
One-to-many testing for code generation from (just) natural language

Mansi Uniyal
t-muniyal@microsoft.com

Mukul Singh
singhmukul@microsoft.com

Gust Verbruggen
gverbruggen@microsoft.com

Sumit Gulwani
sumitg@microsoft.com

Vu Le
levu@microsoft.com

Abstract

MBPP is a popular dataset for evaluating mod-
els on the task of code generation. Despite its
popularity there are three problems with the
original MBPP: (1) reliance on providing test
cases to generate the right signature, (2) con-
tamination of the exact phrasing being present
in training datasets, and (3) poor alignment be-
tween instruction and evaluation testcases. To
overcome this, we create MBUPP, by adapting
the popular MBPP dataset for code generation
from natural language to emphasize on the nat-
ural language aspect by evaluating generated
code on multiple sets of assertions. Addition-
ally, we update the text descriptions to remove
ambiguity and instructions that are not evalu-
ated by the assertions, like specific algorithms
to use. This adapted dataset resolves the chal-
lenges around contamination, ambiguity and
testcase alignment. Further, we compare popu-
lar open and closed weight models on the origi-
nal (MBPP) and adapted (MBUPP) datasets.

1 Introduction

Code generation from natural language (NL-to-
code) is a popular task to evaluate the capabilities
of language models (Abdin et al., 2024; Achiam
et al., 2023; Jiang et al., 2024). One of the most
popular NL-to-code datasets is the mostly basic
Python programs (MBPP) dataset (Odena et al.,
2021). In this dataset, each problem contains a
natural language description, a code solution and
three test cases in the form of assert statements.

We identify three main problems with MBPP.
First, it heavily relies on test cases to identify syn-
tactic properties of the code to generate, as the pro-
vided assertions require a specific signature. Sec-
ond, descriptions sometimes contain instructions
that the assertions are not testing for, like asking
to sort “using heap queue.” Third, being a popular
dataset distributed on many channels, data contam-
ination is a significant issue (Riddell et al., 2024).

In this paper, we introduce an adapted code gen-
eration benchmark, called MBUPP, that allows for
the description to be underspecified with respect
to syntactic properties of code. Each problem con-
sists of a text description as input to the model,
and a set of assertions to validate the output. We
generate both the descriptions and assertions from
MBPP problems using a combination of LLMs,
intuition and validation. Additionally, we provide
results of different open and closed weight models
on MBPP and MBUPP. We show which assertions
are more often picked, indicating data contamina-
tion. Further, We release the dataset and the model
generations to seed further research in this area.

We make the following contributions.

• MBUPP: An adapted version of MBPP that
allows code to be underspecified and uses gen-
eralized testcases to account for that.

• An analysis of different models on MBPP
and MBUPP that highlights the need for an
improved code generation benchmark.

2 Motivating example

As an example, let us look at the problem “Write
a function to find sequences of lowercase letters
joined with an underscore using regex” and the
associated assertions (with f = text_match)
assert f('aab_cbbbc ') == 'Found a match!'
assert f('aab_Abbbc ') == 'Not matched!'
assert f('Aaab_abbbc ') == 'Not matched!'

Based on just the text description, it is not clear if
the user expects a function str → bool (validation)
or str[] → str[] (filter) or str → str (extraction).
The tests also do not evaluate whether the function
actually uses a regular expression or not.

Our adapted benchmark puts all emphasis on
the “NL” part of NL-to-code. We assume that a
user is not specific about the syntax of the program
and does not care about it: they want to obtain any

Write a function to convert the given
binary number to its decimal equivalent.

def bin_to_dec(b):
 return int(b, 2)

assert f(100) == 4,
assert f(1011) == 11 def f(b):

 return int(b, 2)

Assertion set 1: number → number

Passes all tests within
any set of assertions?

Generator(user) input (model) output

Evaluation framework. . .

assert f("100") == 4,
assert f("1011") == 11

Assertion set 2: string → number

assert f(100) == "4",
assert f(1011) == "11"

Assertion set 3: number → string

Figure 1: Example of an MBUPP benchmark problem.
Given only the description, any code generator returns
a function. Instead of providing the signature, which
users will not likely do, we match the generated function
to the signature of our assertions and then verify if the
program satisfies any of the assertion sets.

function that does what they describe. The adapted
description is “Write a function to find sequences of
lowercase letters joined with an underscore” with
the “using regex“ part removed. This description
is the only input needed by the code generator. We
therefore introduce multiple sets of assertions

validator
assert f('aab_cbbbc ') == True
...

filter
assert f(['aab_cbbb ',

'aab_Abbbc ']) == ['aab_cbbb ']
...

extractor
assert f('01 aab_cbbbc 23') == 'aab_cbbbc '
...

and consider a success if the function generated by
the model (with any function name or execution
semantics) passes any of the above assertion sets.

3 MBUPP

An example of an evaluation in MBUPP is shown
in Figure 2. The only input to the code generator is
a text description. This text description is allowed
to be underspecified with respect to syntactic prop-
erties of the function, like argument order and types
(data structures) used to represent the output, and
we provide multiple sets of assertions that capture
this underspecification. Additionally, if multiple
functions are generated to solve the problem, we
verify if any of them satisfies the assertions to allow
the generator to use helper functions.

We adapt benchmarks in two phases: improving
the text descriptions and obtaining sets of assertions

Write a function that matches the
beginning of a string to a word.

Write a function that matches if there is a
word at the beginning of a string.

Write a function that matches a word at
the beginning of a string.

Write a function that matches if there is a
word at the beginning of a string.

correct

Create a function that matches the word
at the start of a string.

paraphrase

Write a function that checks for the
presence of a word at the start of a string.

vote

Figure 2: Improving the clarity and diversity of code
generation tasks in three steps.

to capture ambiguity on syntactic properties.

3.1 Improving descriptions
First, the original description is corrected, remov-
ing method specifiers (“using regex”) and ambi-
guity. Next, we use GPT-4 to generate three para-
phrased versions using the following strategies.

• Directly paraphrasing the text description.

• Extracting structured information about the
problem specification from the description
(task, input type, input property, output type,
output property, edge cases) in one model gen-
eration and generating a textual description
from those properties in another generation.

• Similar to the previous extraction, but first in-
structing the model to individually paraphrase
each of the pieces of task information.

Finally, we manually vote to select the best instruc-
tion. An example this process is shown in Figure 2.

3.2 Obtaining assertions
We now iteratively update the assertion sets using a
combination of intuition and suggestions provided
by a code generation model. Starting with the first
task, we ask the model to generate multiple com-
pletions and verify if they satisfy and of the current
assertions. We then inspect all failing programs
and select those where the code does the right thing
according to the descriptions, but not adhere to the
right signature. A new assertion set is added for
each mismatch. If we suspect the same mismatch
in other programs, like returning a tuple instead
of a list, we automatically find other assertions
would be affected by this transformation and verify
if they make sense.

Table 1: An overview of common assertion transformations.

Description Before After

Ensure list comparisons for sequences. We
wrap the function in a list call to support
any iterable.

assert f(x) == [1,2,3] assert list(f(x)) == [1,2,3]

Permutation of arguments. assert f(a, b) == a + b assert f(b, a) == a + b
assert f(m, x, y) == m[x][y] assert f(x, y, m) == m[x][y]

Grouping of arguments. assert f(m, x, y) == m[x][y] assert f(m, (x, y)) == m[x][y]

Removing redundant arguments. assert f(a, b) == a + 1 assert f(a) == a + 1

Including selection criteria, like counts and
extrema, to allow functions that show their
work.

assert f([1,1,2]) == 1 assert f([1,1,2]) == (1, 2)

Dictionaries ↔ list of tuples assert f(a) == {1: 2} assert f(a) == [(1, 2)]

Validator ↔ filter assert f(a) == True assert f([a]) == [a]

Numbers ↔ strings assert f(2) == 10 assert f(2) == "10"
assert f(10) == 2 assert f("10") == "10"

Table 2: Some examples of one-off assertions updates.

Utterance Description Before After

... splits a string at
lowercase letters

Original assertion
has error and is am-
biguous.

f("AbCd") == ["bC", "d"] f("AbCd") == ["A", "b", "C", "d"]
f("AbCd") == ["A", "C"]

... calculate the
4 most frequent
words with their
counts.

Allow both lists
and strings as in-
put.

f(["a", "a"]) == [("a", 2)] f("a a") == [("a", 2)]

Example 1 Consider the task to “Write a python
function to detect non-prime numbers.” One of the
generated programs is (GPT-4,n = 25,temp = 0.4)

def is_not_prime(numbers):
return [num for num in numbers

if not is_prime(num)]

def is_prime(num):
omitted

We rename each function to f and verify whether
it satisfies the (default) assertion style assert f(2)

== True which fails. Since the description can be
interpreted as a filter function, we add

assert f([2]) == [2]
assert f([35]) == []

as new assertions. We then look for other problems
where the assertions test for bool outputs and add
the new assertion if relevant.

An overview of all common assertion transfor-
mations found in MBUPP is shown in Table 1.
Some one-off transformations are shown in Table 2.

Figure 4 shows the distribution of frequency of
length of updated test sets proposed in benchmark.
We observe the concentration of samples with 4, 6,

0 2
Updated Test Sets used

0

10

20

30

Fr
eq

ue
nc

y

MBUPP

0 2
Updated Test Sets used

MBPP+Updated Tests

Figure 3: Distributions of unique assertion sets used by
gpt-4-turbo at n = 25 and t = 0.8. On the utterances
from MBUPP, there is more variety, which hints towards
less contamination.

or 8 updated test sets, that prove to provide more
possibilities of acceptable code responses. During
transformation of test sets, we do a permutation
and combination of all the transformations on both
input and output arguments . This highlights the
reason for significant amount of cases with 16 test
sets, that accounts for all possible such cases.

Model MBPP + NL + Tests MBUPP

gpt-4-turbo 0.66 0.64 0.90 0.96
gpt-4o 0.76 0.68 0.92 0.94
gpt-35-turbo 0.68 0.66 0.86 0.88
phi 0.58 0.60 0.80 0.84
mistral 0.50 0.46 0.66 0.62

Table 3: Evaluation of LLMs on the proposed MBUPP
benchmark. We report the fraction of samples with
pass@1>0 for n = 25 and t = 0.4. We find that all
models have a higher solve-ability on MBUPP.

4 Results on MBUPP

We describe our evaluation setup, main results, and
further analysis on behaviour of different models.

4.1 Evaluation setup
We use a diverse set of open and closed weight
models from the GPT, phi and mistral series for eval-
uation. The input to the models is just the natural
language specification alone. During evaluation
we test multiple code generations (n = 25 and
t = 0.4) over the updated assertion and measure
solvability as any of these generations being cor-
rect.

4.2 Results
In this section, we discuss the impact each com-
ponent of MBUPP benchmark on code generation
performance.

One-to-many evaluation Table 3 shows the com-
parison of the number of samples being solved in
MBPP versus the proposed MBUPP benchmark.
We find that with updating assertion sets, there is
a 45% jump in solvability of the benchmark. This
is also seen in smaller models like phi and mistral

which tend to have a more diverse response.

Dataset contamination MBPP being a popular
and common dataset has made its way into training
datasets used in larger models. This contamination
in the model training set makes the performance
on MBPP an unreliable indicator of model per-
formance. Table 3 shows that with changing the
NL phrasing (MBPP + Updated NL) while keeping
the semantic consistent, there is a 4.5% drop in
solvability, showing that the models remember the
phrasing of the descriptions in the original dataset.

Effect of temperature Table 4 shows the task
solve-ability for gpt-4-turbo with varying gener-
ation temperature. We find that performance on
MBUPP increases with temperature because with

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Number of Updated Test Sets

0

4

8

12

16

Fr
eq

ue
nc

y

Figure 4: Distribution of number of assertion sets per
task in MBUPP. MBUPP on average has 4-5 assertion
sets per task showing the ambiguity in utterances.

Temperature MBPP + NL + Tests MBUPP

0.1 0.58 0.56 0.80 0.88
0.2 0.62 0.64 0.84 0.92
0.4 0.66 0.64 0.90 0.96
0.6 0.68 0.70 0.88 0.98
0.8 0.68 0.70 0.92 0.98

Table 4: Effect of temperature on responses with GPT-
4-TURBO for n = 25 and different temperatures.

updated assertion sets the generation diversity im-
proves performance. As shown in Table 4, for
lower temperature, (t = 0.1) the overall increase in
success of model on MBUPP over MBPP is as high
as +30%. With the higher temperature, (t = 0.8)
we see performance of system be all time high
98%. Less contamination allows for more diver-
sity, which benefits from the additional assertions.

4.3 Analysis

Qualitatively looking at the generations, we find
that on MBUPP, gpt-4-turbo failing cases are
mainly attributed to logic and knowledge errors.
These cases prove the efficiency of updating the
test sets, ensuring to capture all possible responses
of semantically acceptable code functions.

5 Conclusion

In this paper, we introduce MBUPP, an adaptation
of MBPP which addresses three main challenges
with the original dataset: (1) ambiguity and under-
specification in the descriptions, (2) contamination
of the dataset by being present in common train-
ing corpora of models, (3) poor alignment of the
assertions with the description. We show results
of popular open and closed weight models on the
original and adapted dataset. Further, we present
analysis on different components of MBUPP, di-
versity and temperature of the generations.

6 Limitation

The adaptation and analysis done in this work are
primarily for English language and the same tech-
nique needs to be tested for other languages. This
work focuses on the scenario when the specific im-
plementation semantics are not relevant for the suc-
cess of the task. For the case where the utterance
needs to be made complete with required specifica-
tion, we present a case study in the Appendix.

References
Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,

Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-
rat Behl, et al. 2024. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv
preprint arXiv:2404.14219.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Augustus Odena, Charles Sutton, David Martin Do-
han, Ellen Jiang, Henryk Michalewski, Jacob Austin,
Maarten Paul Bosma, Maxwell Nye, Michael Terry,
and Quoc V. Le. 2021. Program synthesis with large
language models. In n/a, page n/a, n/a. N/a.

Martin Riddell, Ansong Ni, and Arman Cohan. 2024.
Quantifying contamination in evaluating code gener-
ation capabilities of language models. arXiv preprint
arXiv:2403.04811.

A Appendix

A.1 Effect of updating test sets

We observe the distribution of various transforma-
tions used while updating the test sets of which
were used as possible solutions for the NL. With-
out the case for updated test sets we observe 44%
and 56% of samples that could not be captured in
corresponding NL of MBPP and MBUPP.

One of the most occurring transformation of List-
ToTuple signifies the impact we create by incor-
porating possible cases of variations in input and
output type which are syntactically correct and per-
forming the intended task correctly. Other trans-
formations like RemoveArgs, provides variation of
inclusive response handling with List size being
an input parameter or not, and NumToStr, helps
handling samples with binary to decimal conver-
sion and vice-versa where the number can also be
considered as string to start with.

A.2 Case Study: MBOPP

In the proposed benchmark we focus entirely on
problem solving case for the various LLM, to pro-
vide in all possible responses that can be acceptable
by the user with the given under-specified NL. As
a followup, the NL for the task can be to trans-
late this cleaned benchmark to the state where user
mentions all details. Such specification of infor-
mation would connect to user explicitly about the
formatting of the arguments along with checking
on the task completion for the desired Python func-
tion. We provide this set of benchmark as MBOPP
(mostly basic over-specified Python programs).

For this set of benchmark the focus here is for
adding more and more information to make the
generated code exactly as the desired one, where
the user is focused on every possible detail and
formatting of the input output responses and the
task.

Example for such a transformation is like:
"Write a function to find the similar elements from
the given two tuple lists." sample within the cur-
rent MBPP benchmark being translated to "Write
a function to find similar elements from two tuple
lists and return a tuple.", which mentions the exact
output format that the code should respond with
and thus pass for all original test cases only. The
latter is more specified, where the user is precise
about the correct code generated.

One thing to note here is that for evaluation we
only consider the generated code that passes all

original test cases. The augmented test cases are
not considered for evaluation to capture the instruc-
tion following of the LLM system, over the eval-
uation of MBUPP’s task completion capability of
LLM system solely where those augmented test
cases where used. This contains the need for infor-
mation extraction with bucketing the information
present in the specification keeping the test cases in
mind, to the various task components, and generate
the next set of specifications with explicit mention-
ing of all information. This ensures mapping back
any step of generation of the benchmark for quality
assessment, while leveraging the LLMs with a re-
duced risk of hallucinations and nondeterministic
behaviour.

	Introduction
	Motivating example
	MBUPP
	Improving descriptions
	Obtaining assertions

	Results on MBUPP
	Evaluation setup
	Results
	Analysis

	Conclusion
	Limitation
	Appendix
	Effect of updating test sets
	Case Study: MBOPP

