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Abstract

The popularity of Large Language Models
(LLMs) have unleashed a new age of Lan-
guage Agents for solving a diverse range of
tasks. While contemporary frontier LLMs are
capable enough to power reasonably good Lan-
guage agents, the closed-API model makes it
hard to improve in cases they perform sub-
optimally. To address this, recent works have
explored ways to improve their performance us-
ing techniques like self-reflection and prompt
optimization. Unfortunately, techniques like
self-reflection can be used only in an online
setup, while contemporary prompt optimiza-
tion techniques are designed and tested to
work on simple tasks. To this end, we intro-
duce METAREFLECTION, a novel offline re-
inforcement learning technique that enhances
the performance of Language Agents by aug-
menting a semantic memory based on experi-
ential learnings from past trials. We demon-
strate the efficacy of METAREFLECTION by
evaluating across multiple domains, includ-
ing complex logical reasoning, biomedical
semantic similarity, open world question an-
swering, and vulnerability threat detection,
in Infrastructure-as-Code, spanning different
agent designs. METAREFLECTION boosts Lan-
guage agents’ performance by 4 % to 16.82 %
over the raw GPT-4 baseline and performs on
par with existing state-of-the-art prompt op-
timization techniques while requiring fewer
LLM calls. We release our experimental code
at: aka.ms/metareflection-code

1 Introduction

Large Language Models (LLMs), such as GPT-
4 (OpenAI, 2023), have gained significant popular-
ity in recent years due to their ability to generate
human-like text and solve complex tasks across
various domains. To leverage these models, users
typically craft prompts with instructions that are
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tailored to a specific task. Furthermore, many prac-
tical LLM applications setup complex multi-step
systems with multiple LLM calls chained together
(LangChain, 2023) or LLM calls with different
prompts called in succession (Wu et al., 2023).
Given their close resemblance to reinforcement
learning agents, it has become useful to model
these systems as Language Agents (Wu et al., 2023)

Building up on these insights, recent
works (Shinn et al., 2023; Madaan et al.,
2023) have showed that the performance of
such language agents can be improved using
verbal reinforcement learning across multiple
conversational turns, by providing feedback at the
end of a failing trajectory and asking the agent
to reflect on its mistakes. The reflective text is
then stored as episodic memory to improve future
trajectories on the same task.

Parallel to this, there has been recent advance-
ments in developing prompt optimization tech-
niques (Pryzant et al., 2023; Wang et al., 2023).
These techniques typically start with a seed human
prompt and a train dataset of Input-Output pairs.
Leveraging error feedback over failing cases, they
deploy various search strategies to find prompt vari-
ants that can give the optimal results on train set.

While prompt optimization techniques exist for
single LLM call setups, they are not designed for
complex multi-step language agents. Here, tech-
niques like self-reflection can help improve a lan-
guage agent’s performance significantly. However,
these are online reinforcement processes that de-
pend on the availability of performing multiple
turns with a feedback mechanism on the same task
instance and aren’t applicable to similar new tasks.

Motivated by the semantic memory observed in
humans (McRae and Jones, 2013; Weng, 2023;
Paischer et al., 2023) we introduce METAREFLEC-
TION, an offline reinforcement learning technique
that works by augmenting a semantic memory to
represent experiential learnings from trials in an of-
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Answer a question interleaving Thought, Ac-
tion, and Observation steps. Actions can be
Search[. . . ], Lookup[. . . ], . . .
Question: Which member of FC Barcelona
scored the only goal in the 2010 FIFA World
Cup final?

Task

Self-Reflection

Thought 1: I need to search for the 2010 FIFA
World Cup final and find out who scored the
only goal in that match.
Action 1: Search[2010 FIFA World Cup Final]
Thought 2: The paragraph does not mention
who scored the goal... Action 2: Lookup[goal]
Obs. 2: (Result 1/45) Sergio Ramos had a
chance to score...
Thought 3: The observation still does not con-
tain... I need to continue looking for “goal"
Action 3: Lookup[goal]
Obs. 3: (Result 2/45) Robben missed an oppor-
tunity...
. . .

Trajectory

Evaluation (feedback): You attempted to an-
swer the above question and ran out of turns.
Reflect on your mistakes . . .

Self Reflection: In this trial, I failed to find
the answer because I was stuck in a loop of
looking up goal, but the goal scorer was not
found in the first few results. This could be due
to the fact that the information about the goal
might be located further down the page or in a
different section...

Self-reflection

. . .Next trajectory

Your job is to learn from experience of another
agent and help it perform better in the future.
Use the agent’s reflections about its failures or
success and concretize them into instructions.
. . .

Self-reflection 1: In this trial, I was stuck in a
loop...
Self-reflection 2: . . .

Meta-Reflection

Instructions:
1. If you’re not finding the desired information or
stuck in a loop of looking up a keyword, consider
changing the keyword and search strategy. The
information might be located further down the
page.
2. . . .

Self-reflections
from other
tasks

Answer a question interleaving Thought, Ac-
tion, and Observation steps. Actions can be
Search[. . . ], Lookup[. . . ], . . .
Question: Who was also an airline pilot, Billy
Gibbons or Bruce Dickinson?

Inference without meta-reflection

. . .
Thought 3: . . .
Action 3: Search[Bruce Dickinson]
Obs. 3: Paul Bruce Dickinson is an English
singer, best known...
Thought 4: There is no mention of Bruce Dick-
inson being an airline pilot in this paragraph...
Action 4: Lookup[airline pilot]
Obs. 4: No more results
. . .
Action 6: Search[Bruce Dickinson (pilot)]
Obs. 6: Out of turns

Answer a question interleaving Thought, Ac-
tion, and Observation steps. Actions can be
Search[. . . ], Lookup[. . . ], . . .

Instructions: . . . If you are not finding the desired
information . . .
Question: Who was also an airline pilot, Billy
Gibbons or Bruce Dickinson?

Inference with meta-reflection

. . .
Action 4: Lookup[airline pilot]
Obs 4: No more results
Thought 5: The information about Bruce Dick-
inson being an airline pilot might be located
further down the page. I need to look up the
related term “pilot"
Action 5: Lookup[pilot]
Obs. 5: (Result 1/10) He undertook a career as
a commercial pilot ...
... Action 6: Finish[Bruce Dickinson]
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Figure 1: METAREFLECTION in the HOTPOTQA domain with a REACT agent

fline training phase. At a high level, METAREFLEC-
TION works by simulating various trials with sam-
ples from a training dataset, gather self-reflections
from failing trials and iteratively builds an experi-
ential semantic memory by generalizing the self-
reflections into ‘meta-reflections’ that takes the
form of instructions to the language agent.

We evaluate the METAREFLECTION technique
across multiple scenarios: 3 complex logical rea-
soning datasets (Suzgun et al., 2022), a biomedi-
cal semantic similarity dataset (Soğancıoğlu et al.,
2017), an open world question answering (Yang
et al., 2018), and a new vulnerability threat detec-
tion in a new Infrastructure-as-Code (IAC) dataset.

The IAC vulnerability detection dataset, in par-
ticular, is a new work that we are introducing with
this paper, entailing detection of 10 unique com-
mon security vulnerabilities found in Terraform
(HashiCorp, 2023) cloud infrastructure configura-
tion files. While static analysis tools like Terrascan
(Tenable, 2023) exist, they are not able to detect
semantic nuances beyond the standard hard-coded
detection patterns. Being a low-resource language,
vanilla GPT-4 struggles to effectively detect the
vulnerabilities. This makes it a particularly inter-
esting dataset for domain-specific reasoning.

METAREFLECTION achieves 4% to 16.82%
higher accuracy over raw GPT-4 baseline. For
setups, where they are directly comparable,
METAREFLECTION performs on par or better than

state of the art prompt optimization techniques,
while requiring fewer LLM calls for learning. We
also demonstrate how METAREFLECTION can be
applied to multi-step agents for offline learning.

To summarize, we make the following contribu-
tions:

• We present METAREFLECTION, a technique
for learning semantic memory for language
agents using offline training simulations. To
the best of our knowledge, this is the first
approach towards learning semantic memory
for generic language agents.

• We introduce a new dataset for vulnerability
threat detection in IAC. The dataset comprises
416 challenging vulnerability detection tasks.

• We conducted an extensive evaluation of the
METAREFLECTION technique across multiple
distinct domains: vulnerability threat detec-
tion, causal reasoning, domain-specific seman-
tic similarity, and open-domain question an-
swering, demonstrating strong improvements
in agent performances. (Section 3).

2 METAREFLECTION

We consider a setup of an LLM Agent A interacting
with an environment Env to solve a task T, char-
acterized by the start state S0. At time step t, the
Agent A receives an observation ot at state St and
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Algorithm 1 METAREFLECTION
Require: Train data DT , Val. data DV , Agent A
Require: Environment Env
Ensure: Meta-reflection instructions Instr
1: Instr← ⊥
2: for all b ∈ Batch(DT ) do
3: v← RandomSample(DV )
4: for all Trials ∈ {0, 1 . . .MaxTrials} do

▷ Iterative Refinement
5: Initialize A with Instr
6: trajectories← {A.Run(i) | i ∈ b }
7: fT← Env.GetFailingTrajectories(trajectories)
8: if len(fT) == 0 then
9: break ▷ Early Stopping

10: refl← { A.SelfReflect(t) | t ∈ fT }
11: Instr∗ ← A.MetaReflect(Instr, b, refl)
12: if A.ShowsImprovement(Instr∗, Instr, b, v,Env)

then ▷ Validation
13: Instr← Instr∗ ▷ Else Backtrack
14: return Instr

samples an action at using a policy π(at|Tt,Pt)
where Tt = {o0, a0, o1 . . . , at, ot}, represents the
trajectory of the agent and the prompt Pt is the
prompt that drives the action selection at time step
t. Eventually, the agent reaches a state Sn where it
receives a reward from the agent r = R(Sn). This
state marks the correct/incorrect completion of the
task T by the language agent.

METAREFLECTION aims to improve the per-
formance of such language agents by augment-
ing them with a semantic memory (McRae and
Jones, 2013) in the form of rule based instructions
Instr to store the experiential learnings, replac-
ing π(at|Tt,P) with π(at|Tt,P

⊕
Instr). Algo-

rithm 1 shows the outline of the METAREFLEC-
TION process. At its core, the algorithm works
by starting with an empty set of instructions and
iteratively improving the instructions using small
training batches.

For instance, if the agent Areact is a REACT-
style agent working on a Question Answering Task
over Wikipedia, at state S0, the agent will be pro-
vided by a question Q. Now, the agent can choose
to take a search action, upon which it will receive
an observation o. The agent can then either chose
to pick further search or lookup actions, or pick an
answer action to return an answer. This action will
mark a transition to the state Sn and a binary reward
can be generated depending on the correctness of
the answer. An even simpler example can be an
agent As which given a Multiple-Choice Question,
picks an answer and receives a positive reward if
the answer is correct.

Agent, Environment and Self-reflection method
METAREFLECTION procedure uses the following
components at its core:

(a) an agent A (i.e., an RL actor) that is based on
a language model, (b) an environment Env that gen-
erates rewards for specific actions, given a agent’s
trajectory, and (c) A SelfReflect method on the
lines of (Shinn et al., 2023) that produces a verbal
reinforcement given an agent’s trajectory (line 10,
Algorithm 1) This is in contrast to prior state of the
art prompt optimization techniques (Wang et al.,
2023; Pryzant et al., 2023), where optimization
relies solely on the final action of the agent and
cannot be applied on the intermediate un-observed
states of the actor. Additionally, we adapt the
agent A to be parameterized by a set of instruc-
tions in addition to the standard task description
and agent behaviour prompt. In our implementa-
tion and experiments, we utilize either a single-
step agent (a vanilla single-shot Language Model
agent) or a multi-step agent based on REACT (Yao
et al., 2023c) and COT (Wei et al., 2023). While
METAREFLECTION makes no distinction between
the two, we make this distinction to ease compar-
ison with other prompt optimization techniques,
which only work in the single-step agent configu-
ration. More information on agent configurations
can be found in Section 3.3.

The MetaReflect step. The MetaReflect method
is designed to take as input a prior set of instruc-
tions Instr, a set of self-reflections refl, the training
data DT and a validation data DV and will produce
an updated set of instructions Instr∗ as denoted in
line 11 of Algorithm 1.

For the MetaReflect method, we use a standard
language model with a prompt that instructs the
LLM to observe the reflections, the training data,
and produce a new non-case specific instruction
style memory. Further, the prior memory is also
passed as input so that the output is a generalization
of the prior learnings. In our implementation, this
meta-reflection and generalization are done in the
same prompt for efficiency. Alternatively, new in-
structions can be generated first and then combined
with existing ones.

We specify that the instructions need to take
the form of a list. Hence, the meta-reflection step
in line 11 typically either (a) updates the list by
adding a new item, or (b) combines one or more
previous items with learnings from the self-reflec-
tions to produce a shorter list. For example, one
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meta-reflection instruction learned during our HOT-
POTQA experiments suggested including the pro-
fession when searching for a person to narrow
down results. In a subsequent batch, the self-
reflection step produces a reflection that mentions
adding search terms like release date when search-
ing for movies. The MetaReflect step may com-
bine the previous instructions with the current self-
reflections either by appending a new item to the
list clarifying the strategy to search for movies,
or may generalize the previous item to something
like “When searching for specific entities, use ad-
ditional contextual information to augment the pri-
mary search terms with secondary keywords corre-
sponding to the characteristics of the entity".

Validation and Backtracking In each itera-
tion, after MetaReflect, we validate the quality
of the new instructions. Due to the sparse re-
ward signals leading to poor self-reflections or
over-generalization of the meta-reflection instruc-
tions, we may end up with instructions that are of
a poorer quality than the prior instructions. The
poorer instructions may also be due to general
capricious, unpredictable nature of large language
models. Therefore, we validate the new instruc-
tions by testing them on training data and a random
sample of the validation set to ensure that they per-
form better than the prior instructions as depicted
in line 12 of Algorithm 1. Ideally, we would do this
validation over the full validation dataset. However,
in our case, we only validate on the current batch
to balance quality of instructions and efficiency.
In cases where the updated instructions perform
poorly compared to the prior ones, we backtrack to
prior instructions as depicted in line 13.

As an example, in the previous paragraph the
meta-reflection step replaced the specific instruc-
tion on how to search for persons with a more gen-
eral instruction on how to search for entities. How-
ever, it is possible that these general instructions
are too vague (especially for smaller, less capable
models) and the client agent is not able to apply
them correctly to the case of searching for persons.

Iterative Refinement Motivated by the self re-
fining behaviour of Language models as demon-
strated in (Shinn et al., 2023), we use multiple
attempts at meta-reflection for each batch (line 4
through line 13) until we see no failures in the cur-
rent batch or exhaust a maximum number of trials
(set to 3 for all our experiments). Similar to how
self-reflections help optimize Language agents’ tra-

jectories towards achieving a task, the feedback on
failed trajectories from the Instr∗ act as implicit
verbal reinforcements in the meta-reflection pro-
cess. These verbal reinforcements can then be used
by the meta-reflection step to guide the instruction
search. This trajectory driven iterative refinement
strategy reduces the chances of repeating mistakes,
such as proposing incorrect refinements that were
already tried in the past, during the instruction re-
finement process.

In the single step agent setups where they are
directly comparable, we observe that this iterative
refinement strategy leads us to similar performance
as state of the art prompt optimization techniques,
with lesser number of LLM calls.

3 Experimental Setup

3.1 Datasets
We evaluate METAREFLECTION on datasets from
different domains like vulnerability threat detection
(IAC), question answering (HOTPOTQA), Com-
plex Reasoning (BIGBENCH), Biomedical Seman-
tic Similarity (BIOSSES).

Vulnerability Threat Detection (IAC)
Infrastructure-as-Code (IAC) is a popular
method of configuring cloud infrastructures,
on platforms such as Azure and AWS, using
a configuration coding language. Here, we
focus on Terraform, a leading IAC platform by
Hashicorp (HashiCorp, 2023), as well as Azure,
the cloud computing platform by Microsoft, which
comes as a reusable configuration component.
Such Cloud infrastructures are prone to security
vulnerabilities such as open ports and exposed
administrator accounts (Tenable, 2023). Vul-
nerability detection via static analysis such as
Terrascan (Tenable, 2023) of IAC files is a hard
problem due to the expressivity and complexity
of the configuration language and the diversity
of the resources being handled across multiple
infrastructure providers (e.g., Amazon AWS and
Microsoft Azure).

This opens up the possibility of using an LLM
to perform vulnerability detection which entails
checking if a given Terraform module violates a
given Terrascan policy. To evaluate the efficacy of
METAREFLECTION on vulnerability detection task
we collected 202 Terraform modules by mining
GitHub repositories and post processing it further
to achieve 186 data points which is then split 40 :
60 for train and test respectively. You can find more
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Dataset Train set Test set

BIOSSES 60 40
CASUAL JUDGEMENT 90 100
EPISTEMIC REASONING 500 500
TEMPORAL SEQUENCE 300 500
IAC Vulnerability Detection 166 250
HOTPOTQA 50 80

Table 1: Count of train and test set distribution across
benchmarks

information on IAC, Terraform, Terrascan and data
collection in Appendix A.2

Complex Reasoning (BIGBENCH) Big-Bench
Hard (BBH) (Suzgun et al., 2022) consists of a
subset of particularly challenging tasks from BIG-
Bench (Srivastava et al., 2022) that contains chal-
lenging reasoning questions. In this work, we
pick 3 datasets from BBH - 1. Causal Judgement
2. Temporal Sequence 3. Epistemic Reasoning
and follow the exact same test and train distribution
used in (Wang et al., 2023). Table 1 shows the test
and the train distribution for the benchmarks.

Biomedical Semantic Similarity (BIOSSES) is a
biomedical sentence similarly dataset (Soğancıoğlu
et al., 2017). Each instance in the dataset comprises
of two sentences which are to be compared. As
prior work (Wang et al., 2023), we model the prob-
lem as a classification task between labels ‘similar’,
‘non-similar’ or ‘somewhat similar’ and utilize the
exact same test and train data splits.

Question Answering (HOTPOTQA) The
dataset (Yang et al., 2018) is a Question-Answering
dataset consisting of 113k question-and-answer
pairs over Wikipedia. A typical system working
over this dataset first performs a retrieval over
wikipedia and the reasons over the retrievals to
come up with an answer. Besides the retrieve and
reason setup, the dataset also comes in 2 resoning
only settings: 1. GT: where each Question is
accompanied with the most relevant supporting
ground truth documents and 2. Distractor where
the Question is accompanied with the ground truth
documents, alongside some distracting documents
making context analysis and interpretation more
challenging. Given the large scale of the dataset,
we adversarially select (Appendix A.3) test
samples from the test split of the dataset to ensure
good sample diversity.To perform adversarial
sampling, we identify samples where the Agent
A consistently fails and conduct up to three

self-reflection trials to correct the response. If the
Agent A still fails, we discard these samples. This
method ensures we gather challenging examples
while filtering out noisy ones, and we sample 40
and 80 examples for the REACT train and test sets,
and 50 and 80 for COT settings, respectively.

3.2 Baselines
In absence of techniques for direct comparison, we
compare METAREFLECTION against strong con-
temporary prompt optimization baselines 1. PRO-
TEGI and 2. PROMPTAGENT across multiple single
step agent settings.

PROTEGI (Pryzant et al., 2023) performs
prompt optimization by leveraging batch-wise er-
ror feedback as textual gradients and use them to
generate multiple variations of the current prompt.
Notably, these textual gradients are prompt update
‘guidelines’ generated by looking at the failing er-
ror output. They then deploy beam search to find
the best prompt by iteratively evaluating and gener-
ating more prompt candidates.

PROMPTAGENT (Wang et al., 2023) Similar to
PROTEGI, PROMPTAGENT also leverages error
feedback to generate prompt candidates. They
further optimize prompt search using a principled
Monte-Carlo Tree Search and identify high-reward
paths to find the best prompts.

3.3 Agent Configurations
The generic Language Agent A defined in Section 2
can operate upon multiple time steps before reach-
ing a response state Sn. While, the METAREFLEC-
TION algorithm is broadly applicable to all such
agents, for the purpose of simplification of com-
parison, we distinguish our agent setups in 2 cate-
gories:1. Single-Step and 2. Multi-Step Agents

Single-Step Agent We call an Agent A a Single-
Step Agent if it takes exactly 1 time step starting
from the initial state S0 to reach an answer state
S1, without traversing intermediary belief states.
In practice, what it means is that the agent is char-
acterized by a single zero-shot prompt that always
elicits the agent to generate a response solving the
input task. We define such single step agents for
the IAC, BIOSSES and the BIGBENCH datasets.

Multi-Step Agent We define Multi-Step Agents
to be agents with atleast one intermediate belief
state. In our evaluations we consider two well es-
tablished multi-step agent style COT (Wei et al.,
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2022) and REACT (Yao et al., 2022). The COT
setup entails exactly 2 time steps - the first transi-
tion generates the ‘thought’ and the next transition
generates the ‘answer’. The REACT setup, how-
ever, can entail multiple time steps with ‘actions’
for context gathering, before generating an ‘an-
swer’ action. For the purpose of our evaluation,
similar to (Shinn et al., 2023), we use the differ-
ent HOTPOTQA datasets to setup COT-(Distractor)
and COT-(GT) for the Distractor and GT settings
respectively and a REACT agent with search and
lookup actions on the wikipedia corpus for the re-
trieval and reasoning setting.

3.4 Other Experimental Configurations

We use GPT-4-32k chat model as an LLM through-
out the experiments, with a temperature = 0. For
METAREFLECTION, we set the batch size to be 4
and maxRetries to be 3, and the random sample
size for the validation set to be 5. To account for
statistical variations, all the experiments are run
for 3 runs and we report the averages and standard
deviation for each of them.

4 Results

4.1 Comparison with the baselines

Table 2 and Table 3 compares METAREFLECTION

with baseline GPT-4 and various prompt optimiza-
tion baselines over multiple datasets in a single-step
agent setting. Further, Table 2 also presents the av-
erage number of LLM calls it took by different
systems to generate the optimal prompt.

We observe that METAREFLECTION fairs com-
petitively with the other techniques, outperform-
ing GPT-4 and PROTEGI over all the benchmarks.
Compared to PROMPTAGENT we observe better
performance in all the datasets except for EPIS-
TEMIC REASONING where we see a slight regres-
sion. Notably, in all the configurations, METARE-
FLECTION required the least number of LLM calls
for training (include any intermediate inference
calls), with PROTEGI and PROMPTAGENT requir-
ing upto 17 and 1.5 times more LLM calls. In
general, we observe that even with a lower num-
ber of required LLM calls, METAREFLECTION

performs at par with PROMPTAGENT for generic
causal reasoning tasks, while outperforming it on
highly contextual domain-specific settings like IAC
and BIOSSES.

Qualitative evaluations reveal that the instruc-
tions learned using METAREFLECTION capture

Terraform Policy Description:
{
    "name": "reme_containerRegistryResourceLock”,
    "resource_type": "azurerm_container_registry",
    "description": "Ensure Container Registry has locks",
    "reference_id": "accurics.azure.AKS.3",
    "category": "Resilience”,
    "id": "AC_AZURE_0185”
}
ProTeGi optimized prompt: 

Verify if module interacts with "azurerm_container_registry" 
type. Check for constructs in the code that ensure the Azure 
Container Registry has locks. In case there are constructs 
that provide these locks, classify the module as "Compliant”
. . . 

PromptAgent optimized prompt:

The policy is constructed around the 'Container Registry' 
resource type. Identify module as 'Compliant' if it meets 
these conditions: The resource type specified in the policy is 
not included in the module. And module does contain the 
resource type. Label module as 'Violating' if it falls short 
of complying with regulations . . .

MetaReflection learned instructions:

The policy in question is "reme_containerRegistryResourceLock" 
which pertains to the "azurerm_container_registry" resource 
type and requires locks be implemented for resilience. Look 
for the "azurerm_container_registry" resource. If the 
"azurerm_container_registry" resource is absent then policy is 
not violated. Check if "azurerm_container_registry" resource 
has implemented locks. This can be done by looking for the
"azurerm_management_lock" resource in the Terraform code and
checking if it is associated with the
"azurerm_container_registry" resource. If the 
"azurerm_container_registry" resource has implemented locks, 
then policy is not violated else it is.
. . .

Figure 2: Snapshot of the optimized prompt learnt by
the baselines and METAREFLECTION on IAC task

subtle domain specific nuances, that other tech-
niques don’t. For example, consider the METARE-
FLECTION instruction compared to the PROMP-
TAGENT and PROTEGI prompt for the policy
reme_containerRegistryResourceLock (Fig-
ure 2). The learnt METAREFLECTION instructions
captures details like azurem_management_lock
being a indicator of locking behavior in terraform,
whereas the other baselines do not capture many
such subtleties. This behaviour may be attributed
to the objective driven search strategy deployed in
METAREFLECTION, centered around generalizing
self reflections into semantic rules, compared to
a more random Monte-Carlo search strategy de-
ployed by other techniques.

4.2 METAREFLECTION for Multi-Step Agents

In the previous section we discussed how METARE-
FLECTION fairs in settings with a single-step agent
setup. In this, section we will evaluate METARE-
FLECTION with multi-step agents.

Prompt optimization techniques like PROMPTA-
GENT and PROTEGI are designed to model sys-
tems with a single LLM call akin to the single-step
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Dataset GPT-4 PROTEGI PROMPTAGENT METAREFLECTION

Acc σ Acc σ # calls Acc σ # calls Acc σ # calls

BIOSSES 70.00 3.17 80.75 0.71 6478 80 1.34 503 84 0.57 475

Causal Judgement 74 1.15 72.20 3.67 9725 73.40 3.19 351 77 2.00 313
Epistemic Reasoning 70.8 1.03 85.40 2.40 16640 91 0.83 2143 88.4 1.02 1954
Temporal Sequence 98.0 0.57 97.5 0.27 13824 98.3 1.11 2017 99.1 0.63 1491

IAC Vulnerability Detection 73.36 0.01 72.64 4.76 8148 84.17 6.91 354 90.18 0.28 166

Table 2: Comparison of METAREFLECTION with other baselines in a single-step agent set-up.# calls refers to
average numbers of LLM calls required to generate optimal prompt

Policy
Data statistics

GPT-4 PROTEGI PROMPTAGENT METAREFLECTION
Files Violating Compliant

networkPolicyEnabled 23 10 13 48 62.18 71.06 83.34
kubeDashboardDisabled 29 3 26 89 86.22 90.80 94.63
reme_keyVaultAuditLoggingEnabled 44 10 34 55 77.97 82.71 98.18
reme_containerRegistryResourceLock 35 9 26 53 68.37 90.22 96.55
reme_appGatewayWAFEnabled 59 36 23 72 68.06 88.70 92.30
networkPort22ExposedToInternetAz 27 4 23 94 87.84 89.02 96.29
networkPort22ExposedToPublicAz 35 6 29 94 85.22 80.60 94.11
reme_noSecurityGroupAssociated 90 60 30 70 67.20 82.60 87.58
reme_checkStorageContainerAccess 19 5 14 91 88.62 88.05 100.00
reme_resourceGroupLock 55 43 12 81 80.33 77.98 82.90

Table 3: Performance of METAREFLECTION and other baselines on IAC tasks using singe-step agent

agent setup. Generalizing them to multi-step agent
scenarios present the following challenges:

1. How do we extend the notion of textual gradi-
ents to also include intermediate belief states
in the absence of concrete feedback on them?

2. How do we ensure that the agent with the up-
dated prompt continues to follow the agentic
behaviour?

Given these challenges, to draw a valid compari-
son of these baseline against METAREFLECTION

we perform a single step adaption of the original
two step COT. The adaption includes reducing the
[Thought] and [Answer] steps within a single LLM
call creating an analogue to single-step agentic flow
and use this structure as a seed prompt.

Table 4 shows the performance of COT style
of agent on HOTPOTQA benchmark. We observe
that METAREFLECTION outperforms other prompt-
optimization baselines PROTEGI by 23.33% and
PROMPTAGENT by 3.25% for the GT setting. Simi-
larly, we see a similar trend in the Distractor setting
where METAREFLECTION technique outperforms
PROTEGI by 24% and PROMPTAGENT by 1.08%.
Notably, compared to the best baseline PROMPTA-
GENT, METAREFLECTION is capable of learning
instructions to guide the Language Agent towards

creating better thought actions instead of just opti-
mizing it towards coming up with the right answer.

Towards truly multi-step agents While a COT
agent can be represented as a single prompt with
one call for optimization, similar adjustment is not
possible for all multi-step agents. To this end we
consider the REACT setup for HOTPOTQA un-
like COT which entails a strict two step process
with thought action followed by an answer, HOT-
POTQA REACT setup can span over multiple steps
of search and lookup actions. This leads to com-
plex trajectories leading upto the final answer ac-
tion for returning the answer. Besides, each ac-
tion selection is conditioned on the previous ac-
tion. Representing such a system with a single step
prompt is non-trivial, making it hard to adapt exist-
ing prompt optimization techniques to work over
such a set up.

METAREFLECTION procedure, on the other
hand, allow us to seamlessly append semantic
memory to such an agent and gather learning for
each potential action states the agent can take. Ta-
ble 5 shows the performance of multi-step RE-
ACT style agent on HOTPOTQA. We observe
that METAREFLECTION nearly doubles the per-
formance of the baseline GPT4 agent.

For instance, in Figure 1, the updated semantic
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Dataset GPT-4 PROTEGI PROMPTAGENT METAREFLECTION

Acc σ Acc σ # calls Acc σ # calls Acc σ # calls

HOTPOTQA (GT) 43.67 2.08 31.67 3.61 5403 51.75 1.52 383 55.00 1.0 303
HOTPOTQA (Distractor) 37.33 2.08 23.33 0.72 6132 46.25 2.16 568 47.33 1.15 314

Table 4: Comparison of METAREFLECTION with other baselines using COT style agent on prompt refinement.
# calls refers to average numbers of LLM calls required to generate optimal prompt.

Acc. σ

GPT-4 19.58 1.91
METAREFLECTION 35.00 1.25

Table 5: Comparison of METAREFLECTION and GPT-
4 using REACT style agent on prompt refinement for
HOTPOTQA.

memory contain clear instructions for the REACT

agent to refine its search strategy if it gets stuck in
loops. Note that this instruction guides the agent
to better plan its trajectory rather than choosing
the right answer. Later on, this learned rule aids
the model in successfully concluding another trial
where it was previously failing by explicitly guid-
ing the action to look further down the context page
to refine its lookup strategy, leading to the correct
response, Bruce Dickinson. This is in contrast with
the baseline attempt, where the agent ran out of
trials by getting stuck in a loop.

Notably, the HOTPOTQA REACT performance
is lower than COT due to the nature of the REACT

setup. The ReACT setting is based on the fullwiki
setting where the task first involves "retrieving"
relevant paragraphs from Wikipedia related to the
Query and then "reasoning" over them. Being a
more complex task, the ReACT setup exposes more
failure surfaces (e.g., the system may not retrieve
the correct information to begin with), which may
lead to poorer performance compared to the simpler
CoT setups.

5 Related Work

With the increasing ubiquity of black-box Large
Language Models (OpenAI, 2023; Anil et al., 2023;
Brown et al., 2020; Bai et al., 2022), there has been
a growing interest in the community to develop
strategies that can maximize the model’s perfor-
mance on a downstream task. These techniques
may involve guiding an LLM to arrive at the cor-
rect answer (Wei et al., 2023; Zheng et al., 2023),
output selection (Yao et al., 2023a; Poesia et al.,
2022), picking up the right in-context examples

(Khatry et al., 2023) or prompt optimization, etc.
Being closely related to our work we dive deeper
into contemporary Prompt optimization techniques
in the literature.

5.1 Single Prompt Optimization.

Given the potentially infinite space of instructions,
recent works have studied the problem of ‘guided’
prompt search instead. To this end, OPRO (Yang
et al., 2023) proposes a prompt ‘optimization’ tech-
nique where prompt candidates coupled with eval-
set metric evaluation act as ‘few-shot’ examples to
generate new prompts.

APE (Zhou et al., 2023b) poses instruction gen-
eration as a synthesis problem and proposes tech-
niques to effectively perform monte carlo search
over the space of prompt candidates.

PROTEGI (Pryzant et al., 2023) and PE2 (Ye
et al., 2023) Automated Prompt Engineering (APE)
The learned prompt can then be used during infer-
ence time in isolation. also leverage verbal feed-
back to generate and/or evolve task description
prompts. In PE2 they additionally, maintain an op-
timization history to iteratively improve the prompt.
PROMPTAGENT (Wang et al., 2023) also uses ver-
bal feedback but views prompt optimization as a
strategic planning problem and proposes a princi-
pled approach for prompt optimization.

Notably, these prompt optimization techniques
are designed to work over single prompt single step-
agents. The METAREFLECTION semantic memory
learning can however be generalized for multi-step
agents as well, as we demonstrated earlier. Even
in the single-agent setup, METAREFLECTION dif-
fers from prompt optimization techniques in its
focused objective-driven refinement of the memory
instead of generating generic prompt candidates.
This allows METAREFLECTION to perform espe-
cially good in knowledge intensive tasks.

5.2 LLMs as Agents

Recent works (Nakano et al., 2022; Schick et al.,
2023) are leveraging these models to develop AI
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agents that act as a controller, extending their per-
ceptual and action capabilities through tool utiliza-
tion (Yao et al., 2023b; Qin et al., 2023). LLM-
based agents can demonstrate reasoning and plan-
ning skills at par to symbolic agents by employing
techniques like COT (Wei et al., 2023) and prob-
lem decomposition (Zhou et al., 2023a; Xi et al.,
2023). Additionally, their ability to interact seam-
lessly using natural language comprehension allow
them to operate in software development and re-
search environment (Boiko et al., 2023; Qian et al.,
2023). Furthermore, the interaction among multi-
ple LLM-based agents can foster collaboration and
competition, potentially leading to the emergence
of complex social phenomena (Park et al., 2023).

5.3 Memory based methods in reinforcement
learning

The concept of providing agents with controllable
memory has a rich history. (Littman, 1993) dis-
cussed how hypothetical agents can utilize binary
memory to store prior experiences, guiding their
future action selection. In our context, we explore
the interaction between language agents and their
environment.

Previous research (Icarte et al., 2020) has demon-
strated that memory-augmented agents can achieve
globally optimal solutions. Inspired by the idea
of rule-based semantic memory in humans(McRae
and Jones, 2013), recent works have also investi-
gated enabling reinforcement learning (RL) agents
with semantic memory(Paischer et al., 2023).

6 Conclusion

In this work, we presented METAREFLECTION, a
novel offline reinforcement learning technique that
takes inspiration from how human brain store mem-
ories to enhance Language Agents by augmenting
them with an experiential semantic memory. We
further empirically demonstrated that the instruc-
tions learned using METAREFLECTION are more
effective at capturing task-specific nuances. This
behavior helps METAREFLECTION perform com-
petitively with state of the art prompt optimization
baseline for single-step agent scenarios. The ob-
jective driven iterative refinements also provide a
significant advantage to capture the best learning
at each iteration and save it to its semantic memory
which helps the agent to perform better inference
in next iteration. In the future, we would like to
see how we can leverage our semantic memory in a

multi-agent workflow. Sharing memories between
agents can enhance synergy and improve task per-
formance.

7 Limitation

METAREFLECTION currently relies on small scale
held out validation for quantifying the efficacy of
the batch. Such an approach leads to undesirable
stochasticity in the results and cause instabilities in
the learning. There is also scope of improving the
quality of the reward signals that can potentially
add to the stability of the learning.
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A Appendix

A.1 METAREFLECTION optimized prompts
In this section, we show some input examples in
several tasks for the base model . Specifically our
tasks fall into 3 categories: binary classification,
multiple choice selection and direct answer match-
ing. As representative examples we take IAC vul-
nerability detection, casual judgement and HOT-
POTQA.

In Figure 4, we illustrate that METAREFLEC-
TION is capable of learning domain-specific in-
structions. Instructions 2 through 7 specifically
address how ’azurerm_container_registry’ influ-
ences the vulnerability within the code, thereby
simplifying the task significantly. Conversely, in
Figure 3, a detailed analysis of the prompt gen-
erated by PROMPTAGENT reveals an absence of
domain-specific information relevant to the Terras-
can policy it is intended to evaluate.

You are supplied with a terraform model and an Azure defense 
policy, both given in dictionary format. The policy is 
constructed around the 'Container Registry' resource type. 
Thoroughly examine each part of these inputs to understand 
and identify their characteristics. 

Answer the question: "Does the terraform module comply with 
the given policy?" by considering the following instructions 
and applying them to your judgment. 

Identify the terraform module as 'Compliant' if it meets 
either of these two conditions: 
1. The resource type specified in the policy is not included 
in the terraform module.
2. If the terraform module does contain the resource type, 
it must adhere to all the policy regulations.

Conversely, label the terraform module as 'Violating' if it 
includes the resource type in question as stated in the 
policy but falls short of complying with all the policy 
regulations.

Using your understanding of the context and the pattern of 
the defense policy dictionary, examine the terraform module 
and gauge whether it is 'Violating' or 'Compliant' regarding 
the presented policy. Your response should contain only 
'Violating' or 'Compliant' with no further elaborations or 
explanations. 

Reflect on the idea that merely listing the resource type 
within the terraform module isn't enough to fulfill 
compliance guidelines. It is imperative that to be flagged 
as 'Compliant', the module adheres to all policy 
regulations. If this is not the case, it should be labeled 
'Violating'.

Notably, when the terraform modules do not outline the 
resource type specified in the policy, these modules are 
automatically determined as 'Compliant'.

Use all the above information to formulate and provide your 
evaluation of the terraform model's alignment to the defense 
policy.

Figure 3: Prompt optimized by PROMPTAGENT

A.2 Vulnerability Detection in IAC Files
Infrastructure-as-Code (IAC) is a popular method
of configuring cloud infrastructures, on platforms
such as Azure and AWS, using a configuration
coding language. These configuration files can
declare resources such as virtual machines with

specific capabilities, virtual networks and subnets,
and data stores. IAC presents an alternative to
the traditional ways of configuring cloud infrastruc-
tures, such as using a web-based graphical interface.
There are numerous IAC platforms currently avail-
able for various cloud computing platforms. Here,
we focus on Terraform, a leading IAC platform by
Hashicorp (HashiCorp, 2023), as well as Azure,
the cloud computing platform by Microsoft. Re-
lated Terraform resource declarations are grouped
together into Terraform modules which act as a
basic, reusable configuration component.

You are an expert on Terraform and Azure.
You are very good at detecting Terrascan rule violations in 
Terraform code.
Answer as concisely as possible.
Identify if the following policy is being violated by the 
Terraform code module below. Provide your response as'True' 
if you think the policy is violated, 'False' if you think 
the policy is not violated.
[Terraform Policy Begin]
……………
[Terraform Policy End]
[Terraform Module Begin]:
```terraform

File Name: acr.tf
Code:
[Terraform Code Start]
resource "random_id" "acr_suffix" {
  byte_length = 8
} …………
[Terraform Code End]
[Terraform Module End]
Here are additional instructions that were added to avoid 
previous mistakes
you made in the past. Follow these instructions as well. 
[Instructions Start]

1. Start by identifying the policy details. The policy in 
question is "reme_containerRegistryResourceLock" which 
pertains to the "azurerm_container_registry" resource type 
and requires that locks be implemented for resilience.
2. Analyze the Terraform code to identify the resource types 
present. Look specifically for the 
"azurerm_container_registry" resource type as this is the 
resource type that the policy pertains to.
3. If the "azurerm_container_registry" resource type is not 
present in the Terraform code, then the policy cannot be 
violated. In this case, you should predict False for policy 
violation.
4. If the "azurerm_container_registry" resource type is 
present in the Terraform code, then proceed to the next 
step.
5. Check if the "azurerm_container_registry" resource has 
implemented locks. This can be done by looking for the 
"azurerm_management_lock" resource in the Terraform code and 
checking if it is associated with the 
"azurerm_container_registry" resource.
6. If the "azurerm_container_registry" resource has 
implemented locks, then the policy is not violated. In this 
case, you should predict False for policy violation.
7. If the "azurerm_container_registry" resource has not 
implemented locks, then the policy is violated. In this 
case, you should predict True for policy violation.
8. Remember to base your decisions on the evidence present 
in the Terraform code and avoid making assumptions about 
indirect compliance. 
9. Be adaptable and flexible in your approach, allowing for 
various scenarios and future updates to the policy or 
Terraform code.

[Instructions End]

Figure 4: METAREFLECTION inference prompt for IAC

Task. Cloud infrastructures are prone to security
vulnerabilities such as open ports and exposed ad-
ministrator accounts (Tenable, 2023). Vulnerability
detection via static analysis of IAC files is a hard
problem due to the expressivity of the configuration

12



Description: Ensure that Azure Virtual Network subnet is
configured with a Network Security Group

Definition:

{{.prefix}}noSecurityGroupAssociated[retVal] {
vn := input.azurerm_virtual_network[_]
vn.type = "azurerm_virtual_network"
object.get(vn.config, "subnet", \

"undefined") != "undefined"
not sgExists(vn.config)

traverse = "subnet[0].security_group"
retVal := {

"Id": vn.id,
...
"Attribute": "subnet.security_group",
"Expected": "${<security_group_name>.id}",
"Actual": ""

}
}

sgExists(cfg) { ... }
<56 lines altogether>

Figure 5: Rego code for the Terrascan policy
reme_noSecurityGroupAssoc.

language, the complexity of configurations and the
diversity of the resources being handled across mul-
tiple infrastructure providers (e.g., Amazon AWS
and Microsoft Azure). Further, Terraform uses a
low-resource language - HashiCorp Configuration
Language (HCL).

Task. Terrascan (Tenable, 2023) is a static ana-
lyzer for detecting security vulnerabilities in Ter-
raform modules, and supports over 500 security
policies, including 178 policies specific to Azure.
Figure 5 shows the description and definition of a
Terrascan policy that checks if every Azure virtual
network subnet is configured with a corresponding
network security policy. Note that the Terrascan
policy is syntactic, i.e., it is checking for a dec-
laration of an azurerm_virtual_network with a
field named subnet, and so on. Hence, Terrascan-
like static analysis based vulnerability detection is
fragile and prone to both false positives and false
negatives due to being sensitive to syntax. The task
at hand is to check if a given Terraform module
violates a given Terrascan policy.

Data collection. We collected 202 Terraform
modules by mining GitHub repositories for IAC
code written in HCL. These repositories corre-
sponded to a diverse range of applications includ-
ing load balancers, machine learning operations
managers, and domain-specific data-stores. For
policies, we selected the 10 most commonly vi-
olated Terrascan policies. Of the 2020 module-

policy pairs, we eliminated a significant fraction
of cases where the policies were not applicable to
the module. For example, if the policy was for a
specific resource type and the module did not con-
tain declarations of that resource type, the pair was
eliminated. After this process, we were left with
648 module-policy pairs, for which we manually
annotated whether the module violated the policy
(see Table 3 for the exact breakdown). Note that
this ground-truth annotation was with respect to the
description of Terrascan policy, not the definition—
that is, we use the intention behind the policy, not
the letter of the definition. That is, we do not take
the output of Terrascan as ground truth as it can
be inaccurate, and instead manually examine if the
policy (as per description) is violated. This data
was then split into train and test sets in a 40 : 60 ra-
tio per policy, taking care to balance the vulnerable
and non-vulnerable classes.

ProTeGi optimized prompt

When answering, examine the question and context provided to offer an exact and accurate 
response without adding irrelevant details or making assumptions. Use the contextual 
details to answer specifically and pay attention to the language and form of the question. 
If a name is required in the answer, ensure to reproduce the exact name as it appears in 
the context without making alterations. Numeric or yes/no questions should be answered in a 
clear and straight-to-the-point manner, with no need for punctuation or capital letters. 
When the answer requires a term or phrase, select the most relevant and specific one as it 
appears in the context. Always maintain the form (singular or plural) used in the question 
when formulating answer. Answer must be based solely on the context and question provided, 
avoid straying from this by adding extra information unless it is specifically requested in 
the question.

PromptAgent optimized prompt

Your task is to provide an accurate answer to a question based on the given context. Be 
sure to consider all relevant information, not just those closest or directly related to 
the specifics of the question. Your task involves parsing both the local and larger 
context, and forming your response appropriately. The required answer may be indirectly 
linked to the focus of the question as justified by the overall context. It is important to 
process the complex or abstract links between the answer and the question within the 
context. Respond precisely, preferably with a single word or short phrase, but avoid 
forming full sentences or supplying extra information that doesn't serve the question. 
Remember, relevance is vital—your answer should reflect the content, essence, and nuance of 
the question while using the context as your guide.

MetaReflection learned instructions:

Be mindful of the exact phrasing in the question and the context. Even if your answer is 
technically correct, it may be marked as incorrect if it does not match the exact phrasing 
used in the context or the expected answer. Avoid adding extra information that is not 
directly asked in the question. Pay attention to singular and plural forms in both the 
question and the context. Be aware of implicit information in the context and make logical 
inferences when necessary. This will help you provide more accurate answers. When answering 
questions about historical figures or events, use the exact title or name mentioned in the 
context. When the question asks for numerical data, provide the number alone without 
additional context or explanation. When a question asks for a common characteristic or 
profession of multiple individuals, provide the answer in singular form even if it applies 
to multiple individuals. If the question asks for a specific individual or entity, provide 
only that individual or entity in your answer, even if the context mentions a connection to 
another individual or entity. Avoid including additional individuals or entities unless 
explicitly asked for in the question. When the question asks for a concept, provide the 
concept in the language used in the context, unless the question specifically asks for a 
translation or explanation. When answering questions about international competitions or 
events, include all relevant details from the context in your answer, especially when it 
comes to the country represented by the individual. When the context provides multiple 
names for the same entity, use the most detailed and specific name in your answer

Figure 6: Snapshot of the optimized prompt learnt by
the baselines and METAREFLECTION on HOTPOTQA
task

Experimental setup. As a baseline language
agent, we use GPT-4 with an appropriate prompt
that provides the code of the Terraform module and
the description of the Terrascan policy, and asks if
the module is vulnerable. While training, the agent
is given a 0-1 feedback on whether its response is
correct or not, and the model is asked to self-reflect
if the response is incorrect. For each policy, we run
the METAREFLECTION algorithm on the training
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// Method 1: For inline defintions
resource "azurerm_virtual_network" "example" {

...
subnet {

...
security_group = ...

}
}

// Method 2: Explicitly declared association
resource "azurerm_subnet_nsg_association" {

subnet_id = ...
network_security_group_id = ...

}
(a) Associating a subnet with a NSG

resource "azurerm_virtual_network" "vnet" { ... }
resource "azurerm_subnet" "subnet" {

name = "subnet1" ...
}
resource "azurerm_network_interface" "nic" {

network_security_group_id = ...
ip_configuration { subnet_id = "subnet1" }

}
resource "azurerm_virtual_machine" "..." {

network_interface_ids = [ "nic" ]
...

}
(b) NSG associated with a VM’s network interface instead of
subnet.

4. Remember that the association
between "azurerm_virtual_network" and a NSG
may not be direct. It could be done
through a separate resource block such as
"azurerm_subnet_nsg_association"
...
7. Do not confuse NSG associations with network
interfaces of VMs and the subnet of the Azure
Virtual Network. The policy specifically requires
the NSG be associated with the subnet.

(c) Instructions learned through meta-reflection

Figure 8: reme_noSecurityGroupAssociated: Che-
cking Subnet-NSG associations

You are an expert in [Task]. Given the following task description [and
examples] come up with a set of instructions that can help you perform the
task effectively.

Task Description: ...

Figure 7: Prompt for generating task-specific instruc-
tions in the LLMINSTRUCTION baseline

set and report the accuracy numbers for both the
baseline agent and the agent with the instructions
learned through METAREFLECTION. We also com-
pare to LLMINSTRUCTION as another baseline—
here the language model is asked to come up with
instructions for a task given its description (Figure
7), and then these instructions are provided when
the task is being performed.

Results. The results of the experiment are sum-
marized in Tables 3 and 6 (last 2 cols). On the

whole, across all policies, meta-reflection shows a
12−17% accuracy improvement over the baselines
depending on the batch size. As Table 3 shows,
meta-reflection provides consistent gains in accu-
racy for all policies over the GPT-4 baseline, with
32% in the best case. The precision with METARE-
FLECTION is significantly better for all policies,
while the recall decreases for some.

Exemplar case. We discuss the case of security
policy reme_noSecurityGroupAssociated from
Figure 5, i.e., that all Azure virtual network sub-
nets are configured with a network security group
(NSG). The main difficulty here is that HCL and
Terraform offer many different ways of (a) associat-
ing a subnet with a virtual network, and (b) associ-
ating a NSG with a subnet. By default, the baseline
GPT-4 agent fails to handle certain ways of speci-
fying these associations, while spuriously assuming
certain other associations. In Figure 8a, the base-
line consistently failed to recognize a subnet-NSG
association expressed using Method 2, i.e., using an
explicitly declared association. On the other hand,
it mis-identified declarations similar to the one in
Figure 8b as valid subnet-NSG associations—here,
the NSG is associated with a virtual machine’s
network interface (that is connected to the subnet)
instead of the subnet itself. These limitations lead
to both false positives and false negatives. With
meta-reflection, we are able to learn the instruc-
tions in Figure 8c, using which the agent easily
handles these kinds of cases.

Discussion. As the above exemplar case shows,
METAREFLECTION is able to learn very domain-
specific instructions to fix both false positives and
false negatives. Other instructions include aspects
like handling of wildcards for port numbers, step-
by-step strategies for specific policies, etc. Note
that these instructions not only include planning (or
trajectory directing) instructions, but also ground-
ing instructions—i.e., external facts that are not
initially available.

In general, the experimental results show that
meta-reflection is able to reduce the number of
errors, i.e., improve the accuracy across a broad
range of cases. However, one noticeable issue from
the above results is the drop in recall for several
policies. While the high recall in the baseline is
artificial, coming at the cost of low precision, this
is still an important issue to address. Our 0-1 feed-
back to the self-reflection agent does not state that
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HOTPOTQA IAC vulnerability

COT (GT) COT (Distractor) REACT detection

Acc. σ Acc. σ Acc. σ Acc. σ

GPT-4 20.67 3.79 32.67 3.21 19.58 1.91 73.36 0.012
LLMINSTRUCTION 20.67 4.51 30.67 9.81 27.5 2.5 73.31 0.43
METAREFLECTION (batch size = 1) 24.67 3.51 38.00 2.65 30.41 0.72 87.17 0.63
METAREFLECTION (batch size = 2) 50.33 0.58 48.67 2.52 35.00 1.25 85.09 0.4
METAREFLECTION (batch size = 4) 52.00 2.00 50.67 1.53 31.67 1.44 90.18 0.28

Table 6: Results on HOTPOTQA and IAC with GPT-4

false negatives are worse than false positives in the
security domain. In the future, we plan to explore
domain-specific feedback and self-reflection mech-
anisms that can account for the nature of errors, as
well as better versions of the ShowsImprovement
function that are aware of such domain-specific
preferences.

A.3 HOTPOTQA
HOTPOTQA (Yang et al., 2018) is an open-domain
factual question answering dataset consisting of
113K question-answer pairs. The original paper
proposes to use the data in 2 settings: (a) Dis-
tractor setting - where each question is to be an-
swered using 10 wikipedia article excerpts; and
(b) Full-Wiki setting which is a retrieval and rea-
soning task, where a given question is supposed to
be answered after retrieving relevant context from
wikipedia. Notably, an answer is marked correct
only if it matches exactly with the ground truth.

Similar to Shinn et al. (Shinn et al., 2023),
we design the following agents that operate over
the dataset: (a) REACT- for the Full-Wiki setting
(b) COT (Distractor) - for the Distractor Distractor
setting (c) COT (GT) - a variant of COT (Distrac-
tor) with access to only ground truth articles.

Data Sampling. For each agent setting, we ad-
versarialy sample subsets of the HOTPOTQA train
split of 90K samples to create train and test sets.
To perform adversarial sampling, we first identify
samples where the base agent fails consistently in
a given setting. On these failing examples we per-
form upto 3 self-reflection trials to get the model to
the right response. If the agent is not able to get to
the correct response even after self-reflection, we
discard these samples. This strategy ensures that
we get a set of hard examples in which the agents
fail most of the times to get to the right answer in
a single try, while also making sure that we filter
examples that may be noisy due to missing context,
incorrect questions etc. To account for randomness

and given our computational budget, we sample 40
and 80 examples for the REACT train set and test
set respectively. For COT settings, we pick 50 and
80 example respectively.

Experimental setup. We reuse the COT agent
from (Wei et al., 2023) for the chain-of-thought
experiments and use a re-implementation of (Yao
et al., 2023c) for the REACT experiments. The RE-
ACT agent is allowed at most 6 ACTION steps after
which the trajectory is automatically determined to
be a failure. Similar to Section A.2, we evaluate
HOTPOTQA configurations for: (a) METAREFLEC-
TION with batch sizes 1, 2, and 4; and (b) GPT-4
and LLMINSTRUCTION as baselines. In addition
to this, we also evaluate variants of the agents pow-
ered by GPT-3.5-TURBO instead of GPT-4, while
using GPT-4 for METAREFLECTION.1

Results. We find that the generated METARE-
FLECTION instruction consistently improved per-
formance across different agent settings for HOT-
POTQA. In Table 6, we present results using GPT-
4 for both the agents and METAREFLECTION. We
observe that METAREFLECTION help us achieve
gains up to 32% for COT (GT), 18% for COT (Dis-
tractor), and 15.5% for REACT, over the respective
test sets. Interestingly, higher batch sizes almost
always help, reinforcing the importance of batch-
ing as observed in related works (Ouyang and Li,
2023; Ye et al., 2023).

In Table 7, we report results when using GPT-
3.5-TURBO to power the client agents. We see
gains of upto 21% gains for COT (GT), 12% for
COT (Distractor) and 18.33% for the REACT case.
Here, we observe that batching doesn’t strictly im-
prove the performance. Examining the data qualita-
tively, this difference can be attributed to the nature
of the instructions generated in the two settings. In
general we observe that with a small batch size,

1A similar experiment on the IAC domain wasn’t possible
due to large context length of the Terraform modules
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Solve a question answering task by having a Thought, then Finish with your answer.
Thought can reason about the current situation. Finish[. . . ] returns the answer and
finishes the task.
Question: What is one name for the Cassava after it is marketed as a paste and
often served with palm nut soup?

Inference without meta-reflection

Thought: The question is asking for a name of cassava when it is marketed as a
paste and often served with palm nut soup. From the context provided, I can see
that cassava paste is referred to as “Akpu" in Nigeria and is often eaten with soups
such as Egusi soup. Although palm nut soup is not explicitly mentioned in the con-
text of Akpu, it is a type of soup that could be served with cassava paste, as indi-
cated by the information about palm nut soup being used to accompany dishes like
fufu, which is similar to Akpu in that they are both made from cassava.
Action : Finish[Akpu]

Answer a question interleaving Thought, Action, and Observation steps. Actions can
be Search[. . . ], Lookup[. . . ], . . .

Instructions: . . .
If the context suggests multiple valid answers, choose the one that best matches the
question’s wording and the most direct information provided.
In cases of ambiguity or multiple interpretations, provide an answer that adheres to the
most common understanding of the question’s terms and context.
. . .

Question: What is one name for the Cassava after it is marketed as a paste and
often served with palm nut soup?

Inference with meta-reflection

. . .
Thought: The question is asking for a name of cassava when it is marketed as a
paste and often served with palm nut soup. From the context provided, I can see
that cassava paste is referred to as “Akpu" in Nigeria and is often eaten with Egusi
soup. However, since the question specifically mentions palm nut soup, I should
look for a name that is associated with cassava paste served with palm nut soup.
The context also mentions “Plakali" as a staple food made of cassava dough and
eaten with palm nut soup in Ghana. However, “Plakali" is described as cassava
dough cooked in hot water, not as a marketed paste. The most direct match for
cassava marketed as a paste and associated with palm nut soup is “Fufu," which is
mentioned as a staple food often served with palm nut soup.
Action: Finish[Fufu]

Figure 10: METAREFLECTION in the HOTPOTQA do-
main with COT style of reasoning

METAREFLECTION produces a large amount of
very specific instructions. On the contrary batching
helps generalize these instructions into more widely
applicable rules. GPT-4, being more powerful than
GPT-3.5-TURBO, is able to better follow these ab-
stract instructions, while specific instructions work
better for GPT-3.5-TURBO.
// Chain-of-thought

(A) Provide direct and concise responses to the question, using
precise language that matches the specificity and terminology of the
question, including singular or plural forms and definite articles as
needed.

(B) If the context suggests multiple valid answers, choose the
one that best matches the question’s wording and the most direct
information provided.

// React

(C) When a question asks for a specific detail such as a ’full
name’, ensure to find and provide that exact information. Don’t make
assumptions based on limited or incomplete information.

(D) If you’re not finding the desired information or stuck in a
loop of looking up a keyword, consider changing the keyword and search
strategy. The information might be located further down the page.

(E) When a question involves comparison, such as ’who received
more rewards’, ensure to search for each entity individually, gather all
necessary information, and then make a comparison based on the data found.

(F) Be mindful of potential spelling errors or variations in the
names of entities. If a search for a specific term doesn’t yield results,
consider possible alternative spellings or forms of the term.

Figure 9: Instructions learned via the METAREFLEC-
TION technique for the COT and REACT reasoning on
HOTPOTQA.

Exemplar case. Consider an example question
from Figure 10. The question seeks information
about the product made from Cassava and served
with palm nut soup. The context presented within
the COT (Distractor) setting includes articles about
Akpu and Fufu, both of which are quite similar,
being made from Cassava paste. However, the
key distinction lies in Fufu being served with palm
nut soup, while Akpu is served with Esupi soup.
The baseline COT agent returns the incorrect re-
sponse on this question: it is distracted by the re-
lated but incorrect articles, and makes an incorrect
assumption and jumps to the wrong conclusion.
The METAREFLECTION technique learns an in-
struction that suggests looking for multiple valid
answers and selecting the one most related to the
question. When inferring with the meta-reflection
instructions, it is clear from the thought that the
agent did encounter the misleading answers, but
was able to produce the right one by focusing on
the specific key point “served with palm nut soup"
mentioned in the question.

Similarly, in the REACT case (see Figure 1), we
see the learned instruction enhancing search strat-
egy by looking into the information further down
the page rather looping around. This rule further
aids the model in successfully concluding the trial
where it was previously failing. The model uses
the rule to explicitly guide the action space to look
further down the context page and look up the right
keyword, leading to the correct response, Bruce
Dickinson. In contrast, in the baseline attempt, it
ran out of trials by getting stuck in a loop.

Discussion. As we can see from the results, meta-
reflection can produce significant improvements in
accuracy in the question answer setting. This is
especially promising given that the dataset was
sampled using an adversarial sampling technique.
The HOTPOTQA domain also shows the diversity
of instructions learned by METAREFLECTION—a
small selection of instructions learned in the COT
and REACT settings are shown in Figure 9 We have
instructions that are: i. specifically tuned to satisfy
the overly strict rubric of the HOTPOTQA dataset
(A); ii. domain-specific instructions for specific
one-step actions in a RL trajectory (C); iii. directly
the high-level strategy to be taken by the trajec-
tory (D, E); and iv. for disambiguating answers (B)
and questions (E). Further, the results on GPT-3.5-
TURBO experiments reveal that METAREFLEC-
TION can be useful to enhance the performance
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COT (GT) COT (Distractor) REACT

Acc. σ Acc. σ Acc. σ

GPT-3.5-TURBO 23.00 2.65 30.00 5.00 8.33 2.60
LLMINSTRUCTION 25.67 6.03 31.00 10.00 20.83 4.83
METAREFLECTION (batch size = 1) 29.0 1.00 41.67 2.52 26.67 4.73
METAREFLECTION (batch size = 2) 38.67 2.52 30.67 1.15 17.08 2.60
METAREFLECTION (batch size = 4) 44.33 0.58 39.33 1.15 22.08 5.64

Table 7: Results on HOTPOTQA with GPT-3.5-TURBO powering the agents and GPT-4 for reflections and
METAREFLECTION

of smaller models by providing instructions rich
in specific insights from a more powerful LLMs
like GPT-4. This shows some resemblance to task-

specific distillation and can be interesting to ex-
plore further in future works.
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