adaptive solu-

tions, but constrained multi-objective RL may not converge and

are hard to train/deploy for real platforms.

We employ Imitation Learning (IL) instead, an offline policy

learning strategy that can leverage historical resource usage teleme-

try data. Fig 1 illustrates the dynamic utilization patterns in some

of Microsoft’s internal services. We retrieve this telemetry data

but their are two important considerations, 1 There is no true

label for the most accurate value of oversubscription ratio, we use

usage a proxy label (fig. 1), 2 Significant aleatoric uncertainty

which may cause divergence or high unexplained variance making

policies unsafe wrt. resource congestion risk. While Uncertainty

Quantification (UQ) methods, [1], can explicitly represent uncer-

tainty, they are not tractable in real-time and cannot capture the

real-world interactions [11]. Under this uncertain, dynamic de-

mand/usage data, to learn safe yet highly beneficial policies, we

propose Coin, aChance-constrained imitation learning framework

that exploits chance-constraints (stochastic) to implicitly model the

underlying uncertainty. It learns adaptive policies that optimize

resource efficiency and safety /robustness against congestion risk.

Hard constraints, while strictly enforce safety, may lead to higher

resource wastage. We make the following major contributions –

(1).We characterize uncertainty information in oversubscription

and design chance constraints on risk from domain knowledge.

(2). We propose novel chance-constrained imitation learning to

solve safe but beneficial oversubscription policy under uncertainty.

(3). We demonstrate, empirically, on test+real scenarios (Cloud -

1
𝑠𝑡

party/internal, 3
𝑟𝑑

party/public Azure, Airline), how Coin can
learn safe yet effective policies. In the following sections, we outline

related work (Sec. 2), define the optimal oversubscription problem,

the telemetry/data and the nature of the uncertainty(Sec. 3.1), fol-

lowed by the formalism of chance constraints on IL, algorithm and

tractable implementation (Sec. 3.2 to 3.4) In sections 4.2, 4.3 & 4.4

we show extensive evaluations on testbeds and real deployment.

2 RELATEDWORK

Oversubscription: Cloud oversubscription is practiced for different

resource types, e.g., CPU [8], memory [6], power [25], etc. However,

our evaluations focus on virtual CPU/core oversubscription as CPU

is one of the most vital, but scarce, resources in the cloud [19].

Some industrial solutions [18] globally optimize resource used,

under constrained while others [16] emphasize adaptive solutions

for actual usage patterns. [5, 7, 25] employ ML/DL for VM usage

patterns, while others [26] adopt RL for airline inventory control.

Chance-Constrained RL: Chance constrained RL has gained pop-

ularity in recent years. Some model-based chance-constrained RL

methods improve the over-conservative policy with efficient evalu-

ations [37, 38]. However model-based methods are challenging to

deploy on real systems. Model-free chance-constrained RL meth-

ods primarily adopt penalty and Lagrangian techniques [15, 35].

However, the oversubscription problem involves a large number of

chance constraints, making existing methods difficult to adapt.

Safe Imitation Learning: Most traditional imitation learning, in-

verse RL or even Constrained IL approaches [12, 24] struggle to

induce safe policies in presence of uncertainty. Some safe IL ap-

proaches from uncertain or inconsistent demonstrations focus on

explicitly predicting/estimating uncertainty via kernels or model-

based formulation [13, 46] by computing “value at risk". Some use

Monte Carlo policy rollouts or via ensembles (with dropouts) [9, 32].

While related in spirit, our stochastic constraints implicitly ensure

safety against uncertainty instead of explicit uncertainty quantifi-

cation; hence no extra sampling.

3 METHOD

3.1 Problem Setting

3.1.1 Optimal Oversubscription. In Oversubscription, the system

provisions a 𝜁 ∼ [0, 1] fraction of the amount of resources requested

by an entity in order to maximize the recovery of unused resources

(COGS [21]savings/benefit), since more resources can be served

from the same resource pool, [COGS benefit = max𝜁

∑∑(1− 𝜁 ) ×
Cost(resource ask)/𝑒𝑛𝑡𝑖𝑡𝑦/𝑝𝑜𝑜𝑙 ]. For effective oversubscription we

assume not all the entities will have peak resource usage at the same

time. However, there is risk of overloading or resource congestion if

there is simultaneous peak demand. Optimal oversubscription must

optimize both COGS benefit and congestion risk together (Eqn 1).

𝜁 ∗ = arg max

𝜁

∑︁∑︁
(1 − 𝜁 ) × Cost(resource ask)/𝑒𝑛𝑡𝑖𝑡𝑦/𝑝𝑜𝑜𝑙︸                                                         ︷︷                                                         ︸

COGS savings/benefit

+ arg min

𝜁

∑︁
(Cost of congestion)𝜁 /pool︸                                  ︷︷                                  ︸

Risk

(1)
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Figure 2: CPU utilization of a sampled user (left). The vari-

ance band represents 25
𝑡ℎ

and 75
𝑡ℎ

percentiles. Four points

(in red) are sampled to show their probability densities.

There is no closed form solution to the problem. Also, 𝜁 ∗

is not one value but different values across time based on dy-

namic usage patterns and conditions. Thus we learn a policy

𝜋∗ = 𝑃 (𝜁 ∗ |𝑢𝑠𝑎𝑔𝑒, 𝑡𝑖𝑚𝑒, . . .) to maximize the COGS saving as well as

minimize Risk. In oversubscription scenarios, where return/reward

is a multi-objective COGS savings vs risk, it is hard for online RL

to stably and sample-efficiently to learn a policy. In professional

services industry we can often access and exploit historical us-

age telemetry (trajectories) which makes a strong case for offline

methods such as Imitation Learning.

3.1.2 Data and uncertainty. We leverage historical telemetry data

D which comprises the resource usage measurement trajecto-

ries across time characterized by the relevant features about the

system load and demand. There are no true labels about ideal

oversubscription margin/rate. Instead, resource usage rate 𝑢 =

(𝑢𝑠𝑒𝑑)/(𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑), acts as the proxy label such that 𝜁𝑡 ∝ 𝑢𝑡 .
The aleatoric uncertainty (AU) [22] in this data comes from the

domain itself, due to 1 uncertainty of demand characteristics,

2 statistical variance due to measurement granularity, 3 noise

during retrieval and aggregation or 4 may be due to reactive miti-

gation. Figure 2 illustrates an example from cloud services domain,

where the CPU usage rate for different subscribers/users at differ-

ent time steps are not point estimates but are stochastic processes,

approximately, characterized by Gaussian distributions (possibly

skewed/mixture). AU makes the computation of the risk in Eqn. 1

arbitrarily erroneous which can lead to catastrophic congestion.

3.1.3 Imitation Learning from uncertain Trajectories. In traditional

imitation learning the goal is to minimize the divergence between

agent policy 𝜋𝜃 = 𝑃 (𝑎𝑡 = 𝜁𝑡 |𝑠𝑡 )(predicted actions) and the expert

policy 𝜋𝐸 = 𝑃 (𝑎𝑡 = 𝑢𝑡 |𝑠𝑡 ) (underlying policy induced by data)

[𝐿 = 𝜋𝐸 (𝑎𝑡 |𝑠𝑡 ) ⊖ 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )], where 𝑠𝑡 ∈ 𝑆, 𝑎𝑡 ∈ 𝐴 are state and

action spaces. Naïvely this is meant to maximize the benefit, (1 −
(𝜁 ≃ 𝑢)) × requested, but in presence of uncertainty, it becomes a

harder problem. Considering AU in the data as a variance in the

expert policy, 𝜎2

𝐸
= E[((𝑎 ∼ 𝜋𝐸 ) −E𝑎∼𝜋𝐸 [𝑎 |𝑠])2], the bias-variance

decomposition of the generic loss, gives,

𝐿 = 𝜋𝐸 (𝑎𝑡 |𝑠𝑡 ) ⊖ 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )

= (E𝑎∼𝜋𝜃 [𝑎 |𝑠] − E𝑎∼𝜋𝐸 [𝑎 |𝑠])
2︸                               ︷︷                               ︸

bias

+ 𝜎2

𝜃︸︷︷︸
model var

+ (𝜎𝐸 )2︸︷︷︸
irreducible

(2)

AU manifests as irreducible variance component in the error
1
.

This is unsafe because, (1) in out-of-distribution conditions we

take 𝜁 ≃ E[𝑢]; leads to arbitrary resource congestion [12], (2)

1
For KL div. loss (𝜎𝐸 )2 is entropy - information theoretic measure of uncertainty

Figure 3: Solution Overview of Coin framework

for in-distribution cases, either we cannot measure risk (Eqn. 1)

confidently or we lose benefit if 𝜁 > 𝑢 strictly using hard constraints.

We enforce safety using constraints with ‘probably approximate’

satisfiability, (chance) on congestion risk (not action space unlike

some constrained RL approaches with UQ [29]) and present efficient

solution without trajectory sampling.

3.2 Problem and Solution Overview

We propose the Chance-constrained imitation learning (Coin),
where the training trajectory 𝜏 consisting of states and actions

(𝑠0, 𝑎0, 𝑠1, 𝑎1, ..., 𝑠𝑇 , 𝑎𝑇 ) are drawn from the expert policy 𝜋𝐸 from

D 1 . Figure 3 illustrates the solution schematic. The oversub-

scription MDP is the standard ⟨𝑆,𝐴,R,P, 𝛾⟩ where factored state

space 𝑆 comprises user’s resource requests, historical usage, cur-

rent resource status, etc. as features, and action space 𝐴 ∈ [0, 1]
could be usage rate 𝑢 or oversubscription rate 𝜁 . We try to learn a

policy 𝜋𝜃 (𝑎 |𝑠), where 𝑎 is the predicted 𝜁 . IL does not use explicit

reward R, but maximizes benefit via minimizing loss and mitigates

risk through constraints. We find a policy that mimics the expert

policy while probabilistically satisfying the chance constraints. We

formulate our problem as:

min

𝜋
𝐿(𝜋𝐸 , 𝜋𝜃 )︸           ︷︷           ︸

Benefit Maximization

; s.t. Pr

(
1

𝑇

∑︁𝑇

𝑡=0

𝑐 (𝑠𝑡 ) ≤ 𝑔
)
≥ 1 − 𝛿︸                                    ︷︷                                    ︸

chance-constraint on risk 2

𝑠0 ∼ P0, 𝑠𝑡+1 ∼ P(𝑠𝑡 , 𝑎𝑡 ); 𝑎𝑡 ∼ 𝜋𝜃 (·|𝑠𝑡 );

(3)

where 𝐿(𝜋𝐸 , 𝜋𝜃 ) is the objective function of mimicking the expert’s

policy (mean square error function for Behavior Cloning [39] or

a JS divergence for adversarial IL). We adopt behavior cloning as

the base learner for simplicity of implementation on real-world

data. 𝑐 (𝑠𝑡 ) = ℎ⊤𝑠𝑡 is the instantaneous constraint cost, defined as a

function of the risk in the task based on domain knowledge. P0 is

the distribution of 𝑠0, P(𝑠′ |𝑠, 𝑎) is the state transition probability.

Chance constraints should cumulatively satisfy with probability

1 − 𝛿 , where 𝛿 is the global upper bound of the probability of

resource congestion. 𝑔 is the upper bound on the cumulative cost,

i.e., resource limit for the whole oversubscription action.
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There is no theoretically viable way to check probabilistic satisfi-

ability of chance constraints without brute-force sampling. Hence,

we consider a linear dynamic system P(𝑠′ |𝑠, 𝑎) under Gaussian dis-

tribution for converting the chance constraints into deterministic

form. Such Gaussian assumption is valid and follows directly from

Section 3.1. 𝑇 is the time horizon.

Challenges: The constraint is stochastic, cumulative and de-

pends on the distribution of entire trajectories. This optimization

problem is harder since – (I.) Verifying satisfiability requires com-

puting integral of a multi-variate probability distribution and the

solution may be intractable or non-existent unless 𝑐 (𝑠𝑡 ) ≤ 𝑔𝑡 is
mutually exclusive across all states. (II.)Measuring the probabilities

require sampling of trajectories at every iteration (infeasible for

real problems).

Solution Strategies:We address these challenge via three mech-

anisms. (1) Stochastic → Deterministic [Challenge I]: Due to the

difficulty of computing the integral, we transform the chance con-

straint in Equation 3 into a deterministic constraint defined on the

states 𝑠𝑡 , where 𝑠𝑡 = 𝐸 [𝑠𝑡 ] is the expected value of state (represents
the major value of the states). (2) Backward Value [Challenge II]:
Given the deterministic constraint, inspired by the previous work,

we estimate the constraint value for each time step with a temporal

difference (TD) [48] methods instead of sampling entire trajectories.

This method updates the estimated value of chance constraint via

bootstrapping. (3) Value ensembles [Challenge II]: We further design

a practical tractable implementation of our proposed approach for

real-world problems via value function ensembles. We annotate

each section with module numbers in Fig. 3.

3.3 Satisfying the Chance Constraint

Unlike traditional constrained optimization, typical branch and

bound strategies will not suffice in optimizing an IL objective. So

we describe how to transform a chance constraint into a deter-

ministic constraint to assert (stochastic) constraint satisfaction and

construct the backward value function in the context of IL with the

deterministic form.

3.3.1 Transforming to deterministic constraint. 3 With the as-

sumption that the state transaction distribution is Gaussian dis-

tribution, i.e., ℎ⊤𝑡 𝑠𝑡 ∼ N(ℎ⊤𝑡 𝑠𝑡 , 𝜎2

𝑡 ), we derive the deterministic

version of chance constraint as follows:

𝑐 (𝑠𝑡 ) ≤ 𝑔𝑡 −𝑚(𝛿𝑡 ) (4)

where 𝑠𝑡 = 𝐸 [𝑠𝑡 ] is the nominal state of the agent, 𝑐 (𝑠𝑡 ) = ℎ⊤𝑡 𝑠𝑡 ,
𝑚(·) is the inverse of the cumulative distribution function of uni-

variate Gaussian distribution, 𝑔𝑡 and 𝛿𝑡 are local cost and chance

constraint probability per time step 𝑡 .

𝑚(𝛿𝑡 ) = −
√︃
𝜎2

𝑡 Φ
−1 (𝛿𝑡 ), (5)

where 𝜎𝑡 =

√︃
2ℎ⊤𝑡

∑
𝑠𝑡 ℎ𝑡 is the standard deviation and Φ−1 (𝛿𝑡 ) =

erf−1 (𝛿𝑡 ) is the inverse of the Gaussian fn.

Lemma 1 (Deterministic ≈ Chance constraint). A feasible
solution to the deterministic constraint in Equation 4 is always a
feasible solution to the original chance constraint in Equation 3. (Proof
excluded due to space constraints but can be easily derived from Eqn. 5)

3.3.2 Backward value function for satisfiability estimation. 4 In

(chance - constrained) IL, the policy needs to consider the cumula-

tive constraints from time step 0 to current time step 𝑡 to plan for

the future. Now, given the derived deterministic constraint func-

tion in Equation 4, we observe that the constraint is estimated by

sampling the whole trajectory, which is not sample efficient. To im-

prove the sample efficiency, TD learning estimates the current time

step’s cumulative value via bootstrapping the previous time step’s

cumulative value, i.e.,𝑉 𝜋 (𝑠𝑡 ) ← 𝑟 (𝑠𝑡 , 𝑎𝑡 ) +𝛾
∑
𝑠𝑡=1

𝑉 𝜋 (𝑠𝑡+1), where
𝑉 𝜋 (𝑠) is the state value function [48]. This cumulative constraint

value is named as backward value function [41], and is extremely

sampling efficient. Inspired by the previous work, we design a new

backward value function for the chance constraints. With this, we

obtain an analytical solution step by step.

Lemma 2 (Backward value ∼ Forward Markov chain).

With the irreducible and aperiodic assumption in forward Markov
chain P𝜋 (𝑠𝑡+1 |𝑠𝑡 ) =

∑
𝑎𝑡 ∈A P(𝑠𝑡+1 |𝑠𝑡 )𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ), samples from the

forward Markov chain P𝜋 (𝑠𝑡+1 |𝑠𝑡 ) can be used directly to esti-
mate the statistics of the backward Markov chain

←−P𝜋 (𝑠𝑡 |𝑠𝑡+1) =∑
𝑎𝑡 ∈A

←−P(𝑠𝑡 , 𝑎𝑡 |𝑠𝑡+1) [41]. For any 𝐾 ∈ N, where N is the set of
natural numbers. Thus we can obtain the backward value function:

←−
𝑉 𝜋 (𝑠𝑡 ) = E←−P𝜋

[
𝐾∑︁
𝑘=0

𝑐 (𝑠𝑡−𝑘 ) |𝑠𝑡

]
(6)

= EP𝜋 ,𝑠𝑡−𝐾∼𝜂𝜋 ( ·)

[
𝐾∑︁
𝑘=0

𝑐 (𝑠𝑡−𝑘 ) |𝑠𝑡

]
(7)

where E←−P [·] indicates the expectation over backwards chain,
𝜂𝜋 is the stationary distribution satisfying 𝜂𝜋 (𝑠𝑡+1) =∑
𝑠∈S P𝜋 (𝑠𝑡+1 |𝑠𝑡 )𝜂𝜋 (𝑠𝑡 ).

Based on Lemma 2, we can get the backward value from the for-

ward Markov chain instead of the backward Markov chain, which

further simplifies the backward value estimation. We can then use

the traditional TD learning setting to estimate the backward value

function recursively as follows:

←−
𝑉 𝜋 (𝑠𝑡 ) = E←−P𝜋 [𝑐 (𝑠𝑡 ) +

←−
𝑉 𝜋 (𝑠𝑡−1)] (8)

With the defined backward value function above, we can rewrite

the derived deterministic constraint at each time step. Recall the

derived deterministic constraint:

𝑇∑︁
𝑡=0

𝑐 (𝑠𝑡 ) ≤ 𝑔 −𝑚(𝛿) → EP𝜋 [
𝑇∑︁
𝑡=0

𝑐 (𝑠𝑡 )] ≤ 𝑔 −𝑚(𝛿) (9)

Alternatively, for each time step 𝑡 ∈ [0,𝑇 ] of the trajectory:

E[
𝑡∑︁
𝑘=0

𝑐 (𝑠𝑘 ) |𝑠0, 𝜋]︸                ︷︷                ︸
backward from t

+E[
𝑇∑︁
𝑘=𝑡

𝑐 (𝑠𝑘 )]︸         ︷︷         ︸
forward from t

−E[𝑐 (𝑠𝑡 )] ≤ 𝑔 −𝑚(𝛿)

The trajectory-level constraints is not transformed into state-level,

E𝑠𝑡∼𝜂𝜋 ( ·) [
←−
𝑉 𝜋 (𝑠𝑡 ) +𝑉 𝜋 (𝑠𝑡 ) − 𝑐 (𝑠𝑡 )] ≤ 𝑔 −𝑚(𝛿). (10)

As proved by the previous work, the state-level constraint in Equa-

tion 10 with backward value function is an upper bound to the
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original constraint in Equation 9. Thus the policy satisfying the

state-level constraint will also ensure the original constraint.

Given the formulation of the state-level constraint, we can ob-

tain a policy improvement at each time step, where a safe feasible

policy can be optimized by the estimated constraint value. The final

objective, modifying Eqn 3 with the state-level chance constraints

on IL, is as follows 5 :

min

𝜋
𝐿(𝜋𝐸 , 𝜋𝜃 )

s.t. E𝑠𝑡∼𝜂𝜋 [
←−
𝑉 𝜋 (𝑠𝑡 ) +𝑉 𝜋 (𝑠𝑡 ) − 𝑐 (𝑠𝑡 )] ≤ 𝑔𝑡 −𝑚(𝛿𝑡 )

(11)

3.4 Practical Implementation Design

There are still two main challenges in optimizing the deterministic

objective function in Eqn 11. (A) directly solving this constraint

problem via Lagrangian-based methods or Lyapunov-based meth-

ods will introduce large extra computational complexity and (B)

when we try to check whether the policy is feasible in each time

step, we need to compare the constraint value with the threshold

which requires calculating the standard derivation which is hard to

estimate in large-scale datasets.

3.4.1 Chance constrained optimization via policy gradient. 7 For

challenge (A), we leverage the safety layers based method [10], a

constraint projection approach, to conduct action correction at each

time step. For each state, the safety layer projects the unconstrained

action to the nearest action (in Euclidean norm) satisfying the

necessary constraints. Following the derived analytical solution of

previous work [41], let 𝑑 (𝑠) = ∇𝑄𝜋 (𝑠, 𝑎) |𝑎=𝜋𝜃 (𝑠 ) , where 𝑄
𝜋 (𝑠, 𝑎)

is the state-action value:

𝑎∗ = 𝜋𝜃 (𝑠) − 𝜆∗ · 𝑑 (𝑠), (12)

where 𝜆∗ = ( −(𝑔+𝑐 (𝑠 )−
←−
𝑉 𝜋 (𝑠 )−𝑄 (𝑠,𝜋𝜃 (𝑠 ) ) )
𝑑 (𝑠 )𝑇𝑑 (𝑠 ) )+ is the analytical soln.

Based on the above, we can consider the constraint term as

an additional loss, then conduct gradient descent to optimize the

policy if the policy is not in feasible space, i.e., E𝑠𝑡∼𝜂𝜋 ( ·) [
←−
𝑉 𝜋 (𝑠𝑡 ) +

𝑉 𝜋 (𝑠𝑡 ) − 𝑐 (𝑠𝑡 )] > 𝑔 −𝑚(𝛿).
𝜃 ← 𝜃 − ∇𝜃 log𝜋𝜃 (𝑠) ·𝑄𝜋 (𝑠, 𝑎) . (13)

Otherwise, we update the 𝜃 via the loss of traditional imitation

learning as 𝜃 ← 𝜃 − ∇𝜃𝐿(𝜋𝐸 , 𝜋𝜃 )

3.4.2 Ensemble Learning to estimate the variance of cost value. 6

To solve the second challenge, where we need to verify whether

the policy is feasible in the current time step. We learn 𝑁 backward

value function and 𝑁 forward value functions where they will sync

with other during several steps of training to estimate the standard

deviation of the costs.

𝜎𝑡 =

𝑁∑︁
𝑛=1

𝑏𝑛𝑡 − E[𝑏𝑛𝑡 ], (14)

where 𝑏𝑡 =
←−
𝑉 𝜋 (𝑠𝑡 )+𝑉 𝜋 (𝑠𝑡 )−𝑐 (𝑠𝑡 ) is value of state-level constraint.

Lemma 3 (Stochasticity |= Aleatoric uncertainty). The ir-
reducible variance due to aleatoric uncertainty 𝜎𝐸 (Eqn. 2) is entailed
by the controlled model variance from the ensemble of value functions
with state-level constraints. 𝜎𝑡 in Equation 14, 𝜎2

𝑡 |= (𝜎𝐸 )2.

Algorithm 1 Coin

Require: # epochs𝑀 , 𝜋𝜃 ,
←−
𝑉𝜔

𝜋 (𝑠𝑡 ) ,𝑄𝜙 (𝑠𝑡 , 𝑎𝑡 ) , constraint threshold 𝑔, constraint probability
𝛿 from domain knowledge;

1: Initialize actor 𝜋𝜃 ,𝑁 target backward value function

←−
𝑉𝜔

𝜋 (𝑠𝑡 )𝑛 , target forward value function
𝑄𝜙 (𝑠𝑡 , 𝑎𝑡 )𝑛 , constraint threshold 𝑔 and upper bound of resource congestion probability 𝛿 ;

2: for𝑚 = 0 to𝑀 do

3: Select the action 𝑎𝑡 from the the projection of action 𝑎∗ which is calculated by Equation 12,

take action 𝑎𝑡 and observe the state 𝑠𝑡+1 and cost 𝑐 (𝑠𝑡 ) ;
4: n← n+1;

5: Calculate the backward value for the constraint with 𝑁 value functions;

6: 𝑄𝑛 (𝑠𝑡 , 𝑎𝑡 ) ,𝑉𝑛 (𝑠𝑡 ) ,
←−
𝑉𝜔

𝜋,𝑛 (𝑠𝑡 ) ;
7: Calculate the standard derivation of the value 𝜎 and𝑚 (𝛿 ) ;
8: Calculate the deterministic constraint to check whether the current action is feasible:

9: if

←−
𝑉 𝜋 (𝑠𝑡 ) +𝑉𝜋 (𝑠𝑡 ) − 𝑐 (𝑠𝑡 ) ] ≤ 𝑔𝑡 −𝑚 (𝛿𝑡 ) then

10: update the policy 𝜃 ← 𝜃 − ∇𝜃𝐿 (𝜋𝐸 , 𝜋𝜃 )
11: else

12: Use safeguard policy update to recover

13: 𝜃 ← 𝜃 − ∇𝜃 log𝜋𝜃 (𝑠𝑡 )𝑄 (𝑠𝑡 )
14: end if

15: end for

16: Update backward and forward constraint values here:

17: for 𝑖 ∈ {𝑡𝑠𝑡𝑎𝑟𝑡 , ..., 𝑡 } do
18:

←−
𝑅 ← 𝑐 (𝑠𝑡 ) + 𝛾

←−
𝑅

19:

←−
𝑉
𝜋,𝑛
𝜔 ← 𝜙 − (←−𝑅 − ←−𝑉 𝜋,𝑛𝜔 )2 ▷ upd. backward const. val.

20: end for

21: for 𝑖 ∈ {𝑡 − 1, .., 𝑡𝑠𝑡𝑎𝑟𝑡 } do
22: 𝑅 ← 𝑐 (𝑠𝑡 ) + 𝛾𝑅
23: 𝑄𝑛

𝜙
← 𝑄𝑛

𝜙
− (𝑅 − 𝑄𝑛

𝜙
)2 ▷ upd. forward constraint value

24: end for

3.5 Algorithm

We integrate Coin on top of behavior cloning
2
. Details of the algo-

rithm can be found in Algorithm 1. We discuss an alternate update

for implementing the algorithms.

4 EXPERIMENTS

We evaluate Coin, based on the following questions:

Q1. Does Coin outperform baselines and learns safe but benefi-

cial oversubscription policies from uncertain data?

Q2. Does Coin satisfy the constraints on risk to ensure safety?

Q3. Convergence stability of Coin under uncertainty?
Q4. How effective is Coin in practice in real deployments?

∗∗

Baselines: We compare Coin against the following baselines

(1) Grid search with different oversub probabilities, where all users

have the same oversub rate (2) Vanilla IL – Behavior Cloning/BC,

(3) Online RL such as DDPG [28] (4) Multi-Agent RL or MA [43] and

(5) IL with hard constraints. Most recent resource management or

oversub frameworks in practice [17, 25, 26, 40, 44] leverage online

RL. Thus our baseline choices are comprehensive.

Metrics: (1) Cloud services: The chance-safety of cloud service

is evaluated via physical Machine hot ratio (short as PM-Hot-R).

In addition, we set chance-safety ratio 𝑔 (g 𝑔 ∈ {0.75, 0.85, 0.95})
to check whether the oversubscription policy satisfies the chance

constraint with different 𝑔. PM-Hot-R indicates the maximum prob-

ability of a PM in the cluster being hot than 𝛿 . The remaining cores

quantity is evaluated via saved cores (short as S-Cores). (2) Airline
ticket overbooking: The chance-safety of Airline ticket overbook-

ing is evaluated via Ticket-Cost ratio (short as Ticket-Cost-R).

In addition, we set chance-safety ratio 𝑔 ( 𝑔 ∈ {0.75, 0.85, 0.95})
to check whether the oversubscription policy satisfies the chance

constraint with different 𝑔. The profit is evaluated via Profit.

2
Code: https://anonymous.4open.science/r/coin-B0FF/

https://anonymous.4open.science/r/coin-B0FF/
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4.1 Experiment Design

4.1.1 Evaluation Domains. We evaluate Coin on two major do-

mains, vCPU oversubscription in cloud services and flight tickets

overbooking in Airlines.

Cloud Oversubscription: In this domain we evaluate on two

datasets: i Microsoft’s internal cloud platform and ii a public

dataset from Azure (AzurePublicDatasetV2
3
) [42]. Usage/demand

distributions in these two datasets differ, allowing us to evaluate our
method under different conditions and treat them as two different test
beds. Internal Cloud dataset contains sampled traces in February

2022, consisting of 1.5 million virtual machines (VMs). The Azure-

PublicDatasetV2 contains data from the 2019 Azure VM workload,

comprising information on ≈ 2.6 million VMs and 1.9 billion utiliza-

tion readings. [Although, we have deployed and tested our framework
on Microsoft Internal (1𝑠𝑡 party) cloud services and observed substan-
tial impact (discussed later), we highlight how our method solves the
generalized oversubscription problem under uncertainty with flight
overbooking data set, described next.]

Airline ticket overbooking: While flight overbooking, i.e.,
more bookings than the available seats, is a common practice, the

uncertainty in ticket demands and no-shows result in inappropri-

ate overbooking strategies, leading to “denied boardings” (Fig 1).

In general, demands patterns are quarterly, peaking during tourist

seasons [2, 47]. This motivates adaptive overbooking policies. We

collect airline passengers’ data from the overbooking reports of

the U.S. Department of Transportation (DOT) covering 32 airline

companies in the U.S. from 1998 to 2021
4
, reported quarterly. Each

quarter’s data includes offloaded number of passengers (volun-

tary/involuntary) and the onboarded passengers.

4.1.2 Environment Settings. Apart from the real deployment on

Internal cloud we have also created “gym” environments for eval-

uating our as well as baseline policies. Oversub Gym for cloud

includes two environments built on two different cloud datasets

(Internal cloud and Public Azure). We conduct experiments under

both cold-start (empty environment where no previous VMs) and

warm-start (environment with previously allocated VMs running)

scenarios in the Internal Cloud dataset. The design of the envi-

ronment involves the following critical aspects, namely, (1) VM

Allocation to PMs (2) Reset, (3) State, (4) Transition model -

state transitions, (5) Action, - oversubscription/usage rates and

(6)The chance constraints with customizable 𝑔, (e.g., in cloud

service, 𝑔 = bound on hot PMs (w/ high usage)), and 𝛿 . For Airline

ticket overbooking, the gym environment uses a GBDT simulator

trained on the data.

4.2 Experimental Results

4.2.1 Microsoft Internal Cloud. We train our model with 1800

episodes and 10 seeds. Three different safety-levels, i.e., 𝑔 are con-

sidered as 0.75, 0.85, and 0.95 respectively. Results of Coin with

the chance constraint probability 1 − 𝛿 = 0.95 against 7 baselines,

the following observations can be made: (1) Coin satisfies chance
constraint with all different chance-safety 𝑔 and achieves the high-

est saving than the other methods that also satisfy the constraints,

3
https://github.com/Azure/AzurePublicDataset

4
https://www.bts.gov/denied-confirmed-space

i.e., Grid-0.6, MA, IL and IL with hard constraints. These results

indicate that the chance constraint is a crucial factor in ensuring

performance and safety together. (2) Coin shows significantly more

saved cores (benefit) than IL+hard constraint, which indicates hard

constraints are too conservative. (3) DDPG and MA shows worse

performance in benefit, which indicates that RL is not effective in

oversubscription under uncertainty. These results highlight how

Coin is extremely effective in designing profitable oversubscription

policies in internal cloud system where COGS benefit is very im-

portant, answering Q1 affirmatively while stochastically ensuring

safety against congestion (hot node) risk (Q1).

4.2.2 Azure Public Cloud. The average usage rate of public Azure
is much higher than the internal Cloud. As shown in Table 2, we

can see that Grid fails to satisfy the safety constraint due to that

most of the users have large usage rates. Four methods, i.e., Coin,
IL, IL+hard constraint and MA, satisfy the chance constraint with

different chance-safety 𝑔. Our method Coin consistently achieves

the largest benefit. The IL based models achieve better performance

than RL based models, because optimizing RL objectives in the

highly stochastic environment, i.e., cloud service, is hard.

The results also suggest that the chance constraints can help

improve the performance of IL models. These results highlight how

Coinis extremely effective in designing profitable oversubscrip-

tion policies in external cloud system where COGS benefit is very

important, while seamlessly satisfying the stochastic congestion

constraints, thus answering Q1 & Q2 affirmatively.

Table 1: Results in Internal Cloud

Method PM-Hot-R S-Cores 0.75 0.85 0.95

Grid-0.2 95.4 80.0 ✗ ✗ ✗

Grid-0.4 100 60.0 ✗ ✗ ✗

Grid-0.6 0.0 40.0 ✓ ✓ ✓
MA 0.0 38.4 ✓ ✓ ✓

DDPG 6.7 35.6 ± 1.2 ✓ ✓ ✓
IL (BC) 0.8 ± 1.1 49.9 ± 3.3 ✓ ✓ ✓

IL + hard constraint 0.73 ± 1.5 37.9 ± 4.6 ✓ ✓ ✓
Coin 1.5 ± 0.97 66.8 ± 13.5 ✓ ✓ ✓

Table 2: Results in Azure public Cloud

Method PM-Hot-R S-Cores 0.75 0.85 0.95

Grid-0.2 100.0 80.0 ✗ ✗ ✗

Grid-0.4 100.0 60.0 ✗ ✗ ✗

Grid-0.6 100.0 40.0 ✗ ✗ ✗

MA 0.0 5.7 ✓ ✓ ✓
DDPG 3.89 8.4 ✓ ✓ ✓
IL (BC) 1.0 ± 0.0 7.6 ± 2.2 ✓ ✓ ✓

IL+hard constraint 0.0 ± 0.0 5.4 ± 2.1 ✓ ✓ ✓
Coin 1.67 ± 3.2 15.78 ± 0.13 ✓ ✓ ✓

4.2.3 Airline Tickets Overbooking. As the overbooking rate of each
airline company and the actual demands are not reported, we gener-

ate overbooking rate and flight demands based on known common

industry practice [49] to create a semi-synthetic dataset. With the

popularity of e-tickets, no-shows are less compared to the paper-

ticket period [33]. So we assume the no-show rate to decay with

years. Then the demand is the aggregation of bumped, no-shows,

and onboard passengers. Our GBDT-based simulator is trained on

the above semi-synthetic data. The results are shown in Table 3.

We observe that, (1) the Grid methods fail, where none of them

https://github.com/Azure/AzurePublicDataset
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Table 3: Oversubscription results in Airline

Method Ticket-Cost-R Profit 0.75 0.85 0.95

Grid-0.2 100.0 16.24 ✗ ✗ ✗

Grid-0.4 100.0 12.18 ✗ ✗ ✗

Grid-0.6 100.0 8.12 ✗ ✗ ✗

MA 1.7% 7.2 ✓ ✓ ✓
DDPG 1.28% 6.9 ✓ ✓ ✓
IL (BC) 0.9% ± 0.0 7.8 ± 2.2 ✓ ✓ ✓

IL+hard constraint 0.0 ± 0.0 5.4 ± 2.1 ✓ ✓ ✓
Coin 0.3% ± 3.2 9.78 ± 0.13 ✓ ✓ ✓

satisfy the chance constraints, which indicates that global over-

subscription rates are not suitable for this task. (2) Coin shows

siginificant improvements in profits compared to baselines while

satisfying the chance constraints on Ticket-Cost ratio (safety risk).

This highlightd how Coin is extremely effective in designing prof-

itable oversubscription policies while ensuring balanced safety in

Ticket booking answering Q1 & Q2 affirmatively.
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Figure 4: Convergence curves for vCPU Oversubscription
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Figure 5: Convergence curves for Airline Overbooking

4.3 Convergence Study

Our policy learner should have stable convergence properties un-

der uncertainty [Q3], such that (1) the overhead cost of training

policies does not exceed the savings in operational cost and (2)

The policy is well balanced and ensures both "safety" and saving.

Convergence analysis on both vCPU as well as Air ticket domains

under uncertainty between Coinand a stable baseline (Behavior

Cloning or BC) is presented in Figure 4(a) & 4(b).

Coin converges to a stable mean squared error almost at the same

epoch range as baseline BC in the Cloud domain. However BC drops

faster towards the earlier epochs. This indicates that training with

stochastic constraints may be a bit slower (Similar observation in

case of hot nodes Fig 4(b) even though Coin is significant better

post convergence). Figure 5(b) shows that BC continuously has the

higher average costs than Coin on airline data.

Figure 6: A/B test Results on Microsoft internal services

4.4 Coin in Practice - Internal Deployment

We have deployed our framework on Microsoft internal cloud ser-

vices for 3 regions. It determines the appropriate oversubscrip-

tion rate for each vCPU request made by users to reduce resource

wastage while ensuring safety against uncertain demand.

We compare the performance of Coin against the strongest base-
line, behavior cloning on production deployment and and made

observations over a 350-hours period. This service has been de-

ployed in approximately 300 clusters. Figure 6 shows the AB tests

to analyze safety. The y-axis shows the cumulative number of hot

nodes during the test time at different hot thresholds (45%, 55%, 65%,

and 75%). We observe that our method can consistently achieve

smaller hot node ratio compared with the baseline. Again Coin im-
proves vCPU utilization by saving 31.05×more vCores compared
to the existing static naïve oversub. policy in production (answering
Q4). Note, other adaptive baselines cannot be tested on production.

5 CONCLUSION

We presented our ‘first of its kind’ chance-constrained imitation

learning framework that can implicitly model uncertainty and learn

balanced safe yet profitable oversubscription policies. This leads to

substantial COGS savings with nominal congestion risk in test and

real deployment. Adaptive oversubscription with stochastic bounds

on risk is very important in real systems since industry cannot adopt

strict risk avoidance (hard constraints) yet make reasonable profits.

As future work we plan to design an end-to-end oversubscription

framework that can not only leverage utilization patterns but can

also exploit workload forecasts.
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