
Large Language Models Can Provide Accurate and
Interpretable Incident Triage

Zexin Wang†‡, Jianhui Li†, Minghua Ma§∗, Ze Li§, Yu Kang§, Chaoyun Zhang§, Chetan Bansal§

Murali Chintalapati§, Saravan Rajmohan§, Qingwei Lin§, Dongmei Zhang§, Changhua Pei†, Gaogang Xie†‡
†Computer Network Information Center, Chinese Academy of Sciences

‡University of Chinese Academy of Sciences §Microsoft

Abstract—Large-scale cloud services frequently experience in-
cidents that can have a significant impact on their stability. Inci-
dent triage is a critical process that assigns incidents to dedicated
teams for resolution. However, traditional rule-based methods,
commonly employed in various systems, have limitations due to
a finite set of rules that necessitate continuous updates, leading
to suboptimal performance. Current state-of-the-art approaches
primarily rely on textual information, utilizing classifiers or
unsupervised clustering. Unfortunately, the abundance of tex-
tual information, combined with considerable noise, presents a
significant challenge to the accuracy of these methods. To tackle
these challenges, we introduce COMET, an innovative system
that utilizes an AutoExtractor to filter out non-critical logs and
employs a Large Language Model (LLM) for keyword extraction.
This approach effectively mitigates the complexity arising from
disordered textual information. Additionally, COMET incorpo-
rates significant domain knowledge during keyword extraction,
enhancing the LLM’s comprehension of the text. We deployed
COMET on multiple cloud services within Microsoft, where
it has operated continuously for over six months. Offline and
online evaluations have shown that COMET achieves enhanced
accuracy and reduced Time to Mitigation (TTM).

Index Terms—Incident triage, Large language model, Key-
words extraction

I. INTRODUCTION

A large-scale cloud service system typically consists of
multiple modules. Incidents such as hardware failures and
network issues frequently occur within these modules due
to system updates, iterative improvements, user errors, or
engineer misconfigurations [1]–[6]. If these incidents are not
promptly addressed, they can result in severe consequences
and significant economic losses. To ensure the stability of
large-scale service systems, major corporations have imple-
mented incident-handling systems. Fig. 1 illustrates the in-
cident handling process for some of Microsoft’s services.
Initially, automated monitors [7]–[13] promptly report new
incidents upon detecting faults. The second step involves
incident triage, where a specific team is assigned to identify
the root causes and resolve associated issues. Currently, these
services employ automated decision trees with predefined rules
to determine the appropriate team. In case of an incorrect
initial team assignment, engineers from different teams engage
in discussions and reassignment. The third step involves inci-
dent mitigation and resolution. Once an incident is correctly
assigned to the appropriate team, they can promptly identify

*Corresponding author. Email: minghuama@microsoft.com

Fig. 1. The overview of incident management within Microsoft.

the root cause and take measures to recover from the fault.
This framework ensures a systematic and efficient response
to incidents within large-scale service systems, minimizing
downtime and mitigating potential impacts on users and the
overall system.

Incident triage plays a crucial role in the overall framework
and significantly impacts the Time to Mitigation (TTM) of
incidents [14]. However, the current deployment of numer-
ous rules falls short of providing comprehensive coverage
for all possible scenarios. Moreover, the constant need for
rule updates, especially when encountering novel situations,
imposes a significant burden on manpower. These limitations
contribute to a relatively low accuracy in the initial incident
triage, necessitating collaborative discussions among engineers
from different teams for reassignment. Unfortunately, such
engineers’ discussions consume a substantial amount of time,
which is unacceptable for incidents of significant importance.

Therefore, the accuracy of incident triage is vital in min-
imizing the TTM. Several approaches [15]–[21] have been
developed to enhance the accuracy of incident triage, including
classifier-based [15]–[19] and clustering-based [19] methods.
These techniques primarily rely on textual information, which
is the most crucial aspect within incidents.

Challenge 1: Which textual information is the most im-
portant for triage: logs, discussions, or others? In our
context, textual information primarily consists of logs and
discussions among engineers following an incident. However,
neither of these sources is suitable for direct involvement in

incident triage. Firstly, as a cloud service serving a large user
base, our system generates a vast amount of logs. Swiftly and
accurately matching log templates is challenging, let alone
effectively utilizing this extensive information for subsequent
models. Especially when dealing with lengthy texts, even
the most efficient language models can introduce significant
comprehension biases. Therefore, using log texts directly as
input for our models is considered inappropriate. Secondly,
discussions require a significant amount of time to accumulate
as they are crafted by engineers based on their domain
expertise. This temporal requirement contradicts the objective
of promptly resolving incidents. Moreover, discussions often
contain substantial noise, such as abbreviations or hyperlinks.
Consequently, using logs or discussions directly in incident
triage is not suitable.

Challenge 2: How do we extract the key points from
massive textual information? Effectively utilizing obtained
textual information can be challenging. Many methods simply
convert the entire text into vectors using embedding model,
which is not suitable in many situations. This approach may
lead to the loss of important information, especially when
dealing with lengthy texts. Therefore, it is necessary to extract
key points from a large volume of textual information. While
many methods [22] attempt to summarize the text, generative
summarization introduces randomness and irrelevant words,
resulting in inconsistent summaries for the same text, which is
unacceptable for incident triage. Furthermore, even a summary
of an incident may still contain hundreds of words, making
it easy for important information to get lost among unrelated
words when using embedding model. Consequently, extracting
key points from vast information poses a critical challenge.

Challenge 3: How can we integrate domain knowledge
into the model? In the domain of incident triage, engineers
heavily depend on domain knowledge, even when aided by au-
tomated models. This knowledge encompasses the definitions
of specific terms and domain-specific documents. However,
current text-based methods fail to incorporate this knowledge,
leading to limited comprehension abilities of the models when
dealing with textual information. For instance, the model’s
limited comprehension of certain word abbreviations often
leads to their inadvertent exclusion when extracting key points.
However, these abbreviated terms are precisely the ones of
interest to engineers. Consequently, the accuracy of triage is
significantly compromised.

In this paper, we present COMET (code name of our
designed triage system), an innovative incident triage system
based on Large Language Models (LLMs). Initially, we em-
ploy AutoExtractor to process a substantial amount of log data
and perform template matching. Subsequently, by applying
specific rules, we filter out irrelevant logs to generate a relevant
textual information—TrimmedLogs (detailed in III-A2). Then,
utilizing LLMs, we extract keywords from the TrimmedLogs,
incorporating a significant amount of domain knowledge to en-
hance LLMs’ comprehension of the text. Finally, we utilize the
generated keywords to fine-tune a pre-trained FastText model

[23], [24] and generate embeddings for incidents. During the
online phase, the system calculates the similarity between the
embeddings of historical incidents and the embedding of the
new incident to retrieve similar historical incidents. The teams
associated with these incidents are then predicted as the final
assignment.

The paper’s main contributions are as follows:
• We use AutoExtractor to collect relevant information for

incident triage. This involves gathering multiple logs and
using a selection mechanism to generate optimal textual
information for extracting keywords.

• We pioneer using keywords for incident triage, leveraging
LLMs for keyword extraction, and incorporating domain
knowledge during the extraction process.

• We have deployed COMET on two large cloud services at
Microsoft over the last six months. Online experiments
have demonstrated that COMET improves accuracy by
30% and reduces the TTM by 35%.

II. BACKGROUND

In this section, we present a comprehensive empirical study
conducted on two large-scale services within Microsoft to shed
light on the challenges associated with incident triage and
underscore the motivation behind COMET. These two services
primarily provide users with virtual machines. We collected
a year’s worth of data from these services to conduct the
empirical study.

A. Incident Triage at Microsoft

As previously mentioned, ensuring the initial accuracy of
incident triage is crucial, as incorrect triage leads to repeated
reassignment. Delayed triage of high-priority incidents can
increase the TTM, posing security risks to the system and
negatively impacting the user experience. Fig. 2(a) illustrates
that incidents requiring only one triage hop (triage hop refers
to assigning an incident to the appropriate team for resolution)
account for no more than 40%, indicating a significant portion
of incidents do not receive accurate initial triage outcomes.
While most incidents can be resolved within three hops,
12% of incidents exceed this threshold. It is important to
note that in practical operational scenarios, engineers handle
a substantial volume of incidents daily, and each hop may
require a significant amount of time. Fig. 2(b) also supports
our assertion about time costs, as it shows that less than 10%
of incidents are resolved within a single time unit, indicating
a prolonged resolution process for a significant number of
incidents. Incidents can generate an overwhelming number of
logs, sometimes reaching the thousands or more. This abun-
dance of information can impede the swift identification of the
root cause even with engineers’ extensive domain knowledge.
Moreover, if the triage process is incorrect, engineers from
the new team will have to repeat the same steps, resulting
in a significant time overhead. Additionally, incident triage is
often a complex task that requires substantial involvement of
engineers, including communication and collaboration, which
further consumes time. Consequently, we observe that 50% of

2

(a) The distribution of hops (b) The distribution of TTM (c) Average # discussions (d) The distribution of # discussions

Fig. 2. Analysis of incident triage characteristic

incidents are resolved after surpassing 10 time units, which is
considered unacceptable for incidents of any security level.

Lesson 1. The crucial aspect in minimizing the incident
triage TTM resides in the reduction of the number of
necessary steps to accurately assign incidents to the
appropriate team. Ensuring precise triage to the correct
team right from the beginning would yield a substantial
multiplier effect.

B. Textual Information Comparison

During the incident triage process, textual information,
including discussions and logs, plays a crucial role in deter-
mining the appropriate team to handle the incident. However,
effectively and accurately utilizing this textual information
presents a significant challenge. DeepCT [17] proposes the
use of discussions for continuous triage. However, as shown in
Fig. 2(c), the number of discussions increases over time. After
1 unit of time, the average number of discussions is only 6.
This necessitates continuous waiting for engineers to provide
additional details to gather sufficient information, which con-
tradicts the objective of promptly resolving incidents. Fig. 2(d)
illustrates the distribution of discussions for resolved incidents,
indicating that a significant portion of incidents require 5 or
even 10 discussions to reach a resolution. Considering that
generating 10 discussions on average takes 5 units of time
according to Fig. 2(c), this timeframe is considered unaccept-
able for incident triage. Furthermore, the quality of discussions
varies widely. Initial discussions are predominantly generated
by machines and offer limited assistance in incident triage.
Discussions generated by engineers are often disorganized.
Some discussions may consist of only a few phrases, an image,
or a link, making them challenging for both humans and
models to comprehend.

The utilization of logs for incident triage is a prevalent
approach, primarily due to the critical fault information they
often contain. However, logs encounter several challenges.
Firstly, in large-scale cloud services within Microsoft, the
volume of logs generated can be enormous, with millions of
log entries produced in just one second [25]. Additionally,
these logs’ templates constantly evolve as cloud systems are
updated. Many existing log processing tools [26]–[29] struggle
to handle the massive and continuously changing templates.

Therefore, a significant challenge lies in efficiently and ac-
curately performing template matching on logs. Secondly,
log data often includes numerous irrelevant entries that are
generated by related software deployed across all teams. These
entries provide little assistance in incident triage and can
introduce noise interference. While most embedding methods
like BERT can handle a large context, the longer the text
information, the greater the risk of important information being
overshadowed by irrelevant details. Even in advanced language
models like GPT-4, this issue has not been fundamentally
resolved. Consequently, extracting relevant information from
a large volume of logs pose another significant challenge.

To address these challenges, we propose the utilization
of TrimmedLogs as a solution (detailed in section III-A2).
To validate the effectiveness of TrimmedLogs, we conducted
experiments using the state-of-the-art (SOTA) method DeepCT
[17] as a baseline. Specifically, we compared the performance
of TrimmedLogs and the discussions used in the original
DeepCT paper on two large-scale cloud services within Mi-
crosoft. Apart from the difference in input textual information,
the experimental settings were kept the same. The results
presented in Table I demonstrate that, regardless of considering
metrics such as ACC@1 and ACC@5 (detailed in (1)), the
utilization of TrimmedLogs consistently outperforms the use
of discussions.

ACC@N =
Sum(Correct Team in Top N Teams)

Test Size
(1)

TABLE I
ACCURACY OF THE TEST DATA.

Textual Information ACC@1 ACC@5

Discussions 0.54 0.76
TrimmedLogs 0.57 0.78

Lesson 2. Discussions and logs are deemed unsuitable
for direct utilization as textual inputs for models. How-
ever, filtered log data demonstrates greater suitability for
incident triage.

3

Fig. 3. Keywords and summary of an incident

C. Textual Information Compression

While TrimmedLogs is utilized to extract crucial informa-
tion from logs that reflects the root causes of incidents, it
often consists of several thousand words. Even with SOTA
embedding methods, extended text lengths still result in sig-
nificant information loss. Importantly, only a fraction of the
TrimmedLogs contains the key information that engineers
are concerned with, making it susceptible to loss during the
embedding process. As a result, the embeddings may not
accurately represent incidents, compromising accuracy despite
subsequent remedial methods. Therefore, it becomes impera-
tive to compress or extract key points from TrimmedLogs.

Currently, prevalent extraction methods involve using sum-
maries [22] or keywords [30] to represent the original text.
Extraction methods for summaries and keywords primarily
fall into the categories of statistical extractive and generative
approaches. However, statistical extractive methods like Term
Frequency-Inverse Document Frequency (TF-IDF) prove un-
suitable for our scenario, as high word frequency does not
necessarily indicate the importance of information. On the
contrary, keywords that appear infrequently and are specific
to certain teams are often more important. We provide a more
detailed discussion on the use of TF-IDF in section VI-A.
Generative approaches, on the other hand, face challenges
in the incident triage domain due to limitations in model
comprehension. LLMs, with their strong understanding of
textual information, have emerged as effective solutions to
these challenges and have been promptly employed in various
extraction tasks [30].

TABLE II
RESULTS OF USING KEYWORDS OR SUMMARY.

ACC@1 ACC@5

Keywords 0.65 0.82
Summary 0.22 0.55

In the context of incident triage, while summaries effec-
tively communicate the entire incident process to engineers,
specific keywords are the true facilitators of incident triage.
These keywords may pertain to specific deployment-related
components or indicate certain hardware malfunctions. Fig. 3
illustrates the results obtained by employing LLMs to extract

keywords and a summary from the TrimmedLogs of an
incident. We can observe that, while summaries may be more
readable for engineers or individuals outside the domain, the
truly pivotal elements are specific keywords. Furthermore,
summaries often contain numerous connective words added for
coherence, introducing randomness in generative text. These
factors can significantly impact the model’s ability to make
accurate judgments. To further validate our conclusion, we
conducted experiments with our model using keywords and
summaries for the two services mentioned earlier, and the
results are presented in Table II. It is evident that the use
of keywords yields significantly better results compared to
summaries.

Lesson 3. Keywords are deemed a more appropriate
approach for extracting key points in comparison to
summaries. This preference arises from the fact that
keywords possess a lower degree of randomness than
summaries and are better equipped to concentrate on the
essential information that engineers prioritize.

III. APPROACH

The architecture of COMET is depicted in Fig. 4, consisting
of two phases: the offline phase and the online phase. Overall,
COMET analyzes the status of the virtual machine where the
incident occurred, along with logs and other relevant data, to
ultimately determine the team responsible for the incident, as
well as provide key insights and a summary of the incident.

A. Offline Phase

1) AutoAnalysis: In the absence of external tools, triaging
a new incident to the appropriate team becomes challenging
when the underlying root cause is unknown, as different
teams specialize in specific domains, such as networking or
hardware-related issues. To address this challenge, we have
implemented AutoAnalysis in our services. AutoAnalysis is
a rule-based decision tree, depicted in Fig. 1, that utilizes
the historical experience of engineers to define rules for
identifying the ultimate root cause of incidents. The input
for AutoAnalysis is the status of the virtual machine where
the incident occurred, and the output is a text explanation of
the root cause of the incident. For instance, in Fig. 5, the
HINodeTriage (a rule-based system for incident triage) module
is invoked when incidents exhibit an unhealthy state. It assigns
a team based on the results obtained from HostRCA (a rule-
based system for root cause analysis), which systematically
assesses whether the issue lies with hardware or the operating
system. If the root cause is not identified after traversing
all nodes, HostRCA returns an “Inconclusive” result. Subse-
quently, HINodeTriage determines the final team assignment
based on the results from HostRCA.
Discussion about AutoAnalysis. However, as discussed in
section I, the current methodology is considered inaccurate
due to the constant emergence of new incidents, which require
continuous updates to the rules. This places a burden on
engineers and lacks scalability when transitioning to new

4

Fig. 4. Architecture of COMET

Fig. 5. A sample of AutoAnalysis

domains. Additionally, when rules fail to pinpoint a specific
root cause, the outcome is marked as “Inconclusive,” which
is common in real-world scenarios and significantly dimin-
ishes triage accuracy. Nevertheless, these rules incorporate
extensive domain knowledge and offer intrinsic value despite
occasional inaccuracies. Therefore, we utilize the results from
AutoAnalysis as incident titles for subsequent processes. Our
experiments in section V-C further demonstrate that even if
the results provided by AutoAnalysis have some deviations,
they can still be used in conjunction with keywords to achieve
better results.

2) AutoExtractor: When incidents occur, a significant
amount of diverse log information is collected and consoli-
dated using intelligent analytic services, as described in [31].
These services provide insights into incident-related informa-
tion from various perspectives across different stacks, includ-
ing software agents on the host, network traffic, host/guest
OS logs, resource utilization logs, and hardware logs. The
integration of this diverse log information contributes to a
more comprehensive understanding of incidents, serving as

the fundamental basis for incident data analysis. Below is
an introduction to some commonly used log categories in
COMET.
•Change Management Logs (CML). Software changes are
important fault information that some operation and mainte-
nance personnel are very concerned about.
•Crash Logs (CL). Crash logs can provide real-time kernel
and user mode crashes with call stack attribution.
•System Event Logs (SEL). SEL records most server-related
events, such as over and under voltage, temperature events,
fan events, and events from BIOS.
•Windows/Linux System Events logs (WL-SEL). WL-SEL
contains the Windows/Linux host os/guest os logs.
•Container Management Logs (CTML). CTML contains the
life cycles of containers/VMs with associated system logs.

To extract useful information from a large quantity of logs,
we proposes AutoExtractor. The architecture of AutoExtractor
is depicted in Fig. 6.

Fig. 6. Architecture of AutoExtractor

Log Parser. After an incident occurs, we collect a large
amount of diverse raw log information from the database using
Kusto functions. However, due to the complex formatting of
these logs, they pose challenges for both experts and LLMs

5

to comprehend. This complexity has led to the development
of various log parsers aimed at extracting templates. In our
specific context, the challenge arises from different log cate-
gories corresponding to different templates. Moreover, as the
system undergoes continuous updates, new templates emerge.
Additionally, the sheer volume of log entries burdens the
system if not processed in parallel. As a result, many existing
log parsers [28], [32]–[35] are deemed unsuitable for our
purposes. To address these challenges, we implemented a log
parser similar to [36] in our cloud services. The log parser
incorporates clustering and scheduling for different log groups,
enabling fast and accurate processing of large quantities of
logs. Moreover, it incorporates a feedback mechanism to
ensure accurate parsing even when confronted with evolving
log data.

Selection Mechanism. Processing large quantities of log data
not only consumes significant time but also risks drowning
out crucial information. Additionally, when leveraging LLMs,
token size limitations become a constraint that must be consid-
ered. To tackle this issue, we have adopted a unique selection
mechanism. This mechanism assigns different priorities to
various log entries based on two criteria. Firstly, we synthesize
domain knowledge from operations personnel to formulate
rules. Log entries that adhere to these rules are assigned higher
priority, as operations personnel can discern which types of
messages hold greater importance. For example, we predefine
certain keywords such as “crash” and “hardware issue.” Logs
containing these keywords are not discarded. Secondly, we em-
ploy a TF-IDF-like approach, where log entries that frequently
occur across teams are assigned lower priority, while those
that appear infrequently and possess uniqueness are assigned
higher priority. This approach allows us to extract concise yet
crucial log information, referred to as the “TrimmedLogs”.

In summary, TrimmedLogs represents a subset of log entries
that have undergone our selection process. Typically, post-
selection log entries are limited to only a few dozen, alleviating
the challenge of dealing with an abundance of text exceeding
the LLM’s maximum token size. This subset of log entries
encompasses information of significant interest to operations
personnel or contains unique key information indicative of
event categories. The TrimmedLogs is subsequently utilized
in downstream processes for incident triage.

3) Extracting Keywords:
TrimmedLogs Preprocessing. In the initial stage, we re-
trieve the title and TrimmedLogs for each incident from the
database using automated tools. However, the TrimmedLogs
often contains a significant amount of extraneous information,
which can consist of thousands of words. This extraneous
information includes website links or image URLs, which not
only pose challenges for the comprehension of LLMs but also
consume a considerable number of tokens. This consumption
may potentially limit the input of more pertinent information
into LLMs. To address this issue, we perform a filtering
process on the TrimmedLogs before extracting keywords. This
process eliminates website links, image URLs, and irrelevant

TABLE III
PROMPTS DESIGNED BASED ON DOMAIN KNOWLEDGE

1. Pay attention to keywords that indicate the occurrence of failure or
error, and identify what specifically failed or caused the error.
2. Take note of fault codes, event IDs, and other codes that indicate fault
information, and give them special attention.
3. When encountering common computer terms such as FPGA, identify
what specifically is going wrong.
4. Be particularly attentive to tools and deployments.
5. Avoid using commonly used words in keywords.

identifiers such as container IDs. By doing so, we streamline
the TrimmedLogs and remove unnecessary elements, enabling
a more focused and efficient analysis.

Introducing Domain Knowledge. After the preprocessing
stage, we input the TrimmedLogs into LLMs while adjusting
the prompt to guide the extraction of keywords. However, since
LLMs are trained on a corpus of all natural languages, their
understanding of specific domains may not be as robust as ex-
pected. Our experimental results in section V-C further confirm
that LLMs’ performance is suboptimal without incorporating
domain-specific knowledge. To address this limitation, there
are two main approaches for introducing domain knowledge
into LLMs: fine-tuning LLMs [37] or incorporating additional
knowledge into the prompt [38], [39]. However, fine-tuning
LLMs for the field of incident triage incurs significant ad-
ditional costs. Therefore, we propose a novel approach of
introducing domain knowledge into the prompt to enhance
LLMs’ ability to extract keywords in the incident triage
domain. While introducing additional knowledge to lengthen
prompts is a common practice, in keyword extraction, current
methods treat it as a generic task across all domains by
directly instructing the LLM to extract keywords. However,
this approach often overlooks crucial task information. De-
termining which words are crucial and which ones should
be disregarded varies significantly across different domains
in keyword extraction tasks. For instance, while “crash” holds
importance in the operation domain, it is inconsequential in
the legal domain. Therefore, it is imperative to impart domain-
specific task information to the LLM, which constitutes our
innovative approach. In conclusion, this approach allows us to
leverage existing domain knowledge without the need for ex-
tensive fine-tuning, resulting in improved keyword extraction
performance.

Domain Knowledge. The domain knowledge introduced in
our approach is outlined in Table III, derived from the analysis
of numerous cases. Firstly, prompt 1 is formulated based on the
understanding that engineers typically prioritize fault-related
information amidst the diverse content in the TrimmedLogs.
This prompt helps guide LLMs towards extracting keywords
related to faults or issues. Secondly, prompt 2 addresses
the presence of critical codes or IDs in the TrimmedLogs
that signify errors. Without explicit attention, LLMs might
overlook important information surrounding these codes or
IDs. This prompt ensures that LLMs focus on extracting

6

keywords associated with these critical identifiers. Prompt 3
is established based on the observation that incidents often
involve specific hardware components. By incorporating this
prompt, LLMs can extract keywords related to the relevant
hardware components, providing valuable context for incident
triage. Prompt 4 is derived from the observation that during
an incident occurrence, there are often automated mitigation
measures or troubleshooting procedures. By considering this
prompt, LLMs can extract keywords related to these proce-
dures. Finally, prompt 5 is devised to prevent the inclusion
of confusing keywords. By informing LLMs about commonly
recurring terms, they can avoid unnecessary focus on these
terms, allowing for more accurate keyword extraction.

Alleviating hallucination. Although LLMs are susceptible
to hallucination, even with the prompts mentioned above,
domain-specific TrimmedLogs still presents challenges for
LLMs. To facilitate improved downstream tasks for LLMs,
we employ two strategies. Firstly, we provide explanations for
certain domain-specific terms, such as specific word abbre-
viations that exist exclusively within the current domain and
are difficult for LLMs to comprehend. Secondly, we convey
the structural information of the TrimmedLogs to LLMs. The
TrimmedLogs we generate consists of a list of individual
entries, each formatted as a JSON object, encompassing var-
ious details such as the current log entry category. Without
guidance on the structure, LLMs may struggle to comprehend
the TrimmedLogs accurately. Lastly, we inform LLMs about
the specific meanings of frequently occurring log categories
(detailed in section III-A2) within the TrimmedLogs. These
log categories hold important information regarding the in-
cidents. These strategies collectively enhance LLMs’ ability
to comprehend and extract keywords from domain-specific
TrimmedLogs, enabling more accurate and effective incident
triage in the field of incident management.

4) Training Embedding Model:

Embedding Model Selection. After extracting keywords,
many methods commonly employ direct keyword matching
[19]. However, in our scenario, this approach is not feasible
due to the substantial volume of logs generated in incidents.
Certain words within the logs, although distinct in form,
may carry similar meanings in this domain. For example,
expressions like “fail to start,” “fail while starting,” and “fail to
initialize” exhibit significant lexical differences but share the
common implication that a particular container or functionality
failed to initiate. Most embedding methods are pretrained on
extensive corpora from the natural world, causing semantically
related terms to have close embeddings. This aligns well with
our requirements. We choose FastText here and a comparative
analysis of various embedding methods will be presented in
section VI-B. However, since many keywords are domain-
specific, using a pretrained model directly may introduce
significant biases in the embeddings of these words. Therefore,
we leverage the extracted keywords to fine-tune the pretrained
model, resulting in the ultimate model for our application.

Data Augmentation. When fine-tuning the embedding model

and recalling incidents, an imbalanced distribution of incidents
among different teams can introduce biases in the results.
Therefore, data augmentation becomes necessary. In contrast
to traditional sampling-based data augmentation methods, we
propose a novel data augmentation approach based on LLMs.
By adjusting various parameters of LLMs, such as tempera-
ture, we perform multiple extractions on incidents with fewer
occurrences, aiming to enhance diversity in the dataset.

Deriving Embeddings. We employed the model trained to
convert all keywords into vectors. Subsequently, we obtained
the incident embedding by averaging all keyword vectors and
incorporating the vector corresponding to the incident’s title.

B. Online Phase

In the online phase, when a new incident occurs, we obtain
embeddings by following the steps outlined in the offline
phase. Subsequently, we calculate the similarity between the
embeddings of the new incident and historical incidents using
(2) with support from the Faiss package. Based on the similar-
ity rankings, we recall incidents with higher similarity, and we
select the team affiliation of the top-ranking similar incidents
as our predictive result. By employing this well-established re-
call process commonly used in recommendation systems [40],
we not only effectively address the classifier’s limitations in
handling class imbalance scenarios but also leverage the char-
acteristic that similar incidents typically belong to the same
team. Since incident triage already achieves high precision in
recalling incidents that meet the relevant service requirements,
we omit subsequent reranking to minimize additional time and
resource consumption.

Similarity =
1

1 +Distance(X,Y)

Distance(X,Y) =

√√√√ n∑
i=1

(xi − yi)2
(2)

IV. ONLINE DEPLOYMENT STATUS

In the context of a real-world online incident management
system, each incident is reported to the engineers through
an entry on a dedicated website that contains descriptive
information, including a title and discussions. To enhance the
system’s functionality without disrupting normal operations,
we implemented specific improvements. Specifically, as shown
in Fig. 4, we adjusted the output of AutoAnalysis to serve as
the incident title and included the TrimmedLogs generated by
AutoExtractor as a discussion entry on the website. Addition-
ally, we provided the model’s final predictions for the team,
similar incidents, and keywords, along with a summary of the
TrimmedLogs on the website. We recognized that engineers,
who are more concerned with underlying causes, may require
more than a simple result. Therefore, the keywords and
summary were designed to facilitate a rapid understanding of
the entire incident process. The inclusion of similar incidents
not only provided evidence supporting the correctness of

7

our predicted teams but also offered valuable references for
effective mitigation measures.

To evaluate the effectiveness of our proposed approach,
we first conducted offline experiments (the results of which
are described in section V). After COMET was effectively
validated, we proceeded with online deployment and verifica-
tion. Specifically, we collected incidents that occurred within
a one-month timeframe on the services, all of which were
successfully resolved. We compared the teams predicted by
COMET with the actual teams to derive accuracy metrics.
Additionally, we assessed changes in the TTM for the incidents
before and after deploying COMET. The results obtained are
presented in Table IV. The baseline method refers to the rule-
based method previously deployed online. It does not have an
ACC@5 metric because it only recommends a single team at
most. COMET not only outperformed the baseline in terms of
accuracy but also in terms of TTM.

TABLE IV
ONLINE RESULTS, TU MEANS TIME UNIT, FTT MEANS FIRST TRIAGE

TIME.

ACC@1 ACC@5 FTT TTM

Baseline 0.47 - 7.85TU -
COMET 0.61 0.88 1.30TU -35%

In addition to accuracy, temporal efficiency is also a crucial
aspect in incident triage. The timely initiation of incident triage
directly impacts the prompt resolution of incidents. However,
the currently deployed baseline methods, which rely on rules,
are vulnerable to situations where the rules may not cover
all cases, resulting in prolonged triage times. This observation
is supported by the cumulative distribution function (CDF)
plot of triage time for the baseline method (Fig. 7). The
average triage time for services even reaches 7.85 time units.
In contrast, our proposed method achieves an average triage
time of only 1.30 time units, with a significant portion of the
time attributed to the latency incurred by invoking the LLM.

Fig. 7. CDF of baseline method TTT, where TTT means Time to Triage.

Implementation Details. We deploy COMET on two large-
scale cloud services within Microsoft, leveraging the Azure
web app framework. These services primarily serve users by
provisioning virtual machines. Upon the generation of a new
incident, the pipeline triggers the invocation of the web app,

facilitating the delivery of the pertinent outcomes. In COMET,
we use GPT-3.5 because it performs similarly to GPT-4 but
at a significantly lower price. We make two calls to the LLM
during the generation of keywords and summary. This practice
is motivated by the consideration that when the input text is
lengthy and multiple tasks are expected from the LLM, there
is an inherent risk of misinterpretation.

Safety of Online Status. Security is a crucial component of
any system. As previously mentioned, COMET merely adds
elements such as predicted teams to the incident website as
discussions, without making any structural changes to the
underlying system. Even in the event of prediction errors,
subsequent engineers can utilize domain knowledge to de-
termine whether to utilize the recommended team, without
necessitating any remedial measures.

Fig. 8. Overview of an incident’s website

Case Study. Fig. 8 illustrates an incident website, where the
occurrence of an OS crash in the TrimmedLogs is of particular
interest to engineers dealing with incidents. By incorporating
domain knowledge into the prompt, COMET successfully
extracts this information in both the keywords and summary.
The summary also provides a certain level of explanation
regarding the causes and consequences of the OS crash, which
proves highly beneficial to engineers. They no longer need to
manually search through logs one by one, saving significant
amounts of time. While the title generated by AutoAnalysis
contains some useful information, it does not capture the
complete details of the anomaly. In normal circumstances,
engineers would have to consult relevant documentation to
mitigate and resolve the incident. However, COMET simplifies
this process by providing similar incidents, allowing engineers
to gain insights into how similar incidents were resolved with
just a click, thereby greatly reducing TTM.

8

V. OFFLINE EVALUATION

A. Experiment Settings

1) Datasets and Metrics: We collected a dataset spanning
one year from two large service systems within Microsoft
(same as in empirical study) to validate the effectiveness of
COMET. We chose these two services because they serve
millions of people, making them highly representative and able
to demonstrate the generality of COMET. During the one-year
period, thousands of incidents were resolved in these systems,
involving over 70 distinct teams. The most recent 25% of
incidents were used for testing. We evaluated our system using
two metrics: ACC@1 and ACC@5, which are calculated as
shown in (1).

2) Baseline Methods:
•DeepCT [17] DeepCT leverages gated recurrent unit (GRU)
to capture temporal relationships within discussions while
employing an attention mechanism to extract pertinent infor-
mation from discussions using title and summary.
•DeepTriage (DT) [19] DeepTriage ensembles several sub-
models, including a multiple additive regression tree (MART)
model, an light gradient boosting machine (LGBM) [41]
model, an Inverted Index (II) model, a locality-sensitive hash-
ing (SI) model, and a deep neural network (DNN) model.

B. RQ1: Overall Performance

The results presented in Table V demonstrate that
COMET(GPT-4) outperforms the SOTA methods by 5% and
4% in ACC@1, as well as 10% and 6% in ACC@5, for
the two evaluated systems. In the case of system A, where
incidents are distributed across a diverse range of teams,
introducing variability and complexity to the triage task, our
method exhibits notable effectiveness. Similarly, system B,
although relatively simpler, still benefits significantly from
our approach. It is worth noting that our method achieves
close to 100% ACC@5 for system B, indicating our ability to
rapidly and accurately resolve each incident—a critical factor
for system stability.

TABLE V
TOP 1 AND TOP 5 ACCURACY OF DIFFERENT APPROACHES.

System A System B All
Approach ACC@1 ACC@5 ACC@1 ACC@5 ACC@1 ACC@5

DeepCT [17] 0.17 0.47 0.81 0.90 0.56 0.74
MART 0.25 0.45 0.66 0.89 0.51 0.72
LGBM 0.18 0.45 0.64 0.89 0.47 0.72
II 0.01 0.17 0.11 0.12 0.04 0.15
SI 0.16 0.38 0.52 0.82 0.39 0.66
DNN 0.04 0.32 0.15 0.43 0.11 0.39
DT [19] 0.25 0.41 0.66 0.88 0.51 0.70
COMET(GPT-3.5) 0.26 0.54 0.84 0.93 0.62 0.78
COMET(GPT-4) 0.30 0.57 0.85 0.96 0.65 0.82

While DeepCT performs reasonably well, our experiments
indicate that its effectiveness largely relies on the influence
of incident titles. Despite the seemingly rational proposal of
an attention structure based on discussions and GRU, the
high noise level within discussions hampers the extraction of

TABLE VI
ABLATION STUDY, # 5 IS COMET

Components Metric
Embedding Domain Knowledge Data Augment Title ACC@1 ACC@5

1 - - - - 0.36 0.70
2 ✓ - - - 0.48 0.74
3 ✓ ✓ - - 0.55 0.76
4 ✓ ✓ ✓ - 0.60 0.78
5 ✓ ✓ ✓ ✓ 0.65 0.82

meaningful information. Additionally, the relationships among
discussions often exhibit weak correlations, rendering GRU
less effective. Although DeepTriage integrates multiple mod-
els, its performance is constrained by the limitations of its sub-
models. Moreover, the fusion of extensive textual information
into a single vector introduces inherent biases.

C. RQ2: Ablation Study

The results of ablation study are presented in Table VI.
1) Effectiveness of Embedding Model: In method 1, no

embedding model is utilized. Instead, keywords are extracted
through LLMs, and a rule-based matching approach is em-
ployed. This method recalls incidents based on the maximum
number of matched keywords and selects the teams of these
incidents as the final predicted teams. On the other hand, in
method 2, FastText is employed as the embedding method.
Incidents are recalled based on the similarity of embeddings.
By comparing the accuracy of method 1 and method 2, we ob-
serve that the use of FastText significantly improves accuracy,
with increases of 12% and 4% for ACC@1 and ACC@5, re-
spectively. This indicates that while the keywords extracted by
LLMs may vary slightly in form, many of them carry similar
meanings. For example,“error” and “fail”, although different,
have closely related meanings. Basic matching algorithms
struggle to capture such relationships, whereas embedding
model, given our pre-trained model, can recognize these con-
nections. Additionally, the embedding model has undergone
fine-tuning in the current domain, providing embeddings with
significant distinctiveness. Hence, embedding model proves to
be indispensable.

2) Effectiveness of Domain Knowledge: In method 2, we
employ a basic prompt for keyword extraction without in-
corporating any domain knowledge. However, in method 3,
we integrate domain knowledge (detailed in section III-A3)
to guide LLMs in better extracting keywords. The results
presented in Table VI demonstrate that the inclusion of domain
knowledge leads to an improvement of 7% for ACC@1
and 2% for ACC@5. This indicates that the input domain
knowledge assists LLMs in understanding which words are
relevant to our specific domain and ultimately aid in extracting
more accurate keywords.

3) Effectiveness of Data Augmentation: In method 3, we
don’t utilize data augmentation, whereas in method 4, we
employ the data augmentation technique mentioned before.
The results presented in Table VI indicate that ACC@1 and

9

ACC@5 improved by 5% and 2%, respectively. Data augmen-
tation is an intrinsic capability of LLMs, which possesses the
ability to introduce randomness while ensuring a certain level
of accuracy. This feature aligns well with the requirements of
many domains. Traditional data augmentation techniques, such
as sampling, are mostly deterministic and may not introduce
new random elements. In contrast, leveraging LLMs for data
augmentation represents a significant trend, as they allow for
the generation of diverse and realistic data samples.

4) Effectiveness of Title: In method 4, we do not utilize the
title, whereas in COMET, the title is taken into consideration.
The results presented in Table VI demonstrate significant
improvements, with ACC@1 and ACC@5 increasing by 5%
and 4%, respectively. These improvements clearly indicate the
effectiveness of incorporating the title.

VI. DISCUSSION

A. Noise in Keywords

1) Discussion about TF-IDF and Vocabulary: As discussed
in section III-A2, our objective in generating TrimmedLogs
is to select log categories with lower frequencies, aiming
to avoid frequently occurring categories. However, it is in-
evitable that certain frequently occurring log categories still
end up in the TrimmedLogs. These categories are spread
across various teams and lack representativeness, introducing
significant noise when extracting keywords from this subset
of logs. To address this issue, we propose using TF-IDF to
filter out noise-inducing keywords. Specifically, we organize
the keywords from each team in the training samples into
categories and rank them based on their TF-IDF values. We
then eliminate keywords with lower rankings, which helps
mitigate noise during training. However, this strategy poses
challenges during real-time processing, as the same operations
cannot be performed. To overcome this challenge, we adopt
a practical solution. We assume that the keywords extracted
during training are sufficiently comprehensive and represent
a majority of the domain knowledge. In this context, we
utilize all words from the training phase as the vocabulary.
During online processing, we only extract keywords from this
predefined vocabulary. However, this method may sacrifice
diversity by potentially excluding terms that are crucial for
team assignment but not present in the vocabulary. Therefore,
caution must be exercised when using the vocabulary approach
to avoid sacrificing the richness and diversity of the generated
TrimmedLogs.

2) Experiment Results: To evaluate the effectiveness of
TF-IDF and the vocabulary approach, we conducted detailed
experiments divided into three sets with the same testing data
used in section V. In the first set, we discarded different
numbers of words during TF-IDF processing. In the second
set, we used the vocabulary generated during training to
select keywords during online processing, under the same
conditions as the first set. In the third set, we incorporated
title information into the experiments, again under the same
conditions as the first set. The results of these experiments are
presented in Fig. 9. The results of the first set of experiments

Fig. 9. ACC@1 with different settings

indicate that discarding a certain number of keywords through
TF-IDF has a limited impact on the outcomes. This suggests
that our approach of discarding frequently occurring categories
in TrimmedLogs generation is effective. Additionally, when
extracting incident embeddings, we employ average pooling
across all keywords. Although some noise may be present in
the keywords, the majority of them remain useful for team
assessment, and the averaging process minimizes their overall
impact. The results of the second set of experiments are
noticeably worse than those of the first set, which reinforces
the inference drawn from the first set. Since the first set already
demonstrated minimal noise in the keywords, forcefully incor-
porating the vocabulary to eliminate a small portion of noise
would result in an unacceptable loss of diversity. Furthermore,
the superior performance of the third set of experiments
compared to the first set provides additional evidence of the
effectiveness of title information.

B. Embedding Models Comparison

As described in section III, we utilized FastText as our
word embedding method. While there are more advanced
embedding methods available, such as the widely used BERT,
we found that BERT is not suitable for our specific use case.
There are two main reasons for this. Firstly, BERT has a
large number of model parameters, which results in significant
memory and training costs. This can have a negative impact
on online scenarios where efficiency is crucial. Secondly,
there is a fundamental difference in how BERT and FastText
handle relationships between words in text. BERT considers
the relationships between individual words in the text, making
it more effective for longer texts where the context is crucial.
On the other hand, FastText applies n-gram operations to all
texts and feeds the results into the model without explicitly
focusing on the relationships between words. In our scenario,
each of our keywords contains a limited number of words, and
there is no need to consider intricate relationships between
words. Therefore, FastText is more suitable for our specific
use case. Using FastText not only saves time and memory but
also avoids introducing noise from overly complex models,
which verified by the experiment.

The results, as illustrated in Fig. 10, indicate a noticeable su-
periority of FastText over BERT in both ACC@1 and ACC@5
metrics. Moreover, the considerably longer training time of

10

(a) Accuracy of different embed-
ding models

(b) Training time of different em-
bedding models

Fig. 10. Comparison with FastText and BERT

BERT, attributed to its intricate network structure, renders it
impractical for deployment in cloud services. Consequently,
we opt for FastText as the embedding method, considering its
efficiency and suitability for our specific use case.

C. Parameter Sensitivity

(a) Accuracy of different training
epoches

(b) Accuracy of different learning
rate

Fig. 11. Accuracy for different parameters

A robust method should possess strong generalization ca-
pabilities, enabling it to adapt seamlessly to various domains.
Parameter sensitivity is a critical aspect for evaluating robust-
ness. To assess the robustness of our approach, we conducted
sensitivity tests on different parameters using the same data
used in V, including the number of training epochs and the
learning rate. The results of these tests are depicted in Fig. 11.
The outcomes of the sensitivity tests validate the versatility of
our approach.

VII. RELATED WORK

Classifier-based methods. Classifier-based methods [15]–[19]
typically involve constructing various classifier models by
extracting textual and non-textual features to predict the corre-
sponding team for incident triage. By constructing classifiers
based on textual information, bugs can be accurately triaged to
the correct team. For instance, SG [15] employs an ensemble
of multiple base classifiers such as Support Vector Machines
(SVM) to categorize bugs. CNN Triager [16] introduces
Convolutional Neural Networks (CNN) for further precise
processing of textual information. DeepCT [17], building
upon CNN, considers temporal relationships among incident
discussions. It utilizes GRU to extract temporal dependencies
and employs attention mechanisms to mitigate the impact of

noise. DeepTriage [19] integrates various classifier models,
including popular ones like LGBM and MART.

Clustering-based methods. Clustering-based recall methods
[19] posit that incidents or bugs with similar topics should
be assigned to the same team. These methods initially cluster
incidents with similar topics based on incident reports and
then assign new incidents to the respective teams according
to their topics. SI [19] converts incident text information
into embeddings and identifies the incident with the closest
embedding distance to the new incident.

LLMs in incident management. Recently, an increasing
number of methods have endeavored to employ LLMs to ad-
dress various issues in incident handling, such as RCACopilot
[22], RCAgent [42], React Agent [43], MonitorCopilot [44],
and Xpert [45]. They exhibit unique advantages in automating
interactive problem resolution, rendering textual information
more interpretable.

VIII. CONCLUSION

In this paper, we propose a novel incident triage system
called COMET, which is based on the extraction of domain-
specific keywords using LLMs. We employ AutoExtractor
to process logs. Then, we extract keywords using LLMs
and enhance the keyword extraction process by incorporating
domain knowledge into the LLM model. When online, we
retrieve the most relevant results based on the similarity
between embeddings generated by finetuned FastText model.
Online evaluations have demonstrated that COMET improves
accuracy by 30% and reduces the TTM by 35%.

IX. ACKNOWLEDGEMENT

This work was supported by the National Key Research and
Development Program of China (No.2021YFE0111500).

REFERENCES

[1] N. Zhao, J. Zhu, Y. Wang, M. Ma, W. Zhang, D. Liu, M. Zhang, and
D. Pei, “Automatic and generic periodicity adaptation for kpi anomaly
detection,” IEEE Transactions on Network and Service Management,
vol. 16, no. 3, pp. 1170–1183, 2019.

[2] M. Ma, Y. Liu, Y. Tong, H. Li, P. Zhao, Y. Xu, H. Zhang, S. He,
L. Wang, Y. Dang et al., “An empirical investigation of missing data
handling in cloud node failure prediction,” in Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2022, pp. 1453–1464.

[3] Y. Liu, H. Yang, P. Zhao, M. Ma, C. Wen, H. Zhang, C. Luo, Q. Lin,
C. Yi, J. Wang et al., “Multi-task hierarchical classification for disk
failure prediction in online service systems,” in Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
2022, pp. 3438–3446.

[4] L. Li, X. Zhang, S. He, Y. Kang, H. Zhang, M. Ma, Y. Dang, Z. Xu,
S. Rajmohan, Q. Lin et al., “Conan: Diagnosing batch failures for cloud
systems,” 2023.

[5] P. Dogga, C. Bansal, R. Costleigh, G. Jayagopal, S. Nath, and X. Zhang,
“Autoarts: Taxonomy, insights and tools for root cause labelling of inci-
dents in microsoft azure,” in 2023 USENIX Annual Technical Conference
(USENIX ATC 23), 2023, pp. 359–372.

[6] M. H. Tong, R. L. Grossman, and H. S. Gunawi, “Experiences in man-
aging the performance and reliability of a large-scale genomics cloud
platform,” in 2021 USENIX Annual Technical Conference (USENIX ATC
21), 2021, pp. 973–988.

11

[7] M. Ma, S. Zhang, D. Pei, X. Huang, and H. Dai, “Robust and rapid
adaption for concept drift in software system anomaly detection,”
in 2018 IEEE 29th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2018, pp. 13–24.

[8] Q. Lin, T. Li, P. Zhao, Y. Liu, M. Ma, L. Zheng, M. Chintalapati, B. Liu,
P. Wang, H. Zhang et al., “Edits: An easy-to-difficult training strategy
for cloud failure prediction,” in Companion Proceedings of the ACM
Web Conference 2023, 2023, pp. 371–375.

[9] M. Ma, S. Zhang, J. Chen, J. Xu, H. Li, Y. Lin, X. Nie, B. Zhou,
Y. Wang, and D. Pei, “Jump-starting multivariate time series anomaly
detection for online service systems,” in 2021 USENIX Annual Technical
Conference (USENIX ATC 21), 2021, pp. 413–426.

[10] Z. Zeng, Y. Zhang, Y. Xu, M. Ma, B. Qiao, W. Zou et al., “Traceark:
Towards actionable performance anomaly alerting for online service
systems,” in 45th ICSE-SEIP. IEEE, 2023, pp. 258–269.

[11] Z. Wang, C. Pei, M. Ma, X. Wang, Z. Li, D. Pei, S. Rajmohan, D. Zhang,
Q. Lin, H. Zhang, J. Li, and G. Xie, “Revisiting VAE for unsupervised
time series anomaly detection: A frequency perspective,” in Proceedings
of the ACM on Web Conference 2024. ACM, 2024, pp. 3096–3105.

[12] M. Ma, S. Zhang, J. Chen, J. Xu, H. Li, Y. Lin, X. Nie, B. Zhou,
Y. Wang, and D. Pei, “Jump-starting multivariate time series anomaly
detection for online service systems,” in 2021 USENIX Annual Technical
Conference (USENIX ATC 21), 2021, pp. 413–426.

[13] Y. Chen, C. Zhang, M. Ma, Y. Liu, R. Ding, B. Li, S. He, S. Rajmohan,
Q. Lin, and D. Zhang, “Imdiffusion: Imputed diffusion models for mul-
tivariate time series anomaly detection,” Proc. VLDB Endow., vol. 17,
no. 3, pp. 359–372, 2023.

[14] X. Yan, K. Hsieh, Y. Liyanage, M. Ma, M. Chintalapati, Q. Lin, Y. Dang,
and D. Zhang, “Aegis: Attribution of control plane change impact across
layers and components for cloud systems,” in 45th ICSE-SEIP. IEEE,
2023, pp. 222–233.

[15] L. Jonsson, M. Borg, D. Broman, K. Sandahl, S. Eldh, and P. Runeson,
“Automated bug assignment: Ensemble-based machine learning in large
scale industrial contexts,” Empirical Software Engineering, vol. 21, pp.
1533–1578, 2016.

[16] S.-R. Lee, M.-J. Heo, C.-G. Lee, M. Kim, and G. Jeong, “Applying
deep learning based automatic bug triager to industrial projects,” in
Proceedings of the 2017 11th Joint Meeting on foundations of software
engineering, 2017, pp. 926–931.

[17] J. Chen, X. He, Q. Lin, H. Zhang, D. Hao, F. Gao, Z. Xu, Y. Dang, and
D. Zhang, “Continuous incident triage for large-scale online service sys-
tems,” in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2019, pp. 364–375.

[18] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
Proceedings of the 28th international conference on Software engineer-
ing, 2006, pp. 361–370.

[19] P. Pham, V. Jain, L. Dauterman, J. Ormont, and N. Jain, “Deep-
triage: Automated transfer assistance for incidents in cloud services,”
in Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020, pp. 3281–3289.

[20] G. Bortis and A. Van Der Hoek, “Porchlight: A tag-based approach
to bug triaging,” in 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 2013, pp. 342–351.

[21] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,” TOSEM, vol. 20,
no. 3, pp. 1–35, 2011.

[22] Y. Chen, H. Xie, M. Ma, Y. Kang, X. Gao, L. Shi, Y. Cao, X. Gao,
H. Fan, M. Wen, J. Zeng, S. Ghosh, X. Zhang, C. Zhang, Q. Lin,
S. Rajmohan, D. Zhang, and T. Xu, “Automatic root cause analysis
via large language models for cloud incidents,” in Proceedings of the
Nineteenth European Conference on Computer Systems. ACM, 2024,
pp. 674–688.

[23] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” arXiv:1607.01759, 2016.

[24] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the association for
computational linguistics, vol. 5, pp. 135–146, 2017.

[25] S. He, X. Zhang, P. He, Y. Xu, L. Li, Y. Kang, M. Ma, Y. Wei,
Y. Dang, S. Rajmohan, and Q. Lin, “An empirical study of log analysis
at microsoft,” in Proceedings of the 30th Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 2022, pp. 1465–1476.

[26] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings

of the 2017 ACM SIGSAC conference on computer and communications
security, 2017, pp. 1285–1298.

[27] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li et al., “Robust log-based anomaly detection on unstable
log data,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 807–817.

[28] Y. Liu, X. Zhang, S. He, H. Zhang, L. Li, Y. Kang, Y. Xu, M. Ma, Q. Lin
et al., “Uniparser: A unified log parser for heterogeneous log data,” in
Proceedings of the ACM Web Conference 2022, 2022, pp. 1893–1901.

[29] S. Zhang, P. Jin, Z. Lin, Y. Sun, B. Zhang, S. Xia, Z. Li, Z. Zhong,
M. Ma, W. Jin, D. Zhang, Z. Zhu, and D. Pei, “Robust failure diagnosis
of microservice system through multimodal data,” IEEE Trans. Serv.
Comput., vol. 16, no. 6, pp. 3851–3864, 2023.

[30] J. Cui, Z. Li, Y. Yan, B. Chen, and L. Yuan, “Chatlaw: Open-source
legal large language model with integrated external knowledge bases,”
arXiv:2306.16092, 2023.

[31] Z. Li, Q. Cheng, K. Hsieh, Y. Dang, P. Huang, P. Singh, X. Yang, Q. Lin,
Y. Wu, S. Levy et al., “Gandalf: An intelligent, end-to-end analytics
service for safe deployment in large-scale cloud infrastructure,” in 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20), 2020, pp. 389–402.

[32] H. Dai, H. Li, C.-S. Chen, W. Shang, and T.-H. Chen, “Logram: Efficient
log parsing using n n-gram dictionaries,” IEEE Transactions on Software
Engineering, vol. 48, no. 3, pp. 879–892, 2020.

[33] Z. M. Jiang, A. E. Hassan, P. Flora, and G. Hamann, “Abstracting execu-
tion logs to execution events for enterprise applications (short paper),” in
2008 The Eighth International Conference on Quality Software. IEEE,
2008, pp. 181–186.

[34] K. Shima, “Length matters: Clustering system log messages using length
of words,” arXiv:1611.03213, 2016.

[35] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in 2017 IEEE international conference
on web services (ICWS). IEEE, 2017, pp. 33–40.

[36] X. Wang, X. Zhang, L. Li, S. He, H. Zhang, Y. Liu, L. Zheng, Y. Kang,
Q. Lin, Y. Dang et al., “Spine: a scalable log parser with feedback
guidance,” in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2022, pp. 1198–1208.

[37] P. Jin, S. Zhang, M. Ma, H. Li, Y. Kang, L. Li, Y. Liu, B. Qiao,
C. Zhang, P. Zhao et al., “Assess and summarize: Improve outage
understanding with large language models,” in Proceedings of the 31st
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2023, pp. 1657–1668.

[38] Y. He, S. Zheng, Y. Tay, J. Gupta, Y. Du, V. Aribandi, Z. Zhao,
Y. Li, Z. Chen, D. Metzler et al., “Hyperprompt: Prompt-based task-
conditioning of transformers,” in International Conference on Machine
Learning. PMLR, 2022, pp. 8678–8690.

[39] T. Sun, Z. He, H. Qian, Y. Zhou, X.-J. Huang, and X. Qiu, “Bbtv2:
towards a gradient-free future with large language models,” in Proceed-
ings of the 2022 Conference on Empirical Methods in Natural Language
Processing, 2022, pp. 3916–3930.

[40] Q. He, J. Pei, D. Kifer, P. Mitra, and L. Giles, “Context-aware citation
recommendation,” in Proceedings of the 19th international conference
on World wide web, 2010, pp. 421–430.

[41] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-
Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
Advances in neural information processing systems, vol. 30, 2017.

[42] Z. Wang, Z. Liu, Y. Zhang, A. Zhong, L. Fan, L. Wu, and Q. Wen,
“Rcagent: Cloud root cause analysis by autonomous agents with tool-
augmented large language models,” arXiv:2310.16340, 2023.

[43] D. Roy, X. Zhang, R. Bhave, C. Bansal, P. Las-Casas, R. Fonseca,
and S. Rajmohan, “Exploring llm-based agents for root cause analysis,”
arXiv:2403.04123, 2024.

[44] Z. Yu, M. Ma, C. Zhang, S. Qin, Y. Kang, C. Bansal, S. Rajmohan,
Y. Dang, C. Pei, D. Pei, Q. Lin, and D. Zhang, “Monitorassistant:
Simplifying cloud service monitoring via large language models,” in
Companion Proceedings of the 32nd International Conference on the
Foundations of Software Engineering. ACM, 2024, pp. 38–49.

[45] Y. Jiang, C. Zhang, S. He, Z. Yang, M. Ma, S. Qin, Y. Kang, Y. Dang,
S. Rajmohan, Q. Lin, and D. Zhang, “Xpert: Empowering incident
management with query recommendations via large language models,”
in Proceedings of the 46th IEEE/ACM International Conference on
Software Engineering. ACM, 2024, pp. 92:1–92:13.

12

