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Abstract
Large language models (LLMs) often incorporate multiple
text chunks in their inputs to provide the necessary contexts.
To speed up the prefill of the long LLM inputs, one can
pre-compute the KV cache of a text and re-use the KV cache
when the context is reused as the prefix of another LLM input.
However, the reused text chunks are not always the input
prefix, which makes precomputed KV caches not directly
usable since they ignore the text’s cross-attention with the
preceding texts. Thus, the benefits of reusing KV caches
remain largely unrealized.

This paper tackles just one question: when an LLM input
contains multiple text chunks, how to quickly combine their

precomputed KV caches in order to achieve the same genera-
tion quality as the expensive full prefill (i.e., without reusing
KV cache)? We present CacheBlend, a scheme that reuses
the pre-computed KV caches, regardless prefix or not, and
selectively recomputes the KV values of a small subset of tokens

to partially update each reused KV cache. In the meantime,
the small extra delay for recomputing some tokens can be
pipelined with the retrieval of KV caches within the same job,
allowing CacheBlend to store KV caches in slower devices
with more storage capacity while retrieving them without

increasing the inference delay. By comparing CacheBlend
with the state-of-the-art KV cache reusing schemes on three
open-source LLMs of various sizes and four popular bench-
mark datasets of different tasks, we show that CacheBlend
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1 Introduction
For their remarkable capabilities, large language models
(LLMs) are widely used in personal assistance, AI healthcare,
and question answering [1, 3, 4, 9]. To ensure high-quality
and consistent responses, applications often supplement the
user query with additional texts to provide the necessary
context of domain knowledge or user-specific information. A
typical example is Retrieval-Augmented Generation (RAG)
where a user query will be prepended by multiple text chunks
retrieved from a database to form the LLM input.
These context text chunks, however, significantly slow

down LLM inference. This is because, before generating any
token, an LLM first uses prefill to go through the entire LLM
input to produce the KV cache—concatenation of tensors
associated with each input token that embeds the token’s
“attention” with its preceding tokens. Thus, the prefill delay
determines the time to first token (TTFT). We refer to it as
full KV recompute (Figure 1(a)). Despite many optimizations,
the delay and computation of prefill grow super-linearly
with the input length, and can easily slow down the service,
especially on long LLM inputs (e.g., in RAG) [11, 53, 60].
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Figure 1. Contrasting full KV recompute, prefix caching, full

KV reuse, and CacheBlend’s selective KV recompute.

So, how do we speed up the prefill of LLM inputs? Many
recent optimizations embrace the fact that same context
texts are often reused by different LLM inputs. They then
pre-compute the KV caches of these texts once and re-use
the stored KV caches to avoid repeated prefill on these reused
texts. There are currently two approaches to KV cache reusing,
but they both have limitations.

First, prefix caching only stores and reuses the KV cache of
the prefix of the LLM input [33, 36, 41, 42, 59] (Figure 1(b)).
Because the prefix’s KV cache is independent of the succeed-
ing texts, prefix caching does not hurt generation quality.
However, many applications, such as RAG, include multiple

text chunks, rather than one, in the LLM input to provide all
necessary contexts to ensure good response quality. Thus,
only the first text chunk is the prefix, and other reused texts’
KV caches are not reused. As a result, the speed of prefix
caching will be almost as slow as full KV recompute.

Second, full KV reuse aims to address this shortcoming (Fig-
ure 1(c)). When a reused text is not at the input prefix, it still
reuses the KV cache by adjusting its positional embedding so
that the LLM generationwill producemeaningful output [24].
However, this method ignores the important cross-attention—
the attention between tokens in one chunk with tokens in
other preceding chunks. The cross-attention information
cannot be pre-computed as the preceding chunks are not
known in advance. Yet, cross-attention can be vital to an-
swer queries (e.g., about geopolitics) that naturally require
understanding information frommultiple chunks jointly (e.g.,
chunks about geography and chunks about politics). §3.3
offers concrete examples to illustrate that prefix caching and
modular caching are insufficient.
This paper tackles the question: when an LLM input in-

cludes multiple text chunks, how to quickly combine their

precomputed KV caches in order to achieve the same gen-
eration quality as the expensive full prefill? In other words,
we seek to have both the speed of full KV reuse and the
generation quality of full KV recompute.
We present CacheBlend, a system that fuses multiple

pre-computed KV caches, regardless of prefix or not, by
selectively recomputing the KV cache of a small fraction of
tokens, based on the preceding texts in the specific LLM
input. We refer to it as selective KV recompute (Figure 1(d)).
At a high level, selective KV recompute performs prefill on
the input text in a traditional layer-by-layer fashion; however,
in each layer, it updates the KV of a small fraction of tokens
while reusing the KV of other tokens.

Comparing with full KV recompute, an update fraction of
less than 15% can typically generate same-quality responses
based on our experience. The deeper reason why it suffices
to only updating a small fraction of KV is due to the sparsity
of attention matrices (see §4.3).
Comparing with full KV reuse, CacheBlend achieves

much better generation quality with a small amount of extra
KV update. Fortunately, this small amount of extra computa-
tion does not affect the end-to-end inference latency, as it is
hidden through pipeline parallelism by CacheBlend. Specif-
ically, CacheBlend parallelizes partial KV update on one
layer with the fetching of the KV cache on the next layer into
GPU memory. Though pipelining KV compute and fetching
is not new, we note that pipelining enables CacheBlend
to store KV caches in slower non-volatile devices (e.g., disk
or a separate storage server) without incurring extra delay
as putting them in CPU memory. This allows CacheBlend
to cache many more KV caches under the same budget and
greatly increases the hit rate.
To put CacheBlend in context, our contribution lies in

enabling the reusing of KV caches of multiple text chunks in
one LLM input, without compromising generation quality.
This is complementary to the recent work that reduces KV
cache storage sizes [28, 35, 42, 43, 45, 58] and optimizes the
access patterns of KV cache [33, 59].

We implemented CacheBlend on top of vLLM, and com-
pared CacheBlend with state-of-the-art KV cache reusing
schemes on three open-source LLMs of various sizes and
three popular benchmark datasets of two LLM tasks. We
show that compared to prefix caching, CacheBlend reduces
time-to-first-token (TTFT) by 2.2–3.3× and increases the
inference throughput by 2.8–5×, without compromising gen-
eration quality or incurring more storage cost. Compared
to modular caching, CacheBlend achieves almost the same
TTFT but 0.1-0.2 higher absolute F1-scores on QA tasks and
0.03-0.25 higher absolute Rouge-L scores on summarization.

2 Background
Most LLM services today use transformers [13, 16, 52]. After
receiving the input tokens, the LLM first uses the prefill
phase (explained shortly) to transform the tokens into key
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(K) and value (V) vectors, i.e., KV cache. After prefill, the LLM
then iteratively decodes (generates) the next token with the
current KV cache and appends the new K and V vectors of
the new tokens to the KV cache for the next iteration.
The prefill phase computes the KV cache layer by layer.

The input tokens embeddings on each layer are first trans-
formed into query (Q), key (K), and value (V) vectors, of
which the K and V vectors form one layer of the KV cache.
The LLM then multiplies Q and K vectors to obtain the at-
tention matrix—the attention between each token and its
preceding tokens—and does another dot product between
the (normalized and masked) attention matrix with the V
vector. The resulting vector will go through multiple neural
layers to obtain the tokens’ embeddings on the next layer.
When the KV cache of a prefix is available, the prefill

phase will only need to compute the forward attentionmatrix
(between the suffix tokens and the prefix tokens) on each
layer which directly affects the generated token.
The prefill phase can be slow, especially on long inputs.

For instance, on an input of four thousand tokens (a typical
context length in RAG [33]), running prefill can take three
(or six) seconds for Llama-34B (or Llama-70B) on one A40
GPU. This causes a substantial delay that users have to wait
before seeing the first word generated. Recent work also
demonstrates that prefill can be a throughput bottleneck, by
showing that getting rid of the prefill phase can double the
throughput of an LLM inference system [60].

3 Motivation
3.1 Opportunities of reusing KV caches
Recent systems try to alleviate the prefill overhead by lever-
aging the observation that in many LLM use cases, the same
texts are used repeatedly in different LLM inputs. This allows
reusing KV caches of these reused texts (explained shortly).
Text reusing is particularly prevalent when same texts

are included in the LLM input to provide necessary contexts
to ensure high and consistent response quality. To make it
more concrete, let’s consider two scenarios.
• In a company that uses LLM to manage internal records,
two queries can be “who in the IT department proposed

using RAG to enhance the customer service X during the last

all-hands meeting?” and “who from the IT department were

graduates from college Y?” While seemingly different, both
queries involve the list of employees in the IT department

as a necessary context to generate correct answers.
• Similarly, in an LLM-based application that summarizes
Arxiv papers, two queries can be “what are the trending
RAG techniques on Arxiv?” and “what datasets are used re-

cently to benchmark RAG-related papers on Arxiv?” They
both need the recent Arxiv papers about RAG as the neces-
sary context to generate correct results.
Since the reused contexts typically contain more informa-

tion than the user queries, the prefill on the “context” part of

the input accounts for the bulk of prefill overhead [22, 33].
Thus, it would be ideal to store and reuse the KV caches
of reused texts, in order to avoid the prefill overhead when
these texts are used again in different LLM inputs.

3.2 Why is prefix caching insufficient?
Indeed, several recent systems are developed to reduce prefill
delay by reusing KV caches. For example, in prefix caching,
the KV cache of a reusable text chunk is precomputed once,
and if the text chunk is at the prefix of an LLM input, then
the precomputed KV cache can be reused to avoid prefill on
the prefix. The advantage of prefix caching is that the KV
cache of a prefix is not affected by the succeeding text, so
the generation result will be identical to full KV recompute
(without the KV cache). Several systems have followed this
approach, e.g., vLLM [36], SGLang [59], and RAGCache [33].
The disadvantage of prefix caching is also clear. To an-

swer one query, applications, such as RAG, often prepend
multiple text chunks in the LLM input to provide different
contexts necessary for answering the query.1 As a result,
except the first chunk, all other chunks’ KV caches are
not reused since they are not the prefix of the LLM input.

Let us think about the queries from §3.1. To answer “who in
the IT department proposed using RAG to enhance the customer

service X during the last all-handsmeeting?”, we need contexts
from multiple sources, including IT department’s employees,
information about service X, and meeting notes from the all-
hands meeting. Similarly, in the Arxiv-summarization app,
answering the example queries will require the LLM to read
several recent RAG-related Arxiv papers as the contexts. Be-
ing on different topics, these contexts are unlikely to appear
together in one text chunk. They are separate text chunks
used together only when answering a particular query.

To empirically show the needs for including multiple text
chunks in LLM inputs, we use two popular multi-hop QA
datasets, Musique and 2WikiMQA. These datasets consist
of queries and multiple associated context texts needed to
answer the queries. Following the common practice of RAG,
we first create a vector database by splitting the contexts
into chunks of 128 tokens (a popular number [29]) using
the text chunking mechanism from Langchain [5]. For each
query, we embed the query using SentenceTransformers [49],
and fetch top-k relevant chunks from the database, based on
the least L2 distance between the embeddings of the query

1Prepending all contexts in an LLM input is a popular way of augmenting
user queries (e.g., “stuff” mode in Langchain and LlamaIndex). By default,
this paper uses this mode. Other RAGmethods like “MapReduce” or “Rerank”
do not fit in this category. They first process each context text chunk sepa-
rately before combining the results from each context. Since each chunk
is always the prefix when processed separately, prefix caching works well.
However, “MapReduce” is slow since it needs to summarize every chunk
before generating the answer from summaries. “Rerank” suffers from low
generation quality if multiple chunks contain relevant information as it
processes every chunk individually. We also empirically evaluate these
methods and compare them with CacheBlend in §7.
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Figure 2. Generation quality improves as more text chunks

are retrieved.

and the chunk respectively. Figure 2 shows the generation
quality, measured using a standard F1-score metric, with an
increasing number of selected text chunks. We can see that
the quality improves significantly as more text chunks are
retrieved to supplement the LLM input, though including
too many chunks hurts quality due to the well-known lost-
in-the-middle issue [40, 54].

In short, prefix caching can only save the prefill of the first

text chunk, so the saving will be marginal when the LLM
input includes more text chunks, even if they are reused.

3.3 Why is full KV reuse insufficient?
Full KV reuse is proposed to address this very problem. This
approach is recently pioneered by PromptCache [24]. It con-
catenates independently precomputed KV caches of recur-
ring text chunks with the help of buffers to maintain the
positional accuracy of each text chunk. For instance, to con-
catenate the KV caches of chunks 𝐶1 and 𝐶2, PromptCache
first needs to precompute the KV cache of𝐶2 by running pre-
fill on a hypothetical input that prepends 𝐶2 with a dummy
prefix of length greater or equal to 𝐶1. This way, even if 𝐶2
is not the prefix, we still correctly preserve the positional
information of𝐶2’s KV cache, though each chunk’s KV cache
will have to be precomputed multiple times.

However, even with the positional information preserved,
a more fundamental problem is that the KV cache of non-
prefix text chunk (e.g., 𝐶2) ignores the cross-attention be-
tween the chunk and the preceding text (e.g., 𝐶1). This is
because the preceding text is not known when precomput-
ing the KV cache.
Ignoring cross-attention can lead to a wrong response.

Figure 3 shows an illustrative example, where a user query
"How many goals did Messi score more than Cristiano Ronaldo

at FIFA World Cups?" is prepended by the two text chunks
of the players’ career statistics. With full prefill or prefix
caching, the result is clear and correct. With full KV reuse
the KV caches of the two text chunks are precomputed, with
each chunk having the right positional embedding, and then
concatenated to form the KV cache. However, if the LLM
uses this KV cache to generate the answer, it will start to
ramble and not produce the right answer.

"Lionel Messi 
scored 13 goals at 
FIFA World Cups.\n"

"Cristiano scored 8 
goals at FIFA World 

Cups.\n"

"Who scored more goals 
at FIFA World Cups, 
Messi or Ronaldo?\n"

"Lionel Messi scored 
more goals than at 
FIFA World Cups than 
Cristiano Ronaldo.\n"

"The question is asking 
for information about 
FIFA World Cups. The 
names of Messi and 

Ronaldo are well-known …"

Chunk 1 Chunk 2 Query

Chunk 1 Chunk 2 + Query

+ QueryKV cache 
Chunk 1

KV cache 
Chunk 2

LLM

LLM

(b) Full KV recompute gives correct answer.

(a) Setup: Query and two relevant text chunks.

(c) Full KV reuse gives wrong answer.

Figure 3. An illustrative example of an LLM input with two

text chunks prepended to a query. Full KV recompute (b), with-

out reusing KV cache, is slow but gives the correct answer. Full

KV reuse (c), however, gives the wrong answer as it neglects

cross-attention between the chunks (Figure 4).

To understand why, we take a closer look at the attention
matrix (explained in §2), particularly the cross-attention
between the two text chunks talking about the players’ sta-
tistics. Figure 4 visualizes the attention matrix resulting from
the KV cache of the original (full) prefill and the KV cache of
full KV reuse. Since full KV reuse precomputes each chunk
separately, the cross attention between two chunks is com-
pletely missed (never computed) when the KV caches are pre-
computed. In this example, the first chunk contains Messi’s
goal count and the second chunk contains Ronaldo’s. The
LLM is queried to compare the goal counts between Messi
and Ronaldo. Neglecting the interaction (cross-attention)
between two chunks would lead to a flawed answer.

In fairness, it should be noted that full KV reuse does work
when the cross-attention between chunks is low. This can
commonly occur with prompt templates which are the main
target application of PromptCache [24].
The absence of cross-attention in full KV reuse causes

significant discrepancies in the forward attention matrix
(explained in §2), which contains the attention between con-
text tokens and the last few tokens, and directly affects the
generated tokens.

To show the prevalence of cross-attention in multi-chunk
LLM inputs, Figure 2 contrasts the response quality (in F1
score) between full KV recompute (with cross-attention) and
full KV reuse (without cross-attention).We can see that as the
number of relevant chunks increases, the disparity between
full prefill and modular caching becomes more pronounced.
This is because, with a larger number of chunks, the amount
of cross-referencing and interdependency between different
parts of the input (cross-attention) increases.

4 Fast KV Cache Fusing
Given that full KV recompute (i.e., full prefill or prefix caching)
can be too slow while full KV reuse has low quality, a natural
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Figure 4. Contrasting the attention matrices of (a) full KV

recompute and (b) full KV reuse. The yellow boxes highlight the

cross-attention. The right-hand side plots show the resulting

forward attention matrices whose discrepancies are a result of

the different cross-attention between the two methods.

question then is how to have both the speed of full KV reuse
and the quality of full KV recompute. Our goal, therefore, is
the following:

Goal. When an LLM input includes multiple re-used text

chunks, how to quickly update the pre-computed KV cache,

such that the forward attention matrix (and subsequently the

output text) hasminimum difference with the one produced
by full KV recompute.

To achieve our goal, we present CacheBlend, which
recomputes the KV of a selective subset of tokens on each
layer while reusing other tokens’ KV.2 This section explains
CacheBlend in three parts. We begin with the notations
(§4.1), and then describe how to recompute the KV of only
a small subset of tokens (§4.2), and finally explain how to

select the tokens on each layer whose KV will be recomputed
(§4.3).

4.1 Terminology
Table 1 summarizes the notations used in this section. For
a given list of 𝑁 text chunks, we use 𝐾𝑉 full to denote the
KV cache from full KV recompute, 𝐾𝑉 pre to denote the pre-
computed KV cache, and 𝐾𝑉 new to denote the CacheBlend-
updated KV cache. Here, each of these KV caches is a concate-
nation of KV caches associated with different text chunks.
Each layer 𝑖 of the KV cache, 𝐾𝑉𝑖 , produces the forward
attention matrix 𝐴𝑖 .

The difference between the full KV recompute (full prefill)
and the full KV re-use is two-fold.

2For simplicity, we use the terms KV and KV cache interchangeably.

Notation Description

𝑖

𝑗

Layer index
Token index

𝐾𝑉

𝐾𝑉𝑖
𝐾𝑉𝑖 [ 𝑗]
𝐾𝑉 full

𝐾𝑉 pre

𝐾𝑉 new

KV cache
KV on layer 𝑖
KV on layer 𝑖 at token 𝑗
Fully recomputed KV cache
Pre-computed KV cache
CacheBlend-updated KV cache

𝐴𝑖

𝐴full
𝑖

𝐴
pre
𝑖

𝐴new
𝑖

Forward attention matrix on layer 𝑖
Forward attention matrix of full KV recompute
Forward attention matrix of full KV reuse
Forward attention matrix with CacheBlend

Δkv (𝐾𝑉𝑖 , 𝐾𝑉 full
𝑖

) [ 𝑗] KV deviation between 𝐾𝑉𝑖 [ 𝑗] and 𝐾𝑉 full
𝑖

[ 𝑗]
Δattn (𝐴𝑖 , 𝐴full

𝑖
) Attention deviation between 𝐴𝑖 and 𝐴full

𝑖

Table 1. Summary of terminology

• KV deviation: We define the KV deviation of a KV cache
𝐾𝑉 on layer 𝑖 of token 𝑗 as the absolute difference between
𝐾𝑉𝑖 [ 𝑗] and 𝐾𝑉 full

𝑖 [ 𝑗], denoted as Δkv (𝐾𝑉𝑖 , 𝐾𝑉 full
𝑖 ) [ 𝑗]. It

measures how much different the given KV is on a particu-
lar token and layer compared to the full-prefilled KV cache.
Wewill later use the KV deviation to identify which tokens’
KV has higher deviation and thus need to be updated.

• Attention deviation: Similarly, for the forward attention
matrix 𝐴𝑖 on layer 𝑖 , we define the attention deviation, de-
noted as Δattn (𝐴𝑖 , 𝐴

full
𝑖 ), to be the L-2 norm of its difference

with 𝐴full
𝑖 . Recall from §3.3 that full KV reuse suffers from

deviation in the forward attention matrix (illustrated in
Figure 4) due to the absence of cross-attention.
Using these notations, our goal can be formulated as how

to quickly update the precomputed KV cache 𝐾𝑉 pre to the
new KV cache 𝐾𝑉 new, such that the attention deviation
Δattn (𝐴new

𝑖 , 𝐴full
𝑖 ) on any layer 𝑖 , is minimized.

4.2 Selectively recomputing KV cache
For now, let us assume we have already selected a subset of
tokens to recompute on each layer (we will explain how to
select them in §4.3). Here, we describe how CacheBlend
recomputes the KV of these selected tokens on each layer.
Workflow: The default implementation of prefill (depicted
in Figure 5(a)) does not “skip” tokens while only computes
the KV of a subset of tokens. Instead, CacheBlend runs the
following steps (depicted in Figure 5(b)):
• It first applies a mask on the input of each layer 𝑖 to reduce
it to a subset of selected tokens.

• It then transforms the reduced input into the𝑄𝑖 , 𝐾𝑖 and𝑉𝑖
vectors will also be restricted to the selected tokens.

• It then expands the 𝐾𝑖 vector and 𝑉𝑖 vector by reusing the
KV cache entries associated with the un-selected tokens
on layer 𝑖 , so that the attention matrix includes attention
between selected tokens and all other tokens.
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Figure 5. Illustrated contrast between (a) full KV recompute

and (b) selective KV recompute on one layer.
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• Finally, it runs the same attention module to produce the
input of the next layer.

These changes make little assumption on the exact trans-
former process and can be integrated with many popular
transformers (more details in §6). It is important to notice
that the compute overhead is proportional to the number
of selected tokens. This is because it only runs computation
associated with the selected tokens. If we recompute 𝑟% of
tokens per layer, the total compute overhead will be 𝑟% of
full prefill.

4.3 Selecting which tokens to recompute
Next, we explain how to choose the tokens whose KV should
be recomputed on each layer in order to reduce the attention
deviation on each layer, which results from the KV deviation.
Our intuition, therefore, is to prioritize recomputing the
KV of tokens who have high KV deviations. Of course, this
intuitive scheme is not feasible as it needs to know full-
prefilled KV cache, and we will make it practical shortly.
To show the effectiveness of selecting tokens with high

KV deviations, Figure 6 uses three models on the dataset of
Musique (please see §7.1 for details). It shows the change of

average attention deviation across all layers 𝑖 , Δattn (𝐴𝑖 , 𝐴
full
𝑖 ),

after we use the aforementioned scheme (§4.2) to select and
recompute the 𝑟% of tokens 𝑗 who have the highest KV devia-
tionΔkv (𝐾𝑉𝑖 , 𝐾𝑉 full

𝑖 ) [ 𝑗]. As the recompute ratio (𝑟 ) increases,
we can see that the attention deviation gradually reduces,
and the biggest drops happen when the top few tokens with
the highest KV deviations are recomputed. Empirically, it
suggests the following insight.

Insight 1. On layer 𝑖 , recomputing the KV of token 𝑗 who has

a higher KV deviation (i.e., Δkv (𝐾𝑉𝑖 , 𝐾𝑉 full

𝑖
) [ 𝑗]) reduces the

attention deviation (i.e., Δattn (𝐴𝑖 , 𝐴
full

𝑖
)) by a greater amount.

Thus, if we recompute the KV of, say 10%, of tokens on
a layer 𝑖 , we should choose the 10% of tokens which have
the highest KV deviations.3 We refer to these tokens as the
High-KV-Deviation (or HKVD) tokens on layer 𝑖 .
Now that we know we should recompute KV for the

HKVD tokens, two natural questions arise.

Do we need to recompute KV for most tokens? In §7,
we empirically show that choosing 10-20% tokens as HKVD
tokens and recomputing their KV suffices to greatly reduce
the attention deviation and preserve generation quality.
This can be intuitively explained by attention sparsity, a

well-studied property observed in many transformer models
by prior research [14, 15, 43, 58]. It says that in an attention
matrix, high attention typically only occurs between a small
number of tokens and their preceding tokens. To validate
this observation, Figure 7 uses the same models and dataset
as Figure 6. It shows the distribution of KV deviation on
one layer. We can see that a small fraction, about 10-15%, of
tokens have much higher KV deviation than others, which
corroborates the sparsity of cross-attention.

If a token has very low attentionwith other chunks’ tokens
(i.e., low cross-attentionwith other chunks), the KV deviation
between 𝐴pre and 𝐴full will be low and thus do not need to
be recomputed. Only when a token has a high attention with
other chunks (high KV deviation compared with ground
truth), should its KV be recomputed.

How to identify the HKVD tokens without knowing
the true KV values or attention matrix? Naively, to iden-
tify the HKVD tokens, one must know the fully recomputed
𝐾𝑉 full

𝑖 of each layer 𝑖 in the first place, but doing so is too
expensive and defeats the purpose of selective KV recom-
pute. Instead, we observe that the HKVD tokens on different
layers are not independent:

3In the precomputed KV cache, the K vector of each chunk must be ad-
justed with the correct positional embedding. In SOTA positional embed-
ding scheme (Rotary Positional Embedding or ROPE [50]), this correc-
tion is done simply by multiplying the K vector by a rotation matrix of(
cos𝑚𝜃 − sin𝑚𝜃

sin𝑚𝜃 cos𝑚𝜃

)
. (The n-dimensional case in Appendix A) This step

has negligible overhead since the multiplication is performed only once.
6



0 20 40 60
KV deviation
(a) Mistral-7B

0.0

0.5

1.0

C
D

F Layer 4
Layer 5
Layer 6

0 25 50 75
KV deviation

(b) Yi-34B

0.0

0.5

1.0

C
D

F Layer 10
Layer 11
Layer 12

0 20 40 60
KV deviation

(c) Llama-70B

0.0

0.5

1.0

C
D

F Layer 4
Layer 5
Layer 6

Figure 7. Distribution of KV deviation of different tokens on

one layer.

5 
vs

. 6
12

 v
s.

 1
3

21
 v

s.
 2

2
31

 v
s.

 3
2

Layer pairs
(a) Mistral-7B

0.0
0.2
0.4
0.6
0.8
1.0

S
pe

ar
m

an
's

 ra
nk

 c
or

re
la

tio
n

be
tw

ee
n 

ne
ig

hb
or

in
g 

la
ye

rs

5 
vs

. 6
16

 v
s.

 1
7

31
 v

s.
 3

2
46

 v
s.

 4
7

Layer pairs
(b) Yi-34B

0.0
0.2
0.4
0.6
0.8
1.0

S
pe

ar
m

an
's

 ra
nk

 c
or

re
la

tio
n

be
tw

ee
n 

ne
ig

hb
or

in
g 

la
ye

rs

11
 v

s.
 1

2
21

 v
s.

 2
2

41
 v

s.
 4

2
61

 v
s.

 6
2

Layer pairs
(c) Llama-70B

0.0
0.2
0.4
0.6
0.8
1.0

S
pe

ar
m

an
's

 ra
nk

 c
or

re
la

tio
n

be
tw

ee
n 

ne
ig

hb
or

in
g 

la
ye

rs

Figure 8. Rank correlation of the KV deviation per token be-

tween two consecutive layers.

Insight 2. Tokens with the highest KV deviations on one layer

are likely to have the highest KV deviations on the next layer.

For instance, if the HKVD tokens on the first layer are tokens
2, 3, and 5, these three tokens will likely also have higher
KV deviations than most other tokens on the second layer.

Figure 8 uses the same setting as Figure 7 and shows Spear-
man’s rank correlation score between the KV deviation of
tokens between two neighboring layers. The figure shows a
consistently high similarity of HKVD tokens between differ-
ent layers.4
The intuition behind this correlation lies in the previous

observation that the input embedding of each token changes
slowly between layers in transformer models [44, 47]. There-
fore, KV cache between layers should also bear similarity
as KV cache is generated from the input embedding with a
linear transformation.
Given the substantial correlation between the HKVD to-

kens, a straightforward solution is that we can perform prefill
on the first layer first, pick the HKVD tokens of the first layer,
and only update their KV on all other layers. Since an LLM
usually has over 30 layers, this process can save most of the
compute compared to full KV recompute. That said, using
only the attention deviation of different tokens on the first
layer may not be statistically reliable to pick HKVD tokens
of all layers, especially deeper layers.
Thus, we opt for a gradual filtering scheme (depicted in

Figure 9). If on average we want to pick 𝑟% HKVD tokens
per layer, we will pick 𝑟1% tokens based on the token-wise
4We should clarify that although the HKVD tokens are similar across layers,
the attention matrices between layers can still be quite different.
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Figure 9. CacheBlend selects the HKVD (high KV deviation)

tokens of one layer by computing KV deviation of only the

HKVD tokens selected from the previous layer and selecting

the tokens among them with high KV deviation.

attention deviation on the first layer, with 𝑟1 being slightly
higher than 𝑟 , and use them as the HKVD tokens on the
second layer. Then we recompute the KV of these 𝑟1%HKVD
tokens on the second layer and pick 𝑟2% tokens that have
the highest token-wise attention deviation, with 𝑟2 slightly
less than 𝑟1, as the HKVD tokens on the next layer, and so
forth. Intuitively, this gradual-filtering scheme eventually
picks the HKVD tokens who have high attention deviation,
not only on the first layer but also on multiple layers, which
empirically is statistically more reliable to identify the HKVD
tokens on each layer.

Although the KV-cache space of the layer i performing the
HKVD calculation holds both Updated-KV and Precomputed-
KV, layer-i’s extra Precomputed-KV is immediately discarded
once the inference proceeds to layer i+1. This makes the
memory overhead in HKVD negligible.

5 CacheBlend System Design
We present a concrete system design forCacheBlend, which
reduces the impact of the selective KV recompute using the
following basic insight.

Basic insight: If the delay for selective KV recompute (§4.3) is

faster than the loading of KV into GPU memory, then properly

pipelining the selective KV recompute and KV loading makes

the extra delay of KV recompute negligible.

Pipelining KV loading and recompute: In CacheBlend,
the selective recompute of one layer can start immediately
after pre-computed the KV cache of the previous layer is
loaded into the GPU. This is because which tokens’ KV to
recompute on one layer only depends on the KV deviation
of the previous layer’s tokens. As a result, if loading the pre-
computed KV for one layer is faster or equal to selective KV
recompute of one layer, the KV-loading delay should be able
to hide the selective recompute delay, i.e., without incurring
any extra delay on time-to-first-token (TTFT).
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Figure 10. (a) Smartly picking the recompute ratio will not

incur an extra delay. (b) Smartly picking storage device(s) to

store KVs saves cost while not increasing delay.

Take the Llama-7B model and a 4K-long context, recom-
puting 15% of the tokens (the default recompute ratio) only
takes 3ms per layer, while loading one layer’s KV cache takes
16 ms from an NVME SSD (§7). In this case, KV loading can
hide the delay for KV recompute on 15% of the tokens, i.e.,
KV recompute incurs no extra delay. Recomputing more to-
kens, which can slightly improve generation quality, may
not incur extra delay either, as long as the delay is below
16 ms. On the contrary, with another model, Llama-70B, re-
computing 15% of tokens takes 7 ms, but it only takes 4 ms
to load one layer’s KV from an NVME SSD. Here KV loading
does not completely hide the recompute delay. In short, a
controller is needed to intelligently pick the recompute ratio
as well as where to store the KV cache (if applicable).

5.1 Key Components
To realize the benefit of pipelining KV loading and recom-
pute, our system has three major components.
Loading Controller: We face two design questions in prac-
tice: First, given a fixed storage device to use, how to choose

a recompute ratio (what fraction of tokens to recompute KV

per layer) without incurring extra delay to time-to-first-token

(TTFT)? Figure 10(a) illustrates an example that, if we select
a recompute ratio wisely, the recompute should not cause
any extra delay to loading if loading is slow.

For this, the controller uses two delay estimators to find an
idealized recompute ratio, such that the recompute delay is
close to the loading delay. Given the recompute ratio 𝑟 , length
of context to be loaded 𝐿, and LLM, the recompute delay esti-

mator calculates the expected delay 𝑇𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒 (𝑟%, 𝐿𝐿𝑀, 𝐿)5.
The loading delay estimator estimates the loading delay of the
KV cache of one layer,𝑇𝑙𝑜𝑎𝑑 (𝐿𝐿𝑀, 𝐿, 𝑠𝑡𝑜𝑟𝑎𝑔𝑒_𝑑𝑒𝑣𝑖𝑐𝑒)6, based
5𝑇𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒 (𝑟%, 𝐿𝐿𝑀, 𝐿) = 𝑟% × 𝑃𝑟𝑒 𝑓 𝑖𝑙𝑙 (𝐿𝐿𝑀, 𝐿) . 𝑃𝑟𝑒 𝑓 𝑖𝑙𝑙 (𝐿𝐿𝑀, 𝐿) is
offline profiled.
6𝑇𝑙𝑜𝑎𝑑 (𝐿𝐿𝑀, 𝐿, 𝑠𝑡𝑜𝑟𝑎𝑔𝑒_𝑑𝑒𝑣𝑖𝑐𝑒 ) = 𝑃𝑒𝑟𝑇𝑜𝑘𝑒𝑛𝐾𝑉𝑆𝑖𝑧𝑒 (𝐿𝐿𝑀 )×𝐿

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝑠𝑡𝑜𝑟𝑎𝑔𝑒_𝑑𝑒𝑣𝑖𝑐𝑒 ) .

on the LLM, the storage device’s speed (which is measured
offline), and the length of context 𝐿.

The controller calculates an idealized recomputation ratio
such that the loading delay can hide the recompute delay,
without degrading the inference quality. It first picks the
recompute ratio 𝑟% such that𝑇𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒 (𝑟%, 𝐿𝐿𝑀, 𝐿) is equal
to 𝑇𝑙𝑜𝑎𝑑 (𝐿𝐿𝑀, 𝐿, 𝑠𝑡𝑜𝑟𝑎𝑔𝑒_𝑑𝑒𝑣𝑖𝑐𝑒), and then takes the max of
𝑟% and 𝑟 ∗%, where 𝑟 ∗% is the minimal recompute ratio that
empirically has low negligible quality drop from full KV re-
compute. In practice, we found 𝑟 ∗% to be 15% from Figure 16.
This means that even if the storage device is a fast device (ex.
CPU RAM), the delay will be lower-bounded by the minimal
recomputation to guarantee quality.
In practice, CacheBlend faces another challenge: which

storage devices should the developer use? To solve this chal-
lenge, we present a more formulated question to the loading
controller: If we only do KV recompute of a fixed selective

recompute ratio (ex. 15%), how can we choose the right storage

device to store KVs such that no extra delay is caused? As
shown in Figure 10(b), under a fixed recompute ratio, the
controller should pick the cheapest storage device among all
devices that do not increase the delay.

In CacheBlend, the system developers can provide a list
of potential storage device(s), and the controller uses a stor-
age cost estimator which estimates the cost of storing KVs
for each device, namely 𝐶𝑠𝑡𝑜𝑟𝑒 (𝐿𝐿𝑀, 𝐿,𝑇 , 𝑠𝑡𝑜𝑟𝑎𝑔𝑒_𝑑𝑒𝑣𝑖𝑐𝑒),
based on the LLM, length of context 𝐿 and time duration
𝑇 needed to store it (if it is cloud storage). Then it uses
𝑇𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒 (15%, 𝐿𝐿𝑀, 𝐿) and𝑇𝑙𝑜𝑎𝑑 (𝐿𝐿𝑀, 𝐿, 𝑠𝑡𝑜𝑟𝑎𝑔𝑒_𝑑𝑒𝑣𝑖𝑐𝑒) to
estimate the recompute and loading delays for all devices.
Lastly, it finds out which storage device is the cheapest where
𝑇𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒 ≥ 𝑇𝑙𝑜𝑎𝑑 . In this way, if the developer can navigate
through the different storage devices for the KV caches given
a fixed recomputation target that satisfies the generation
quality requirement.
KV cache store (mapping LLM input to KV caches): The
KV cache store splits an LLM input into multiple text chunks,
each of which can be reused or new. For instance, a RAG
input typically consists of multiple retrieved context chunks
(likely of a fixed length) and the user input. The splitting of
LLM inputs is specific to the application, and we implement
the same strategy as described in recent work [24, 38]. Once
the input is split into text chunks, each chunk is hashed to
find their corresponding KV cache, in the same way as the
block hashing is implemented in vLLM [36]. The KV caches
of new chunks generated by the fusor (explained soon) are
added to the devices. When the storage devices are full, we
evict the least recently used KV cache. In this paper, we
only focus on storing KV cache in one single level of storage
device such as CPU RAM or SSD.
Fusor: The cache fusor (§4) merges pre-computed KV caches
via selective recompute. Recall from §4.3, the decision of
which tokens need to be recomputed for one layer depends
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on the recompute of the previous layer. Thus, the fusor waits
until the recompute for the previous layer is done, and the
KV caches for layer 𝐿 are loaded into the queue on GPU
memory and then perform selective recompute using the
recompute ratio 𝑟% calculated by the loading controller. The
fusor repeats this process until all the layers are recomputed.

5.2 Putting them together
We put the key components together in an LLM inference
workflow in Figure 11. When a user of an LLM application
submits a question, a list of relevant text chunks will be
queried. The loading controller then queries the KV cache
manager on whether the KV caches for those text chunks
exist, and where they are stored. Next, the KV cache manager
returns this information back to the loading controller and
the controller computes the idealized selective recomputa-
tion ratio, sends it to the fusor, and loads the KV caches into
a queue in GPU memory. The KV cache fusor continuously
recomputes the KV caches in the queue, until all layers are
recomputed. Lastly, the fused KV cache is input into the LLM
inference engine, which generates the answer to the user
question based on the KV cache.

6 Implementation
We implement CacheBlend on top of vLLM with about 3K
lines of code in Python based on PyTorch v2.0.
Integrating Fusor into LLMserving engine: CacheBlend
performs the partial prefill process in a layer-wise manner
through three interfaces:
• fetch_kv(text, layer_id) -> KVCache: given a piece
of text and a layer id, CacheBlend fetches the correspond-
ing KV cache from KV store into the GPU. Returns -1 if
the KV cache is not in the system.

• prefill_layer(input_dict, KVCache) -> output_dict:
CacheBlend takes in the input and KV cache of this layer
and performs the partial prefill process for this particular
layer. The output is used as the input for the next layer.

• synchronize(): CacheBlend requires synchronization
before prefilling every layer to make sure the KV cache of
this layer has already been loaded into the GPU.
We implement these three interfaces inside vLLMs. For

fetch_kv, we first calculate the hash of the text and search
if it is inside the KV store system. If it is present, we call
torch.load() to load it into GPU memory if KV cache is
on disk or use torch.cuda() if the KV cache is inside CPU
memory. For prefill_layer, we implement this interface
on top of the original layer function in vLLM that performs
one layer of prefill. Three key-value pairs are recorded in
the input_dict: (1) the original input data input_org re-
quired for prefilling an LLM layer (e.g., input_tensor, in-
put_metadata), (2) a check_flag indicating whether HKVD
tokens will be selected in this layer, and (3) HKVD_indices
that track the indices of HKVD tokens. If check_flag is
True, the input tokens with the largest deviation between
the newly computed KV cache and the loaded KV cache will
be selected as the HKVD tokens. If check_flag is False,
partial prefill will only be performed on the current HKVD
tokens indicated by HKVD_indices. Only the KV cache of
the HKVD tokens will be computed and updated at each
layer. In the partial prefill for layer 𝑖 , two threads are used
to pipeline the computation (prefill_layer) of layer 𝑖 and
the KV cache loading (fetch_kv) of the next layer 𝑖 + 1.
synchronize is called before prefill_layer to assure the
KV cache needed for prefill has been loaded into GPU.
Managing KV cache: CacheBlendmanages the KV caches
such that: If KV cache is not inside the system and is recom-
puted by the LLM engine in the runtime, we will move the
KV cache into CPU by torch.cpu() and open a thread to
write it back to disk in the background with torch.save().
During fetch_kv, we go through through the hash tables to
fetch KV cache for the fusor. The hash tables are kept in CPU
for their relatively small size (16MB for one million chunks).

7 Evaluation
Our key takeaways from the evaluation are:
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• TTFT reduction: Compared to full KV recompute,
CacheBlend reduces TTFT by 2.2-3.3× over several mod-
els and tasks.

• High quality:Compared with full KV reuse,CacheBlend
improves quality from 0.15 to 0.35 in F1-score and Rouge-L
score, while having no more than 0.01-0.03 quality drop
compared to full KV recompute and prefix caching.

• Higher throughput: At the same TTFT, CacheBlend
can increase throughput by up to 5× compared with full
KV recompute and 3.3× compared with prefix caching.

7.1 Setup

Models and hardware settings: We evaluate CacheBlend
on Mistral-7B[30], Yi-34B[56] and Llama-70B[2] to represent
a wide scale of open source models. Note that we apply 8-bit
model quantization to Llama-70B and Yi-34B. We run our
end-to-end experiments on Runpod GPUs [10] with 128 GB

RAM, 2 Nvidia A40 GPUs, and 1TB NVME SSD whose mea-
sured throughput is 4.8 GB/s. We use 1 GPU to serve Mistral-
7B and Yi-34B, and 2 GPUs to serve Llama-70B.
Datasets: Our evaluation covers the following datasets.
• 2WikiMQA

7 [27]: This dataset aims to test LLM’s reasoning
skills by requiring the model to read multiple paragraphs
to answer a given question. We included 200 test cases,
following the dataset size of previous work [12].

• Musique
7 [51]: This is amulti-document question-answering

dataset. It is designated to test LLM’s multi-hop reason-
ing ability where one reasoning step critically relies on
information from another and contains 150 test cases.

• SAMSum [25]: This dataset comprises multiple pairs of
dialogues and summaries, and requires the LLM to output

7Since the standard answers for 2WikiMQA and Musique are always less
than 5 words, we append “Answer within 5 words.” to their prompts to
reduce the impact of answer length mismatch in F1 score calculation.
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a summary to a new dialogue. It is intended to test the
few-shot learning ability of language models and contains
200 test cases.

• MultiNews [20]: This dataset consists of news articles and
human-written summaries of these articles from the site
newser.com. Each summary is professionally written by
editors and includes links to the original articles cited and
contains 60 sampled cases.

We split contexts into 512-token chunks with Langchain and
use the original 200-400 token chunks in SAMSum. We also
create a synthetic dataset to simulate the chunk reuse in
RAG scenarios. Specifically, we randomly pick 1500 queries
in the Musique and 2WikiMQA datasets each and build a
context chunk database by splitting each query’s context
into 512-token chunks [29] with Langchain [5]. For each
query, we use GPT4 API to generate 3 more similar queries.
In the 6000 queries (1500 original + 4500 simulated), we
retrieve the top-6 chunks8 based on L2 distance, in a random
order[34]. We refer to these datasets as Musique extended

and 2WikiMQA extended. We only report for baselines with
similar quality and skip the result for the first 1K queries as
the initial storage is completely empty.

Quality metrics: We adopt the following standard metrics
to measure the generation quality.
• F1-score [6] is used to evaluate 2WikiMQA and Musique

datasets [12]. It measures the similarity between themodel’s
8Max number of chunks that fit into input token limit for Llama-70B.

output and the ground-truth answer of the question based
on the number of overlapping words.

• Rouge-L score [39] is used to evaluate MultiNews and SAM-

Sum datasets [12]. It measures the similarity between the
model’s output and the ground-truth summaries based on
the longest common sequence.

Baselines: We compare CacheBlend with the following
baselines:
• Full KV recompute: The raw texts are fed into LLM as input.
The LLM calculates KV cache of all tokens during prefill.

• Prefix caching [33, 36, 59]: We adopt the techniques from
SGLang [59] to identify the frequently used prefix chunks
and store their KV caches in both RAM and SSD. The KV
cache of non-prefix tokens needs to be computed during
prefill. We also make an idealized assumption in favor of
prefix caching that there is no loading delay from RAM
or SSD to GPU. This assumption makes it perform better
than it would under real-world conditions.

• Full KV reuse [24]: We implement full KV reuse by using
the approach proposed in PromptCache [24]. We append
a buffer before the text to prepare its KV cache to be used
in different positions with correct positional encoding.
We did not compare with the scaffolding scheme since
its application to RAG scenarios requires human users to
manually select important chunks at runtime.

• MapReduce [7]: Different from traditional MapReduce [18],
this is an alternative RAG method in LangChain. The LLM
first summarises all chunks in parallel and concatenates
them together. The concatenated summaries are then fed
to the LLM again to generate the final answer.

• MapRerank [8]: This is another RAGmethod in LangChain.
In MapRerank, the LLM independently generates an an-
swer from each chunk along with a score based on its
confidence that the answer is correct. The answer with
the highest score is picked as the final output.
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7.2 Overall Improvement

Reduced TTFT with minimal quality drop: Figure 12
compares the average quality and TTFT across the requests,
where each request has a context of 6 top chunks picked
by lowest L2-distance between the respective embeddings
generated by SentenceTransformers [49] (512 tokens per
chunk). As shown in the graph, compared to the full KV
recompute and prefix caching, CacheBlend’s reduction in
F1 and Rouge-L score is within 0.02, while it significantly
reduces the TTFT by 2.2-3.3× across all models and datasets.
While CacheBlend is slower than full KV reuse due to its
selective recomputation, its quality stably outperforms full
KV reuse by a large margin (in many cases more than 2×).
Figure 13 compares CacheBlend with RAG methods in-

cluding MapReduce and MapRerank. Compared to MapRe-
duce, CacheBlend has a 2-5× lower TTFT and higher F1
score.
Higher throughput with lower delay: In Figure 14, we
compare CacheBlend with full KV recompute and prefix
caching on Musique extended and 2WikiMQA datasets un-
der different request rates. CacheBlend achieves lower de-
lay with higher throughput by 2.8-5× than all the baselines
across different models and datasets.
UnderstandingCacheBlend’s improvement: CacheBlend
is better than all baselines for different reasons. Compared to
the full KV recompute, CacheBlend has a much lower delay
and higher throughput due to only a small amount of tokens
are recomputed. Compared to full KV reuse, although its de-
lay is lower than CacheBlend, the quality drops a lot as full
KV reuse did not perform any of the recompute, thus missing
the cross-attention between different chunks. Compared to

prefix caching, CacheBlend is also better in terms of higher
throughput and lower delay as prefix caching needs to store
multiple versions of KV caches for the same chunk if they
have different prefixes. Thus, given the total storage space is
fixed, prefix caching will incur a higher miss rate.
Finally, compared to other RAG methods, like MapRe-

duce and MapRerank, CacheBlend is also better in terms of
quality or delay. For MapReduce, it has a higher delay than
CacheBlend due to additional LLM inference. Although
MapRerank has slightly lower TTFT than CacheBlend, its
quality is much worse, since processing the input chunks
separately ignores the dependencies between chunks.

7.3 Sensitivity Analysis
For a better understanding of CacheBlend, we further ana-
lyze how varying the configurations impacts overall perfor-
mance.
Varying chunk numbers and lengths: Figure 15a and 15b
show the minimum compute time needed by CacheBlend
to maintain generation quality (≤0.015 loss in F1-score) at
different numbers of chunks and chunk lengths. The exper-
iment is conducted on 2WikiMQA with Mistral-7B model.
As shown in the figure, the compute time reduction ratio re-
mains similar across different numbers of chunks and chunk
length settings.
Varying recompute ratios: Figure 16 shows the impact of
the recompute ratio on the quality-TTFT trade-off across all
datasets on Yi-34Bmodel. Across all the datasets,CacheBlend’s
loss in generation quality is at most 0.002 in F1 score or
Rouge-L score compared to full KV recompute, with 5%~18%
recomputation ratio. To put the number into context, the
5%~18% recomputation ratio can be translated to 4.1-6.6×
TTFT reduction compared with full KV-recompute and 3.4-
6.1× TTFT reduction compared with prefix caching.
Varying batch size: Figure 15c shows the compute time
of prefill phase of different batch sizes. It is worth noting
that the time of the decoding phase increases slower than
the prefill phase when the batch size becomes larger [36, 60],
making prefill overhead dominant with increasing batch
size. Therefore, CacheBlend’s improvement over the prefill
phase becomes more prominent to the overall delay reduc-
tion with larger batch sizes.
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Varying storage device: To study the effect of different
storage types on CacheBlend, we modify the underlying
storage devices for every method and conduct a similar ex-
periment as Figure 12 for the Yi-34B model and 2WikiMQA
dataset. As shown in Figure 17, CacheBlend consistently
reduces TTFT with minimal quality degradation when the
KV cache is stored in RAM or a slower SSD device. Notice
that the delay gap between CacheBlend and Full KV reuse
is smaller for slower storage since the delay of CacheBlend
would be more dominated by the loading delay instead of its
partial KV recomputation.

8 Related Work

Retrieval augmented generation (RAG): RAG [22, 23,
37, 46, 48] can enhance the accuracy and reliability of LLMs
with text chunks fetched from external sources. However,
processing these text chunks in the LLM can take a long time.
CacheBlend reduces this overhead by storing and reusing
the KV caches of these text chunks.

KV cache reuse across requests: Storing and reusing
KV cache across different requests have been commonly
studied in recent work [24, 33, 41, 42, 59]. Most of these
works [33, 41, 42, 59] focus on prefix-only caching. Prompt-
Cache [24] allows KV cache to be reused at different po-
sitions but fails to maintain satisfying generation quality
due to inaccurate postional encoding and ignorance of cross
attention. CacheBlend adopts a novel partial recomputa-
tion framework to better retain positional accuracies and
cross attention. Most of the existing work stores KV cache
in volatile memory devices for guaranteed performance (e.g.,
GPU HBM, CPU DRAM). While there are emerging research
trying to reuse high-speed NVME SSD for KV caches [21],
CacheBlend is unique in pipelining loading with partial
recomputation and its extension to even slower object store.

General-purpose LLMserving systems: Numerous general-
purpose LLM serving systems have been developed [11, 36,
57, 60]. Orca [57] enables multiple requests to be processed
in parallel with iteration-level scheduling. vLLM [36] further
increases the parallelsim through more efficent GPU mem-
ory management. CacheBlend is complementary to these
general-purpose LLM serving systems, empowering them
with context resuing capabilities.

Context compression methods: Context compression
techniques [19, 31, 32, 43, 55, 58] can be complementary
to CacheBlend. Some of these techniques [31, 32] shorten
the prompt length by prunining the unimportant tokens.
CacheBlend is compatible with such methods in that it
can take different chunk lengths as shown in §7.3. Another
line of work [19, 43, 58] focus on dropping the unimportant
KV vectors based on the attention matrix, which essentially

reduce the KV cache size. CacheBlend can benifit from such
techniques by storing and loading less KV cache.

9 Limitations and Future Work
Our method in this paper (e.g., the insights in § 4.3) cur-
rently only applies to language models with transformer
structures. We leave investigation of architectures other than
transformer such as Mamba [26] and Griffin [17] for future
work. In our evaluation, we haven’t tested CacheBlend’s
performance on more models and datasets with different
quantization settings. For better understanding and improve-
ment of the method, we have open-sourced our work to
facilitate more effort in this direction.
In this paper, we integrated CacheBlend in vLLM but

have not yet tested CacheBlend’s performance on the latest
serving engines like Distserve[60] or StableGen [11]. Nor
have we studied how to apply CacheBlend to workloads
that share KV cache across different compute nodes. Since
CacheBlend is able to reduce the costly prefill phase, we
believe combining CacheBlend with these new serving en-
gines could potentially bring more savings. We leave the
integration of CacheBlend into these novel inference frame-
works for future work.

10 Conclusion
We present CacheBlend, a KV cache combine module that
enables KV cache reuse in non-prefix locations.CacheBlend
recovers the cross-attention of the text chunks to preserve
generation quality through selective recomputation of HKVD
tokens. By appropriate pipelining of recomputation with KV
cache loading fromnon-volatilememory devices,CacheBlend
reduces inference delay with minimal cost increase. Through
experiments across four datasets and threemodels,CacheBlend
reduces TTFT by 2.2-3.3× and increases throughput by 2.8-
5×, compared to full KV recompute, under negligible quality
drop.
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A N-dimensional positional recovery
Here we prove our positional recovery method can work in
the N-dimensional scenario. We start with the definition of
RoPE in N-dimensional space.

Definition 1 (Rotary Positional Encoding, ROPE[50]). Let
vectors𝑞, 𝑘 ∈ R𝑑

denote the query vector and key vector need to

be embedded at some position m as 𝑞𝑚, 𝑘𝑚 ∈ R𝑑
. Rope encodes

the positional information as the following:

𝑞𝑚, 𝑘𝑚 = R𝑑
Θ,𝑚{𝑞, 𝑘}

where

R𝑑Θ,𝑚 =

©«

cos𝑚𝜃0 − sin𝑚𝜃0 ... 0 0
sin𝑚𝜃0 cos𝑚𝜃0 ... 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0
.
.
. cos𝑚𝜃 𝑑

2 −1
− sin𝑚𝜃 𝑑

2 −1

0 0
.
.
. sin𝑚𝜃 𝑑

2 −1
cos𝑚𝜃 𝑑

2 −1

ª®®®®®®®®®®®¬
is the rotary matrix with hyperparameter Θ ∈ {𝜃𝑖 = 10000−2𝑖𝑑 , 𝑖 ∈

[0, 1, ..., 𝑑2 − 1] }

The reason why our positional recovery method can work
is because attention score between a pair of tokens is in-
varaint to their absolute positions. Below is the proof of this
invariance.

Proposition A.1 (Rope only depends on relative position).
Let vector 𝑘 ∈ R𝑑

denote a key vector and 𝑘𝑚 ∈ R𝑑
denote the

key vector embedded at the fixed position m. And let vector

𝑞 ∈ R𝑑
denote a query vector and 𝑞𝑚+𝑙 ∈ R𝑑

denote the query

vector embedded at position (m+l). Then attention score𝑞𝑚+𝑙𝑘𝑚
is derived as follow

𝑞𝑚+𝑙𝑘𝑚 = (R𝑑
Θ,𝑚+𝑙𝑞)

𝑇 (R𝑑
Θ,𝑚𝑘)

=

𝑑/2−1∑︁
𝑖=0

(𝑞 [2𝑖 ]𝑘 [2𝑖 ] cos(𝑚 + 𝑙 −𝑚)𝜃𝑖

+ 𝑞 [2𝑖+1]𝑘 [2𝑖+1] cos(𝑚 + 𝑙 −𝑚)𝜃𝑖 )

=

𝑑/2−1∑︁
𝑖=0

(𝑞 [2𝑖 ]𝑘 [2𝑖 ] + 𝑞 [2𝑖+1]𝑘 [2𝑖+1]) cos 𝑙𝜃𝑖

(1)

where {𝑞, 𝑘}[𝑖 ] denotes i-th entry of vectors {𝑞, 𝑘} and ℎ𝑖 de-
notes dot product𝑞𝑖𝑘𝑖 . The attention score𝑞𝑚+𝑙𝑘𝑚 only depends

on the relative distance 𝑙 rather than the absolute position𝑚.
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