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Abstract

Language models struggle in generating cor-001
rect code for low resource programming lan-002
guages, since these are underrepresented in003
training data. Popular approaches use either004
examples or documentation to improve the per-005
formance of these models. Instead of consid-006
ering the independent retrieval of this informa-007
tion, we introduce retrieval augmented retrieval008
(RAR) as a two-step retrieval method for se-009
lecting relevant examples and documentation.010
Extensive experiments on two low resource011
languages (Power Query M and OfficeScript)012
show that RAR outperforms example or gram-013
mar retrieval techniques (2.81–26.14%).014

1 Introduction015

Large language models (LLMs) struggle to gen-016

erate low-resource programming languages from017

natural language due to limited pre-training knowl-018

edge (Luo et al., 2023; Wang et al., 2023b; Singh019

et al., 2023). Previous work improves code gen-020

eration with language models with retrieval aug-021

mented generation with relevant examples (Poesia022

et al., 2022; Khatry et al., 2023b) and code snippets023

(Nijkamp et al., 2023), programmatic reasoning024

paths like tree-of-thought (Rosa et al., 2024) and025

program-of-thought (Chen et al., 2023), and docu-026

mentation (Zhou et al., 2022).027

There are several challenges in using documenta-028

tion as context for code generation. First, documen-029

tation often does not include how the components030

are actually pieced together in the form of real code,031

which makes it difficult for models to understand032

the syntax and usage for new languages. Second,033

documentation is weakly correlated to the natural034

language utterance and specific parts of documen-035

tation might not be related at all to the utterance036

but crucial for the code generation. For example,037

the query, "Highlight top 5 projects based on sales"038

requires a flag OrderByDescending to be set, but this039

is not related to the query. Third, documentation is040

often dense and flat, and selecting the right subset 041

of documentation is both challenging and crucial 042

to the success of these systems. 043

To address these challenges, we propose Re- 044

trieval Augmented Retrieval (RAR) for code gener- 045

ation. This approach enhances the retrieval process 046

by leveraging the outputs of an initial retriever, the 047

driver retriever, to guide a secondary retriever, the 048

influenced retriever. This sequential retrieval mech- 049

anism aims to improve the quality of the retrieved 050

examples and grammar entities. 051

RAR addresses several challenges in code gener- 052

ation for low-resource languages. First, it addresses 053

data scarcity by utilizing publicly available docu- 054

mentation and examples, and shows that these are 055

often sufficient. Second, it leverages the strength 056

of few-shot learning by providing high-quality, rel- 057

evant examples that the model can learn from. Fi- 058

nally, it emphasizes the importance of leveraging 059

linked grammatical structure and examples in the 060

prompts, ensuring that the LLM generates correct 061

and syntactically sound programs. 062

We evaluate RAR on two low resource lan- 063

guages, (Power Query) M and OfficeScript (OS). 064

We compare individual context selection of RAR 065

to multiple existing documentation and example re- 066

trieval techniques, showing improvements of +25% 067

(OS) and +3% (M) for documentation and +1.28% 068

(OS) and +3.5% (M) for examples. When combin- 069

ing examples and grammar, RAR shows improve- 070

ments of +4% (OS) and +2% (M) over independent 071

retrieval. We also analyze the impact of using two- 072

step retrieval, including only relevant and irrelevant 073

context items in the prompt, and the token length. 074

We make the following contributions: 075

• We use a two-step retrieval method, where the 076

influenced retriever learns from the findings 077

and mistakes of the driver retriever. 078

• We demonstrate that publicly available docu- 079

mentation is sufficient for NL-to-code genera- 080
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tion tasks, even for low-resource languages.081

• We perform thorough experiments to highlight082

the critical role of both documentation and083

example prompts, to evaluate the impact of084

token length, and to evaluate the embeddings085

used for the driver retriever.086

2 Related Work087

Multiple techniques have been developed to im-088

prove code generation from natural language with089

LLMs, including (1) retrieval augmented gener-090

ation for adding contextually relevant examples091

to the prompt (Khatry et al., 2023b; Poesia et al.,092

2022); (2) execution-guided refinement (Kroening093

et al., 2004; Chen et al., 2019); and (3) reason-094

ing involving chain-of-thought variants adapted to095

programming tasks (Li et al., 2023; Le et al., 2024).096

These techniques often struggle in generating ac-097

curate generations for low-resource programming098

languages. Recent work focused on code genera-099

tion for low resource languages has leveraged doc-100

umentation as context instead of examples (Bareiß101

et al., 2022), (Zhou et al., 2022). CAPIR is one102

such popular technique, which uses contextually103

relevant parts of the documentation as inputs to104

code models. Grammar prompting (Wang et al.,105

2023a) also follows this paradigm. One drawback106

of these techniques is that documentation, even107

though complete, often does not provide the same108

signals to the models as examples. Documentation109

nodes that do not seem semantically aligned with110

the task also tend to be ignored.111

3 Documentation and examples112

Documentation is the most comprehensive and113

structured resource (Roehm et al., 2012) publicly114

available (Forward and Lethbridge, 2002) for most115

programming languages. The documentation con-116

sists of a grammar (D) that describes how code117

is built over entities (classes, methods, properties)118

and examples (E) that depicts how to use and com-119

bine elements from D. An example of grammar120

and examples from a page of the OfficeScript doc-121

umentation is shown in Figure 1.122

The grammar (D) serves as a bank for gram-123

mar elements over which retrieval is performed.124

We consider each grammar element gi to be one125

standalone function or class method. We can use126

the path of each node in an abstract syntax tree127

(AST) to extract elements ∈ D from a snippet of128

Grammar corpus
- p1 : <Page Title>
    + g1

1 : <grammar entity>
    + g2

1 : <grammar entity>
...

...- p2 : <Page Title>
    + g1

2 : <grammar entity>
...

...

Example corpus

 - q1: < NL query>
   c1: <code>

- q2 : <NL query>
  c2 : <code>

...

Figure 1: Illustrates how we extract the grammar (blue
marker) and examples (red marker) from the publicly
available documentation to build their respective cor-
pora for retrieval.

code. For example, even if multiple classes have a 129

method getFormat, then following a path up the 130

AST allows us to disambiguate which class this 131

method is from. A full example of code and the 132

associated grammar entities is shown in Figure 2. 133

The example corpus is composed of descrip- 134

tion (query) and code pairs (qi, ci). We only con- 135

sider examples present in the documentation, which 136

consists of sample code illustrating the usage of 137

grammar elements. If a textual description of an 138

example is not available, we use an LLM (gpt-4) to 139

generate it. More information on this augmentation 140

can be found in Appendix A. 141

4 Retrieval Augmented Retrieval 142

RAR uses a two-step retrieval where the driver 143

retriever (RD) influences the influenced retriever 144

(RI ). There are two possible scenarios: 145

1. Example → Grammar: RD retrieves from 146

E and RI retrieves from D. 147

2. Grammar → Example: RD retrieves from 148

D and RI retrieves from E. 149

We first describe how to use and fine-tune embed- 150

dings for retrieval, and then show how this is ap- 151

plied in RD and RI in both these scenarios. 152

4.1 Embeddings for retrieval 153

Retrieval commonly relies on a transformer embed-
ding cosine similarity

S(M, q1, q2) = cos(M(q1),M(q2))

with M the embedding model used to compute 154

the similarity between strings q1 and q2. We write 155

MPT for a pre-trained embedding and MFT for a 156

fine-tuned embedding. 157
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Figure 2: Example code entities (1 to 5) extracted from
a sample OfficeScript program. The extracted enti-
ties are mapped to grammar nodes using the abstract
syntax tree of the node. (5) in figure is mapped to
TopBottomConditionalFormat despite the same property
being present in Image and Chart.

Off-the-shelf embedding models struggle to gen-158

erate accurate representations of code for low re-159

source languages. To counter this, we fine tune160

the embedding model. We use a Siamese network161

architecture (Reimers and Gurevych, 2019a) with162

triplets (q, J(g), L(c, g)) forming the training set.163

J(g) maps the grammar entity to a textual represen-164

tation (see Appendix B). L(c, g) evaluates to 1 if g165

is used in code c and −1 otherwise. To select nega-166

tive labels, we find grammar entities g that are not167

used in code c, but which are closer to the decision168

boundary according to similarity S(MPT , q, J(g))169

when compared with the test query, as well as an170

equal number of grammar entities which have the171

lowest similarities. More details on fine-tuning can172

be found in Appendix C.173

4.2 Example → Grammar174

In this setup, we retrieve examples first and then175

use it to retrieve the grammar elements.176

First, RD extracts top-k examples (Ek) based on177

S(MPT , qt, qi) with qt the target query.178

Second, RI uses Ek to select relevant n gram-179

mar entities Dn. We extract grammar entities from180

each code snippet ci in an example (qi, ci) ∈ Ek,181

along with other similar entities from their respec- 182

tive documentation pages using S(MFT , qt, J(g)). 183

This set extracted forms the good grammar en- 184

tities Dgood. We also consider the possibility 185

that irrelevant examples were retrieved. We thus 186

want grammar element g that are similar to qt 187

(St = S(MFT , qt, J(g)) is high) but dissimilar 188

to the selected examples (Si = S(MFT , qi, J(g)) 189

is low for (qi, ci) ∈ Ek). We combine this in a sin- 190

gle score (1− Si) + λE→D(1 + St) that we want 191

to maximize for each example i, where λE→D is a 192

hyper-parameter that marks the relative importance 193

of similarity to the query compared to dissimilarity 194

between the example. This set is called Dbad. The 195

final set of grammar entities is D = Dgood +Dbad. 196

4.3 Grammar → Example 197

In this setup, we first retrieve the grammar entities 198

and then use them to select examples. 199

First, RD extracts top-n grammar entities (Dn) 200

using S(MFT , qt, J(g)) with qt the target query. 201

Similar to RI for E → G, we consider suc- 202

cessful (Egood) and unsuccessful (Ebad) retrieval 203

of grammar. To ensure that we pay more atten- 204

tion to unique grammar entities, we compute the 205

inverse-document frequency of such an entity as 206

idf(g). Let Gi be the grammar entities extracted 207

from code ci. The score of a good example is then 208

computed as the average similarity of its entities, 209

weighted by their idf 210

1

|Gi|
∑

g∈Gi∩Dn

idf(g) · S(MFT , qt, J(g)). (1) 211

For building Ebad, we assume that Dn does not con- 212

tain the grammar entities which would be relevant 213

to answer qt and compute the above score over D \ 214

Dn as Si
bad. Similar to before, the bad examples are 215

selected according to Si
bad+λD→ES(MPT , qt, qi) 216

with λD→E the importance factor of relevance of 217

query to examples versus irrelevance of query to 218

selected grammar. 219

5 Experimental Setup 220

We describe the experimental setup and the con- 221

ditions set for a fair comparison between our ap- 222

proach and the baseline. 223

5.1 Datasets and metrics 224

We focus our experiments on two sets of program- 225

ming languages: OfficeScript and (Power Query) 226

M. We use sketch and execution match as metrics 227
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ExcelScript.ConditionalFormatType : 
- cellValue, custom, containsText, ...

ExcelScript.CustomConditionalFormat : Represents
a custom conditional format type.
Methods-->
- getFormat(): Returns a format object ...
- getRule(): Specifies the `Rule` object ...
...

## Grammar ##

## Examples ##

NL: Fill cells with light green if they ...
code: 
function main(workbook: ExcelScript.Workbook) {
   ________________;
   ExcelScript.ConditionalFormatType.custom;
   ________________;
   ________________;
}
NL: Fill the selected cells with different colors ...
code: ...

 How to apply red font and fill to any ...

LLM

Code Generation Prompt

Code output

## Test Query ##

Assuming Dn is good

Assuming Dn is bad

Influenced
RetrieverExample

corpus

Driver
Retriever

Grammar
corpus

Grammar
corpus

Driver
Retriever

Example
corpus

Influenced
Retriever

q1

M

q2

...0.0010.22 0.02-0.03

...
d-dimensional

emb(M, q) 

cos-sim(u,v)

S(M, q1, q2)

Membedding
model

-1, ..., 1

Dn Assuming Ek is good

Assuming Ek is bad

Ek

Augmented
by Dn

Augmented
by Ek

Driver Retriever
Working

Bad

Retrieving entities
most common with

Driver output

Driver Retriever
Output: Dn/Ek

___________
___________
___________

___________
___________
___________

Corpus
Good

Scoring function:
1. Deviates away
from Driver output.

2. Stays close to the
test query intention.

Test Query: How to apply red font and fill to ...

Influenced
Retriever
Output

Influenced Retriever
Working

E DD E - M: fine-tuned sbert
- q1: Test Query
- q2: Grammar Entity

S(M, q1, q2)

S(M, q1, q2)
- M: pre-trained
- q1: Test Query
- q2: Example Query

Figure 3: The top-left section demonstrates the scenarios where Driver retriever operates on the Grammar corpus
and influenced retriever operates on the Example corpus. Similar for the top-right section where Driver operates
on Examples and Influenced operates on Grammar. Towards the bottom right we demonstrate the working of
Driver retriever which uses a simple transformer embedding similarity for extracting context. To the bottom left we
define the Influenced retriever working which takes input from the Driver output and passes through a good and
bad assumption of extracted context to generate its own retrieved context. The extracted context is fed into code
generation prompt to pass onto the LLM.

for both datasets, details of which have been out-228

lined in Appendix E.229

OfficeScript We obtain (q, c) pairs from the In-230

structExcel benchmark (Payan et al., 2023) and231

filter them for conditional formatting specific tasks,232

as we can compute execution match for them233

(Singh et al., 2022). Examples and grammar are234

scraped from its documentation.1235

Power Query M We use the test split of the236

benchmark release in (Khatry et al., 2023a). Be-237

sides q and c, each test contains a table to execute238

the code over, which is also provided in the prompt.239

We scrape the examples and grammar from the240

official documentation.2241

1https://github.com/OfficeDev/
office-scripts-docs-reference

2https://github.com/OfficeDev/
office-js-docs-reference

Dataset n |E| |D|

Office Scripts 589 17 275
Power Query M 77 144 746

Table 1: Summary of the datasets: n implies dataset
size, |E| implies #examples, |D| implies #doc pages.
We extract E and D from documentation which forms
the corpora for our approach.

5.2 Baselines and Versions 242

We define the symbols representing the specifica- 243

tions of RAR and baselines. 244

• RetD: uses MFT embeddings to retrieve Dn 245

from D. Only Dn is included in the prompt. 246

• RetE : uses MPT embeddings to retrieve Ek 247

from E. Only Ek is included in the prompt. 248

• RetE⊥D: uses MFT embedding to retrieve 249

Dn from D and MPT embedding to retrieve 250
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Ek from E. Both Dn and Ek are included in251

the prompt.252

• RARD: RD operates on E to give Ek and RI253

on D to give Dn. Only Dn is included in the254

prompt.255

• RARE : RD operates on D to give Dn and RI256

on E to give Ek. Only Ek is included in the257

prompt.258

• RARE→D: RD operates on E to give Ek and259

RI on D to give Dn. Both Ek and Dn are260

included in the prompt.261

• RARD→E : RD operates on D to give Dn and262

RI on E to give Ek. Both Dn and Ek are263

included in the prompt.264

5.3 Models265

We use text-embedding-ada-002 as the pre-trained266

embedding model MPT and SentenceBERT267

(Reimers and Gurevych, 2019b) for MFT . We268

use GPT-4 (Brown et al., 2020) as the base LLM.269

6 Evaluation270

We aim to answer the following research questions:271

RQ1 How does RAR compare against existing272

grammar and example retrieval methods?273

RQ2 Does a two-step dependent approach extract274

better context than stand-alone retrieval tech-275

niques independent of one another?276

RQ3 Does the adaptive strategy of including Bad277

context entities, along with Good, help in in-278

creasing the performance?279

RQ4 How does the performance vary as a function280

of increasing context token length?281

RQ5 Is RAR reliant on the Driver retriever for its282

performance gain over independent retrievers?283

6.1 Compared with other SOTA (RQ1)284

We evaluate RAR against other state-of-the-art285

retrieval methods over both examples and gram-286

mar. We use a fixed number of retrieved examples287

and grammar for each task, which are eventually288

prompted to GPT-4 for code generation. For Of-289

ficeScript, we extract 3 examples and 66 grammar290

entities. For M, we extract 10 examples and 20291

grammar entities.292

6.1.1 Baselines 293

For grammar retrieval, we consider (1) retrieval 294

by calculating cosine similarity of pre-trained em- 295

bedding model (MPT ), (2) retrieval by calcu- 296

lating cosine similarity of fine-tuned embedding 297

model (MPT ), (3) DocPrompting (Zhou et al., 298

2022), which uses BM25 retriever, (4) CAPIR 299

(Ma et al., 2024), which is a divide-and-conquer 300

and re-ranking based strategy for retrieval. 301

For example retrieval, we consider (1) MPT , 302

(2) TST (Poesia et al., 2022) and TSTR (Khatry 303

et al., 2023b), which fine-tunes SentenceBERT and 304

a small dense network on top of MPT to make NL 305

intents reflect their respective code similarities. 306

Model Office Scripts M

Sketch Exec Sketch Exec

MPT 52.28 40.81 65.34 45.28
MFT 55.99 44.35 56.43 43.40
DocPrompting 50.17 38.68 73.64 50.94
CAPIR 51.69 41.06 71.07 55.68
RARD 86.68 70.49 74.27 58.49

Table 2: Comparing RAR against other Grammar re-
trieval techniques.

Models Office Scripts M

Sketch Exec Sketch Exec

MPT 83.42 69.04 74.24 50.94
TST 64.76 52.95 70.21 51.16
TSTR 73.86 60.37 69.90 45.35
RARE 85.67 70.32 76.29 54.72

Table 3: Comparing RAR against other Example re-
trieval techniques.

6.1.2 Results 307

Table 2 and Table 3 show that RAR outperform the 308

baselines for both grammar and example retrieval. 309

RARD shows significant gain in grammar extrac- 310

tion for OfficeScript. It has an execution match 311

gain of 26.14% against the best performing base- 312

line (MPT with SentenceBERT). For M, we see 313

an execution match gain of 2.81% over CAPIR. 314

We find RARE to retrieve better examples to aid 315

code generation. The respective baselines cover 316

both pre-trained and fine-tuned (TST and TSTR) 317

versions of retrieval. Our dependent retrieval strat- 318

egy performs better than either case. For M, we 319

find the improvement in both sketch and execu- 320

tion match to be marginal. This implies that the 321

grammar entities retrieved by RD is able to guide 322
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the extraction of relevant examples for those NL323

queries, which were difficult to extract using direct324

similarity of embeddings.325

We note that the fine-tuned models TST and326

TSTR perform worse than the unsupervised embed-327

ding model MPT . We attribute this to the fact that328

our training set is only scraped from documentation329

and thus smaller with low variations of the same330

function, and fine-tuning can more easily overfit.331

6.2 Dependence vs Independence (RQ2)332

To answer this question, we compare our depen-333

dent approach with baselines which operate inde-334

pendently on the two corpora.335

6.2.1 Setup336

For OfficeScript, we extract n ≈ 66 grammar en-337

tities and k = 3 examples. For RARE→D, we338

extract k = 3 examples first using RD (which339

matches the output from RetE). We extract Dgood340

and Dbad with equal proportion such that the fi-341

nal average count across all tests ≈ 66. We tune342

hyper-parameter λE→D = 20 (see Appendix F).343

RARD is composed of the same Dn retrieved by344

influenced above. RARD→E uses the Dn extracted345

by driver (same as RetD) to augment the retrieval346

on E. We again choose Egood to be in the same347

proportion as Ebad. We set λD→E = 10. This348

retrieved Ek is the same set used by RARE in its349

prompt. RetE⊥D uses both example retrieved by350

RetE and grammar retrieved by RetD in its prompt.351

For M, we extract n ≈ 20 grammar entities and352

k = 10 examples. RARE→D uses the same 10353

examples retrieved by RetE through RD. Dgood is354

obtained by taking the grammars extracted from355

each code snippet retrieved. To get Dbad, we356

set λE = 100 and extract 10 grammar for each357

example. The final de-duplicated version yields358

|Dn| ≈ 20. For RARD→E , we extract Ek using359

Dn obtained from driver (same as RetD). We get360

|Egood| = 5 and set λD→E=10 to obtain Ebad.361

6.2.2 Results362

Table 4 shows that dependent retrieval (RAR) con-363

sistently performs better than independent retrieval364

(Ret) even if only a single type of context is pro-365

vided.366

Grammar Independent retrieval of grammar per-367

forms significantly worse than retrieving grammar368

through relevant examples (-25% for OfficeScript369

and -15% for M). This shows that RAR is able to370

Office Scripts M

Context Method Sk. Ex. Sk. Ex.

G RetD 55.99 44.35 56.43 43.40
RARD 86.68 70.49 74.27 58.49

E RetE 83.42 69.04 74.24 50.94
RARE 85.67 70.32 76.29 54.72

G + E
RetE⊥D 87.18 72.34 73.40 58.49
RARE→D 92.36 76.40 72.87 58.49
RARD→E 90.71 76.01 74.86 60.38

Table 4: Comparison of RAR with independent retrieval
techniques. Context implies whether only grammar (G),
or examples (E), or both (G+E) have been included in
the prompt for LLM. Methods with Ret are the indepen-
dent retrievers with the subscript defining their corpus.
The values denote match accuracy in %. RAR outper-
forms its Ret counterpart for all context scenarios.

pick more relevant documentation, without requir- 371

ing examples to show how they should be used in 372

the context of a program. 373

Examples When independently retrieving exam- 374

ples, the difference between RAR and independent 375

retrieval is smaller. Still, RAR consistently per- 376

forms better. On M, retrieving only examples using 377

RAR achieves the highest sketch match, indicating 378

the similarity of the retrieved examples. 379

Grammar and examples Grammar + examples 380

together yields better results than separate (+6% 381

for OfficeScript and +2% for M). The examples 382

help the model in figuring out the general program 383

structure, and the documentation helps in figuring 384

out how to adapt these examples (see Appendix 385

G). This is highlighted in M where sketch match 386

is highest when only using examples (+1.5% over 387

RARD→E), but execution match is significantly 388

higher for the latter (+5%). 389

Recall in grammar Table 5 reports the recall 390

of retrieving relevant grammar entities for RetD 391

and RARD. RAR beats independent retrieval again 392

with a considerable margin (+25% for OfficeScript 393

and +46% for M). The relevance of grammar ex- 394

tracted using RARD further explains the jump in 395

performance in Table 4. 396

6.3 Ablation (RQ3) 397

We evaluate whether the good and bad assump- 398

tion of the driver retriever output actually helps 399

the LLM to obtain relevant context or not. In this 400

setting, for influenced retriever, we consider includ- 401

ing only good or only bad extracted entities in the 402
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Method OfficeScript Power Query M

RetD 50.04 24.83
RARD 76.36 67.16

Table 5: Comparison of retrieval quality when grammar
is extracted either independently or with RAR. We eval-
uate quality by taking average of recall Rate (in %) for
the occurrence of the retrieved grammar entity in the
actual code for comparison.

prompt. We compare them with our proposed ap-403

proach where we use an equivalent count of good404

and bad. The number of examples and grammar405

used in the prompt is kept constant across all sce-406

narios for a fair comparison. Table 6 depicts the407

results for the ablation study.408

RAR RI
Office Scripts M

Sk. Ex. Sk. Ex.

E → D
Dgood 79.80 64.01 72.38 58.49
Dbad 83.47 69.98 74.22 52.83
Dgood+Dbad 92.36 76.40 72.87 58.49

D → E
Egood 88.87 73.19 72.72 64.15
Ebad 72.51 58.68 75.70 58.49
Egood+Ebad 90.71 76.01 74.86 60.38

Table 6: Ablation to show importance of assuming RD

output to be both Good and Bad while retrieving for
RI . We find clear majority for Office Scripts. For
PQ, we need both Good and Bad to attain a balanced
performance improvement in both metrics.

We find that combining good and bad examples409

based on the result of the driver retriever output410

helps in obtaining better context. The retrieval411

of Dbad or Ebad is able to catch some important412

context which get missed when we trust the driver413

output to be good. For OfficeScript, we see a clear414

improvement in performance. However, for M,415

we find that sketch match is better for Dbad and416

Ebad, while execution is better for Dgood and Egood.417

Using both in equal proportion helps us attain a418

balance when trying to improve both metrics.419

6.4 Variation with token size (RQ4)420

We vary the token size by changing the number421

of retrieved examples and grammar entities in the422

prompt. We use independent retrievers with the423

same context count as RAR as baseline.424

Figure 4 shows that RAR performs better at most425

token counts. The only exception remains with426

RetE for M, where we find both sketch and exe-427

cution below baseline for larger token sizes This428

happens because M has a larger example corpus429

Office Scripts

Power Query M

Figure 4: Shows a detailed comparison of RAR with the
baseline independent retrievers as a function of increas-
ing prompt token length. Plots on the left show sketch
match accuracy and on the right show execution match
accuracy. RAR outperforms its baseline even for large
token sizes. We find lower token lengths are enough for
accurate code generation.

compared to OfficeScript. The influenced, even 430

while considering retriever output to be bad, might 431

be extracting functions from the same pool of in- 432

correct intent. As a result, the performance is low. 433

Moreover, even though the context size increases, 434

the performance remains steady and does not in- 435

crease further. This removes the notion of models 436

trying to populate the prompt with more content 437

rather than including only the relevant ones. We 438

find that the best context is achieved around the 439

∼3000 token size mark. Further additions simply 440

confuse (can be seen by a slight drop) or play no 441

role in improving the quality of generation. 442

6.5 Reliance on Driver (RQ5) 443

In this section, we consider evaluating code based 444

on a prompt containing both documentation and 445

example. We compare independent retrievers 446

RetE⊥D with RARD→E and RARE→D, by alter- 447

ing the driver retrieval (1) output size, and (2) 448

method. This helps us understand how RI be- 449

haves as RD changes. Including RD’s output in the 450

prompt also enables us to understand the impact 451

of RI alone as we compare with the baseline, con- 452

taining the same RD output. This provides a clear 453
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view on the impact RI has towards performance454

improvement.455

Increasing Driver output We find in Figure 5456

that RAR is better than its baseline when both ex-457

ample and grammar retrieved from the driver is458

increased. There is a general trend of the match459

accuracy declining as we increase the output size.460

This implies that RI is unable to infer a specific461

topic from RD’s output to make a Good or Bad462

assumption. So the retrieval becomes free and ran-463

domized, and it fails to converge to a particular464

topic for a candidate solution. We also find the465

match accuracy for RAR going below its baseline466

for M in E → D setting. The reason is again

Office Scripts

(a) Influence of n ↑ (Dn) on
RARD→E and RetD⊥E

(b) Influence of k ↑ (Ek) on
RARE and RetD⊥E

Power Query M

(c) Influence of n ↑ (Dn) on
RARD→E and RetD⊥E

(d) Influence of k ↑ (Ek) on
RARE and RetD⊥E

Figure 5: Shows an impact on performance compared
with baseline when the retrieved context size from driver
is increased. Both the baseline and RAR in each setting
have the same RD output. The only thing which brings a
performance difference is the output from RI . Through
this we show that RI is not entirely reliant on RD. It
adapts itself to keep the performance above baseline
with increasing context length.

467
similar to what we discussed in section 6.4. Addi-468

tionally, when RI tries to retrieve grammar from469

the extracted examples, the LLM receives some470

very relevant entities. It now has to decide a gram-471

mar from a list which has function descriptions472

very similar to the query, which causes confusion473

while choosing the exact grammar. On the other474

hand, independent retrieval extract grammar which 475

is diverse. This makes identifying the right gram- 476

mar from the available lot easy and hence results in 477

a better match numbers when compared with RAR. 478

Altering retrieval method We compare RetE⊥D 479

with RARD→E for two different settings. One 480

where we use pre-trained embeddings MPT and 481

the other where we use fine-tuned embeddings 482

MFT (SentenceBERT) for retrieval. Table 7 de- 483

picts that RAR still holds its ground and performs 484

better than the baselines even when the retrieval 485

style for RD is changed. The Good and Bad re- 486

trieval assumption helps influenced retriever to 487

adapt to the changing driver, and eventually fetches 488

context which is relevant to the solution. This 489

proves that our approach is not stringent in terms 490

of the retrieval being used and it can adapt and 491

perform well even with other retrieval techniques. 492

Method Office Scripts M

Sk. Ex. Sk. Ex.

Pre-trained embed. model

RetE⊥D 87.86 71.67 74.29 54.72
RARD→E 88.17 73.48 75.52 54.72

Fine-tuned embed. model

RetE⊥D 87.18 72.34 73.4 58.49
RARD→E 90.71 76.01 74.86 60.38

Table 7: Shows that our approach performs better than
the baseline even when different embeddings for re-
trieval is used. This further consolidates that RI is
independent of RD and can even improve performance
with other retrieval styles.

7 Conclusion 493

We introduce RAR, a two-step retrieval technique 494

used to extract relevant context for code generation 495

over low-resource programming languages. Our 496

approach claims that off-the-shelf documentation 497

for a language is enough to help an LLM generate 498

syntactically and semantically correct programs. 499

We also show how grammar and example work 500

better together. Our approach establishes a work- 501

ing relationship between the two, capable of gen- 502

erating sound and reliable programs. The results 503

we outline opens gates for future research, where 504

grammar and example complement each other to 505

formulate unseen programming languages. 506
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8 Limitations and Ethical Considerations507

Despite showing that RAR performs best at dif-508

ferent token counts, combining both grammar and509

examples significantly increases the number of to-510

kens and thus cost. Our method relies on extensive511

documentation, which might not be available for512

all low-resource languages.513

We only scrape public documentation that is514

openly accessible. We do not use any unethical515

methods to extract data from sources that are pro-516

tected by privacy policies.517
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A Generating NL queries for code642

examples643

We obtain the code examples from the documen-644

tation which is easily scraped using regex expres-645

sions. However, NL queries accompanying the646

code examples are not provided for Office Scripts.647

Hence we generate them using an LLM (GPT-4).648

We use the prompt in Figure 6 to obtain queries649

which resemble a human as much as possible. For650

PQ, the NL queries are already available along with651

the code examples in the documentation and we652

directly use them to build the (q, c) pair for E.653

B Grammar Representation used during654

retrieval655

To calculate the transformer embeddings, we need656

to convert grammar entities to a suitable form. We657

use the representation function J(.) for this conver-658

sion. We use the form:659

<page>.<grammar>: <description>660

An example for the representation used for gram-661
mar entities in office scripts:662

ExcelScript.Range.setFormulaLocal: set the663
formula in local A1 style...664

An example for grammar entities in PQ:665

Table.FromColumns: creates a table of type666
`columns` from a list `lists` containing...667

We use this representation when using trans-668

former embedding for any form of retrieval done669

in the paper.670

C Sentence-BERT Fine-tuning671

For both the datasets, we build the training set as672

described in section 4.1. The train set has a ratio of673

1:2 for positive and negative labels. The validation674

set is built by sampling data from the benchmark675

itself. We maintain a train-validation split of 80%-676

20%. Refer to Table 8 for more details on training677

and evaluation after training. We also include rele-

Parameter Office Scripts PQ

training size 3390 3522
epochs 3 5
batch size 32 32
warmup steps 50 50

eval accuracy 54.08% 64.00%
ROC AUC 0.084 0.025

Table 8: Parameter details for fine-tuning S-BERT on
Office scripts and PQ. We also include the final valida-
tion set accuracy and ROC AUC value as a measure for
evaluating the training process.

678
vant graphs for further analysing the performance 679

of our fine-tuning. Refer to Figure 7 for office 680

scripts and Figure 8 for PQ. 681

D Code Generation Prompt 682

We provide sample prompt structures used for 683

generating code in Office Scripts and PQ, for ease 684

in replication of our results. Refer to the figures 9 685

and 10 for an example prompt we generate using 686

RAR. More details about the representation is 687

provided in the respective captions of the figures. 688

689

*Note The sample data, table names and column 690

header names used in the prompt for PQ have been 691

parsed and extracted from the documentation it- 692

self. All examples in the documentation contain the 693

Table.From function which enlists data on which 694

the operation is performed. We extract data from 695

these function arguments and replace them with the 696

table or column names in the final version of the 697

example program. 698

E Evaluation metric 699

In this section, we delve into more details about 700

the techniques used for performing sketch and ex- 701

ecution match on the code generated for the two 702

datasets. 703

Office Scripts For Sketch match, we compare the 704

LLM generated code with the ground truth to see if 705

their functionalities match. We build a customized 706

parser which is able to map functions in the code 707

to create a symbolic mapping between them and 708

the conditional format type (whose count is finite). 709

This type of comparison ignores constants, variable 710

values or function arguments. However, when do- 711

ing execution match, we consider comparing all of 712

the above fields. We compare the generated code 713

with what we call revision records of the actual 714

code. These records are Json representations which 715

are obtained as a result of executing the ground 716

truth code in Microsoft Excel. They contain infor- 717

mation about the changes that happen in an Excel 718

workbook after a code gets executed (in terms of 719

target and type of impact). We draw heuristics 720

to check if the code matches the changes in the 721

revision records for execution accuracy. 722

PQ We perform sketch match by masking the 723

constants, identifiers and other user-defined entities 724

in the code and calculate the SequenceMatcher 725
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<|im_start|>system
You are an expert in writing user queries. For a code given in Typescript (Office Scripts), write a query in natural language which 
is similar in style to a query written by a human. Do not mention all the details as is present in the code and consciously try to miss 
some information to make it appear more human-like. Keep the queries short and subtle and the content should be based on the 
impact you want and not how it is accomplished using the code.
<|im_end|>
<|im_start|>user
function main(workbook: ExcelScript.Workbook) {  
    let selectedSheet = workbook.getActiveWorksheet();  
    selectedSheet.getRange("14:14").insert(ExcelScript.InsertShiftDirection.down);  
    selectedSheet.getRange("C14").setFormulaLocal("=average(C9:C13)"); 
}
<|im_end|>
<|im_start|>assistant
Add row and calculate the Average.
<|im_end|>
<|im_start|>user
function main(workbook: ExcelScript.Workbook) {  
    let conditionalFormatting: ExcelScript.ConditionalFormat;  
    let selectedSheet = workbook.getActiveWorksheet();  
    conditionalFormatting = selectedSheet.getRange("F3:F71").addConditionalFormat(ExcelScript.ConditionalFormatType.cellValue);  
    conditionalFormatting.getCellValue().getFormat().getFont().setColor("#9C0006");  
    conditionalFormatting.getCellValue().getFormat().getFill().setColor("#FFC7CE");  
    conditionalFormatting.getCellValue().setRule({formula1:"=1",

formula2:undefined,operator:ExcelScript.ConditionalCellValueOperator.greaterThan,}); 
}
<|im_end|>
<|im_start|>assistant
Highlight values greater than one in the range F3-F71.
<|im_end|>
<|im_start|>user
<code_example>
<|im_end|>
<|im_start|>assistant

Figure 6: Prompt used for generation of human-like NL queries for Office Scripts. The <code_example> highlighted
in green is where the code examples extracted from the documentation goes for which the NL query needs to be
generated. We design a few-shot setting for more similarity with the test query.

ratio of the two programs. For execution match, we726

obtain results by actually executing the programs727

in the data table that is already provided. We then728

compare the output to check for equality.729

F Hyperparameter Tuning730

We run different simulations of the experiment by731

altering the hyperparameter λE→D and λD→E . For732

the sake of brevity, we show the variation in perfor-733

mance for only E → D scenario for Office Scripts.734

For other, we do a similar sweep across different735

values and record that which gives us the best exe-736

cution match.737

Figure 11 shows the increase in code match ac-738

curacy as we increase λE→D and the drop and final739

stability for larger values. Lower values of impact740

factor implies that the deviation from the examples741

retrieved by RD is favoured more. Hence grammar742

elements we include in the prompt are completely743

opposite in intent to the retrieved examples. As we744

increase λE→D, the impact of query intent comes745

in and the search becomes more organized towards746

looking for relevant grammar, rather than deviating747

blindly from the examples. A sweet-spot is reached 748

near 20 which we use in our experiments. Further 749

rise of λE→D results in more impact from the query 750

intent and the retrieved examples from RD plays 751

no role here. Hence we find the performance sta- 752

bilising as we go higher. This shows that a balance 753

between both search technique is required to iden- 754

tify the best and most relevant grammar with the 755

help of driver retriever. 756

G Motivating example 757

We showcase one motivating example which argues 758

in favour towards including grammar along with 759

examples in the prompt for code generation. 760
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(a) Evaluation accuracy computed on the validation set as a
function of increasing epoch. The training was terminated as
we achieved maximum eval accuracy.

(b) The distribution of actual good and bad labels after train-
ing along the similarity score with their query in x-axis. This
shows the demarcation on cosine-similarity score we are able
to attain after fine-tuning s-bert.

(c) Precision Recall curve obtained by varying the retrieval
of top-n grammars from the documentation and calculating
precision and recall by comparing with the grammar in the
code. Each point in the plot corresponds to the average
precision and recall across the entire benchmark.

(d) Plot of jaccard index calculated against increasing num-
ber of grammar n retrieved from documentation, in order
of decreasing cosine-similariy score with test query. Each
point denotes the average value calculated across the entire
benchmark. The best and condensed grammar is shown to
be obtained for lower retrieval size.

Figure 7: Analytical significance and performance upon fine-tuning s-bert on Office Scripts. The similarity scores
are computed by taking the cosine of the trained embeddings of the query and the grammar elements.
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(a) Evaluation accuracy computed on the validation set as a
function of increasing epoch. The training was terminated as
we achieved maximum eval accuracy.

(b) The distribution of actual good and bad labels after train-
ing along the similarity score with their query in x-axis. This
shows the demarcation on cosine-similarity score we are able
to attain after fine-tuning s-bert.

(c) Precision Recall curve obtained by varying the retrieval
of top-n grammars from the documentation and calculating
precision and recall by comparing with the grammar in the
code. Each point in the plot corresponds to the average
precision and recall across the entire benchmark.

(d) Plot of jaccard index calculated against increasing num-
ber of grammar n retrieved from documentation, in order of
decreasing cosine-similariy score with test query. Each point
denotes the average value calculated across the entire bench-
mark. The best quality grammar is shown to be obtained for
lower retrieved size.

Figure 8: Analytical significance and performance upon fine-tuning s-bert on Power Query M. The similarity
scores are computed by taking the cosine of the trained embeddings of the query and the grammar elements.

14



<|im_start|>system
You are an assistant that generates programs in typescripts using Office Scripts APIs. The program you generated will help solve a query 
provided by the user. The Office Script you generate will be run directly in Microsoft Excel and the effect it has on the workbook will be 
checked to confirm if the code you generated matches the user content or not. If target where the change is applied on the sheet is not 
mentioned in the user query, assume a target range or column of your own and complete the program. Your code should be complete and not 
have any placeholders. In case of ambiguity in terms of which color or formatting style to use, use your best judgement and make assumptions 
at the same time mentioning your assumptions as comments. Your code must be syntactically and semantically correct. To help you generate 
correct and quality programs, a list of methods, properties and enums are provided from the official Office Scripts documentation along with 
some examples of their usage.
<|im_end|>

# Documentation #

ExcelScript.IconSetConditionalFormat: Represents an icon set criteria for conditional formatting.
Methods-->
- getCriteria() : ConditionalIconCriterion[]
- setCriteria(criteria: ConditionalIconCriterion[]) : void

ExcelScript.ConditionalIconCriterion: Represents an icon criterion which contains a type, value, an operator, and an optional custom icon ...
Properties-->
- customIcon (ExcelScript.Icon): The custom icon for the current criterion, if different ...
- type (ExcelScript.ConditionalFormatIconRuleType): What the icon conditional format should be based on.

ExcelScript.ConditionalFormatIconRuleType: Represents the types of icon conditional format.
- formula, invalid, number, percent, percentile

# Examples #
<|im_start|>user
Apply traffic light icons to the range A1-A5 based on percentage values.
<|im_end|>
<|im_start|>assistant
function main(workbook: ExcelScript.Workbook) {
    const sheet = workbook.getActiveWorksheet();
  const range = sheet.getRange("A1:A5");

    const conditionalFormatting = range.addConditionalFormat(ExcelScript.ConditionalFormatType.iconSet);

    conditionalFormatting.getIconSet().setStyle(ExcelScript.IconSet.threeTrafficLights1);

    const criteria: ExcelScript.ConditionalIconCriterion[] = [
    {
      formula: '=0', operator: ExcelScript.ConditionalIconCriterionOperator.greaterThanOrEqual,
      type: ExcelScript.ConditionalFormatIconRuleType.percent
    },
    {
      formula: '=33', operator: ExcelScript.ConditionalIconCriterionOperator.greaterThanOrEqual,
      type: ExcelScript.ConditionalFormatIconRuleType.percent
    },
    {
      formula: '=67', operator: ExcelScript.ConditionalIconCriterionOperator.greaterThanOrEqual,
      type: ExcelScript.ConditionalFormatIconRuleType.percent
    }];
  conditionalFormatting.getIconSet().setCriteria(criteria);
}
<|im_end|>

 ...

<|im_start|>user
How do I add a three-arrow icon set to the range M8-M14 on the 7a sheet based on percentage criteria?
<|im_end|>
<|im_start|>assistant

Figure 9: Shows the following prompt stucture which is passed to the LLM for code generation. The above prompt
example is for Office Scripts generation. We highlight the representation used for grammar in the prompt. The
green and yellow highlighted represents the match between the code and grammar and on how the return type of a
grammar element is mapped to its definition in the same prompt. This helps the LLM establish an understanding of
the function chaining strategy used in the example program so that it is able to use the right function in the right
place where it’s return type matches.
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<|im_start|>system
You are an assistant that answers questions from a table by converting them to Power Query M queries.
For your reference, you are also provided relevant functions form documentation to assist you in generating the queries.
<|im_end|>

# Documentation #

Replacer.ReplaceText : Replaces the `old` text in the original `text` with the `new` text. This replacer function can be used in 
`List.ReplaceValue` and `Table.ReplaceValue`.

Replacer.ReplaceValue : Replaces the `old` value in the original `value` with the `new` value. This replacer function can be used in 
`List.ReplaceValue` and `Table.ReplaceValue`.

Table.ReplaceErrorValues : Replaces the error values in the specified columns of the `table` with the new values in the `errorReplacement` 
list. The format of the list is {{column1, value1}, ...}. There may only be one replacement value per column, specifying the column more 
than once will result in an error.

Table.ReplaceValue : Replaces `oldValue` with `newValue` in the specified columns of the `table`.
...
# Examples #

<|im_start|>user
Columns: A, B
Sample Data: [[1, "hello"], [2, "wurld"]]
Table Name: Table1
Question: Replace the text "ur" with "or" in column B, matching any part of the value.
<|im_end|>
<|im_start|>assistant
M: Table.ReplaceValue(Table1,"ur", "or", Replacer.ReplaceText, {"B"})
<|im_end|>

<|im_start|>user
Columns: A, B
Sample Data: [[Error, Error], [1, 2]]
Table Name: Table1
Question: Replace the error value in column A with the text "hello" and in column B with the text "world" in the table.
<|im_end|>
<|im_start|>assistant
M: Table.ReplaceErrorValues(
    Table1,
    {{"A", "hello"}, {"B", "world"}}
)
<|im_end|>
...

<|im_start|>user
Columns: Column1
Sample Data: [['aaa bbb ccc ddd eee fff'], ['aaa bbb ccc ddd'], ['aaa ccc ddd eee fff'], ['aaa bbb ccc fff'], ['aaa bbb ddd fff'], 
['aaa bbb ccc ddd eee fff'], ['aaa bbb ccc ddd eee fff'], ['aaa ccc ddd eee fff'], ['aaa bbb ccc ddd fff'], ['bbb ccc ddd eee fff']]
Table Name: Source
Question: replace only "eee" with "xxx-eee", in Column1 in table Source
<|im_start|>assistant
M: 

Figure 10: Shows the prompt structure used with grammar and examples for PQ generation. The code requires
he sample data from table, the table name and its column headers to write specific code, which is executable and
also easy to match with the ground truth. We also provide this table metadata for the test query for complete code
generation without any assumptions. The documentation structure is uniform throughout and contains only the
grammar name and its description. The same colored highlights represent the common functionalities between the
grammar and the example which gets retrieved during RAR.
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Figure 11: Shows the variation of performance (sketch
and execution) as a function of increasing impact factor
λE→D for influenced retriever. We find a rise and a drop
beyond the green marker where impact factor is 20. We
use this value in our experiments for RAR. This shows
that the factor needs to strike a balance between the
deviation from retrieved examples and while remaining
close to the test query intent.

Figure 12: Provides an explanation on how adding gram-
mar to the prompt helps an LLM understand variations
to code structure better. A subtle difference in the NL
query like "until position 4" does not confuse the LLM
to look for a new function or hallucinate something
which is incorrect. It is able to understand from the
function description that using the third argument value
of the same function in the example will generate the
correct solution.
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