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ABSTRACT
We present Marghera, a system design that prevents cross-VM

microarchitectural side-channel attacks in the cloud. Marghera

is based on isolation contracts which, for a given CPU, describe

partitions of physical threads and memory that prevent information

leakage through shared microarchitectural resources.

We develop isolation contracts for the AMD EPYC 7543P, a mod-

ern cloud CPU. To this end, we first identify howmicroarchitectural

resources are shared between its physical threads, including caches,

cache-coherence directories, and DRAM banks. We then develop

coloring schemes—that comprehensively partition these resources—

using previously unknown, reverse-engineered indexing functions.

We implement Marghera in Microsoft Hyper-V and evaluate it

using cloud benchmarks. Our results show that our approach effec-

tively eliminates side-channels caused by shared microarchitectural

resources with small performance overheads.

CCS CONCEPTS
• Security and privacy → Virtualization and security; Side-
channel analysis and countermeasures; Hardware reverse
engineering.
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1 INTRODUCTION
Cloud computing aims to provide scalable and cost-effective re-

sources to a wide range of tenants. This involves sharing resources

while isolating tenants from one another and from the cloud provider

to ensure their security. For example, modern CPUs pack 100s of
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physical threads sharing terrabytes of DRAM, which can be flexibly

assigned to many independent VMs.

Cloud security relies on architectural isolation between trust

domains, enforced by the hardware and the hypervisor via access

control and permissions. Hence, a VM cannot read or write private

memory pages assigned to another VM. Some CPUs also support

hardware-isolated VMs [27], further hardening architectural isola-

tion via memory encryption and access control to protect tenants

against privileged attackers [25].

Unfortunately, the implicit sharing of microarchitectural re-

sources, such caches, cache-coherence directories, andDRAMbanks,

between trust domains creates a large, complex, and poorly docu-

mented attack surface that can be exploited to bypass architectural

isolation and leak information between VMs. Practical attacks range

from classical side-channel attacks (on caches [23, 35, 54, 67, 70],

directories [32, 65], DRAM [42]) to more advanced attacks that use

microarchitectural resources to leak data obtained during transient

execution [31, 34, 45]. As striking examples, security researchers

have demonstrated how to exploit eviction sets in shared L3 caches

to stream a high-quality video between two independent co-located

VMs in AWS [39] or mount side-channel attacks across co-located

containers in Google Cloud Run [69, 70]; and how to read the host

memory [34]. Attacks are possible even if trust domains are isolated

via confidential computing hardware [3, 5, 17, 33, 55, 56, 60], high-

lighting the need for cross-domain microarchitectural isolation.

Prior works seek to provide microarchitectural isolation via spa-

tial and temporal partitioning of shared resources [15, 16, 40, 47, 71].

For example, the shared L3 cache can be spatially partitioned using

memory coloring or hardware partitioning; and cores can be time-

sliced across trust domains by scrubbing their microarchitectural

state upon transitions. However, they isolate one specific resource

at a time, and target resource allocation at the core granularity.

Modern CPUs pose novel challenges and opportunities for pro-

viding comprehensive spatial isolation. On one hand, there are

varying granularities at which resources are shared. For instance,

AMDCPUs employ a chiplet-based architecture, where the L3 cache

is private to the chiplet, but shared between the chiplet’s cores. On

the other hand, the number and complexity of microarchitectural

structures is increasing. Only a few of these can be partitioned in

hardware; and existing CPU topologies (available to hypervisors)

do not capture all of them, making it hard to partition them.

Approach.We present Marghera, a system design for principled

and practical system-level protection against microarchitectural

side-channel attacks on modern cloud CPUs. Marghera provides
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exclusive-resource VMs (XVMs) by enforcing the architectural ab-

straction of private physical threads and private memory, against

attackers that may try to circumvent architectural isolation by

observing shared microarchitectural resources.

Marghera builds on resource isolation contracts, an abstraction

of the way a CPU shares microarchitectural structures between

its physical threads. In particular, a resource isolation contract de-

scribes how physical threads and physical memory pages can be

assigned to trust domains to prevent information leakage between

trust domains due to shared microarchitectural resources. We show

how to compute isolation contracts for a given CPU: for each as-

signment of physical threads to trust domains, we (a) partition each

microarchitectural resource that is shared between trust domains

(b) without partitioning resources that are private to a trust domain.

We achieve this using hardware mechanisms if available, and using

multi-resource memory coloring if not. For the latter, we compute

memory coloring schemes that respect (a) and (b) given arbitrary

resources described by their indexing functions.
We show how to enforce isolation contracts in type-1 hypervisor-

based platforms. First, we extend the scheduler to assign physical

threads and L3 cache resources to arbitrarily shaped compute parti-

tions, e.g., such that it never runs two trust domains on the same

chiplet at the same time. Second, we extend the memory manager
to allocate physical pages using the coloring scheme defined by

the contract, to prevent allocation of the same color to two trust

domains at the same time. Finally, for temporal isolation we rely on

scrubbing and flushing when the VM is created and destroyed. This

is acceptable because today’s cloud systems are not oversubscribed

and their cores are not time-sliced [71].

Implementation.We implement Marghera in Microsoft Hyper-

V on a modern cloud chiplet-based CPU, AMD EPYC 7543P, that

supports confidential VMs. We develop a microbenchmark suite

to characterize leakage between cores and between chiplets via

shared microarchitecture. We reverse engineer the indexing func-

tions of all physically-indexed caches (L2, L3), all cache-coherence

directories (chiplet and cross-chiplet), and DRAM channels. Reverse

engineering the cross-chiplet directory poses particular challenges

as its size, associativity, and granularity were previously unknown.

We use these indexing functions to compute an isolation contract.

Evaluation Highlights. Using a collection of microbenchmarks

and cloud benchmarks, we demonstrate that:

• flushing has minor performance impact;

• allocating resources at chiplet and channel granularity (i.e.,

coupling a chiplet with one of the local DRAM channels) incurs

< 1.8% overhead while eliminating all identified side-channels;

• allocating resources at chiplet granularity incurs small over-

heads, up to 3.8% and 7.7% when coloring with 2MB and 4KB pages,

while eliminating cache and directory side-channels;

• cache partitioning (required when multiple XVMs share a

chiplet) introduces an additional overhead of 1.4–4.3%.

Contributions.We make the following contributions.

• We propose isolation contracts as a framework to constrain

resource allocation for microarchitectural isolation, based on novel

specifications for coloring multiple resources.

• We propose a hypervisor design that enforces contracts to

provide isolation of VMs, without changing their applications.
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Figure 1: Heatmap visualizing leakage via the L3 cache (up)
and cross-chiplet directory (below) on AMD CPUs. Black rep-
resents the smallest latency and brighter colors represent
higher latencies. The Target first runs an L3 thrasher (de-
noted by light yellow regions) and then a Graph Analytics
benchmark, denoted by the box-enclosed regions. We use
two observers, the first on the same chiplet probes the L3
cache; the second on a different chiplet probes its L1-D cache
to observe contention within the cross-chiplet directory. Ob-
servers measure the time to access each memory line within
their probe sets. (For more details, see §6.1.)

• We reverse engineer the indexing functions of caches, direc-

tories, and DRAM channels of AMD EPYC3 CPUs, and use them to

develop tight isolation contracts.

• We implement and evaluate our approach in Microsoft Hyper-

V, showing its effectiveness and practicality in eliminating side-

channels arising from resource sharing.

Responsible Disclosure. We shared our findings with AMD, for

whose CPUs information leakage through the L3 cache and cache-

coherence directories had not been demonstrated before. AMD has

confirmed our findings and published a security notice [1].

2 BACKGROUND
This section outlines contemporary processor and memory archi-

tectures, and resource management in public clouds.

2.1 CPU and Memory Basics
Modern CPUs employ numerous cores, a multi-level cache hierar-

chy, and DRAM interfaces. Each core supports multiple physical

threads (e.g., two in Intel, AMD), employs private caches (e.g., L1,

L2), and a memory-management unit that maps physical memory

to virtual memory via a set of page tables. Today’s CPUs support

variable page sizes: 4KB (small), 2MB (huge), and 1GB (giga). Finally,

CPUs employ a shared L3 cache, which may be shared among the

CPU’s cores (Intel) or among the chiplet’s cores (AMD). The L2 and

L3 caches are physically-indexed.

CPUs enforce coherence across private caches in a directory that

tracks memory lines kept in each private cache. For instance, L2

caches in Intel and AMD CPUs are kept coherent using a CPU [53]

and chiplet [12] directory, respectively. In addition, in platforms

with multiple L3 caches, these are kept coherent via an additional

directory, such as the in-memory ccNUMA directory in Intel CPUs

[37] and the cross-chiplet directory in AMD CPUs [51].

The L3 cache implements a cache allocation technology (CAT)

allowing software to run each core with a different Class-of-Service

(CoS) defined as a subset of L3 cache ways. Partitioning the cache

across trust domains requires that cores in different trust domains

are assigned CoS with disjoint ways.
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Figure 2: System software: a type-1 hypervisor managing
resources, and a root VM running the host operating system.

Memory controllers serve DRAM accesses by controlling and

managing memory channels. Each channel hosts several DRAM

modules, each DRAM module houses multiple DRAM chips, each

DRAM chip houses multiple banks, and each bank comprises multi-

ple memory arrays organized in rows and columns. Upon a DRAM

access, a set of DRAM chips, called a rank, is activated together, and

the row is read into the bank’s row buffer. Subsequent accesses to

the same row are faster, as they are served by the row buffer [42, 58].

The row buffer must be written back to the memory array before a

different row in the same bank can be accessed.

Themicroarchitecture discussed above affects thememory access

latency observed by the core, enabling one trust domain (that shares

resources with another) to use timing to observe usage patterns

of shared resources. Such effects are the core of memory-based

side-channel attacks. Figure 1 shows an Observer exploiting timing

to observe the execution of a Target application via the L3 and

cross-chiplet directory side-channels on AMD CPUs.

2.2 Resource Management in Public Clouds
In type-1 hypervisor-enabled systems (e.g., Xen, Microsoft Hyper-

V), illustrated in Figure 2, the system software comprises a hypervi-

sor and a host operating system (OS). The hypervisor boots across

all physical threads and utilizes hardware virtualization to run vir-

tual machines (VM). The host OS runs inside the root VM.While the

host OS houses services for management of guest VMs and (virtual)

device drivers, the hypervisor manages hardware resources. The

host OS calls the hypervisor when a new VM is created and is as-

signed resources. The host OS allocates memory for guest VMs, but

the hypervisor manages second-stage page tables (mapping guest

physical memory to system physical memory), handles interrupts,

and schedules virtual processors on physical threads.

The hypervisor implements two useful features for assigning

compute resources to VMs: CPU groups for guest VMs, and root
configuration for the root VM. Memory assignment is complicated

by the fact that all physical memory is initially mapped to the root

VM’s address space. Thus, assignment of a private memory page to

a guest VM requires the page to be unmapped by the hypervisor.

While most memory is exclusively assigned to a VM, a VM shares

some memory with the root VM, required for implementing ring

buffers for guest I/O. These pages are mapped to both VMs. Simi-

larly, the hypervisor and VMs utilize shared memory for hypercalls.

The host OS’s memory manager supports multiple page sizes by

maintaining a free list for each page size. The memory manager

may support page coloring by dividing each list across colors.

3 RESOURCE ISOLATION CONTRACTS
In this section, we develop resource isolation contracts, an abstrac-

tion that reflects the way a CPU shares microarchitectural (uarch)

structures between its physical threads. These contracts provide the

hypervisor with the information required to allocate architectural

resources in a way that eliminates information flow between trust

domains, both architecturally and microarchitecturally (see §4). In

this paper, we represent isolation contracts in mathematical lan-

guage, and we infer them for a given CPU by reverse-engineering

(see §5). In the future, side-channel conscious CPU vendors may

choose to release them as part of the CPU specification, and repre-

sent them in a machine-readable domain-specific language.

3.1 Partitioning Resources
Wemodel isolation contracts using (mathematical) partitions. A par-
tition 𝑃 = {𝐶0, . . . ,𝐶𝑝−1} of a set 𝑆 is a collection of pairwise disjoint
sets 𝐶𝑖 ⊆ 𝑆 whose union equals 𝑆 . We call each set 𝐶𝑖 a class, or
a color. A partition 𝑃 is finer than a partition 𝑄 , written 𝑃 ⊑ 𝑄 , if

each class of 𝑃 is included in a class of 𝑄 .

We consider partitions on two kinds of architectural resources:

Compute, represented as physical threads 𝑇 = {𝑡0, . . . , 𝑡𝑛−1}, and
Memory, represented as physical addresses𝑀 = {0, . . . , 2𝑚 − 1}.

Example 1. The partition 𝑃𝐶𝑜𝑟𝑒 = {{𝑡0, 𝑡1}, {𝑡2, 𝑡3}, . . . } groups
the set of physical threads𝑇 into pairs, corresponding to physical cores.
The partitions 𝑃4𝐾 = {{0, . . . , 212−1}, . . . } and 𝑃2𝑀 = {{0, . . . , 221−
1}, . . . } divide physical memory into small and huge pages, respec-
tively, where 𝑃4𝐾 ⊑ 𝑃2𝑀 .

We can combine partitions of disjoint sets as the disjoint set

union ⊎ of their classes. Hence, 𝑃𝐶𝑜𝑟𝑒 ⊎ 𝑃4𝐾 defines a partition of

all resources in 𝑇 and𝑀 into cores and small pages.

3.2 Allocating Resources for uarch Isolation
We describe the exclusive allocation of resources to trust domains

𝑑 ∈ 𝐷 as a partition 𝑃𝐷 of 𝑇 ⊎ 𝑀 , where each trust domain is

assigned a class 𝐶𝑑 ∈ 𝑃𝐷 . We then use the partition refinement

relation 𝑃 ⊑ 𝑃𝐷 to express constraints on resource allocation.

Example 2. 𝑃𝐶𝑜𝑟𝑒 ⊎ 𝑃4𝐾 ⊑ 𝑃𝐷 captures the requirement that
compute in 𝑃𝐷 must be allocated at core granularity (i.e., never sharing
cores between trust domains) and memory at 4KB page granularity
(i.e., never sharing pages between trust domains).

We call a partition 𝑃𝐷 of resources into trust domains isolating
if the use of these resources by a trust domain does not leak any

information to any other trust domain. However, not every partition

is isolating, as microarchitectural resources (e.g., caches) can still be

shared across trust domains, resulting in observable side-channels.

We call allocation constraints that ensure that all 𝑃𝐷 are isolating,

as resource isolation contracts:

Definition 1 (Resource Isolation Contract). A partition
𝑃𝑇 ⊎𝑃𝑀 is a resource isolation contract if every 𝑃𝐷 with 𝑃𝑇 ⊎𝑃𝑀 ⊑
𝑃𝐷 is isolating.

To define an isolation contract for a given CPU, we first identify

shared microarchitectural resources. For a given partition 𝑃𝑇 of

compute resources, a microarchitectural resource is private when
its implementation is local to each class of 𝑃𝑇 and shared otherwise.
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Example 3. For partition 𝑃𝐶𝑜𝑟𝑒 , on-core resources, such as buffers,
TLBs, predictors, L1/L2 caches are private, whereas off-core resources,
such as L3, cache-coherence directories, and DRAM are shared.

With cache allocation technology, the L3 cache can be turned into

a private resource for any allocation of cores to trust domains. For

most microarchitectural resources (e.g., directories, DRAM banks)

such hardware mechanisms are not available.

Instead, we leverage the fact that any partition of𝑀 implicitly

also partitions all microarchitectural resources that are indexed

from memory, which is known as coloring.

Example 4. Consider an indexing function 𝑓Dir (𝑥) = 𝑥6, 𝑥7, . . . , 𝑥16
mapping addresses to 211 directory sets. The set 𝑃Dir = {𝑓 −1 (𝑖) | 𝑖 ∈
F11
2
} of preimages of 𝑓Dir forms a partition of𝑀 . Enforcing 𝑃Dir ⊑ 𝑃𝑀

ensures that no two trust domains share a directory set, which elimi-
nates directory side-channel attacks.

For comprehensive side-channel protection, it is not sufficient

to color individual resources in isolation. Thus, we identify global

requirements on 𝑃𝑀 such that 𝑃𝑇 ⊎𝑃𝑀 defines an isolation contract,

and we show how they can be fulfilled by multi-resource coloring.

3.3 Multi-resource Memory Coloring
The memory partition 𝑃𝑀 of an isolation contract 𝑃𝑇 ⊎ 𝑃𝑀 should

meet the following criteria:

(1) 𝑃𝑀 complies with all architectural constraints, e.g., supports

page-based allocation: 𝑃4𝐾 ⊑ 𝑃𝑀 , and ideally also 𝑃2𝑀 ⊑ 𝑃𝑀 .

(See §3.3.1.)

(2) 𝑃𝑀 partitions all shared microarchitectural resources 𝑓 we

have identified to achieve isolation. (See §3.3.1.)

(3) 𝑃𝑀 does not partition any private microarchitectural re-

sources, as this would degrade performance. (See §3.3.2.)

3.3.1 Coloring for Partitioning Multiple Resources. To satisfy re-

quirements (1) and (2) we color different resources simultaneously,

which technically amounts to computing the join of two partitions.

Definition 2. Given two partitions 𝑃 and 𝑄 , their join 𝑃 ⊔𝑄 is
the finest partition that is coarser than both 𝑃 and 𝑄 .

For simple indexing functions, we can compute the join of their

partitions by taking the intersection of their common bits, as this is

the strongest constraint that is still satisfied by both.

Example 5. 𝑃4𝐾 is represented by the preimages of the function
𝑓4𝐾 (𝑥) = 𝑥12, 𝑥13, . . . which is the projection to the page frame num-
ber. The join 𝑃Dir ⊔ 𝑃4𝐾 is given by the common bits of 𝑓4𝐾 and 𝑓Dir
from Example 4, i.e., 𝑥12, . . . , 𝑥16, which amounts to 25 = 32 colors.

We can compute a joint memory coloring scheme for an arbi-

trary number of microarchitectural resources, albeit at the cost of

reducing the number of colors.

Example 6. For additionally coloring DRAM (e.g., on Haswell [42]),
we further intersect with bit 𝑥15, which selects the rank. 𝑃Dir ⊔ 𝑃4𝐾 ⊔
𝑃𝐷𝑅𝐴𝑀 is represented by a single bit 𝑥15 and supports two colors.

3.3.2 Coloring Without Partitioning Private Resources. When as-

signing a color to a trust domain, we may inadvertently partition

its private resources, leading to performance loss due to under-

utilization. To satisfy requirement (3) we must ensure that, when

restricting memory to a color 𝐶 , each set of a private resource

(represented by a preimage 𝐵 of its indexing function) is still used

in identical proportions. The following definition formalizes this

requirement for memory partitions.

Definition 3. Two partitions 𝑃 and 𝑄 of a set are orthogonal,
written 𝑃 ⊥ 𝑄 , if for every color 𝐶 ∈ 𝑃 and every 𝐵 ∈ 𝑄 we have

|𝐵 ∩𝐶 |
|𝐶 | =

|𝐵 |
|𝑀 |

As an example, partitions defined by linear functions that operate

on disjoint address bits are orthogonal. For other indexing functions,

we can ensure that their partitions are orthogonal by removing

from the coloring function all bits that are shared with the private

resource, as this would inadvertently partition the resource.

Example 7. Consider a private L2 cache given by the indexing
function 𝑓𝐿2 (𝑥) = 𝑥6, . . . , 𝑥14 and the coloring 𝑃Dir ⊔𝑃4𝐾 from Exam-
ple 5. Achieving orthogonality 𝑃𝐿2 ⊥ (𝑃Dir ⊔ 𝑃4𝐾 ) requires dropping
𝑥12, 𝑥13, 𝑥14 and leaves bits 𝑥15, 𝑥16 for coloring, totalling four colors.

3.3.3 Discussion. For the indexing functions of our target AMD

CPU (see §5.3), taking the intersection of common bits is suffi-

cient for computing joins and removing shared bits is sufficient for

achieving orthogonality. Concurrent work [21] explores the theory

and algorithms for computing joins and achieving orthogonality of

arbitrary linear (and partially linear) functions, which makes our

approach applicable to a broader set of current and future CPUs.

4 MARGHERA
Marghera provides the abstraction of exclusive-resource VMs (XVMs)

by adapting a type-1 hypervisor architecture against attackers that

can observe shared microarchitectural resources. In this section, we

first present our threat model, then present our design assuming

the host is trusted, including the hypervisor and the root VM, and

finally we show how to extend it if the root VM is untrusted.

4.1 Threat Model
We consider an attacker that runs on the same CPU as the victim

VM and can control any other VM, possibly including the root

VM. We assume this attacker can monitor the fine-grained usage of

shared resources, such as caches (e.g., [22, 35]), directories (e.g., [32,

65]) and DRAM banks (e.g., [42]) by observing conflicts in these

structures. Conversely, we assume the hypervisor is not adversarial

and can be trusted to enforce isolation contracts.

Coarse-grained attacks that observe overall congestion on shared

memory bus (e.g., [63]) or the on-chip interconnects (e.g., [41, 59])

are out of scope—some are mitigated by our approach, see §5.3.

Side-channels attacks due to sharing storage, networking devices,

or other PCIe devices, as well as physical side-channel (e.g., power,

EM radiation analysis) and fault attacks are out of scope.

Side-channel attacks due to usage patterns of intentionally shared
memory between VMs (e.g., ring buffers used for communication

between the guest and root VMs for storage/network I/O) are out

of scope. Finally, cross-domain side-channel attacks that exploit

leakage via global hypervisor state or shared colors between the

hypervisor and victim VM are out of scope.
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4.2 Core Design
Marghera is designed around two high-level requirements. The

first is to provide cross-domain microarchitectural isolation for

XVMs that share a server CPU. The second is to allow for running

XVMs and conventional VMs on the same host. Whereas XVMs are

protected from any other co-located VMs, conventional VMs can

still freely pool their assigned resources, which can be time-shared.

4.2.1 Overview. Marghera implements XVMs by enforcing two

complementary properties:

(1) Spatial Isolation (by Partitioning). An XVM is assigned

resources whose microarchitectural state cannot be observed or

altered by other running VMs.

(2) Temporal Isolation (by Scrubbing and Flushing). An
XVM is assigned resources whose state does not depend on previous

VMs and cannot be observed by future VMs.

Partitioning. The system software enforces the memory partition
(𝑃𝑀 ) and compute partition (𝑃𝐶 ) specified by a fixed, global CPU

resource isolation contract (§3). Each XVM is exclusively assigned a

subset of the colors of the memory partition during creation, and a

compute partition class during initial scheduling. This compute par-

tition class is assigned to the VM for its entire lifetime based on the

observation that the host is not over-subscribed; while not essential,

this amortizes expensive microarchitectural flushing operations.

Scrubbing and Flushing.While system software always zeroes

memory and registers between successive assignments, compre-

hensive and efficient microarchitectural flushing requires hardware

support. The hypervisor scheduler flushes the cache hierarchy (and

as a consequence any entries in the directories) both during the

initial assignment of resource to the XVM and, eventually, after

destroying the XVM and before re-cycling its resources.

4.2.2 Memory Management. The memory coloring specified in the

isolation contract (𝑃𝑀 ) is enforced in two stages: by assigning free

colors to VMs at creation time, then by allocating physical pages

using only the colors assigned to the VM. Both color assignment and

memory allocation are managed by the host OS memory manager,

whereas the hypervisor may also monitor the exclusive coloring

invariant, as discussed in §4.3.

The memory manager assigns colors to VMs by setting a bitmap

with enough colors to match the VM memory size. (XVMs use

exclusive bitmaps, whereas conventional VMs can pool their colors

in the same bitmap.) The memory manager uses this bitmap to

allocate free pages within the assigned colors.

The memory manager assigns colors and allocates pages to meet

two goals. First, during color assignment, it minimizes memory
fragmentation by favouring the assignment and allocation of larger

page (e.g., 2MB) of contiguous colors. Colors are assigned at a finer

granularity only when the VM memory size is smaller than or not
multiple of the memory span of a huge page. Second, during page

allocation, it maximizes the use of partitioned and non-partitioned
resources by iterating over the color bitmap so that page allocations

are uniformly spread over all assigned colors. (This complements

the contract design goal that each color is uniformly spread across

non-partitioned resources, see Definition 3.)

Efficient memory allocation requires that the memory manager

maintains multiple free page lists, for each size and color. Allocating

a page (if the free list is empty) requires demoting a chain of larger

pages so that page(s) comprising demoted large page(s) are added

to the corresponding free lists. In case a larger page (e.g., 2MB)

demotion is required, a free large page that includes a page of

the requested color is selected using an inverted coloring function

that returns a page offset given a page frame number and a color.

Multiple offsets in a page may yield a requested color, in which

case the memory manager randomly choses one of them.

4.2.3 Compute Resource Management. The hypervisor’s resource
scheduler enforces the invariant that an XVM is exclusively as-

signed a compute partition class. To maximize utility, the resource

scheduler supports conventional VMs, which are allowed to share

their assigned resources. The following invariants are enforced:

(1) A VM is either an XVM or a conventional VM throughout

its lifetime;

(2) An XVM is exclusively assigned a compute partition class

throughout its lifetime;

(3) A compute partition class assigned to a running XVM cannot

be unassigned during its lifetime; and

(4) Microarchitectural resources are flushed between successive

assignments.

We implement compute partition classes by extending CPU
Groups. Using CPU groups, each VM can be bound to a group,

and each group has a ThreadAffinity property that specifies the

physical threads available for scheduling the virtual processors of

bound VMs. We add two new properties for cache partitioning and

XVMs: CacheWayAffinity specifies the cache ways available to the

groups’s physical threads; and ResourceExclusivity specifies that

the resources of the group are exclusive to a VM.

To enforce Invariants (1) and (2), we require that the group

properties be immutable while a VM is bound to the group; and

that, when ResourceExclusivity is set, at most one VM is bound to

the group—making it an XVM for its lifetime.

A VM can be assigned to a resource-exclusive group only when

none of the group’s threads and L3 cache ways are already assigned

to other running VMs, and, if successful, this exclusive assignment

blocks their assignment to other running VMs. Note that the ex-

clusivity of L3 cache ways is enforced only when the implemented

contract 𝑃𝑚 does not partition the L3 cache.

While the exclusive resource invariant is enforced at the time

of group-VM binding, not all VMs are bound to a group; and

hence they may still run on any physical thread. To overcome

this limitation, the scheduler maintains availability metadata that

track physical threads (AvailableThreads) and L3 cache ways (Avail-
ableL3CacheWays) that have not been exclusively assigned to an

alive resource-exclusive group, i.e., there is a running VM bound

to the group. This metadata are updated accordingly whenever a

resource-exclusive group is assigned an XVM or released from an

XVM binding. Before completing an XVM binding (but after updat-

ing availability metadata), the scheduler drains the physical threads

and migrates the preempted virtual processors to available physical

threads based on the updated AvailableThreads. Once draining is

complete, it flushes their microarchitectural state.

Enforcing Invariant (3) requires the hypervisor to not unbind a

running XVM. Coupled with immutability of the group’s properties,

it is guaranteed that none of their resources can be unassigned.
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Enforcing Invariant (4) requires the group’s microarchitectural

resources to be flushed before an XVM binding, and before reclaim-

ing any resources. Once an XVM is destroyed, its binding is no

longer active; its resources are made available to non-bound VMs.

4.3 Removing the Host OS from the TCB
We now discuss how to extend our design to remove the host OS

from the TCB. While the host OS remains responsible for assigning

resources to guest VMs, the hypervisor must enforce isolation and

exclusivity invariants, and refuse to create or schedule a VM that

would break the isolation contract. That is, the hypervisor must

additionally enforce microarchitectural isolation of XVMs from the

root VM and monitor the exclusive coloring invariant.

4.3.1 Isolating XVMs from Root VM. The root configuration feature
restricts physical threads on which the root VM is scheduled. This

feature must provide a configuration mode, in which the root VM

memory size is specified. (E.g., Xen already supports such mode.)

In this mode, the hypervisor maps to the root VM address space

as many memory colors as needed to fullfil its memory size re-

quirements. Similarly, the memory manager of the root VM (which

supports two memory compartments) uses the root compartment

for its own allocations, initialized from the memory assigned at

boot time, and uses the VM reserve compartment for guest VM

allocations, initialized from the remaining memory.

The hypervisor also maps to the root VM one designated color

from which the root VM allocates memory to be shared with VMs.

4.3.2 Invariant Enforcement. The hypervisor ensures that XVMs

do not share memory colors or compute resources with root VM.

Memory Partitions. The hypervisor monitors the exclusive color-

ing invariant during color assignment to VMs and during mapping

of a physical page to a VM’s address space.

The hypervisor tracks VM ownership of memory colors and

whether they are exclusive or not. This metadata needs to be up-

dated whenever the root VM’s memory manager assigns colors to a

VM. The hypervisor must reject re-assignment of exclusive colors.

During memory allocation, the root VM calls the hypervisor

to map a range of memory pages to the VM’s address space. The

hypervisor acceptsmappings based onwhether the page is exclusive

or shared. The hypervisor must reject any request to map to a VM

address space any exclusive page within a color assigned to an

XVM, and to map to an XVM address space any exclusive page

within an unassigned color or a color already assigned to other

(X)VMs. The hypervisor must accept requests to map a shared page

to a VM’s address space only if the page lies within the designated

non-exclusive color owned by the root VM.

Compute Partitions. During creation of a CPU group, the hyper-

visor must enforce the invariant that none of the threads assigned

to the root VM are ever assigned to a resource-exclusive group. The

scheduler (§4.2.3) implicitly restricts the L3 cache ways of the root

VM, as soon as an XVM is allocated on physical threads that belong

to the same L3 cache domain as the root VM’s physical threads.

5 IMPLEMENTATION
We implement Marghera in Microsoft Hyper-V on a modern cloud

CPU, the AMDEPYC 7543P.We describe its architecture, investigate
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Figure 3: Chiplet-based AMD CPU architecture [12, 51].

leakage via its microarchitectural structures, and finally compute

isolation contracts.
1
Table 3 summarizes all its indexing functions

when memory interleaving is disabled and each memory channel

is populated with a 64GB dual-rank DIMM.
2

5.1 Hardware Architecture
Figure 3 illustrates the chiplet-based AMD CPU architecture. The

processor package features chiplets connected via chiplet fabric.

The I/O chiplet has four quadrants, each connected to two compute
chiplets, and interfaces to DRAM and I/O subsystems. The quadrants

are interconnected, enabling cross-chiplet communication.

Each chiplet houses up to eight cores sharing a 16-way 32MB

sliced L3 cache. Each core runs two physical threads and employs

private L1-I/L1-D (8-way 32KB each) and L2 (8-way 512KB) caches.

The L2 cache is inclusive, guaranteeing that L1 cache lines also

reside in the L2 cache. The L3 cache acts as a victim cache to L2,

meaning that lines in an L2 cache may not reside in the L3 cache.

To maintain cache coherence, a sliced chiplet directory duplicates

the tags for all L2 cache lines [12, 50]. The L3 cache implements

CAT (§2) allowing software to run each core with a different Class-

of-Service (CoS), defined as a subset of the 16 ways.

Memory accesses that miss in the chiplet memory hierarchy are

served either by DRAM or by a remote chiplet. This decision is

driven by a cross-chiplet directory (physically located in the I/O

chiplet [51]) that maintains cache coherence between all chiplets

by tracking the tags of their cache lines.

5.2 Characterizing Microarchitectural Leaks
As a basis for defining isolation contracts (see §3) we now infer how

the AMD CPU shares and indexes microarchitectural resources.

We develop Algorithm 1 for inferring arbitrary linear index-

ing functions of set-associative structures. It goes beyond prior

work [38] in that it only requires checking if two addresses are

congruent (i.e., evicted by the same set) without any knowledge

about the indexed structure, including the number of sets.

5.2.1 L3 Cache. We infer the L3 cache set indexing function, and

validate that chiplet- and CAT-based partitioning both ensure L3

cache isolation for private memory. We first describe how to con-

struct minimal L3 eviction sets, which are needed for both tasks.

1
In our extended (arXiv) version, we discuss the feasibility of our approach on Intel

and ARM CPUs, and provide additional details on the reverse engineering process.

2
We have also reverse engineered other memory configurations, where we varied the

interleaving type and number of populated memory channels. While the cross-chiplet

directory and DRAM channel indexing functions vary, coloring is still possible.
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Algorithm 1: Inference of linear indexing functions.
(1) Pick a basis for the input space, i.e., addresses that are

linearly independent.

(2) Group basis addresses into congruent groups.

(3) Find which groups represent a basis for the output space

and how the other groups depend on them.

(4) Assign vectors from output space to groups while respect-

ing dependencies; solve the resulting linear equation system.

Finding L3 Eviction Sets. Generating a minimal eviction set for a

given victim cache line (see, e.g. [35, 57]) requires (a) a cache alloca-
tion primitive for allocating a cache line and (b) a candidate set that,
when traversed and allocated in the cache, evicts the victim cache

line. This set is then minimized by applying standard algorithms.

In inclusive cache hierarchies, a load instruction on the target

address serves as cache allocation primitive. The situation is more

complex on contemporary CPUs, where L3 cache lines are allocated

only by L2 cache line evictions. We create an L3 cache allocation
primitive by first accessing the target address and then traversing

its L2 eviction set, to ensure the target address is evicted into the

L3 cache. To compute L2 eviction sets, we leverage that the L2

is inclusive to L1 and use a standard algorithm, which does not

require any knowledge about the L2 indexing function [57].

We populate the L3 candidate set from a set of L2-congruent

addresses. (This choice is based on the observation that L2 and L3

cache set indexing in Intel CPUs have common bits.) This allows us

to start with a small candidate set (e.g., 1024 addresses to account

for multiple L3 slices), which improves efficiency in our target CPU.

Inferring L2/L3 Indexing Functions.We apply Algorithm 1 to

an input basis, generating eviction sets targeting the cache sets

identified by the addresses of the input basis. The algorithm yields

11 and 16 congruent groups for L2 and L3. One group is mapped

to the zero group and the remaining groups are independent and

represent the output basis; the dimension of L2 (L3) output basis is

10 (15) as they employ 1K (32K) cache sets.

We also identify the bits of the L3 indexing function that corre-

spond to the 3-bit slice identifier. We leverage hardware counters

to identify precisely the L3 cache slice in which each cache line

of the input basis is allocated. Addresses of the input basis, whose

𝑎8, 𝑎7, 𝑎6 bits are set to zero, are mapped to the 0
𝑡ℎ

slice; if one of

𝑎8, 𝑎7, 𝑎6 bits is set to one, they are mapped to the 4
𝑡ℎ, 2𝑛𝑑 , 1𝑠𝑡 slices,

respectively.

Finally, we solve the linear system for each resource. The result-

ing functions are depicted in Table 3.

Validating L3 Isolation. We perform a test using two threads,

a Target and an Observer that uses an L3 eviction set for one of

the Target addresses. We find that when scheduled (i) on the same

chiplet without CAT, the Observer can reliably evict the Target

address from L3; and (ii) on different chiplets, or on different cores

with CAT, the Observer can no longer evict the Target address.

5.2.2 Chiplet Coherence Directory. We hypothesize that the chiplet

directory does not lead to cross-core interference. This is because

it is sliced similarly to the L3 cache and it duplicates the tags of

all L2 cache lines for the slice’s address space [50]. It employs a

Interference No Interference
L2 Miss Ratio 5.406% ± 0.153% 5.402% ± 0.159%

Table 1: Chiplet directory interference. L2 miss ratios (along
with 95% confidence intervals) observed by one core with or
without interference from another core.
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Figure 4: Cross-chiplet directory interference. On the left,
we obtain a minimal eviction set by repeatedly removing a
page at a time while maintaining maximal interference (L3
cache miss ratio). On the right, we confirm that the obtained
eviction set is minimal by removing a page at a time.

multi-bank structure (one bank per physical core) and each bank

mirrors the L2 for the slice.

Validating Cross-core Isolation. We validate this hypothesis by

relying on the fact that directories are inclusive of caches for which

they provide coherence [65]. Thus, directory allocations of one

trust domain that evict directory entries of a second trust domain,

result in evictions in the private caches of the second trust domain.

Our test involves anObserver thread on a core and a Target thread
on each of the remaining cores of the chiplet. It proceeds in multiple

rounds, each consisting of 3 steps: (1) the Observer primes its L2

cache; (2) In odd rounds, the Targets prime their L2 caches; (3) the

Observer probes its L2 cache. Each L2 prime set is constructed from

a pool of huge (2MB) pages with fixed 𝑎28, . . . , 𝑎21 bits, including

only the lower quarter (512KB) of each page. This ensures that each

core will target the same directory sets, maximizing contention.

(We carefully allocate memory for metadata to minimize intra-

core contention between the prime set and metadata. Remaining

contention is due to the thread’s instruction footprint.)

If Observer’s L2 lines and any of Target’s L2 lines were mapped

to the same directory set, the Observer probe would observe statisti-

cally different L2 cache miss ratio across odd and even rounds. Our

results (shown in Table 1) indicate that one core cannot interfere

with another’s core execution via the chiplet directory, confirming

that chiplet directories provide cross-core isolation.

5.2.3 Cross-Chiplet Coherence Directory. We show that this direc-

tory leads to interference, and then infer its indexing function.

Violating Cross-core Isolation. We develop a cross-chiplet inter-

ference test that runs an Observer thread on one chiplet and one

Target thread on each of the other six chiplets. The test proceeds in

multiple rounds: (1) the Observer primes one L3 cache way (i.e., 32K

cache sets); (2) in odd rounds, each Target primes its entire L3 cache
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(i.e., 16 L3 cache ways); (3) the Observer probes its L3 cache way.

Each L3 prime set is constructed from a pool of huge (2MB) pages

with some huge PFN (hPFN) bits fixed to obtain a good pool of

candidates. In our experiments, we fix 𝑎38, 𝑎37, 𝑎36, 𝑎31, 𝑎27, . . . , 𝑎21,

obtaining 1 Observer and 96 Target pages, and confirm interference;

Figure 4 (left) shows that Observer measures 90-92% of L3 miss

ratio in odd rounds compared to 0-2% in even rounds. This confirms

that directory evictions are observable across chiplets.

Inferring the Associativity. We compute a minimal eviction set

as follows: we repeatedly run the test above while removing one

page at a time from the Target’s candidate set; we add the page

back to the candidate set if the Observer’s L3 miss ratio drops lower

than 90%. Figure 4 (left) shows that we can remove all pages except

for 15. Once the iteration over the initial candidate set completes,

we confirm that the reduced candidate set is a minimal eviction set:

we remove one of its pages at a time and measure the Observer’s L3

miss ratio. Figure 4 (right) shows it drops to 0% for 10 huge pages.

The sigmoid shape is a side-effect of the replacement policy.

Inferring the Indexing Function. Due to large aggregated L3

capacity, we expect that some output bits of the indexing function

are defined only on hPFN bits. We therefore split the address space

into hPFN bits (𝑎38, . . . , 𝑎21) and huge page offset bits (𝑎20, . . . , 𝑎6)

and apply Algorithm 1 on the hPFN subspace first.

hPFN Bits. To apply Algorithm 1 to the hPFN subspace, we need

to construct minimal eviction sets for an entire huge page. (This

avoids identifying hPFN bits that are combined with huge page

offset bits.) Similar to the cross-chiplet directory interference test,

we form a candidate set that is congruent to the target huge page,

and reduce it to 16 pages based on our associativity findings.

In step (1) of the algorithm, we choose an input basis that re-

sembles the standard basis, i.e., each huge page has only 1-2 hPFN

bits set while 𝑎33 is set to 1. This choice yields eight groups: one is

mapped to value 0; the rest represents a basis of the output space.

The output bits inferred by our algorithm are given in XD in Table 3.

We observe that the address (if larger than 4 GB) is shifted by 2 GB

before indexing the directory, corroborating recent findings that

DRAM is accessed using addresses shifted by an offset due to some

system addresses below 4 GB being mapped to PCI space [24].

In non-interleaved mode, 𝑎38, 𝑎37, 𝑎36 are included in the channel

indexing function (see also §5.2.4), implying that the cross-chiplet

directory is distributed across the eight memory controllers.

Remaining Bits. Rather than running Algorithm 1 for the remaining

bits, we guess that they are simple functions (i.e., singletons or a

combination of one huge page offset bit and hPFN bits) and adapt

the cross-chiplet interference test to infer one output bit at a time.

We construct Observer and Target prime sets so that they are

mapped to distinct colors. A color is a singleton from the huge

page offset bits or an XOR of a huge page offset bit and a hPFN bit

not used yet (𝑎38, . . . , 𝑎32, 𝑎30, . . . , 𝑎28, 𝑎25). The prime set includes

entire pages to avoid identifying bits that are combined with small

page offset bits. XD in Table 3 shows the findings for 𝑎20, . . . , 𝑎11.

This process indicates that bits 𝑎10, . . . , 𝑎6 are not used in the

indexing function. We use a simple test to confirm that we did

not overlook any non-simple output bits. We choose a value for

𝑎38, . . . , 𝑎11 where each bit of 𝑎38, . . . , 𝑎32 is set to zero. We then

construct an eviction set that targets the zero offset (𝑎10, . . . , 𝑎6 set

Core 
HPFN 

0 4 8 12 16 20 24 28 

0x01000 310 316 327 329 351 357 362 372 
0x09000 315 310 328 329 351 357 363 371 
0x11000 329 329 310 317 362 370 351 358 
0x19000 329 330 316 310 362 370 351 358 
0x21000 351 351 362 362 311 320 330 332 
0x29000 351 351 362 363 313 319 329 330 
0x31000 363 362 351 351 328 329 310 320 
0x39000 363 362 350 351 329 333 319 320 

  

Table 2: DRAM access latency observed by different cores
(on different chiplets) when accessing the first memory line
within a huge page. Due to the I/O chiplet being divided
in quadrants, we observe four classes of latency: local / no-
interconnect (white); x-axis (light grey); y-axis (dark grey);
and xy-plane (black).

to 0). We flip one bit at a time (offsets 1, 2, 4, 8, 16) and check if this

yields a congruent address (confirming that no bit of 𝑎10, . . . , 𝑎6 is

part of the indexing function). Thus, it is likely that the directory is

maintaining coherence at coarse granularity [26].

Discussion: Private vs. Shared. Above, each prime set is private

to a chiplet, raising the question whether memory lines shared

across chiplets are tracked by a different structure [26].

We refine the interference test so that each Observer and Target

spans two chiplets. Each prime set is accessed by the corresponding

pair of chiplets before the next prime set is accessed, ensuring

that the cache lines of each prime set are marked as shared in the

directory. When using 𝑋𝐷 to select the color of each prime set,

we observe interference when prime sets are mapped to the same

color and no interference when prime sets are mapped to different

colors. This result implies that private and shared memory lines

are tracked by the same structure.

5.2.4 DRAM. Identifying the physical-to-DRAM address mapping

function requires a test to identify whether two input basis vectors

are congruent on a bank. We could not reliably uncover statisti-

cally different timings between first and second accesses to a row.

This may be due to AMD’s row management policy that supports

timeout-based, predictive row closing based on DRAM bank his-

tory [8]. (We also ran DARE [24], a tool for reverse engineering

AMD’s DRAM indexing functions, but without success.)

Instead, we exploit the variable I/O chiplet interconnect latency

to infer how channels are indexed. Table 2 illustrates the latencies

observed by the eight chiplets for various input basis vectors. The

latencies vary depending on how the memory request is routed

through the I/O-chiplet interconnect. We make the observation

that flipping 𝑎38, 𝑎37 also flips the chiplet that observes the lowest

(i.e., local) DRAM access latency. Thus, in non-interleaved mode,

𝑎38, 𝑎37 index the quadrant while 𝑎36 (involved in the cross-chiplet

directory indexing function) indexes the quadrant’s channels.

5.3 Resource Isolation Contracts
We use the experimental results of §5.2 to instantiate the isola-

tion contracts of §3. Due to partial reverse-engineering of DRAM

functions, only the chiplet scheduling contract prevents DRAM

side-channels. For completeness, we include hypothetical contracts

that would prevent DRAM side-channels based on bank coloring.
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M 4K/2M/1G  L3/L2  XD  DRAM(<2GB)     DRAM(>4GB)  XDC  XDDC  XDDC'
a6   L2   a6             
a7   a7             
a8   a8             
a9    a9⊕a21             
a10   a10⊕a22             
a11   a11⊕a23  a11⊕a28      a11⊕a28     
a12 a12  a12⊕a24  a12⊕a29      a12⊕a29     
a13 a13  a13⊕a25  a13⊕a30      a13⊕a30     
a14 a14  a14⊕a26  a14      a14     
a15 a15  a15⊕a27  a15      a15     
a16 a16  a16  a16           
a17 a17  a17  a17           
a18 a18  a18  a18⊕a25      a18⊕a25     
a19 a19  a19  a19           
a20 a20  a20  a20           
a21 2M a21  

used above 

 a21      a21     
a22 a22   a22⊕a26      a22⊕a26    a22⊕a26 
a23 a23   a23⊕a27      a23⊕a27    a23⊕a27 

a24 a24 
  a24⊕a31⊕ 

( > 4GB ? 1 : 0) 
     a24⊕a31⊕ 

( > 4GB ? 1 : 0) 
    

a25 a25    
 
 

used above 
 
 
 

      
 
 

used above 
 

 

    
a26 a26           

 

used 
above a27 a27           

a28 a28             
a29 a29             
a30 1G a30             
a31 a31       

used above 

     
a32 a32              
a33 a33              
a34 a34              
a35 a35              
a36 a36    

As DRAM 
 a36  a36⊕¬(a35∨…∨a31)    

As DRAM 
 

As DRAM a37 a37     a37  a37⊕¬(a36∨…∨a31)     
a38 a38     a38  a38⊕¬(a37∨…∨a31)     

Table 3: Gray areas represent functions for: architectural pages (4K/2M/1G); indexing caches (L3/L2); indexing the cross-chiplet
directory (XD); indexing the DRAM channel (DRAM); coloring the cross-chiplet directory without coloring DRAM/L3/L2 (XDC);
and coloring the cross-chiplet directory and DRAM channels without coloring L3/L2 (XDDC). L2 indexing and 2M, 1G page
frame indexing are annotated using a box within L3 and 4K. 𝑎8, 𝑎7, 𝑎6 select the L3 cache and chiplet directory slice. 𝐷𝑅𝐴𝑀
also selects the cross-chiplet directory slice. Non-linearity is due to addresses (that are larger than 4GB) being shifted by 2 GB,
i.e., 𝑎31 is flipped, also requiring that a higher order bit (𝑎𝑛) is flipped if lower order bits (𝑎𝑛−1, . . . , 𝑎31) are all zero. 𝑋𝐷𝐷𝐶′ is a
hypothetical function that refines 𝑋𝐷𝐷𝐶 to color DRAM banks, assuming they are partially indexed by 𝑋𝐷′𝑠 𝑎23, 𝑎22.

Chiplet Scheduling. We first define three contracts that allocate

physical threads at chiplet granularity (𝑃𝐶ℎ𝑖𝑝𝑙𝑒𝑡 = {{𝑡0, . . . , 𝑡7},
{𝑡8, . . . , 𝑡15}, . . . }). Only the third contract prevents DRAM side-

channels as each chiplet is allocated an entire DRAM channel.

XDC in Table 3 defines the coloring partitions 𝑃𝑋𝐷𝐶 computed

as the finest partition that is both coarser than the index function of

the cross-chiplet directory and orthogonal to the indexing functions

of DRAM channels and the L3 cache. (We experimentally validated

this by counting the number of L3 cache colors to which a memory

is mapped to.) Likewise, XDDC in Table 3 defines the coloring

partitions 𝑃𝑋𝐷𝐷𝐶 computed as the finest partition that is both

coarser than the index functions of the cross-chiplet directory slice

and DRAM channels, and orthogonal to the L3 cache indexing

function. We obtain three contracts:

(1) 𝑃𝐶ℎ𝑖𝑝𝑙𝑒𝑡 ⊎ (𝑃4𝐾 ⊔ 𝑃𝑋𝐷𝐶 ) supports 4KB pages, 512 colors;

(2) 𝑃𝐶ℎ𝑖𝑝𝑙𝑒𝑡 ⊎ (𝑃2𝑀 ⊔ 𝑃𝑋𝐷𝐶 ) supports 2MB pages, 16 colors;

(3) 𝑃𝐶ℎ𝑖𝑝𝑙𝑒𝑡 ⊎ (𝑃1𝐺 ⊔ 𝑃𝑋𝐷𝐷𝐶 ) supports 1GB pages, 8 colors.

Core Scheduling.We now define two contracts that allocate cores

at a sub-chiplet granularity (𝑃𝐶𝑜𝑟𝑒 ). We partition both the L3 cache

and the cross-chiplet directory, but not DRAM. In doing so, we inde-

pendently use cache allocation technology (CAT) to partition the L3

cache and use coloring to partition the cross-chiplet directory. This

allows for allocating memory sizes and cache sizes independently.

For CAT, we define numerous CoSes that partition the L3 cache

ways in four-way clusters: (i) 4 CoS, each of them receives a quarter

of the ways; (ii) 4 CoS, each of them receives a half of the ways; (iii) 6

CoS, each of them receives three quarters of the ways; and (iv) 1 CoS

that includes all ways. A CoS is assigned to a trust domain based

on its number of cores. For instance, a single-core trust domain will

be assigned a CoS from the first class. Concurrent trust domains

need to be assigned CoSes that contain disjoint ways.

For coloring, we omit the partition 𝑃𝑋𝐷𝐷𝐶 as it does not provide

sufficient colors, and use the partition 𝑃𝑋𝐷𝐶 for two contracts:

(1) 𝑃𝐶𝑜𝑟𝑒 ⊎ (𝑃4𝐾 ⊔ 𝑃𝑋𝐷𝐶 ) supports 4KB pages, 512 colors.

(2) 𝑃𝐶𝑜𝑟𝑒 ⊎ (𝑃2𝑀 ⊔ 𝑃𝑋𝐷𝐶 ) supports 2MB pages, 16 colors.

Discussion. Finally, we present two hypothetical contracts that

would prevent DRAM side-channels with sufficient colors. The CPU

designer could use XD’s 𝑎22, 𝑎23 to index a quadrant of banks. (See

XDDC
′
in Table 3). These patterns resemble those of Intel [42], but

differ from those of AMD [24] which utilize page offset bits.

(1) 𝑃𝐶ℎ𝑖𝑝𝑙𝑒𝑡 ⊎ (𝑃2𝑀 ⊔ 𝑃𝑋𝐷𝐷𝐶 ′ ) supports 2MB pages, 32 colors.

(2) 𝑃𝐶𝑜𝑟𝑒 ⊎ (𝑃2𝑀 ⊔ 𝑃𝑋𝐷𝐷𝐶′ ) supports 2MB pages, 32 colors.
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5.4 Marghera Prototype
We now describe our implementation of Marghera in Microsoft

Hyper-V. Our baseline hypervisor protects against cross-domain

transient-execution and private-core microarchitectural attacks by

employing core scheduling and virtual-processor address space

isolation [2, 64]. That is, during a VM-to-VM switch, the hypervisor

flushes L1-D and microarchitectural buffers; and during a VM inter-

cept, the hypervisor can access only state that is global or private

to the intercepted virtual processor.

Our extensions span various layers of the system software stack,

including the VM worker process, virtualization infrastructure dri-

ver (VID), the Windows NTOS kernel, and the hypervisor. We have

extended CpuGroups and the host compute system service (HCS)

to provide an interface for managing resource-exclusive groups.

Our prototype implements the design in §4.2 but not yet the

extensions in §4.3, meaning that the root VM needs to be trusted.

5.4.1 Memory Management in Root VM. Each VM is managed by

a VM worker process, and each VM is backed by a VID partition.

During VM creation, the VM worker process interacts with VID

to instantiate multiple memory blocks, which back the VM’s RAM

space. For each memory block, VID utilizes the NTOS memory

manager page allocation interface to reserve memory.

The baseline hypervisor maps the entire host memory to the root

VM’s address space; the entire memory is part of the root memory

compartment, from which physical memory is allocated to the VMs.

We have implemented color assignment, colored page allocation,

and color revocation as follows.

For color assignment, we extended the NTOS memory manager

with a function that assigns colors (as described in §4.2.2) by tak-

ing memory size requirement as an input and returning the color

bitmap. The memory manager enforces the exclusive color assign-

ment invariant by tracking assigned colors in a reserved color bitmap
within the metadata of the root memory compartment.

The color assignment function is exposed to VID. The assigned
color bitmap is stored in the VID partition metadata, so it can be

used by VID during memory reservation for memory blocks. The

function is exposed (via VID) to the VM worker process, and called

by the latter before memory reservation is initiated.

For page allocation, we extended the NTOS memory manager

with a new function that allocates memory pages by taking the color

bitmap as an input. As described in §4.2.2, thememorymanager uses

one free list for each page size, and each free list is divided across the

colors supported by the page size. The required coloring functions

are implemented using bitwise operations on the physical page

frame number. Finally, during memory reservation for a memory

block, VID uses the assigned color bitmap to parametrize its page

allocation requests to the NTOS memory manager.

For color revocation, we extended the NTOS memory manager

with a function that takes as input a color bitmap and unsets the

reserved color bitmap. This function is called by VID once the

partition’s memory blocks have been destroyed and their backing

physical memory has been free’d.

5.4.2 Hypervisor Scheduler. Each VM is backed by a process with

as many software threads as the number of virtual CPUs. CPU

groups are backed by scheduler groups, which are managed by a

scheduler group manager. Processes get bound to (unbound from)

a scheduler group via the managers’s process-group (un)binding

interface during process initialization (destruction). Physical cores

are backed by core schedulers while physical threads are backed by

logical processor dispatchers. In core scheduling, a process’ threads

are organized in pairs, and each pair is scheduled on a core.

Our extensions span all these components. The scheduler group

and core scheduler managers jointly enforce the resource exclusiv-

ity invariant for processes that may or may not be bound to a CPU

group. The logical processor dispatcher restricts the L3 cache ways

into which a physical thread can allocate cache lines.

We extended the core scheduler manager to maintain the set

of physical cores and L3 cache ways available to non-bound pro-

cesses. This availability metadata are updated via new functions

for resource reservation and resource revocation.

Reservation and revocation of L3 cache ways is straightforward

inasmuch as the scheduler manager directly unsets and sets the

L3 cache ways in the availability metadata for each L3 domain.

Reservation and revocation of physical cores is more complicated

inasmuch as it entails flushing of resources.

During reservation of a physical core, and once the core is unset

in the availability metadata, the core scheduler manager drains the

newly reserved physical core. The draining is implemented as a

non-blocking operation, which takes place in the next scheduling

interval. Once a physical core is drained, it is marked as drained,

and all of the drained threads are migrated to other physical cores

based on the new set of available physical cores. Finally, when

a physical core has been marked as drained, the core scheduler

executes wbinvd to invalidate all caches associated with the core,
3

implicitly invalidating all corresponding directory entries.

During revocation of a physical core, the core scheduler manager

executes wbinvd on the core,
4
and then sets the core as available

in the availability metadata.

We extended the scheduler group manager to maintain the set of

physical cores and L3 cache ways that have been assigned to alive

resource-exclusive scheduler groups and referenced by alive con-

ventional scheduler groups.We extended the existing process-group

(un)binding interface to allow for (un)binding of processes while

enforcing the resource exclusivity invariant. During (un)binding

of a process to (from) a resource-exclusive group, the scheduler

group manager calls the core scheduler manager to reserve (revoke)

assigned resources. Successful (un)bindings (un)set the process’

resource-exclusive flag, stored in the process’ metadata.

For processes that are bound to groups, we rely on existing logic

in the core scheduler manager that uses the group’s ThreadAffinity

to restrict the set of physical cores on which the process’s threads

can be scheduled. For processes that are not bound to groups, we

extended the core scheduler manager to use the physical cores set

in the availability metadata as the restriction set.

We extended the logical processor dispatcher to restrict the L3

cache ways into which a physical thread can allocate cache lines.

The dispatcher updates the physical thread’s model-specific regis-

ters that correspond to the assignment of a Class-of-Service and

the mask of the assigned Class-of-Service. For processes bound to

3
In our target CPU, executing wbinvd on one physical core invalidates its L1/L2 caches

and L3 cache, but does not guarantee invalidation of L1/L2 caches of other cores.

4
We do not yet invalidate TLBs, which may result in some leakage to future VMs.
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a group, the mask includes the L3 cache ways within the group’s

L3CacheWayAffinity. For processes not bound to a group, the mask

includes the L3 cache ways set in the availability metadata.

Finally, we extended the hypervisor’s interface used for manag-

ing groups (called by HCS during a CpuGroups operation) to reject

requests that would unbind a resource-exclusive process.

6 EVALUATION
We analyze the effectiveness and the performance overheads of

Marghera defenses against microarchitectural leakage. Our testbed

hosts an AMD EPYC 7543P processor and 512 GB of DRAM. The

processor consists of eight chiplets, and each chiplet houses four

physical cores and 32 MB of L3 cache. The first chiplet runs the

root VM, while the rest are reserved for guest VMs.

We evaluate compute partitions using chiplet (𝑃𝐶ℎ𝑖𝑝𝑙𝑒𝑡 ) and core

scheduling (𝑃𝐶𝑜𝑟𝑒 ), and memory partitions using the contracts

𝑃4𝐾 ⊔ 𝑃𝑋𝐷𝐶 and 𝑃2𝑀 ⊔ 𝑃𝑋𝐷𝐶 . In chiplet scheduling, we also eval-

uate a memory partition using the contract 𝑃1𝐺 ⊔ 𝑃𝑋𝐷𝐷𝐶 . In core

scheduling, we size the L3 cache partition of each VM based on the

number of virtual CPUs, i.e., two ways per virtual CPU.

6.1 Validation of Marghera’s Defenses
To demonstrate the effectiveness of Marghera’s microarchitectural

isolation, wemeasure cross-VM interference by running a collection

of Observer and Target micro-benchmarks.

As detailed below, the Target emits a signal by thrashing its pri-

vatememory, while the Observermeasures timings to access its own

private memory. Figures 5–7 visualize the time series of Observer’s

measurements as heatmaps, where each vertical line represents a

measurement. The darkest color of the spectrum corresponds to the

smallest measurement (𝑚𝑖𝑛) and the brightest color corresponds to

a measurement equal to 𝑁 ∗𝑚𝑖𝑛, where 𝑁 is indicated by the scale

on the right. For each benchmark, we use the same scale with and

without defenses. We also use performance counters to measure

the Observer’s DRAM access rate, as the number of requests served

by DRAM divided by the number of instructions.

While our microbenchmarks fall short of an end-to-end secu-

rity evaluation against VMs running applications, the Observers

are representative of state-of-the-art probes used in side-channel

attacks, such as workload fingerprinting [48], whereas the Targets

are designed to emit the strongest signals.

Our implementation does not prevent indirect leakage via shared

colors between VM and system software (root VM and hypervisor),

which explains the small residual leakage visible in Figures 5, 6.

Intra-chiplet. Figure 5 plots the heatmap when the Target thrashes

the L3 cache using six threads to access a large array, while the

Observer primes the L3 cache and measures the time to access all

its cache lines. It confirms that cross-VM information leakage is

eliminated either by scheduling them on separate chiplets or on

the same chiplet but with disjoint compute and cache partitions.

We also measure the Observer’s DRAM access rate. In the base-

line case, it increases from 0.032 to 110 per thousand instructions

across the black and orange regions. In the other cases, the increase

is within our (95%) confidence interval.

Cross-chiplet. Figure 6 plots the heatmap when a Target thrashes

the cross-chiplet directory using threads on six chiplets to access a
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Figure 5: L3 cache information leakage between an Observer
and a Target that thrashes the L3 cache. The Observer, Target
run in different VMs on distinct cores in three configurations:
within the same chiplet (top); within the same chiplet with
L3 partitioning (middle); on separate chiplets (bottom).
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Figure 6: Cross-chiplet information leakage between an Ob-
server and a Target that thrashes the cross-chiplet directory.
The Observer and Target run in different VMs on separate
chiplets, using separate colors (bottom) or not (top).
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Figure 7: DRAM information leakage between an Observer
and a Target that thrashes memory bus bandwidth. The Ob-
server and Target run in different VMs on separate chiplets,
using separate colors based on XDC (top) or XDDC (bottom).

large array, while the Observer probes its L1-D on a separate chiplet.

It confirms that cross-chiplet information leakage is eliminated by

assigning disjoint 𝑃𝑋𝐷𝐶 colors (0 to Observer, another to Target).

We also measure the Observer’s DRAM access rate. In the base-

line case, it increases from 0.45 to 60 per million instructions. With

Marghera, the DRAM access rate remains nearly constant.

DRAM. Figure 7 plots the heatmap when a Target thrashes its L3

caches using threads on six chiplets to access a large array, resulting

in high memory bus contention and higher memory latencies. The

Observer (on a separate chiplet) traverses randomly (at a cache

line granularity) a large array that does not fit in the L3 cache, and

hence each array access results in a DRAM access. It confirms that

DRAM-level information leakage is eliminated by assigning disjoint

channels (𝑃𝑋𝐷𝐷𝐶 colors) to the Target and Observer.

6.2 Performance Analysis
Marghera introduces three sources of overheads: microarchitec-

tural flushing, additional page table walks, and resource partition-

ing. As Marghera flushes microarchitectural state only during VM
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Figure 8: Time spent on flushing the cache hierarchy after
accessing a variable fraction of the L3 cache.

creation/destruction, performance of workloads running in stable

state is impacted only by the latter two. We use a mix of micro-

benchmarks and cloud benchmarks to measure these overheads.

Cloud Benchmarks. We consider an ML Inference workload

and cloud workloads [13] including: Web Serving, Data Serving

(NoSQL), Data Serving (SQL), and Graph Analytics. Unless stated

otherwise, the benchmarks are configured as follows.

For ML Inference, we infer the Inception-v3 TensorFlow model

on the Nvidia Triton inference server and measure its through-

put with a 95% response latency below 300ms. For Web Serving,

an Nginx server runs the Elgg social networking engine and con-

nects to a chiplet-sized memcached server and a two-chiplet-sized

database server that is populated with 100K users, which yields a

2.5GB database. We measure the throughput of a mix of operations

while maintaining quality of service. For Data Serving (NoSQL),

we populate the Cassandra NoSQL data store with 10M records

(10GB) and measure the throughput of a workload of 50% read and

50% update operations with a 95% response latency below 10ms.

For Data Serving (SQL), we populate the Postgress database with

100 warehouses (10 GB) and measure the throughput of the TPC-C

workload with a 95% response latency below 300ms. For Graph

Analytics, we run the PageRank algorithm on Spark GraphX on a

1.2GB Twitter dataset and measure its execution time.

All workloads run for for three minutes except for Graph Ana-

lytics, which runs to completion. We repeat each experiment five

times; resulting 95% confidence intervals are within 1% of the mean.

Metrics of Interest. Besides application performance metrics, we

use microarchitectural metrics to understand the performance over-

heads. We use performance counters to measure DRAM access

rates, TLB hit rates, and User IPC. User IPC is measured as the

number of instructions committed by the application divided by

the number of total cycles (include both application and OS); it has

been shown to be proportional to application performance [13].

6.2.1 Overhead due to Flushing. First, we examine the performance

implications of flushing the cache hierarchy.

Latency.We quantify the time spent on completing the flushing

operation. Figure 8 plots the time spent on executing wbinvd for

two micro-benchmarks. The first micro-benchmark (Clean) loads
a varying fraction of the L3 cache. The second micro-benchmark

(Modified) writes to a varying fraction of the L3 cache.

Flushing Clean incurs lower latency than flushing Modified be-

cause flushing Clean involves only invalidating tags in caches and

directories whereas flushing Modified additionally involves writing

back modified cache lines to memory. Overall, the time is linear
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Figure 9: Impact of page coloring in Chiplet Scheduling.

to the number of cache lines, ranging from 0.085 to 1.425ms. This

latency is small even when compared to fast VM boot times, e.g.,

125ms for Firecracker microVMs, with no performance impact in

scenarios where resources are not time-sliced.

Interference. The wbinvd instruction invalidates the entire L3

cache, potentially degrading performance of other VMs running on

the same chiplet. Given the large VM lifetimes (at least minutes [9]),

we expect creation and destruction of VMs to happen at the granu-

larity of at least a few minutes. We over-estimate the performance

impact on a VM by creating and destroying another VM on the

same chiplet every five seconds. Each VM is assigned two physical

cores, eight L3 cache ways, and distinct memory colors.

We measure the VM’s User IPC and DRAM access rate for a

period during which we create and destroy a VM every five seconds

compared to a period during which the VM runs without any inter-

ference. For Graph Analytics, the period spans the whole execution,

while for the remaining workloads we use a three-minute period

For all cloud workloads, we find that the DRAM access rates are

impacted marginally (up to 5% higher). The impact on User IPC is

small, around 1% in the worst case of Data Serving (NoSQL). This

is because the benchmarks quickly warm up their caches and enjoy

their temporal locality until the next flushing event.

6.2.2 Overhead due to Partitioning. We now analyze the perfor-

mance impact of page coloring and L3 cache partitioning.

Page Coloring.We analyze three configurations that implement

the chiplet scheduling contract with (i) channel allocation, 𝑃𝐶ℎ𝑖𝑝𝑙𝑒𝑡⊎
(𝑃1𝐺 ⊔ 𝑃𝑋𝐷𝐷𝐶 ), labelled as Marghera-Channel; (i) 2MB pages,

𝑃𝐶ℎ𝑖𝑝𝑙𝑒𝑡 ⊎ (𝑃2𝑀 ⊔ 𝑃𝑋𝐷𝐶 ), labelled as Marghera-2M; and (iii) 4KB

pages, 𝑃𝐶ℎ𝑖𝑝𝑙𝑒𝑡 ⊎ (𝑃4𝐾 ⊔ 𝑃𝑋𝐷𝐶 ), labelled as Marghera-4K. Each

workload runs within a chiplet-sized VM with 8 GB of memory.

(This is the maximum size we could allocate with 4KB pages.)

Figure 9 plots the overhead of Marghera over the baseline system.

Marghera-Channel and Marghera-2M introduce small overheads,

up to 1.8% and 3.8%, respectively.Marghera-4K reduces performance

by up to 7.7% due to increased TLB pressure.

We confirm the sources of overhead using performance counters

to examine the impact of Marghera’s defenses on DRAM access

rates and TLB miss rates. Marghera-Channel exhibits similar met-

rics as the baseline. For Marghera-2M and Marghera-4K, the DRAM

access rates are affected the most in Data Serving SQL (15%), Data

Serving NoSQL (16%), Web Serving (35%) and the least in ML Infer-

ence (6%), and Graph Analytics (<1%). While Marghera-2M exhibits

similar TLB hit rates as the baseline system, Marghera-4K is im-

pacted by the use of 4KB pages. Its TLB hit rates are affected the
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Figure 10: Impact of L3 cache partitioning inCore Scheduling.

most in the Data Serving and Web Serving workloads (highest TLB

pressure, > 2𝑥 higher instruction L2 TLB miss rates) and the least

in ML Inference and Graph Analytics (lowest TLB pressure).

The microarchitectural impact is reflected into User IPC. In Data

Serving (SQL) workload, we observe that Marghera-4K exhibits

higher User IPC overheads than application-level overheads (12.7%

vs 7.1%). A possible explanation is that application-level perfor-

mance exhibited high variance while User IPC was quite stable.

L3 Cache Partitioning.We analyze two configurations that imple-

ment the core scheduling 𝑃𝐶𝑜𝑟𝑒 ⊎ (𝑃2𝑀 ⊔ 𝑃𝑋𝐷𝐶 ) with 8 and 16 L3

cache ways, labelled as Marghera-8W-2M and Marghera-16W-2M.

Each workload runs within a two-core VM with 16 GB of DRAM;

both Data Serving workloads use 15 GB databases.

Figure 10 presents the performance and DRAM access rates

of Marghera-8W-2M compared to Marghera-16W-2M. While ML

Inference andWeb Serving encounter the largest increase in DRAM

access rate, the performance loss is small as their L3 cache hit ratios

are still high (75–80%). Overall, we find that the performance impact

of cache partitioning is small (1.4–4.3%) corroborating the small

sensitivity of cloud benchmarks to L3 cache capacity [13].

7 DISCUSSION

Adoption Challenges. In this paper, we inferred an isolation con-

tract for a single CPU by reverse-engineering, which does not scale

to the diverse hardware fleet of cloud providers. In the future, we

expect CPU vendors to develop isolation contracts themselves and

expose them via their hardware interface for consumption by the

hypervisor’s hardware abstraction layer (HAL).

The isolation contracts developed by different CPU vendors must

provide sufficient information so they can be transformed (by the

hypervisor’s HAL) into a universal configuration that parametrizes

generic resource management.

L3 Cache Partitioning. Our findings showed that cache allocation
technology is sufficient to provide cache-level isolation for private

memory lines. In our target CPU, the isolation contract employs

hardware partitioning to divide each of the eight L3 caches (each

one is shared across the chiplet’s cores) into 16 classes, totalling in

128 classes—enough to run as many VMs as the number of cores.

CPUs may employ a shared L3 cache across a number of cores

that is larger than the L3 cache associativity. In such cases, isolation

contracts must provide a coloring scheme that partitions the L3

cache jointly with other shared resources. For instance, on Intel

CPUs, where the directory and L3 cache are indexed identically [65],

coloring the directory would also color the L3 cache.

Resource Underutilization. Page coloring may lead to memory

stranding for arbitrary VM memory sizes. Cloud VMs are not arbi-

trary sized; their size is based on the number of virtual CPUs and

the ratio of host memory to the total number of physical threads,

e.g., Amazon EC2 and Microsoft Azure VMs use 2 GB, 4 GB, or 8

GB per virtual CPU. The cloud provider could minimize memory

stranding by sizing VM memory in multiples of a color’s memory

span, e.g., 1 GB on our evaluated system (512 GB, 512 colors).

Another reason page coloring may lead to memory underutiliza-

tion is that platforms—that isolate XVMs from the root VM—must

designate one shared 𝑃4𝐾 color for allocating shared pages between

root VM and guest VMs. On our evaluated system (with 512 colors),

this accounts for 0.2% of the system’s memory.

Finally, microarchitectural resources assigned to a VM may ex-

ceed its working sets, reducing the resource’s effective capacity. Our

evaluation showed that the associated performance loss is small.

Resource Oversubscription. Our design allows for resource over-

subscription only for conventional VMs inasmuch as non-resource-

exclusive groups can share resources between them and/or have

multiple live VMs bound to them. Flushing their L3 cache and direc-

tory sets is not needed, minimizing context switching overheads.

Oversubscription of XVM resources could be enabled by allowing

multiple XVMs to share a resource-exclusive group while enforcing

the invariant that only one XVM runs at a time. The hypervisor

would need to support (i) an atomic XVM context switch, during

which it flushes the group’s microarchitectural resources; and (ii)

time-slicing of the group at a granularity coarser than that of typical

scheduling intervals to amortize the cost of flushing.

Minimizing Leakage via Hypervisor. The platform could min-

imize cross-VM leakage via the hypervisor context by restricting

the colors for the hypervisor context: (i) the bootloader would need

to map the hypervisor binary to the reserved colors; and (ii) the

hypervisor memory is allocated only from these colors while dedi-

cating one color for allocating memory intended for sharing with

guest VMs, e.g., for ring buffers for hypercalls. The hypervisor could

allocate second-stage page tables within the VM’s assigned colors.

Leakage.While we leave an analysis of application-level leakage

due to intended sharing of memory for future work, we expect,

(1) via its use of shared colors, an XVM may leak to other VMs

when it performs I/O and hypercalls and some information as it

performs I/O with other VMs. Such attacks may be mitigated by

enlightening XVM drivers to obliviously access I/O buffers.

(2) by observing the shared hypervisor context, an attacker VM

could detect execution of the intercept handler on other cores. This

may leak the frequency and type of XVM intercepts, but not VM

data as long as the hypervisor is secret-free [64].

8 RELATEDWORK
Here we focus on work that was not discussed in the paper body.

Spatial partitioning has been employed for various purposes

(besides security isolation of trust domains [15, 47]) including: per-

formance isolation for caches [46] using hardware support or col-

oring [4, 28, 62], DRAM banks [68], or both [52]; and RowHammer

mitigation by coloring DRAM subarrays [36]. Our work introduces

isolation contracts, which provide multi-resource partitioning of
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shared resources without partitioning private resources. Unlike

prior work which proposes platform-specific hierarchical (L3 and

DRAM bank) coloring [52], we capture all security/performance

constraints in one coloring scheme, which can then be enforced in

a platform-agnostic way by the memory manager.

More recently, Quarantine provides an approach to mitigate tran-

sient execution attacks by eliminating sharing of microarchitectural

resources [20]. Their goals are similar to those of the secret-free

hypervisor architecture [64], already implemented by our baseline

hypervisor [2]. Quarantine dedicates a set of physical cores (to

the hypervisor) for handling hypervisor calls and VM intercepts

received by a privilege stub running on each of the remaining cores.

For resources shared across physical cores, Quarantine partitions

only the L3 cache; thus, it could be extended to leverage isolation

contracts to provide holistic microarchitectural domain isolation.

Avoiding spatial partitioning requires hardware support to en-

sure that microarchitectural components do not leak information.

• Prior work proposed locking L3 cache lines (and pages) to

mitigate cache-based side-channels [30]. Such approach is limited

to one resource, and also requires changes to guest VMs and their

applications to use locked pages for their sensitive data.

• Prior work proposed hardware-level mitigations to tackle

cache- and directory-based side-channels, including secure sparse

directories [66], secure shared caches that employ randomized

cache replacement policies [61], or encrypted cache indexing [43,

44] to break the link between evicted cache lines and accessed mem-

ory addresses. Our work can leverage such resources by treating

them as private, i.e., they do not need to be partitioned.

Besides attacks included in our threat model, there are additional

side-channel attack vectors due to sharing the CPU’s IOMMU and

I/O devices (e.g., NICs and GPUs) across trust domains [10, 11, 29].

We leave secure resource sharing of devices for future work.

Leakage models have been used for capturing and detecting

(classic and speculative) side-channels in applications [7, 18]. For-

malizing and reasoning about side-channels at the system level is

still a more open problem [19]; Sison et al. proposed a formalization

of "time protection" for operating systems [49]; it is an avenue for

future work to build similar models on top of isolation contracts.

9 CONCLUSION
We presented Marghera, a system design that prevents cross-VM

microarchitectural side-channel attacks by partitioning resources

based on isolation contracts. We showed how these contracts can

be developed to form a basis for developing hypervisor-enforced

allocation strategies for physical threads andmemory that eliminate

cross-VM information leakage. We hope that our results will inspire

CPU vendors to develop such contracts, enabling cloud providers

to provide comprehensive VM microarchitectural isolation.

An interesting avenue for future work would be to provide side-

channel protection in confidential computing platforms, where the

host OS and hypervisor are untrusted. Software-based confidential

computing platforms [6, 14] are ideal for providing microarchitec-

tural isolation. In such platforms, host-driven resource management

is decoupled from isolation enforcement, which is implemented in

a security monitor. The latter could be extended to microarchitec-

turally isolate VMs from untrusted hosts and VMs.
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