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Abstract—Memory safety violations in low-level code, written
in languages like C, continues to remain one of the major
sources of software vulnerabilities. One method of removing
such violations by construction is to port C code to a safe C
dialect. Such dialects rely on programmer-supplied annotations
to guarantee safety with minimal runtime overhead. This porting,
however, is a manual process that imposes significant burden on
the programmer and, hence, there has been limited adoption of
this technique.

The task of porting not only requires inferring annotations,
but may also need refactoring/rewriting of the code to make
it amenable to such annotations. In this paper, we use Large
Language Models (LLMs) towards addressing both these con-
cerns. We show how to harness LLM capabilities to do complex
code reasoning as well as rewriting of large codebases. We also
present a novel framework for whole-program transformations
that leverages lightweight static analysis to break the transfor-
mation into smaller steps that can be carried out effectively by
an LLM. We implement our ideas in a tool called MSA that
targets the CheckedC dialect. We evaluate MSA on several micro-
benchmarks, as well as real-world code ranging up to 20K lines of
code. We showcase superior performance compared to a vanilla
LLM baseline, as well as demonstrate improvement over a state-
of-the-art symbolic (non-LLM) technique.

I. INTRODUCTION

Legacy C-programs are pervasive, which makes mem-
ory corruption vulnerabilities a major problem for software
systems. This problem has attracted a wealth of attention
for decades but memory safety violations continue to re-
main one of the major sources of cyber attacks. From
memorysafety.org: “Microsoft estimates that 70% of all
vulnerabilities in their products over the last decade have
been memory safety issues. Google estimated that 90% of
Android vulnerabilities in the wild are memory safety issues.
An analysis found that more than 80% of the exploited
vulnerabilities were memory safety issues.”

Researchers have proposed safe dialects of C, such as
Checked-C [1], Deputy [2], Cyclone [3], etc. These all use
static analysis and lightweight runtime checks to ensure formal
memory safety guarantees at low runtime overheads. However,
these techniques require source-level annotations. The manual
cost of adding these annotations, along with the code rewriting
that enable such annotations in the first place, are the main
hurdle for adoption of these dialects.

Recently, Large Language Models (LLMs) have shown
promise in improving the productivity of software developers
[4]. LLMs are highly versatile and accomplish diverse tasks
surprisingly well, given the right instructions as prompts.
Motivated by their novel capabilities, we present MSA, a

tool that leverages LLMs to help port C to Checked-C. We
are unaware of any prior LLM or Machine Learning based
approach for this task. Although recent symbolic analyses have
shown promising results [5], our evaluation shows that they
miss out on many annotations and do not perform refactoring.

Our main contribution is a novel framework that tightly
couples LLMs and symbolic representations. We show a
general recipe of breaking whole program transformations
into smaller tasks that can fit into LLM prompts, where each
task has a code snippet and a symbolic context that contains
relevant information about the other parts of the program that
are not included in the snippet (Section IV). MSA works in
multiple phases, where each phase is an instantiation of this
recipe for a different task. We present the prompts that we
used for each phase (Section V).

LLMs help compensate for shortcomings in symbolic in-
ference techniques by dealing with complex code patterns,
as well as performing refactoring where needed to allow for
further annotations in the code. For instance, if a procedure
signature is modified, then the effects have to be propagated
to its caller, possibly transitively. Our evaluation shows that
LLMs are able to accomplish this task well when provided
a sufficiently detailed prompt. On the other hand, LLMs can
hallucinate, thus, using symbolic information where available
helps improve overall accuracy. Finally, note that any anno-
tations generated by our tool are checked by the Checked C
compiler. Hence, even if the LLM falters and generates an
incorrect annotation, memory safety is not compromised—the
Checked C compiler will either give a compilation error or
instrument the code with a check that will fail at runtime. The
higher the accuracy of MSA, the less is the amount of time
developers have to spend porting to Checked C.

Although this paper focuses on memory safety, we believe
our contributions have wider ramifications in formal veri-
fication of real-world software. At a high level, any such
verification task requires three steps. First step is to rewrite
the code so that it is amenable to verification. Second step is
to annotate the code with contracts (invariants, type qualifiers,
etc.). The third and final step is to check that the code
satisfies the contracts, usually with an automated verifier.
These steps are interconnected, and any failure in the third
step has to be fixed by repeating the first two. While symbolic
techniques have been devised towards the second step, for
inferring contracts, the first step has generally not received
much attention. Given that LLMs have shown great promise in
tedious programming tasks, it is a natural research direction to



explore whether they can help with the first two steps, leaving
the third untouched in order to avoid compromising soundness.
Our work answers this question in the affirmative for the task
of memory safety of C.

To summarize, we make the following contributions:
• We present MSA, the first LLM-based assistant for porting

C to Checked-C. MSA performs transformations that are
out-of-reach of existing (symbolic-only) assistants.

• We present a novel recipe for breaking a whole program
transformation into smaller tasks that can fit into LLM
prompts.

• We evaluate MSA on real world C-programs, ranging up
to 20K lines of code, showing that it can successfully
infer 86% of the required annotations correctly.

We plan to open-source the implementation of MSA, along
with all the prompt templates that it uses.1 The rest of this
paper is organized as follows. Section II provides a back-
ground on Checked C, followed by examples that illustrate
the challenges of the porting process from C code. Section III
provides background on the state-of-the-art symbolic tool for
Checked C inference. Our technical contributions follow next.
We provide our generic recipe for whole program transfor-
mations using LLMs (Section IV) and then we show how
MSA instantiates this recipe to overcomes the challenges in the
porting process (Section V). We evaluate MSA (Section VI),
discuss threats to validity (Section VII), and survey related
work (Section VIII).

II. CHALLENGES IN PORTING C TO CHECKED C

Checked C is a safe dialect of C, inspired from Deputy
[2] and Cyclone [3]. It differs from its predecessors in that
it allows checked and unchecked code to coexist. Checked
regions guarantee spatial memory safety, i.e, any illegal out
of bounds memory access is caught and the program is termi-
nated. More precisely, Checked C satisfies a blame property
where any illegal access can be blamed on the unchecked parts
of the code [1].

Checked Pointer Types: Checked C introduces three
checked pointer types, namely, ptr<T>, arr<T> and
nt_arr<T> in place of the C pointer type T*. (These
names are abbreviated from their actual names, _Ptr<T>,
_Array_ptr<T> and _Nt_Array_ptr<T> for brevity.)
The ptr type is used for pointers that point to a single
object (or null) and are not involved in pointer arithmetic.
The compiler inserts a null check at every dereference of a
ptr type for spatial safety.

The arr type is used for pointers that point to an array of
values. It is accompanied by a bounds expression that specifies
the range of memory that the pointer can access. These decla-
rations appear as arr<T> p : bounds(lo, hi) where
lo and hi are expressions that evaluate to the lower and upper
bounds of the array, respectively. In addition to the null check,
a bounds check of lo <= (p+i) && (p+i) < hi is
also inserted at every dereference *(p+i) for an arr.

1See https://aka.ms/checkedc-annotation-inference.

There are other shorthand annotations, such as count(n)
or byte_count(n) that specify the number of elements
or bytes that the pointer can access, starting from its current
value. These checks are inserted at higher-level passes of the
compiler, and may get optimized away by lower-level passes in
the compiler if it manages to prove that accesses are within the
supplied bounds. This combination of type-assistance and low-
level optimizations makes the Checked C approach appealing
compared to other safe C approaches; portions of the FreeBSD
kernel that were ported to Checked C reported essentially no
runtime overhead [6].

The nt_arr type is used for pointers that point to
null-terminated arrays, mostly strings. An annotation of
count(n) implies that the array has at least n+1 elements,
the last being the null value. An interesting feature of nt_arr
is that its bounds can be widened until a null character is
found. Hence, while(*p != 0) p++; is a valid way to
access nt_arr<T> p:count(0). Each time *p does not
equal the null character, its bound can be widened by 1.

Challenges: Next, we explain some of the challenges in
porting C to Checked C through examples. In the changelogs
below, the C-code in red needs to be replaced with code in
green for a successful port. The examples in this section are
derived from real world C programs used in our evaluation,
and they are beyond the capabilities of existing inference tools
(Section III).

The first challenge is in handling nested pointers. Given a
nested pointer, e.g., long** pt, it is not possible in Checked
C to separately annotate the buffers pt[0], pt[1], etc., with
their sizes. The idiomatic way to handle this situation is to
replace the nested pointer with an array of structs, where the
struct has a buffer with its associated length. Correspondingly,
every access to pt throughout the program must be modified
to respect this new interface. A real-world example follows:

void AllocAssign(void) {
ulong net; ulong n = channelNets+1;
costMatrix =

- (long**) malloc(n * sizeof(long *));
+ (arr<struct arr_of_long>)
+ malloc(n * sizeof(struct arr_of_long));
for (net = 1; net <= channelNets; net++) {

- costMatrix[net] =
+ costMatrix[net].ptr =

malloc((channelTracks+2) * sizeof(long));
+ costMatrix[net].len = channelTracks+2;
}

}

Here, costMatrix has been converted from a nested pointer
to an array of structs, where each struct has a buffer ptr
and its associated length len. Whenever the buffers in
costMatrix are allocated or reassigned, the newly intro-
duced size field len must be updated accordingly.

Next, we present an example where annotating a buffer
with its bounds requires involved arithmetic reasoning within a
loop. Consider the following code where the loop runs longs
number of times with 4 bytes in the buffer buf accessed per
loop iteration:



static void byteReverse(
- unsigned char* buf,
+ arr<unsigned char> buf: count(longs * 4),
unsigned longs) {
uint32_t t;
do {
t = (uint32_t)
((unsigned) buf[3] << 8 | buf[2]) << 16 |
((unsigned) buf[1] << 8 | buf[0]);
*(uint32_t *) buf = t; buf += 4;

} while (--longs);
}

By analyzing this loop, we can conclude that buf has a
size of count(longs * 4). Existing tools [5] struggle to
infer bounds that have expressions with arithmetic. While the
above loop had deterministic behavior, the following is more
complicated.

struct bin_to_ascii_ret
vsf_ascii_bin_to_ascii(
- const char* p_in,
+ arr<const char> p_in: count(in_len),
- char* p_out,
+ arr<char> p_out: count(in_len * 2),
unsigned int in_len, int prev_cr) {
...
while (indexx < in_len) {
char the_char = p_in[indexx];
if (the_char == ’\n’ && last_char != ’\r’){
*p_out++ = ’\r’;
written++;

}
*p_out++ = the_char;
indexx++;
...

Here, the buffer p_in must be annotated with its length
in_len and, for memory safety, p_out must have a size
of (in_len*2) to handle the worst case loop behavior.

Often the annotation process is not local and requires
refactoring several functions. Consider the following code:

static int countint (lua_Integer key,
- unsigned int* nums
+ arr<unsigned int> nums: count(count_nums),
+ int count_nums
) {

unsigned int k = arrayindex(key);
if (k != 0) {
nums[luaO_ceillog2(k)]++;
...

Just looking at the original C code of countint, it is
impossible to annotate the buffer nums with its size. The
programmer likely has some custom invariant in mind to keep
the indexing within bounds. It is not possible to explain custom
invariants to the Checked C compiler. Thus, the idiomatic
way to enforce safety with Checked C is to introduce a new
argument count_nums that stores the array size and use it
to annotate nums, then require callers to pass the appropriate
size. Let’s consider a caller of countint next.

static int numusehash (
- const Table* t,
+ ptr<Table> t,

- unsigned int* nums,
+ arr<unsigned int> nums: count(count_nums),
+ int count_nums,
unsigned int* pna) {
...

- ause += countint(keyival(n),nums)
+ ause += countint(keyival(n),nums,count_nums)
...

Here, the call to countint must be modified to match
its new signature. Furthermore, numusehash must annotate
nums with its size in its signature. Accordingly, the signature
also needs an extra argument count_nums. Next, the callers
of numusehash also need to be updated to supply this extra
argument. We show one such caller next:

static void rehash(lua_State* L,
- Table* t, const TValue* ek
+ ptr<Table> t, ptr<const TValue> ek
) {
unsigned int nums[MAXABITS + 1];
...

- total += numusehash(t,nums,&na);
+ total += numusehash(t,nums,MAXABITS+1,&na);
...

- na += countint(ivalue(ek),nums);
+ na += countint(ivalue(ek),nums,MAXABITS+1);
...

}

In the above code, the new parameter count_nums is set to
its correct value MAXABITS+1 in the calls to countint and
numusehash. We are unaware of any prior tool that performs
such a whole program refactoring of C-code automatically.

III. BACKGROUND ON SYMBOLIC INFERENCE WITH 3C

3C [5] is a static-analysis-based tool to help developers
port C code to Checked C. It consists of two components, a
type inference algorithm called typ3c and a bounds inference
algorithm called boun3c, that are executed one after the
other. We briefly discuss these algorithms, their strengths and
limitations since MSA uses 3C.

typ3c uses type qualifier inference [7] to convert legacy
pointers to checked pointer types. Pointers that are used
unsafely, for instance, in unsafe casts (e.g., casting an int to
int*), are not converted to checked pointers. This is because
the Checked C compiler cannot provide safety guarantees for
such pointers. typ3c then classifies checked pointers into one
of ptr, arr, and nt_arr depending on their use.

Once the checked pointers have been identified, boun3c
infers bounds for arr and nt_arr pointers. It works by
constructing a dataflow graph that tracks the flow of arrays
along with their bounds, starting from their allocation site
where the bounds information is available. boun3c is designed
to be sound (i.e., inferred annotations are correct) but not
complete (not all possible annotation are inferred). In fact, as
our evaluation will show, boun3c misses several annotations.

One limitation of boun3c is that it can only infer bounds
that involve a single variable or a constant. Thus, bounds that
involve expressions with arithmetic will be missed for sure.
Further, boun3c is largely limited to inferring count-style



annotations, not bounds annotations that have both a lower
and upper bound. boun3c offers some heuristics that attempt
to come up with more annotations, but these annotations can
be unsound. Furthermore, in some cases, no good bound exists
without rewriting the program, which boun3c is not prepared
to do.

Note that 3C, as a combination of typ3c followed by
boun3c, does not attempt to fully port from C to Checked
C. The resulting code, for instance, is not guaranteed to
pass the Checked C compiler. This is because several bounds
annotations might still be missing, as well as some dynamic
casts might be necessary to pass the type checker of Checked
C. 3C is, thus, an assistance in the porting process. We carry
on with this design philosophy in this paper, striving to provide
even more assistance without guaranteeing a complete port to
Checked C.

IV. WHOLE-PROGRAM TRANSFORMATION WITH LLMS

As illustrated in Section II, the task of porting to Checked
C requires making several changes throughout the program.
Even with the increasing prompt sizes, it is still unreasonable
to expect entire code to fit inside a single prompt. Furthermore,
we found that even when we can fit larger parts of a program in
a single prompt, the accuracy of an LLM is lower when asked
to make several changes, compared to doing fewer changes to
a smaller piece of code (see Section VI).

The challenge then is to break a whole-program transfor-
mation into multiple smaller tasks. With LLMs, each infer-
ence query is treated independently of ones made previously,
therefore, any query on some part of the code must provide
enough context about the rest of the code in order to carry
out the task effectively. We address these challenges through
static analysis.

A. Dependency Graph Generation

We use a lightweight static analysis that goes across all
input source files and constructs a data structure that we
call as a dependency graph. Nodes of this graph are all the
top-level declarations in the program. These can either be
procedures (both its signature and its body), type declarations
(struct, union, enum), global variable declarations or
macro definitions. There is a directed edge from node n1 to
n2 if n2 is directly used by n1, as follows:

• Procedures. If n1 is a procedure, then we place out-going
edges from n1 to all procedures that are directly called
by it, as well as all types, globals and macros that appear
somewhere inside n1. We only consider direct calls. For
indirect calls through a function pointer, there will be an
edge to the type declaration of the pointer’s type, not to
potential targets of the pointer.

• Types. If n1 is a type definition, then we place out-going
edges to all types and macros that appear in the definition.

• Globals. If n1 is the declaration of a global variable, then
we place an out-going edge to the type of the variable or
any macro that the declaration might use.

      typedef struct {

          enum e f;

          ...

       } Typ


void foo(Typ p){

      p.f = MACRO

}


void bar() { 
   foo(g);

 }


enum e {

   ...

}


Typ g;


# define

 MACRO ...


Fig. 1: Example of a dependency graph

• Macros. There are no out-going edges from macros.
Transformation of macros is currently outside the scope
of our analysis. We didn’t find a need for it in our
experiments.

The requirements of this analysis are purposefully kept
simple for ease of implementation. We use clang to parse
and construct ASTs of all input source files. We then perform
linking at the AST level to resolve procedure calls and dump
the dependency graph; see Figure 1 for an example.

As part of this analysis, we also record additional informa-
tion for each node that can be obtained easily from its AST
representation. For instance, for a procedure, we keep track
of its signature, argument list, type of each argument, type of
each local variable, etc.

B. Generic Whole-Program Transformation

Porting to Checked C requires not just adding annotations,
but also supporting edits that allows for the presence of an
annotation in the first place. Inspired from previous experience
of porting C to Checked C (like in [1], [8], [5]), we define
three different programs transformations, which are applied
sequentially in order. Each of these transformation follow a
common structure, shown in Algorithm 1.

Algorithm 1 Whole-Program Transformation with LLMs

1: procedure PROGRAMTRANSFORMATION(D, T )
2: for d ∈ Nodes(D) do
3: refactored[d] := False, oldcode[d] := d.code
4: end for
5: for d ∈ BOTTOMUPORDERING(D) do
6: prompt ← PROMPTTEMPLATE( )
7: prompt.task ← TASKDESCRIPTION(T )
8: prompt.example ← TASKEXAMPLE(T )
9: prompt.prelude ← d.succ

10: prompt.code ← d.code
11: prompt.refactor history ← {(oldcode[u],

u.code): u ∈ d.succ, refactored[u] }
12: prompt.elements ← TASKELEMENTS(d, T )
13: response ← LLM(prompt)
14: d.code ← APPLYPATCH(response, d.code)
15: refactored[d] ← SIGNATURECHANGED(response)
16: end for
17: end procedure

Algorithm 1 takes the dependency graph (D) of the input
program, as well as a description of task-specific information



% (1) CheckedC Preamble
Checked C has three checked pointer types that support
following annotations:
...

% (2) Task definition
{{Task definition}}

% (3) Propagate changes
Similar changes have been made in other parts of the
code. Given the refactor history, update the current
code accordingly.

% (4) Output format
Each change must be outputted as a block with original
lines and refactored lines in the below format. Output
a series of such blocks, one for every change.
...

% (5) Example
Consider this example input and output as a reference.
{{Task example}}

% (6) Code
Here is relevant context for the given code
{{prelude}}

This is the code that must be transformed
{{code}}

This is a history of the previous changes
{{refactor_history}}

Perform the given task on these parts of the code:
{{task_specific_code_elements}}

Fig. 2: Prompt template for Whole-Program Transformation

(T ), and outputs a new program that is the result of applying
T to the input program. The algorithm goes over the input
program one declaration at a time, and instructs an LLM to
preform a rewriting according to T .

The template of the LLM prompt is shown in Figure 2. It
consists of various sections. The first section is a preamble
on Checked C that defines its various annotations (e.g., arr),
their meaning (e.g., it is a pointer to an array) as well as the
syntax rules to follow (e.g., bounds annotation appears after a
colon).

The next section of the prompt (2) carries a description
of the task T (e.g., “infer bounds of arrays”). Next (3) is an
instruction telling the model that prior edits have been made to
the program, and it must edit the given snippet to respect those
refactorings. For instance, when a callee method signature is
modified, the call to that method must be modified as well.

Section 4 of the prompt defines an output format that the
model should follow. Instead of asking the model to produce
the entire modified code, prior work has found it useful to
instead ask for a “diff” or a patch that can be applied to the
original code. We simply follow the prompt used in prior work
[9] to obtain a patch from the LLM. Any other format or
formatting instructions can be used as well.

Section 5 of the prompt is an example of the task. For each
task, we only include one or two fixed hard-coded examples.
Section 6 of the prompt includes the relevant code snippets
from the input program. This includes context for the current
code (called “prelude”), the code that must be transformed

Checked C
Codebase

C Codebase

3C

Partially Converted
Checked C Codebase

Replace Nested
Arrays

Infer Bounds

Introduce new
bounds variablesLLM

Dependency
Graph

MSA Program
transformation

MSA
Static

Analysis

Fig. 3: Workflow of porting C code to Checked C with MSA.

(code) as well as previous code refactorings (refactor history).
Finally, the prompt also includes some code-specific elements.
For instance, for the task of inferring bounds of arrays, we
explicitly list the variable names with array types in order to
help focus the attention of the model on those variables.

Getting back to Algorithm 1, it starts (lines 2 to 4) by
keeping track of the original code (oldcode) as well as
remembering what parts of the code have been refactored
(refactored), initially none. It then makes one pass over
all declarations in the code. These declarations are picked in
a bottom-up order, using a reverse topological sorting of the
dependency graph. In general, the dependency graph can have
cycles because of recursive types or recursive procedures; we
break these cycles arbitrarily in order to limit the transforma-
tion to a single pass over the program text.

For each declaration d, the prompt in instantiated with
task-specific as well as code-specific details. Code prelude
is computed as all immediate successors of d in D, i.e., all
code elements that are referenced directly in d. For brevity,
when including a procedure in the prelude, we only include
its signature and not its body. The refactor history includes all
changes made to these successors of d so far, if any.

When the LLM is prompted, it returns a patch (possibly
empty) that should be applied to d. We apply this patch to
update d. Finally, we set refactored[d] to true if the patch
was non-empty, i.e, d was updated. When d is a procedure,
we set refactored[d] to true only when the signature of d
was changed by the patch.

V. MSA DESIGN AND IMPLEMENTATION

The design of MSA is illustrated in Figure 3. The tool is a
combination of symbolic as well as LLM-based components.
As a design principle, we rely on symbolic components
whenever they exist or are easy to implement. Tasks that are
either complex to do symbolically (e.g. knowing if a code
pattern respects null-termination of a given array) or require
an LLM’s flexibility (e.g., refactoring to accommodate a new
struct field) are left to LLM-based components.
MSA feeds input C code to the 3C tool to produce partially-

converted CheckedC code. 3C is quite fast (especially com-



You are given a list of Checked C declarations and a
partially converted Checked C code snippet. Array of
arr<T> is not supported in Checked C. Your task
is to replace them with an array of struct having a
pointer field ’ptr’ and a bounds field ’len’. You will
also have to replace the uses of the nested array with
the uses of the struct ’ptr’ field instead. Make sure
to update the ’len’ field whenever the ’ptr’ field is
updated.

Fig. 4: Task description for replacing nested arrays with structs

From:
int foo(arr<arr<int>> a, int i) {
return a[i][i];

}
To:
// New struct
typedef struct arr_of_int {
arr<int> ptr : count(len);
int len;

} arr_of_int;
// type of a changes
int foo(arr<struct arr_of_int> a, int i) {
// nested pointer access via the ptr field
return a[i].ptr[i];

}

Fig. 5: An example of the transformation (“From” to “To”) for
nested arrays that is provided to the LLM. The code comments
are included as well.

pared to LLM inference times), thus it serves us well to
use it as a source of cheap and sound annotations. We turn
off the heuristics in boun3c, which we observed to produce
incorrect annotations. We leave heuristics to the LLM-based
components of MSA. The role of MSA, thus, is to annotate the
unannotated checked pointers in the program produced by 3C.
MSA takes the output of 3C, constructs its dependency

graph, and uses it in subsequent LLM-based program trans-
formations. MSA is parametric on the choice of the LLM,
although we only evaluate with GPT4. In order to account for
the randomness in the LLM’s response, MSA asks for multiple
completions (i.e., responses) for each LLM query. The default
setting is 10, although it can be changed by the user depending
on their time budget. Multiple completions produce multiple
code patches; MSA takes a majority vote among these patches.

We now describe the three program transformation tasks.

A. Replacing Nested Arrays with Structs

As mentioned in Section II, the type arr<arr<T>> is not
allowed in Checked C syntax. The recommended way is to
replace it with arr<struct arr_of_T>, where struct
arr_of_T is a new structure with two fields, one of type
arr<T> for storing the inner array, and the other of type int
for storing the bound of this array. The rest of the program
should change to use this structure. For instance, the bounds
field must be updated when the corresponding array field is
set or updated.

Determine and assign ’count(..)’ or ’bounds(.., ..)’
expressions for each att and nt_arr in the
given function. To find valid bounds for a pointer p,
examine all uses of p and set bounds that encompass every
access. Alternatively, adopt the bounds from the pointer
from which p was assigned.

You will be provided a list of pointer variable names
along with their declaration line number. You must
choose one of the following rules for each of them.

[A0] Infer a valid bounds expression:
Provide a ’count(..)’ or ’bounds(..,..)’ expression
at the line of declaration. Choose this only when
you are completely sure that the bounds are valid.

[A1] Say unknown:
When there is not enough information to infer bounds
for a pointer, it is okay to leave the annotated line
same as the original line. Follow this by explaining
why enough information is not available. This can be
chosen when there is not a clear upper bound to all
accesses through the pointer or the pointer depends on
other pointers whose bounds are not known.

[A2] Change an arr to nt_arr:
If you cannot infer the bounds to arr p but you do
know that p is terminated with a null character from
its use, you can change its type to nt_arr.
Make sure to also change the pointers that p was
derived from to nt_arr in such a case. This can
also be due to a callee now taking nt_arr
instead of arr due to an earlier refactor.

[A3] Add a parameter for bounds:
If you cannot infer a reasonable bound for a pointer
parameter, add a new parameter to store its bounds and
use that in the bounds expression. Going ahead, all
calls of this function will have to be passed this
extra bounds argument.

Fig. 6: Task description for inferring bounds

Figure 4 shows the description for this task that is used
in conjunction with the template shown in Figure 2 to carry
out the program transformation. MSA first adds the declaration
of struct arr_of_T, once for each type T such that
the type arr<arr<T>> appears in the input program. This
step is done symbolically, at the AST level. MSA then uses
Algorithm 1 to carry out the required transformations in the
program to use this new type. Figure 5 shows the example
that is included in the prompt. The task-specific elements that
are included in the prompt are the names of variables with
refactored types (e.g., a for the example in Figure 5).

B. Inferring Bounds Annotations

The second transformation does the actual inference task
of adding bounds annotations for arr and nt_arr pointers.
The LLM is asked to annotate array pointers based on their
usage in the code snippet that is presented to it. Because
this pass traverses the code in a bottom-up fashion, when
the LLM is presented the code of a certain procedure, it will
also get presented with its context. This context will include
callee signatures, which have already been annotated because
they came before in the dependency-graph order. This allows
transitivity of the inferred annotations.

The task description for this transformation is the most
detailed among the three passes and is shown in Figure 6. It



From:
struct x { int f; int g; }
int foo(arr<struct x> a, int i) {
int j = a[i].f;
arr<struct x> p = a;
return a[j].f;

}
To:
// [A3] As j is read from the heap, the access
// a[j] could be anything. Moreover, j is not
// in scope at line 1. Since ’a’ is a pointer
// parameter, add a bounds parameter instead
// of saying ’unknown’.
int foo(arr<struct x> a : count(count_for_a),
int count_for_a, int i) {
int j = a[i].f;
// [A0] As p is assigned a, the bounds for a
// are valid for p too.
arr<struct x> p : count(count_for_a) = a;
return a[j].f;

}

From:
void foo() {
char a[10]; nt_arr<char> p = a;

}
To:
void foo() {
char a[10];
// [A0] When an array is converted to nt_arr
// the count is the size of the array - 1.
nt_arr<char> p : count(9) = a;

}

Fig. 7: Examples of inferring bounds for arr and nt_arr

lists down four different rules (A0—A3). The first rule (A0)
is for inferring bounds “when the model is sure of it” and the
second rule (A1) provides an escape hatch for the same. The
idea behind A1 is to reduce hallucinations when the model
is not confident of inferring bounds; that is, the model should
choose to leave things unannotated rather than add an incorrect
one. The third rule (A2) rectifies inaccuracies in typ3c where
it fails to identify that certain arrays are null-terminated. In
our experience, we found that this happens because typ3c is
sometimes unable to identify that a comparison to the null
character is being used to break out of a loop through the
array. In other cases, it lacks an understanding of standard
string operations (from stdlib), which also establish that
a given array is (intended to be) null-terminated. An LLM
can compensate for these limitations by promoting arr to
nt_arr, helping gain information about the length of the
array. Finally, the last rule (A3) instructs the model that if
the bound of a parameter is not obvious from its use in the
code, then it should add a new parameter to the procedure,
and pass the obligation to the callers (which are yet to
undergo transformation) to pass the appropriate bounds in the
newly added parameter. Note that the prompt only says what
annotations it wants, it does not say how to obtain them. The
complexity of actually doing program analysis is completely

You are given a Checked C code snippet, with a history of
refactors. The refactors introduce a new variable to
store the bounds of a pointer variable, which can be a
struct field or a global variable. Update the newly
introduced bounds variable with the correct bounds
whenever its corresponding pointer variable is assigned a
new value. Make the update in the same statement as the
assignment.

Fig. 8: Task description for adding new bounds variables

left to the model.
Figure 7 shows two examples that are provided to the

model. The first example shows applications of rules A0 and
A3 for arr, and the latter example shows an application
of rule A0 for nt_arr, where it makes a note of the off-
by-one computation for bounds of null-terminated arrays. In
terms of program elements that are provided in the prompt
of Figure 2, we give variable names of all arr and nt_arr
typed variables that are currently unannotated.
MSA follows Algorithm 1 with the above task description

to make changes to the program, with a few minor changes.
It restricts the bottom-up traversal to only the procedures in
the program, not the other top-level declarations. That is, it
goes bottom-up on the program call graph. As mentioned in
Section IV, we break cycles in the call graph arbitrarily. This
implies that the inference accuracy can suffer for mutually
recursive procedures. It is an interesting future work to in-
vestigate the use of a fix-point iteration over the mutually-
recursive cycle to improve accuracy. Further, when looking
at a particular procedure p, the model is also allowed to
add annotations on any globals or struct fields that p uses,
which are anyway present in the prelude of p. Finally, globals
and struct fields can be used in multiple procedures, each of
which are only considered one-by-one. Thus, it is possible
that different procedures produce conflicting annotations for
globals or struct fields. In this case, MSA detects this conflict in
a post-processing step and drops the corresponding annotation.
These missing annotations are left for the third transformation
that follows next.

C. Annotating Globals and Struct Fields

Annotations for global variables as well as struct fields have
a global scope. That is, these annotations are expected to
hold throughout the lifetime of the program. Consequently,
it is possible that the previous pass, which only consider one
procedure at a time, fails to infer a consistent bound for them.
In these cases, the third pass takes over.
MSA creates a new variable for storing the bounds of the

respectively element. In particular, it creates a new int-valued
global variable called count_for_g for each global variable
g of type arr that is unannotated so far. It adds the annotation
count(count_for_g) to the declaration of g. MSA also
creates a new int-valued field called count_for_f for field
f (in the same struct) of type arr that is unannotated so
far. It adds the annotation count(count_for_f) to the
field f. These changes are made symbolically by MSA and



From:
void foo(arr<struct x> a, int i) {
a[i].p = malloc(sizeof(int) * 10);

}

To:
struct x {
int count_for_p;
arr<int> p: count(count_for_p);

}

void foo(arr<struct x> a, int i){
a[i].p = malloc(sizeof(int) * 10),
a[i].count_for_p = 10;

}

Fig. 9: Example of transformation for globals and struct fields

added to the refactor history. MSA then runs Algorithm 1 with
the task description shown in Figure 8. This transformation
instructs the model to update the bounds variable each time the
corresponding array is assigned. Figure 9 shows the example
that is provided in the prompt. In terms of program elements,
MSA provides the names of the global variables and struct
fields for whom the additional variables have been introduced.

VI. EVALUATION

In this section we evaluate MSA empirically. We use gpt-
4-32k from Azure OpenAI Service as the LLM in these
experiments. We divide our experiments into two categories:
(a) benchmarking effectiveness of the different components
of our algorithm and the prompt template, and (b) evaluating
the effectiveness of MSA in inferring Checked C annotations
in real-world codebases. We also present our experience on
porting vsftpd, one of our real-world benchmarks, end-to-end.

A. Benchmarking the MSA algorithm

We vary different components of our algorithm and compare
the results to show their relative effectiveness. We consider:
(a) the background about Checked C and specific inference
instructions in the prompt template, and (b) modular inference
with dependency-order traversal of the codebase.

For this experiment, we use a subset of the Olden [10] and
Ptrdist [11] benchmarks, with code sizes that allow the entire
program to fit in a single prompt. For large codebases, modular
inference is a necessity, however, we explore if modularity
helps even for small programs that may fit in a single prompt.
We define a trivial algorithm that uses a prompt, consisting of
some instructions followed by a full C program, and queries
the LLM to obtain its output. Within this algorithm, we vary
the instructions part of the prompt with the following versions:

• V0: no background on Checked C or specific inference
instructions to the LLM,

• V1: background on Checked C and inference instructions,
as explained in Section IV.

Version V0’s performance was extremely poor, with the
LLM often bailing out either by citing the problem as too hard

Total boun3c V1 (non-modular) MSA
Inf Correct Inf Correct

mst 11 8 (72%) 5 3 (27%) 11 11 (100%)
power 7 7 (100%) 1 1 (14%) 7 7 (100%)
em3d 22 13 (59%) 13 11 (50%) 22 17 (77%)
anagram 13 2 (15%) 7 4 (30%) 13 11 (84%)

TABLE I: Comparison with boun3c and a non-modular ver-
sion of MSA on Olden (mst, power, and em3d) and Ptrdist
(anagram) benchmarks. The numbers in parentheses indicate
the percentage of total annotations inferred correctly.
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Fig. 10: MSA performance on real-world codebases.

or by saying there are no pointers to be annotated. Results for
V1 and MSA are shown in Table I (it also shows numbers for
boun3c). For each benchmark, the table shows the total number
of bounds annotations required, the number of annotations
inferred by the algorithm (Inf), and the number of correct
annotations amongst them (Correct). For determining which
of the inferred annotations are correct, we manually prepare
annotated versions of these benchmarks that compile with the
Checked C compiler and pass the runtime tests. Then, an
inferred annotation is defined to be correct if it matches the
manual annotation in these ground-truth versions.

As the table shows, while MSA correctly infers 86% of the
annotations on-average, the non-modular version V1 infers
only 35%. There are 5 cases across these benchmarks where
refactoring instructions—absent from V1 but present in MSA—
play a role. Otherwise, the only difference is modular analysis.

Conclusion. Without the Checked C background and infer-
ence instructions in the prompt, LLMs cannot infer annotations
even for small programs. With instructions, modular analysis
is more effective than fitting the entire (small) program in a
prompt. Thus, it is better to focus LLM on one procedure at
a time, providing it the dependencies in the context.

B. Inferring annotations in real-world codebases

Table II shows the details of real-world benchmarks that we
picked from 3C experiments [5], where 3C could not infer a
reasonable number of annotations. These benchmarks cover a



LOC RB b3c b3ch Remaining
lua 19.4K 332 53 31 279 (126 + 153)
icecast 18.2K 311 47 5 264 (26 + 238)
thttpd 7.6K 240 88 7 152 (31 + 121)
vsftpd 14.7K 134 22 15 112 (26 + 86)
libarchive 146.8K 150 35 3 115 (63 + 52)

TABLE II: Benchmark details. RB is the number of required
bound annotations. b3c is the number of annotations inferred
by boun3c, while b3ch is the number of additional annotations
inferred by boun3c heuristics. Remaining (divided into arr
and nt_arr) is the difference of RB and b3c.

variety of different domains (language interpreter, http server,
ftp server, media server, compression library, etc.) and come
from a list recommended by the Checked C community [12].
For each benchmark, the table shows the size of the benchmark
(in terms of lines of code), total number of pointers that
required an annotation (RB), the number of pointers annotated
by boun3c (b3c), additional pointers that boun3c heuristics in-
fer (b3ch), and the number of remaining unannotated pointers
(RB - b3c). We discount the boun3c heuristics from rest of
our experiments; first, the number of additional annotations
that they infer over boun3c is not substantial, and second, on
manual inspection, nearly a third of them seemed incorrect
to us. Hence, we consider Remaining as the target for MSA.
For libarchive, we ran MSA on the whole codebase, but
analyzed only a subset of the annotations for correctness (150
unannotated pointers), due to time constraints.

Figure 10 plots the performance of MSA on these bench-
marks. We categorize the inferred annotations into Correct
and Incorrect based on a manual inspection of the inferred
annotations. In total, MSA infers 877 annotations across all
benchmarks, out of which 797 annotations are correct and
80 are incorrect. Thus, MSA correctly infers 86% of the
annotations remaining after boun3c (797/922). Of the 797
correctly inferred annotations, 212 are array pointer bound
annotations (78% of remaining array pointer bounds) while
585 are NT array bounds annotations (90% of remaining NT
array bounds); of these 585 NT array annotations, 532 (91%)
are count(0) annotations whereas only 9% (26/272) of
the array pointer bounds annotations missed by boun3c are
count(0).

Below is a code snippet from icecast that shows a couple
of annotations that MSA infers but boun3c could not:

// MD5Update(...,
// arr<char> buf:count(n), int n);
//
// util_bin_to_hex(..., int n)
// : nt_arr<char> count (n * 2);
nt_arr<char> get_hash
(const char *data: nt_arr<char>, int len) {
...
MD5Update(&context, data, len); ...
return (util_bin_to_hex(digest, 16));

}

MSA constructs the context for get_hash, shown as com-
ments, and from this information, it is able to infer that data

Functions Globals, structs Queries Input, Output size
lua 10 7 246 2627, 1895

icecast 45 2 192 2998, 1988
thttpd 82 6 104 2861, 3441
vsftpd 6 0 111 2322, 1600

libarchive 58 89 805 3360, 1847

TABLE III: Number of refactorings applied by MSA, total
number of queries made to the LLM and average number of
input and output tokens per query

has count len and the returned value has count 32. boun3c
is unable to infer the return type annotation because it is not
able to infer the n*2 annotation for util_bin_to_hex (it
doesn’t support arithmetic expressions in annotations). It is
also unable to infer annotations for data as one of the call
sites for get_hash is get_hash(p, strlen(p)), and
boun3c is unable to correlate the two parameters of the call.

Following is an example from thttpd where MSA suc-
cessfully changes an arr annotation from typ3c to nt_arr.

static void defang(arr<char> str, ...) {
arr<char> cp1 = (void *) 0;
for(cp1 = str; *cp1 != ’\0’; cp1++) {

// access *cp1
}

Here, typ3c marks the str argument and cp1 as
arr<char>. However, analyzing the access patterns
(loop iterating until the null character), MSA infers an
nt_arr<char> type with count(0) annotation for both of
them. There were also multiple instances when MSA refactors
the code to allow additional annotations. For example:

void luaL_setfuncs (arr<const luaL_Reg> l) {
for (; l->name != NULL; l++) { ... }

}

In this function, from lua, the array pointer l is incremented
until its name field is NULL. Since there is no reason-
able annotation for it in the code as written, MSA adds a
bounds argument l_count to the function and the annotation
count(l_count) to l.

Out of the 877 annotations that MSA infers, 80 (9%) are
incorrect. Most of these are subtle cases where pointers are
accessed with unusual patterns. E.g., in the following snippet
from lua, the pointer is accessed with a negative index:

copy2buff(StkId top:arr<StackValue>, int n) {
do {

// use *(top - n)
} while (--n > 0);

}

MSA infers count(n) for the top pointer, whereas the
correct annotation would be bound(top - n, top). Im-
proving performance on such code patterns is future work.

The annotations that MSA does not infer (45/922) are mostly
due to the A1 rule of Figure 6. In very few cases, the LLM
produced annotations that referred to variables that are not
in scope; these are dropped automatically by MSA as a post-
processing step.



Table III shows the number of function call and globals
and struct refactorings that MSA applies per benchmark. The
column Functions includes both the number of function pa-
rameters added as well as modifications to respective function
calls. Similarly, the column for globals and structs include
both the number of global variables and struct fields added
as well as their corresponding assignments. For real-world
codebases, the nested pointers to struct transformation did not
appear (while one case of this appears in Table I).

Table III also shows the number of LLM queries required
per benchmark, and the average number of input and output
tokens (including all completions) per query.

Conclusion. When porting real-world codebases to Checked
C, 3C leaves a substantial number of pointers unannotated.
MSA is able to infer majority of these pointers (86% in our
experiments). We observe that MSA is able to infer annotations
that require sophisticated code reasoning. We also observe
that porting is not just about inferring annotations; code edits,
function refactorings, globals and struct refactoring are also
commonplace. Their support in MSA is important for real-
world codebases.

C. vsftpd: End-to-end case study

We present a case study on end-to-end porting of vsftpd.
In this exercise, we take the output of MSA and make further
edits so that it successfully compiles with Checked C. We
started by reverting the incorrect annotations and adding the
missing annotations in the MSA output. This includes the red
and blue regions in the vsftpd bar in Figure 10; we corrected
3 incorrect annotations requiring 6 edits and added 8 missing
annotations requiring 22 edits. The remaining work involved
passing the Checked C compiler. For that, we had to change
a further 148 lines in the code. These changes are the known
caveats in making a codebase compile with Checked C [13].
For example, we had to add dynamic bound casts (that are
checked at runtime) and assume casts, when the Checked C
compiler could not reason about the bounds due to, e.g., lack
of flow-sensitivity. An example is as follows:

// p : nt_arr<char> count(0)
if (p[0] != ’-’)

{...}
else

{ // access p[1] }

In the else branch, accessing p[1] is safe because we
know that p is an nt_arr and that p[0] is not null. However,
the Checked C compiler is unable to reason about this, so we
added an assume bound cast to bypass the checker. In a few
other cases, the code was using the same pointer variable to
represent different sized arrays. For such cases, we added new
variables for differently sized arrays so that all variables are
used in a bound-consistent manner. Once the code compiled,
we were able to run the executable and start the FTP server.
We were prepared to debug any runtime crashes due to failed
checks inserted by Checked C (this can be caused either by a
real memory-safety violation in the code, or due to incorrect
dynamic casts). However, we did not encounter any such cases.

Conclusion. Although this was only one case study, our
experience showed that MSA annotation indeed helped. MSA
roughly performed 58% of the work requires for end-to-end
porting (250/426 edits). It inferred 123 annotations correctly
which led to 250 edits, leaving 11 annotations for manual
work, requiring 28 edits. In contrast, manually adding all the
112 annotations missed by 3C would have required much
more effort. Further 148 edits were required to make the
code compile; these edits were the easiest conceptually. We
acknowledge that further work is required in this space to
make a claim on end-to-end porting.

VII. THREATS TO VALIDITY

One potential threat to validity is data contamination, if the
Checked C versions of programs were part of the training data
of the LLM. Given our use of LLMs from OpenAI, whose
training data is not publicly known, there is no good way
to completely rule it out. We note that Checked C versions
of icecast, thttpd and vsftpd are indeed available
publicly. However, there are no publicly available Checked
C versions of lua and libarchive, to the best of our
knowledge. The results across these benchmarks are largely
consistent. Further, the LLM demonstrates poor knowledge of
Checked C, unable to carry out the task without a background
(V0, Section VI). Our contribution of whole-program trans-
formations in a modular fashion stands, irrespective of data
contamination (V1 vs. MSA, Section VI). Also, Checked C
code is extremely rare compared to other languages.

Another internal threat is our manual assessment of the
correctness of annotations produced by MSA. We counter this
by having multiple authors make independent assessment, then
discussing to reach consensus. In some cases (Table I and
Section VI-C), we validate correctness using the compiler, and
found that our assessments were indeed correct.

An external threat to validity is that GPT4 can get updated
over time by OpenAI, changing the performance of MSA. We
also make no claim on the results that will be obtained with
other LLMs.

VIII. RELATED WORK

There are several approaches for memory safety. One set of
tools use binary instrumentation to ensure safety of memory
accesses [14], [15], [16]. These do not require recompilation,
but suffer from high performance overheads. Overheads are
lower for source-level instrumentation tools, at the cost of
needing recompilation, but still high enough to prohibit pro-
duction use [17], [18], [19]. Cyclone [3] is a safe dialect of
C that extends pointers with labels (ordinary, never-null, and
fat) and uses them to instrument safety checks. Deputy [2]
provides bounded pointers and tagged unions. Checked C takes
inspiration from this line of work and goes much further in
building a production-ready compiler [20].

There has been a flurry of recent work in using LLMs
to help improve the productivity of software developers. Our
work builds along in this direction, while focusing specifically
on memory safety through a safe C dialect. We are unaware of



prior LLM-based (or ML-based) work for this problem; and
we have already presented a detailed comparion against 3C,
the state-of-the-art symbolic tool for this problem.

LLMs have been extensively used for program synthe-
sis [21], [22], [23], [24], [25], including both code generation
(generating a program from a natural language description)
and completion (automatically completing an incomplete code
fragment). Recent auto-completion systems are even able to
operate across files within a repository [26]. There have
also been proposals that use LLMs to synthesize repair
patches [27], [28], [29], surpassing the capabilities of current
automated program repair tools. In the direction of software
security, Pearce et al. [30] train their own GPT2 model to eval-
uate the efficacy of LLMs at generating and repairing software
vulnerabilities. Their study is restricted to small “vulnerability
patterns” that lead to well-known CWE/CVEs. In the space of
LLMs for software engineering, our contribution on whole-
program transformations, with the ability of making several
correlated edits to a program using a simple task description,
is novel. We refer the reader to survey papers [31], [32] for
more work on leveraging LLMs for software engineering.

There is also a series of work that explores the synergy of
LLMs with program analysis. Llift [33] combines LLMs with
static analysis tools to identify use-before-initialization bugs in
the Linux kernel. Lemur [34] uses LLMs to infer loop invari-
ants that are validated by a symbolic verifier. However, Lemur
is evaluated only on small benchmarks that fit in a single LLM
prompt. Our whole program transformation framework and
techniques should be applicable to loop invariant inference as
well. Chakroborty et al. [35] develop techniques to rank LLM-
generated candidate loop invariants. It is an interesting future
work to investigate if similar rankers can be developed for
ranking LLM-generated candidates for Checked C annotations.

IX. CONCLUSION

Large Language Models have demonstrated promising ca-
pabilities for software engineering tasks. Tools like Github
Copilot are used by millions of developers. However, for
reliability of the LLM-generated code, the developers are
on their own. On the other side, formal verification tools
provide strong guarantees but are difficult to deploy on a
large scale. They require annotations, program refactorings,
etc. to be effective. Combining LLM program comprehension
capabilities with formal verification tools provides best of both
the worlds. While tedious tasks of annotating and refactoring
code can be delegated to LLMs, they need not be trusted—
formal verification tools can do the validation. In this paper,
we have presented a general framework to combine LLMs
with formal verification tools, instantiated with the concrete
problem of inferring memory safety annotations. On our
benchmarks, we find that LLMs are able to reason about the
code to generate annotations, refactoring the code as and when
required. Still, they are outside the Trusted Computing Base as
the Checked C compiler catches any LLM mistakes (statically
or at runtime). We invite the community to further explore the
synergy between formal methods and LLMs.
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