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At the heart of the Damas-Hindley-Milner (HM) type system lies the abstraction rule which derives a function

type for a lambda expression. This rule allows the type of the parameter to be “guessed”, which allows for

multiple possible types for functions like the identity function. The beauty of the HM system is that there

always exists a most general type that encompasses all possible derivations. Algorithm W is used to infer

these most general types in practice.

Unfortunately, this property is also the weakness of the HM type rules. Many languages extend HM typing

with additional features which often require complex side conditions to the type rules to maintain principal

types. For example, various type systems for impredicative type inference, like HMF, FreezeML, or Boxy

types, require let-bindings to always assign most general types. Such a restriction is difficult to specify as a

logical deduction rule though, as it ranges over all possible derivations. Despite these complications, the actual

implementations of various type inference algorithms are usually straightforward extensions of algorithm W,

and from an implementation perspective, much of the complexity of various type system extensions, like

boxes or polymorphic weights, is in some sense artificial.

In this article we rephrase the HM type rules as type inference under a prefix, called HMQ. HMQ is sound

and complete with respect to the HM type rules, but always derives principal types that correspond to the

types inferred by algorithm W. The HMQ type rules are close to the clarity of the declarative HM type rules,

but also specific enough to “read off” an inference algorithm, and can form an excellent basis to describe type

system extensions in practice. We show in particular how to describe the FreezeML and HMF systems in terms

of inference under a prefix, and how we no longer require complex side conditions. We also show a novel

formalization of static overloading in HMQ as implemented in Koka language.

1 INTRODUCTION
At the heart of Damas-Hindley-Milner style type inference [Damas and Milner 1982; Hindley 1969;

Milner 1978] lies the abstraction rule which infers a type 𝜏1→𝜏2 for a lambda expression 𝜆x .e under
a type environment Γ:

Γ, x :𝜏1 ⊢ e : 𝜏2

Γ ⊢ 𝜆x .e : 𝜏1→𝜏2
fun

Interestingly, the type 𝜏1 of the parameter x occurs free and is “guessed” – it can be any type that fits

the derivation. This encompasses both the beauty, but also the bane, of the Damas-Hindley-Milner

(HM) type rules.

For example, for the identity function 𝜆x . x we can derive many types, like int → int, or
bool→ bool etc. That seems a problem at first, but the beauty of the HM type rules is that there

always exists a derivation with a most general type of which all other possible derivations are

an instance – in the identity case the type ∀𝛼.𝛼 → 𝛼 . Moreover, there exist an algorithm W that

always infers these most general types which is widely used in practice for HM style type inference.

Nevertheless, this rule is also the bane of HM type inference. In practice many languages extend

HM typing with various extensions and it turns out that the inference rules need to be restricted

in often complicated ways. For example, Leijen [2008] describes the HMF system that allows for

impredicative higher-ranked types. He gives the following example:

let wrapl x y = [y] in wrapl ids id
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where ids has the impredicative type [∀𝛼.𝛼 → 𝛼] (i.e. a list of polymorphic identity functions). If

wrapl is given its most general type, namely∀𝛼𝛽. 𝛼 → 𝛽 → [𝛽], we can derive the type∀𝛼.[𝛼 → 𝛼]
for the body. However, if we use the [fun] rule to “guess” a less general type for wrapl, namely

∀𝛼.[𝛼] → 𝛼 → [𝛼], then we can derive (in HMF) the type [∀𝛼.𝛼 → 𝛼] for the body (as the shared

𝛼 now matches with the polymorphic identity type). Unfortunately, these types are incomparable –

neither is an instance of the other – and we lose principal type derivations. To fix this issue, the

HMF system includes a side-condition on the let-rule to always assign most general types:

Γ ⊢ e1 : 𝜎1 Γ, x :𝜎1 ⊢ e2 : 𝜎2
∀𝜎. Γ ⊢ e1 : 𝜎⇒ 𝜎1 ⊑ 𝜎

Γ ⊢ let x = e1 in e2 : 𝜎2
hmf-let

From a logical perspective this condition is quite unsatisfactory. It is no a longer a natural deduction

rule since the condition ranges negatively over all possible derivations, making it more difficult to

reason about. In another more recent example, Emrich et al. [2020] describe the FreezeML system

that also includes a side-condition on the let-rule that ranges over all possible derivations, and they

write “the reader may be concerned about whether the typing judgement is well-defined given that it
appears in a negative position in the definition of principal. [. . . ] the definition is nevertheless well
founded by indexing by untyped terms or the height of the derivation tree”. Vytiniotis et al [2006,§6]
also introduce a similar let rule in the context of boxy type inference, and similar ideas were

also used by Leroy and Mauny [1993] for the typing of dynamics in ML, and by Garrigue and

Rémy [1999,§5] in their extension of ML with semi-explicit first-class polymorphism.

An example of a novel extension that we describe in this article is static overloading. With static

overloading, we allow a function f to be defined in different modules, say modi and modb, where
we can give their fully qualified names as modi/f and modb/f . Suppose they have the types:

modi/f : int → int
modb/f : bool→ int
The idea is now to use local type information to allow a programmer to write just f and have

it be resolved to either definition. For example, f 1 would be elaborated to modi/f 1. Since the

overloading is static, we reject expressions where the the definition cannot be resolved uniquely. For

example a bare f is rejected, but we would also like to reject 𝜆x . f x. Unfortunately, the [fun] rule
again allows us to “guess” the type int for x, in which case we could elaborate to 𝜆x : int . modi/f x
– but also we could guess the type bool for x and derive 𝜆x : bool. modb/f x. Again, the flexibility
of the [fun] rule causes non-principal derivations.

The interesting part of all the previous examples is that it is only difficult to extend the declarative

HM type rules with the new extensions – but for all of the example systems, the changes to the

actual type inference implementation, based on algorithm W, are usually quite straightforward! For

example, all HM based type inference algorithms already infer most general types for let-bindings

– as required by HMF, FreezeML, or Boxy type inference; and they will already use a general type

𝛼 for the x binding in the static overloading example (and not some arbitrary type int or bool).
As such, most of the complexity that we see in the type rules of these systems are in some sense

artificial, and are only needed to constrain the high level declarative rules enough to match the

inference algorithm more closely!

This leads one to ask if we can perhaps create a more restricted set of inference rules that match

the inference algorithm more closely while still being close to the clarity of the HM type rules.

In this article we rephrase the HM type rules as type inference under a prefix, called HMQ. These

new rules always derive principal types that correspond to the types inferred by algorithm W (and

we can use algorithm W [Damas and Milner 1982] unchanged to infer types for HMQ as well). In

particular, if we can derive a type 𝜎1 in HM, then we can also derive a type 𝜎2 in HMQ such that
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e ::= x | f (variables)

| e e (application)

| 𝜆x . e (function)

| let x = e in e (let binding)

| e : 𝜏 (type annot.)

Γ ::= x1 :𝜎1, . . ., xn :𝜎n (type environment)

Q ::= {𝛼1=𝜏1, . . ., 𝛼n=𝜏n} (prefix)

𝜏 ::= 𝛼 (type variable)

| 𝜏 → 𝜏 (function arrow)

| int | bool | . . . (type constants)

𝜎 ::= ∀𝛼.𝜎 (quantifier)

| 𝜏 (monomorphic type)

𝛽 ∩̸ ftv(∀𝛼. 𝜏)
∀𝛼. 𝜏 ⊑ ∀𝛽. [𝛼 :=𝜏]𝜏

instance

Fig. 1. Syntax of types and terms.

𝜎2 can be instantiated to 𝜎1. We use a prefix Q to propagate type variable constraints in such a

way that there is no need for complex side conditions and we retain natural deduction rules. As

such, we believe the HMQ type rules are close to the clarity of the HM type rules and can form an

excellent basis to describe type system extensions in practice. We show for example how we can

describe FreezeML and HMF type inference in this system, and use it to formalize static overloading

as implemented in the Koka language.

2 INFERENCE UNDER A PREFIX
The goal of HMQ is two-fold: First of all, we’d like the rules to be closer to algorithm W so we are

able to “read off” the algorithm from the declarative type rules. At the same time though, we’d like

to retain the clarity of the original HM rules as much as possible. HMQ can serve as foundation

to specify practical type systems in a declarative way that serves both purposes: users can easily

reason about what programs are accepted by the type checker, while compiler writers can derive

sound implementations from those same rules.

2.1 Syntax
Figure 1 describes the syntax of our standard lambda calculus expressions e, mono-types 𝜏 , and

polymorphic type schemes 𝜎 . The [instance] rule gives the general instantiation rule where

we write 𝜎1 ⊑ 𝜎2 when a type 𝜎1 can be instantiated to a type 𝜎2. For example, ∀𝛼𝛽. 𝛼 → 𝛽 ⊑
∀𝛽. int → 𝛽 ⊑ int → bool. Note that we can only instantiate bound type variables 𝛼 , and not the

free type variables in 𝜎1 (written as ftv(∀𝛼. 𝜏)), and in particular, ∀𝛼. 𝛼 → 𝛽 ⊑ int → bool does not
hold. A prefix Q is a set of type variable bindings and we describe this in detail later in this section.

A type environment Γ gives the types of variables bound by a lambda or let binding. We write

Γ, x :𝜎 to extend a type environment with a new binding x :𝜎 (replacing any previous binding for

x in Γ).

2.2 Type Rules
Figure 2 defines the HMQ type inference rules, where a judgment Q | Γ ⊢ e : 𝜎 states that under a

prefix Q and type environment Γ, we can derive type 𝜎 for the expression e. The prefix Q and the

type 𝜎 are synthesized (i.e. output) while Γ and e are inherited (i.e. input).

We will go through the rules one-by-one, explaining the design decisions and implications as

we go. We start with the [var] and [gen] rules that match the corresponding HM type rules (see

Figure 7 in Appendix A) quite closely. the [var] rule reads the type bound to a variable from the

type environment, while [gen] generalizes over free type variables that no longer occur in Γ (and

Q in our case).
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Q
↓
out

| Γ
↑
in

⊢ e
↑
in

: 𝜎
↓
out

with ⊨Q

x :𝜎 ∈ Γ
∅ | Γ ⊢ x : 𝜎

var

Q | Γ ⊢ e : ∀𝛼.𝜎 fresh𝛼

Q | Γ ⊢ e : 𝜎
inst

Q | Γ ⊢ e : 𝜎 𝛼 ̸∈ ftv(Q, Γ)
Q | Γ ⊢ e : ∀𝛼.𝜎

gen

Q | Γ, x :𝛼 ⊢ e : 𝜏 fresh𝛼

Q | Γ ⊢ 𝜆x . e : 𝛼 → 𝜏
fun

Q · 𝛼=𝜏 | Γ ⊢ e : 𝜎 𝛼 ̸∈ ftv(Q, Γ)
Q | Γ ⊢ e : [𝛼 :=𝜏]𝜎

gensub

Q1 | Γ ⊢ e1 : 𝜏1 Q2 | Γ ⊢ e2 : 𝜏2 Q3 ⊢ 𝜏1 ≈ 𝜏2→ 𝛼 fresh𝛼

Q1,Q2,Q3 | Γ ⊢ e1 e2 : 𝛼
app

Q1 | Γ ⊢ e1 : 𝜎 Q2 | Γ, x :𝜎 ⊢ e2 : 𝜏 ftv(𝜎) ⊆ ftv(Γ)
Q1,Q2 | Γ ⊢ let x = e1 in e2 : 𝜏

let

Fig. 2. Type rules under a prefix

2.3 Do Not Guess Types
As argued in the introduction, the guessing of types in the lambda rule is both problematic for

describing type system extensions, but also for implementing an inference algorithm – what type

to guess? In HMQ we follow algorithm W and always infer an abstract type 𝛼 for a lambda-bound

parameter. In particular, in the [fun] rule the type is now always a fresh variable 𝛼 – just as in

algorithmW (see Figure 9 in Appendix A.2). For example, we can derive the type of the polymorphic

identity function as:

x :𝛼 ∈ (Γ, x :𝛼)
∅ | Γ, x :𝛼 ⊢ x : 𝛼

∅ | Γ ⊢ 𝜆x . x : 𝛼 → 𝛼

∅ | Γ ⊢ 𝜆x . x : ∀𝛼.𝛼 → 𝛼
gen

fun

var

Unlike the HM type rules there is no choice here for the type of the binding and we can only derive

the type of the polymorphic identity function and not for example int → int.
The other rule where we prevent guessing a type is the [inst] rule where we always instantiate

directly to a fresh type 𝛼 (where we rely on 𝛼-renaming to match the quantifier). Again, this

corresponds to how algorithm W always instantiates using fresh type variables.

As an aside, we use fresh 𝛼 notation to create fresh names 𝛼 , not only such that 𝛼 ̸∈ ftv(Q, Γ) in
the local rule, but also to ensure there is no other occurrence of 𝛼 as a fresh name in the derivation.

We see this as a convenient notation for a more explicit formalization where we pass a fresh name

supply using disjoint union for multiple sub-derivations – see Figure 10 in Appendix B for the full

rules. However, adding an explicit name supply clutters the rules somewhat while not adding any

essential insight so we prefer the fresh notation when applicable (i.e. when not doing proofs).

2.4 The Prefix.
Clearly, we cannot always keep a parameter type abstract. For example, we’d like to infer the type

int → int for the expression 𝜆x . inc x. This is where we need the prefix Q, which is a set of type
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Q
↓
out

⊢ 𝜏
↑
in

≈ 𝜏
↑
in ∅ ⊢ 𝜏 ≈ 𝜏

eq-id

Q1 ⊢ 𝜏1 ≈ 𝜏 ′1 Q2 ⊢ 𝜏2 ≈ 𝜏 ′2
Q1,Q2 ⊢ 𝜏1→ 𝜏2 ≈ 𝜏 ′

1
→ 𝜏 ′

2

eq-fun

𝛼 ̸∈ ftv(𝜏)
{𝛼=𝜏} ⊢ 𝛼 ≈ 𝜏

eq-var

Q ⊢ 𝜏2 ≈ 𝜏1
Q ⊢ 𝜏1 ≈ 𝜏2

eq-refl

Fig. 3. Type equivalence under a prefix.

variable bounds 𝛼=𝜏 (similar to the rigid bounds of MLF [Le Botlan and Rémy 2003]):

Q ::= {𝛼1=𝜏1, . . ., 𝛼n=𝜏n}
The binders 𝛼 form the domain of Q, and the types 𝜏 form the range. The codomain of Q consists

of the free type variables of the range, and we define ftv(Q) as all free type variables in Q, where
ftv(Q) = dom(Q) ∪ codom(Q). Note that a general prefix is just a collection of type variable bounds,
and can for example have have duplicate bindings, like {𝛼=𝛽→int, 𝛼=int→𝛾} or {𝛼=bool, 𝛼=int}.
We write 𝜃 ⊨Q if a substitution 𝜃 is a solution to Q that satisfies all the constraints in Q where

∀(𝛼=𝜏) ∈ Q. 𝜃𝛼 = 𝜃𝜏 . If there exists any solution to Q, we say that Q is consistent or solvable, and
we denote this by writing just ⊨Q. For example, {𝛽=int, 𝛼=𝛽→int} or {𝛼=𝛽→int, 𝛼=int→𝛾} are
consistent prefixes. Examples of inconsistent prefixes that do not have a solution, are prefixes with

with incompatible bindings, like {𝛼=int, 𝛼=bool}, or with cyclic bindings, like {𝛼=𝛽, 𝛽=𝛼→𝛼}.
We call a least solution of a prefix Q a prefix solution, written as ⟨Q⟩, such that for any other

solution 𝜃 ⊨Q, the prefix solution is more general
1
: ⟨Q⟩ ⊑𝜃 . We write Q[𝜏] as a shorthand for

applying the prefix solution as ⟨Q⟩(𝜏). Also, we sometimes leave out the angled brackets when the

prefix substitution is clear from the context, and for example write Q⊑𝜃 for ⟨Q⟩ ⊑𝜃 .
Finally, we consider two prefixes equivalent whenever their solution substitutions are equivalent:

Q1 ≡ Q2 ⇔ ⟨Q1⟩ ≡ ⟨Q2⟩. For example, we have {𝛼=𝛽→int, 𝛼=𝛾→𝛾} ≡ {𝛾=int, 𝛽=𝛾, 𝛼=𝛾→𝛾} ≡
{𝛽=int, 𝛾=int, 𝛼=int→int}. Similar to 𝛼-renaming, we can always substitute equivalent prefixes in

type derivations.

2.4.1 Type Equivalence Under a Prefix. A consistent union is written as Q1,Q2 and denotes the

union Q1 ∪ Q2 where Q1 ∪ Q2 is solvable. We use this in the conclusion of most type rules to ensure

that we can only derive consistent prefixes. The consistent union allows for a better declarative

specification than using substitutions, since we can compose prefixes from different sub-derivations

as Q1,Q2, and we do not need to thread substitutions statefully through the rules.

The elegance of composable prefixes is shown in the definition of equivalence between types

under a prefix as shown in Figure 3 (corresponding closely to unification). A rule Q ⊢ 𝜏1 ≈ 𝜏2 states
that type 𝜏1 is equal to 𝜏2 under a prefix Q. Note how in the [eq-fun] rule we can compose the

prefixes Q1 and Q2 from each sub derivation without needing to thread a substitution linearly

through the derivations. It is straightforward to show that our definition of type equivalence is

sound and complete:

Theorem 2.1. (Type equivalence under a prefix is sound)
If Q ⊢ 𝜏1 ≈ 𝜏2 then Q[𝜏1] = Q[𝜏2].

Theorem 2.2. (Type equivalence under prefix is complete)
If 𝜃𝜏1 = 𝜃𝜏2, then Q ⊢ 𝜏1 ≈ 𝜏2 and Q⊑𝜃 .
Soundness states that if we can derive that 𝜏1 and 𝜏2 are equivalent under a prefix Q, then the types

are syntactically equal under the prefix solution: Q[𝜏1] = Q[𝜏2]. Completeness shows that if there

1
Following Pierce [2002,§22.4.1] we write 𝜃1 ⊑𝜃2 to denote that 𝜃1 is a more-general (or less-specific) substitution as 𝜃2,

which holds if there exists some substitution 𝜃 ′ such that 𝜃2 = 𝜃 ′ ◦ 𝜃1.
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exists any substitution 𝜃 that makes two types equal, then we can also derive that these types are

equivalent under a prefix Q, and that such prefix is also the “best” (most-general) solution: ⟨Q⟩ ⊑𝜃

2.4.2 Application. We use type equivalence in the HMQ application rule [app] in Figure 2 to match

the function type 𝜏1 with the argument type 𝜏2 and a fresh result type 𝛼 :

Q3 ⊢ 𝜏1 ≈ 𝜏2→ 𝛼

Similar to parameter types, we use a fresh type variable 𝛼 to represent the result type of the appli-

cation. The application rule now corresponds directly to the usual implementation in algorithm W

where one unifies with the function type (see Figure 9 in Appendix A.2). We can now derive a type

for the application inc x as:

∅ | Γ, x :𝛼 ⊢ inc : int→int ∅ | Γ, x :𝛼 ⊢ x : 𝛼 {𝛼=int, 𝛽=int} ⊢ int→int ≈ 𝛼→𝛽

{𝛼=int, 𝛽=int} | Γ, x :𝛼 ⊢ inc x : 𝛽
app

Note that in the judgement Q | Γ ⊢ e : 𝜎 , both the inferred type 𝜎 and the prefix Q are synthesized

(i.e. output). Moreover, the rules are carefully set up to ensure that the resulting Q only contains

constraints that are “induced” by the structure of the program and types, where the set of constraints

is minimal. In particular, the only possible leaf nodes of a derivation are [var] and the type

equivalence rules [eq-id] and [eq-var]. Since both [var] and [eq-id] have an empty prefix ∅, the

only way to create (or dismiss depending on your viewpoint!) prefix constraints is through the

[eq-var] rule. This is property is crucial as it ensures that, unlike the HM type rules, we can never

“make up” type constraints: all constraints are induced by the structure of the program and types.

2.4.3 Extracting Bounds to Substitute. We write Q = Q′ · 𝛼=𝜏 to extract a non-dependent bound
𝛼=𝜏 from a prefix Q such that Q = Q′ ∪ {𝛼=𝜏} with 𝛼 ̸∈ ftv(Q′, 𝜏):

Q = Q′ ∪ {𝛼=𝜏} 𝛼 ̸∈ ftv(Q′, 𝜏)
Q = Q′ · 𝛼=𝜏

extract

This allows us to split a prefix Q into a bound 𝛼=𝜏 and a remaining prefix Q′ that does not depend
𝛼 . Using extraction, we can now discharge prefix bounds with the [gensub] rule. This is similiar to

generalization in the [gen] rule, except that we substitute the inferred monomorphic type bound

on 𝛼 . With [gensub], we can finally derive the type of 𝜆x . inc x as:

∅ | Γ, x :𝛼 ⊢ inc : int→int ∅ | Γ, x :𝛼 ⊢ x : 𝛼 {𝛼=int, 𝛽=int} ⊢ int→int ≈ 𝛼→𝛽

{𝛼=int, 𝛽=int} | Γ, x :𝛼 ⊢ inc x : 𝛽

{𝛼=int} | Γ, x :𝛼 ⊢ inc x : int

{𝛼=int} | Γ ⊢ 𝜆x . inc x : 𝛼 → int

∅ | Γ ⊢ 𝜆x . inc x : int → int
gensub

fun

gensub

app

2.5 Principal Derivations
In the [let] rule we find a single side condition: ftv(𝜎) ⊆ ftv(Γ). This is to ensure that any free

type variables in 𝜎 that do not occur in Γ are generalized by [gen] or [gensub]. Since there are
no longer “guessed” types, this condition is enough to guarantee that all let-bindings get a most

general type.

Since the prefix bounds are minimal, and always induced by either the structure of the program

(by [app]), or by the structure of the types (by [eq-var]), the types that can be derived by the HMQ

rules are always most general, and we can show the rules are sound and complete with respect to

the standard HM type rules:

6



Theorem 2.3. (Soundness)
If Q | Γ ⊢ e : 𝜎 then we also have Q[Γ] ⊢hm e : Q[𝜎].

Theorem 2.4. (Completeness)
If Γ ⊢hm e : 𝜎 , then there exists a 𝜃 such that 𝜃Γ′⊑Γ, with Q | Γ′ ⊢ e : 𝜎 ′, Q⊑𝜃 , and 𝜃𝜎 ′⊑𝜎 .
As a corrollary, we also have that algorithm W is a valid type inference algorithm for HMQ (and

since W is also complete it infers the same types as HMQ derives).

The soundness theorem states that if we can derive a type 𝜎 under a prefix Q in HMQ, then we

can also derive the type Q[𝜎] in HM (see Figure 7 in Appendix A for the definition of ⊢hm). We need

to apply the prefix to 𝜎 since it can still contain bounds (that could be applied with [gensub]).
The completeness theorem is more involved. We may have expected to see a simpler statement

like: if Γ ⊢hm e : 𝜎 , thenQ | Γ′ ⊢ e : 𝜎 ′ withQ[𝜎 ′] ⊑ 𝜎 . That does not hold though since derivations

may contain abstract types in our system. In particular, any lambda bound parameter always has

an “abstract” type 𝛼 and there may be no bound yet.

For example,

x :𝛼 ∈ (x :𝛼)
∅ | x :𝛼 ⊢ x : 𝛼

var

∅ | ∅ ⊢ 𝜆x . x : 𝛼 → 𝛼
lam

∅ | ∅ ⊢ 𝜆x . x : ∀𝛼.𝛼→𝛼
gen

, but in the HM type rules, we can also derive:

x : int ∈ (x : int)
x : int ⊢hm x : int

var

∅ ⊢hm 𝜆x . x : int → int
lam

For an inductive proof, it means that for the [var] case, we would need to show that if we derive

x : int ⊢hm x : int, we can also derive ∅ | x :𝛼 ⊢ x : 𝛼 with ∅[𝛼] ⊑ int which does not hold.

Therefore, the actual completeness theorem states that there exists some substitution 𝜃 with

𝜃Γ′ ⊑ Γ, then Q ⊑ 𝜃 and 𝜃𝜎 ′ ⊑ 𝜎 . In our example, when we use 𝜃 = [𝛼 :=int], we indeed have

∅ ⊑ [𝛼 :=int] and [𝛼 :=int]𝛼 ⊑ int. There is one more subtlety in that we need to use 𝜃𝜎 ′ ⊑ 𝜎

and cannot use equality as 𝜃𝜎 ′ = 𝜎 . In particular, in the HM type rules we can also introduce

more sharing for let-bindings than we can in HMQ. For let const = 𝜆x .𝜆y. y we always infer

const :∀𝛼 𝛽. 𝛼→𝛽→𝛼 in HMQ but under the HM rules we can also derive the type ∀𝛼.𝛼→𝛼→𝛼 .

In such case, for the [var] rule we still need to show ∀𝛼 𝛽. 𝛼→𝛽→𝛼 ⊑ ∀𝛼.𝛼→𝛼→𝛼 . (and thus we

need the instance relation⊑ ). For the inductive proof, the full required completeness theorem is

actually a bit more general than stated here (see Appendix C.9 for details).

2.6 Idempotent Mappings
The reader may have noticed that [gensub] may not always apply as we cannot always extract a

binding 𝛼 even if 𝛼 ̸∈ ftv(Γ). In particular, there might be multiple bounds for a type variable in the

prefix, like {𝛼=𝛽→int, 𝛼=int→𝛾}, and in that case we cannot extract 𝛼 directly for the [gensub] rule
(since 𝛼 ∈ ftv(Q′)). However, for any consistent prefix, we can always simplify multiple bindings:

Theorem 2.5. (Simplify)
If Q′ ⊢ 𝜏1 ≈ 𝜏2, then Q ∪ {𝛼=𝜏1, 𝛼=𝜏2} ≡ Q ∪ Q′ ∪ {𝛼=𝜏1}
For example, {𝛼=𝛽→int, 𝛼=int→𝛾} ≡ {𝛽=int, 𝛾=int, 𝛼=𝛽→int}. By using repeated simplification,

we can always bring a consistent prefix in a form where all bindings are distinct (called a mapping).
Even with a mapping, there are still cases where we may have a dependency that prevents extrac-

tion. For example, whenwewould like to extract𝛼 from {𝛽=𝛼, 𝛼=int→int} (where𝛼 ∈ ftv({𝛽=𝛼})).
It turns out though that any consistent prefix is always equivalent to an idempotent mapping where

dom(Q) ∩̸ codom(Q), e.g. {𝛽=𝛼, 𝛼=int→int} ≡ {𝛽=int→int, 𝛼=int→int}.
Theorem 2.6. (Any consistent prefix is equivalent to an idempotent mapping)
If ⊨Q, then there exists an equivalent idempotent mapping Q′ (where Q ≡ Q′, |dom(Q′) | = |Q′ |
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Q
↓
out

⊢ 𝜏
↑
in

→≈ 𝜏
↑
in

→ 𝜏
↓
out

Q ⊢ 𝜏1 ≈ 𝜏2
Q ⊢ 𝜏1→ 𝜏

→≈ 𝜏2→ 𝜏
mfun

Q ⊢ 𝛼 ≈ 𝜏 → 𝛽 fresh 𝛽

Q ⊢ 𝛼
→≈ 𝜏 → 𝛽

mvar

Q1 | Γ ⊢ e1 : 𝜏1 Q2 | Γ ⊢ e2 : 𝜏2 Q3 ⊢ 𝜏1 →≈ 𝜏2→ 𝜏

Q1,Q2,Q3 | Γ ⊢ e1 e2 : 𝜏
app-match

Fig. 4. Function matching.

and dom(Q′) ∩̸ codom(Q′)).
This essentially allows us to always simplify a prefix enough to apply [gensub] for any binding 𝛼

in Q where 𝛼 ̸∈ ftv(Γ).

2.7 Flexible Bounds
The idea of inference under a prefix is inspired by the use of a prefix in the MLF type system [Le

Botlan 2004; Le Botlan and Rémy 2003]. In MLF, the prefix does not just contain rigid bounds of

the form 𝛼=𝜏 , but also flexible bounds of the form 𝛼⩾𝜎 , which allows 𝛼 to be any instance of 𝜎 .

The flexible bound 𝛼⩾⊥ allows 𝛼 to be instantiated to any type. Finally, MLF uses quantification

over a prefix, as in ∀Q. 𝜏 where ∀𝛼.𝜎 is a shorthand for ∀𝛼⩾⊥. 𝜎 . Moreover, rigid monomorphic

bounds can be inlined, and ∀𝛼=𝜏 . 𝜎 is equivalent to [𝛼 :=𝜏]𝜎 .
Using these richer bounds for a prefix, it is possible to use a single generalization rule instead of

both [gen] and [gensub]. Let’s extend our bounds to include 𝛼⩾⊥ bounds as:

𝛼⋄𝜌 ::= 𝛼=𝜏 | 𝛼⩾⊥
Q ::= { 𝛼1⋄1𝜌1, . . ., 𝛼n⋄n𝜌n }
We can then use a single generalization rule as:

Q · (𝛼⋄𝜌) | Γ ⊢ e : 𝜎 𝛼 ̸∈ ftv(Q, Γ)
Q | Γ ⊢ e :∀(𝛼⋄𝜌). 𝜎

genx

This rule now concisely subsumes both [gen] and [gensub] (and corresponds exactly to the [gen]
rule of MLF [Le Botlan 2004,Fig. 5.2]). We would also extend simplification to merge flexible and

rigid bounds where Q ∪ {𝛼⩾⊥, 𝛼=𝜏} simplifies to Q ∪ {𝛼=𝜏}.
We chose the current presentation in this paper for simplicity. Nevertheless, we believe that the

use of an extended prefix with 𝛼⩾⊥ bounds is perhaps more natural from a technical perspective

and might also be better suited to for example extend HMQ to the MLF type rules.

2.8 Function Matching
The current [app] in Figure 2 has a drawback that it always creates a fresh type variable 𝛼 for the

result type. In practice, most implementations instead first match on the inferred type for e1 to see

if it is a function type 𝜏 ′→𝜏 already – and in that case directly use 𝜏 for the result type.

We can express this technique declaratively in HMQ as well. Figure 4 shows an improved

[app-match] rule that avoids creating a fresh result type variable by matching on the function type

as Q ⊢ 𝜏1 →≈ 𝜏2→ 𝜏 , where 𝜏1 and 𝜏2 are given, and Q and the result type 𝜏 are synthesized. The

(→≈) judgment has two rules. The [mfun] rule handles the case where it is already a function type

and directly matches the expected parameter type with the inferred argument type. The only other

possible case is that the type of e1 is still an abstract 𝛼 (for example, in 𝜆f . f 1). The [mvar] rule in
that case applies and does create a fresh result type variable as before.

8



3 IMPLEMENTING INFERENCE UNDER A PREFIX
We believe the type rules in Figure 2 form a nice declarative specification of the type system where

users can easily reason about what programs are accepted. At the same though, it is possible to “read

off” a type inference algorithm from the same rules. First we discuss how a direct implementation

would look, and then consider a more standard implementation based on algorithm W.

3.1 Deriving a Direct Implementation
To directly derive an algorithm from the type rules, we first need to make the rules syntax-directed

since the instantiation and generalization rules can be applied at any time. Following Damas and

Milner [1982], we can make the rules syntax-directed by doing full instantiation at the leaves (in the

[var] rule), and full generalization (with the [gen] and [gensub] rules) at let-bindings. For example,

the syntax directed rules for variables and let-bindings become:

x :∀𝛼.𝜏 ∈ Γ fresh 𝛼

∅ | Γ ⊢s x : 𝜏

Q0 | Γ ⊢s e1 : 𝜏1 Q2 | Γ, x :𝜎 ⊢s e2 : 𝜏2 (Q1, 𝜎) = gen(Q0, Γ, 𝜏1)
Q1,Q2 | Γ ⊢s let x = e1 in e2 : 𝜏2

where gen(Q0, Γ, 𝜏1) generalizes a type 𝜏1 with respect to a given environment Γ and prefix Q0. See

Figure 11 in Appendix B.1 for the full syntax-directed rules. We can now almost implement each

rule directly, except that we need a way to compute the consistent union between prefixes.

3.1.1 Computing the Prefix Solution. Any initial prefix at the leaves of a derivation is always either

empty or a singleton {𝛼=𝜏} (with 𝛼 ̸∈ ftv(𝜏)). If we ensure that we always create an idempotent

mapping from a consistent union Q1,Q2 then all our prefixes are always an idempotent mapping –

and we can represent them in our implementation as regular substitutions; effectively representing

Q as its minimal solution ⟨Q⟩. Using our notion of type equivalence, we can derive a straightforward

algorithm to compute the prefix solution. In particular, we have that extraction corresponds to

composition of prefix solutions:

Lemma 3.7. (Extraction corresponds to composition of prefix solutions)
If ⊨Q and Q = Q′ · 𝛼=𝜏 , then ⟨Q⟩ = ⟨Q′⟩ ◦ [𝛼 :=𝜏].
Using this lemma, we can write the initial cases of our algorithm as:

solve(∅) = id
solve(Q ∪ {𝛼=𝜏} = solve(Q) ◦ [𝛼 :=𝜏] if 𝛼 ̸∈ ftv(Q, 𝜏)
If we cannot find any 𝛼 with 𝛼 ̸∈ ftv(Q, 𝜏), that leaves two other cases to consider. If 𝛼 ∈ ftv(𝜏) or
𝛼 ∈ ftv(rng(Q)) there must be cyclic dependency and there is no solution. Otherwise, there must

be duplicate binding (with 𝛼 ∈ dom(Q)), and in such case we can use Theorem 2.5 to simplify the

duplicate bindings
2
:

solve : Q→ 𝜃

solve(∅) = id
solve(Q ∪ {𝛼=𝜏} = solve(Q) ◦ [𝛼 :=𝜏] if 𝛼 ̸∈ ftv(Q, 𝜏)
solve(Q ∪ {𝛼=𝜏1, 𝛼=𝜏2}) = solve(Q ∪ Q′ ∪ {𝛼=𝜏1}) if Q′ ⊢ 𝜏1 ≈ 𝜏2 ∧ 𝛼 ̸∈ ftv(𝜏1, 𝜏2, rng(Q))
Essentially this algorithm picks non-dependent bindings and composes them recursively, while

simplifying duplicate bindings away by unifying their types using the equivalence relation. But

how can we compute Q′ ⊢ 𝜏1 ≈ 𝜏2? To derive an implementation for the equivalence relation we

need to make these syntax-directed as well. Similar to instantiation we can always apply [eq-refl]
at the leaves of the derivation at the [eq-var] rule and make them syntax-directed. We can then

2
The extra side condition 𝛼 ̸ ∈ ftv(𝜏1, 𝜏2, rng(Q) ) ) is needed here to ensure that solve terminates for any inconsistent Q
with cyclic bindings – consider for example solve ({𝛽=𝛼, 𝛼=𝛽, 𝛼=int}) .
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derive an implementation, representing prefixes again as substitutions, as:

equiv : (𝜏1, 𝜏2) → 𝜃

equiv (𝛼, 𝛼) = id
equiv (𝛼, 𝜏) or (𝜏, 𝛼) | 𝛼 ̸∈ ftv(𝜏) = [𝛼 :=𝜏]
equiv (𝜏1→𝜏2, 𝜏

′
1
→𝜏 ′

2
) =

let 𝜃1 = equiv(𝜏1, 𝜏 ′1)
let 𝜃2 = equiv(𝜏2, 𝜏 ′2)
solve(𝜃1 ∪ 𝜃2)

This is recursive with solve but we can show it is terminating since the number of free type variables

is decreasing on each recursive invocation [Pierce 2002,§22.4.5].

Since we happen to represent the prefixes as a substitutions in our implementation, we can

now compute prefix composition as Q1,Q2 = solve(Q1 ∪ Q2), and directly “read off” an inference

algorithm from our type rules. For example, the inference case for the [apps] application rule

becomes:

inferD : (Γ, e) → (𝜃, 𝜏)
inferD (Γ, e1 e2) =

let (𝜃1, 𝜏1) = inferD(Γ, e1)
let (𝜃2, 𝜏2) = inferD(Γ, e2)
let 𝛼 = fresh

let 𝜃3 = equiv(𝜏1, 𝜏2→𝛼)
let 𝜃 = solve(solve(𝜃1 ∪ 𝜃2) ∪ 𝜃3)
(𝜃, 𝛼)

(where we use substitutions 𝜃 for idempotent mapping prefixes Q).

3.1.2 Robinson Unification and Substitution Unification. Of course, we can also readily use standard

Robinson unification [Robinson 1965] to compute ⟨Q⟩ as well. In particular, if we view Q as a set of

type constraints C with constraints of the form 𝜏1=𝜏2, we can use the standard unify(C) algorithm
from Pierce [2002,§22.4] to compute the most general unifier of the constraints in Q – which is

⟨Q⟩ by definition (and therefore solve(Q) = unify(Q)). An approach that maps more directly to the

idea of joining prefixes is the work by McAdam [1999] – describing an algorithm Us for unifying

substitutions which can be used directly to implement joining (idempotent mapping) prefixes where

Q1,Q2 ≡ Us (Q1,Q2) ◦ Q1 (and thus solve(Q1 ∪ Q2) = Us (Q1,Q2) ◦ Q1)

Nevertheless, we prefer solve as that is parameterized by our type equivalence rules, Q ⊢ 𝜏1 ≈ 𝜏2,
to determine equivalent types and least solutions. In contrast, the type equivalence is “built-in”

in the unify and Us algorithms. We believe that our approach lends itself better to type system

extensions, like record types or impredicative types, where the equality between types can go

beyond syntactical equality. In such cases, it is straightforward to extend our type equivalence

relation with further rules.

3.2 AlgorithmW
Even though we can implement the syntax-directed rules directly with inferD, it may not be the

most efficient way to do this. However, since HMQ is sound and complete with respect to the HM

type rules, we can also directly use algorithm W as our inference algorithm as-is. That means also

that any efficient implementation, for example using in-place updating substitutions [Peyton Jones

et al. 2007] or level-based generalization [Kiselyov 2022; Kuan and MacQueen 2007; Rémy 1992], is

correct for HMQ as well.

There is a catch though – even though algorithm W is correct for the basic type rules of HMQ, it

may not be correct anymore for some extensions and we need to be a bit more careful. In particular,
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we can view algorithm W as an optimized version of the derived inferD direct implementation: in

an application for example, the direct implementation unifies type constraints by joining prefixes

of separate sub derivations, while in algorithm W we use a single substitution that is threaded

linearly through each sub derivation, resolving unification constraints eagerly. This linear traversal

is what allows for an efficient in-place updating implementation of substitutions. For example, the

case for applications in algorithm W is [Damas and Milner 1982]:

inferW : (Γ, e) → (𝜃, 𝜏)
inferW (Γ, e1 e2) =

let (𝜃1, 𝜏1) = inferW (Γ, e1)
let (𝜃2, 𝜏2) = inferW (𝜃1Γ, e2)
let 𝛼 = fresh

let 𝜃3 = unify(𝜃2𝜏1, 𝜏2→ 𝛼)
(𝜃3 ◦ 𝜃2 ◦ 𝜃1, 𝜃3𝛼)

where we see that the substitution 𝜃1 is applied to Γ when checking e2 (see Figure 9 in Appendix A.2

for the full algorithm).

For the basic type rules this makes no difference, but if we were to inspect the types of 𝜆-bound

parameters the implementations start to differ. In algorithm W, since the substitution is updated

eagerly, type information from an early variable occurrence may “leak” into another sub derivation

– we call this spooky action at a distance. Consider for example

𝜆x . (inc x, show x)
At the first occurrence of x the type will be some fresh type 𝛼 , and after checking the inc x
expression, we’ll have a substitution [𝛼 :=int]. When this substitution is propagated into the second

derivation, the second occurrence of x in show x now has the substituted type int in algorithm W!

For static overloading (described in Section 6) this would mean that show x can be resolved while

it should be rejected according to the HMQ type rules where x always has an abstract type (and

worse, it leaks the left-to-right bias of algorithm W, where 𝜆x . (show x, inc x) would be rejected).

The inferD direct implementation does not have this problem as it derives a prefix/substitution for

each sub derivation separately (joining them later in solve) – no spooky action at a distance.

3.3 AlgorithmWQ
It turns out that a small change to algorithm W can prevent spooky action at a distance, and

prevent leaking type information between separate sub derivations even when using efficient

stateful substitutions. The core issue is that in algorithm W the fresh type variable for a 𝜆-bound

parameter is shared between sub derivations. What we can do instead is to use separate fresh type

variables for each occurrence of a 𝜆-bound parameter and unify them all eventually. In particular,

we assume a pre-processing step where we annotate each 𝜆-bound parameter x with the number n
of occurrences in the body as xn, and number all occurrences x in sequence as xi . For example, our

elaborated example expression becomes 𝜆x2. (inc x1, show x2).
We then modify algorithm W to generate a fresh “template” type variable 𝛼 for a parameter, but

expand that to a unique type variable 𝛼 i at each occurrence of a 𝜆-bound parameter:

inferWQ(Γ, xi) =

let 𝛼 = Γ(x)
(id, 𝛼 i)
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and at the 𝜆-binding we eventually unify all 𝛼 i types of all the occurrences:

inferWQ(Γ, 𝜆xn .e) =

let 𝛼 = fresh

let (𝜃1, 𝜏) = inferWQ((Γ, x :𝛼), e)
let 𝜃2 = unifies(𝛼, 𝜃1𝛼1, . . ., 𝜃1𝛼n)
(𝜃2, 𝜃2 (𝛼 → 𝜏))

The full algorithm WQ can be found in Figure 12 in Appendix B.2. For our standard rules, this

change to algorithm W only changes when certain type errors happen (which are now sometimes

delayed). However, when adding type propagation (Section 5) and overloading (Section 6), the

new algorithm WQ prevents spooky action at a distance, and type information in separate sub

derivations can no longer be accidentally shared. Note also that in practice we can use a stateful

counter at each 𝜆-bound parameter to avoid doing a separate pre-processing step, while still being

able to unify all freshly instantiated type variables for a parameter afterwards.

As such, algorithm WQ is a modest extension to algorithm W and we believe that it is straight-

forward to adapt for type system implementations in practice, while simultaneously benefitting

from being able to use HMQ to specify the type rules and further extensions in a concise manner

that matches the implementation closely.

4 INFERENCE UNDER A PREFIX FOR FREEZEML AND HMF
We believe HMQ can be an excellent basis to describe common type system extensions in practice

that are difficult to formalize directly in the HM type rules. In this section we look at some of the

previous work on higher-rank and impredicative type inference, and consider how these systems

could be viewed in terms of inference under a prefix. We consider in particular the recent FreezeML

system [Emrich et al. 2020 2022] and HMF [Leijen 2007 2008]. Note that for the purposes of this

article we restrict ourselves to highlight essential differences only – the goal of this section is to

show how inference under a prefix may be a better way to formalize such systems, and it is not

meant a general introduction to impredicative type inference.

Generally, these systems allow for higher-rank (i.e. nested quantifiers) and impredicative types

(i.e. polymorphic types in a data structure), and extend the syntax of types essentially with:

𝜎 ::= ∀𝛼.𝜎 (quantification)

| 𝜌 (no outer quantifier)

𝜌 ::= 𝜎 → 𝜎 (higher-rank function)

| 𝜏 (monomorphic types)

| [𝜎] ((impredicative) list of 𝜎)

where we restrict ourselves to impredicative lists for example purposes. The instance relation can

now instantiate polymorphic types as well:

𝛽 ̸∈ ftv(∀𝛼. 𝜎1)
∀𝛼.𝜎1 ⊑ ∀𝛽.[𝛼 :=𝜎]𝜎1

instancef

Generally, impredicative systems are invariant where we can only instantiate the outer quantifiers

(as in Damas-Hindley-Milner), but not any inner quantifiers. For example, we can instantiate the

identity function as ∀𝛼.𝛼 − 𝛼 ⊑ int→int, but we cannot instantiate a list of polymorphic identity

functions as [∀𝛼.𝛼→𝛼] ⋢ [int→int]. In HMQ this shows up clearly when defining new type

equivalence rules that take impredicative types in consideration as shown in Figure 5.

Note that we extended the prefix to include (rigid) polymorphic bounds 𝛼=𝜎 . Also, to prevent

the bound 𝛼 in the [eqf-qant] rule from escaping into Q, we need the side-condition 𝛼 ̸∈ ftv(Q).
The new equivalence rules again closely resemble the usual unification algorithm for impredicative

types [Emrich et al. 2020,Fig.15; Leijen 2008,Fig.5]. To implement the [eqf-qant] rule one usually
instantiates both outer quantifiers with a fresh constant (often called a “skolem” constant [Odersky
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∅ ⊢ 𝜏 ≈ 𝜏
eqf-id

𝛼 ̸∈ ftv(𝜎)
{𝛼=𝜎} ⊢ 𝛼 ≈ 𝜎

eqf-var

Q ⊢ 𝜎2 ≈ 𝜎1

Q ⊢ 𝜎1 ≈ 𝜎2
eqf-refl

Q ⊢ 𝜎1 ≈ 𝜎2

Q ⊢ [𝜎1] ≈ [𝜎2]
eqf-list

Q ⊢ 𝜎1 ≈ 𝜎2 𝛼 ̸∈ ftv(Q)
Q ⊢ ∀𝛼.𝜎1 ≈ ∀𝛼.𝜎2

eqf-poly

Q1 ⊢ 𝜎1 ≈ 𝜎2 Q2 ⊢ 𝜎 ′
1
≈ 𝜎 ′

2

Q1,Q2 ⊢ 𝜎1→𝜎2 ≈ 𝜎 ′
1
→𝜎 ′

2

eqf-fun

Fig. 5. Equivalence of System F types under a prefix.

and Läufer 1996; Peyton Jones et al. 2007]) and afterwards check that the constant does not escape

into Q.
There are two troublesome cases to consider with impredicative type inference. Generally, we

cannot infer polymorphic types for lambda-bound parameters. Consider for example:

poly = 𝜆f . (f 1, f True)
This would be rejected in HM systems since there is no monomorphic type for f that can be

applied to both an int and a bool. We could assign a polymorphic type to f though – like ∀𝛼.𝛼→𝛼 .

Unfortunately, there is no principal type for f and there are many other incomparable types

possible, like ∀𝛼.𝛼→[𝛼] etc. The systems we discuss therefore never infer a polymorphic type for

a lambda-bound parameter and require a type annotation for polymorphic parameters which can

express directly in HMQ as well:

Q | Γ, x :𝜎 ⊢ e : 𝜏

Q | Γ ⊢ 𝜆(x :𝜎). e : 𝜎 → 𝜏
fun-ann

The second issue occurs at applications where there is sometimes a choice between instantiations.

Consider the application single id where single has type ∀𝛼.𝛼→[𝛼]. If we instantiate id first, the

result type is ∀𝛼.[𝛼→𝛼] after generalization – but if we keep id polymorphic, the result type is a

list of polymorphic identity functions [∀𝛼.𝛼→𝛼] instead. Unfortunately, neither type is an instance

of the other.

Generally, different proposed systems handle this case in very different ways. Here, we take

a closer look at the FreezeML and HMF systems specifically, and consider how they could be

simplified by using prefix based inference, which may also give new insights in how these systems

relate to each other.

4.1 FreezeML
FreezeML [Emrich et al. 2020 2022] is an impredicative type inference system based on the idea

of freezing the polymorphic type of a variable occurrence, written as ⌈x⌉, and only allowing

instantiation at regular variable occurrences x. Alas, that also means the FreezeML is fundamentally

syntax directed and we need to base a “FreezeHMQ” version on the syntax directed rules of HMQ

(see Figure 11 in Appendix B.1), where we instantiate at variable occurrences, and generalize ([gen]
and [gensub]) at let-bindings. We can add the freezing rule of FreezeML directly in HMQ:

x :𝜎 ∈ Γ
∅ | Γ ⊢s ⌈x⌉ : 𝜎

freeze

Since we no longer can instantiate freely, a frozen type 𝜎 stays polymorphic while regular variable

occurrences have instantiated 𝜌 types. This resolves the single id ambiguity: single id has the HM

type ∀𝛼.[𝛼→𝛼] since id is fully instantiated. If we wish to create a list of polymorphic identity

functions we would write single ⌈id⌉ instead (which has type [∀𝛼.𝛼→𝛼]).
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Unfortunately, even though FreezeML is syntax directed, it still requires let-bindings to have

most-general types. Consider for example let f = 𝜆x .x in ⌈f ⌉ 42. We would expect this to be

rejected with the frozen type for f as ∀𝛼.𝛼→𝛼 (wich cannot be directly applied). However, if

we allow less-general types for let-bindings we could also derive the type int→int for f and in

that case the example can be typed. To resolve this, the [let] rule in FreezeML adds the principal

condition [Emrich et al. 2020,Fig. 7&8]:

(_,Δ′) = gen(Δ, 𝜎1, e) (Δ,Δ′, e, 𝜎1) ⇕ 𝜎
Δ,Δ′ | Γ ⊢ e1 : 𝜎1 Δ | Γ, x :𝜎 ⊢ e2 : 𝜎2
principal(Δ, Γ, e,Δ′, 𝜎1)

Δ | Γ ⊢ let x = e1 in e2 : 𝜎
let-fml

principal(Δ, Γ, e, F ′, 𝜎 ′) =

Δ′ = ftv(𝜎) − Δ and Δ,Δ′ | Γ ⊢ e : 𝜎 and

(∀Δ′′, 𝜎 ′′ . if Δ′′ = ftv(𝜎 ′′) − Δ
and Δ,Δ′′ | Γ ⊢ e : 𝜎 ′′

then ∃𝛿. Δ ⊢ 𝛿 : Δ′⇒★Δ
′′

and 𝛿 (𝜎 ′) = 𝜎 ′′)
We can disregard the ⇕ rule as that is related to the value-restriction, and we can similarly ignore

the Δ environment that tracks the free variables. The principal condition enforces that all let

bindings are assigned most general types. Since it ranges over all possible derivations where the

type inference judgment occurs negatively, it is not a natural deduction rule which makes it hard

to reason about. Emrich et al [2020,§3.2] show though that it is still possible to stratify the relation

to allow inductive reasoning.

However, in “FreezeHMQ” none of this complexity is required as we already always derive

principal types, and we can keep the regular (syntax-directed) [let] rule as is. We only need to

extend the types and type equivalence as shown in the previous section together with [fun-ann]
and [freeze] to model FreezeML. This also shows that an implementation of type inference for

FreezeML only requires a modest extension of algorithm W – essentially just extending unification

according to the rules in Figure 5 (as in [Emrich et al. 2020,Fig. 15]).

4.2 HMF
As another example, we take a close look at the HMF system [Leijen 2008], which which is used

for impredicative type inference in the Koka language [Leijen 2014 2021]. Unlike FreezeML, the

HMF rules are not required to be syntax-directed and one can freely instantiate and generalize.

The HMF system, however, contains two inference rules with complex side-conditions:

Γ ⊢ e1 : 𝜎1 Γ, x :𝜎1 ⊢ e2 : 𝜎2
∀𝜎 ′

1
. Γ ⊢ e1 : 𝜎 ′

1
⇒ 𝜎1 ⊑ 𝜎 ′

1

Γ ⊢ let x = e1 in e2
hmf-let

Γ ⊢ e1 : 𝜎2→ 𝜎 Γ ⊢ e2 : 𝜎2
∀𝜎 ′ 𝜎 ′

2
. (Γ ⊢ e1 : 𝜎 ′

2
→ 𝜎 ′ ∧ Γ ⊢ e2 : 𝜎 ′

2
)

⇒ J𝜎2→ 𝜎K ⩽ J𝜎 ′
2
→ 𝜎 ′K

Γ ⊢ e1 e2 : 𝜎
hmf-app

As before, the [hmf-let] rule requires that we only assign most general types to let-bindings – but

this comes for free in HMQ and we can again can use our regular [let] rule as is. In the [hmf-app]
rule, the condition requires that the inferred type must be the one with a minimal polymorphic
weight (denoted as J𝜎K), where the polymorphic weight of a type is defined as the number of nested

quantifiers. This is how HMF disambiguates the single id example, which has the type ∀𝛼.[𝛼→𝛼]
since that is the one with minimal nested polymorphism (and if a list of polymorphic identity

functions is required one needs to use a type signature).

Just as in the [let-hmf] rule, the side condition is stated over all derivations again – in this case

this is needed as a polymorphic instantation can be further up in the derivation. This issue is already

avoided though in HMQ since the [inst] rule never guesses types and always instantiates with an

abstract type variable. As a consequence, it is possible to locally extend the function matching in

the application rule to explicitly disambiguate.
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Leijen [2008] observes that the only ambiguity can arise when a function of the form 𝛼 → . . .

is applied to a polymorphic argument 𝜎 . In such case we need to instantiate the 𝜎 and not unify

directly with 𝛼 . We can extend the function match relation in Figure 4 to do this disambiguation:

Q
↓
out

⊢ 𝜌
↑
in

→≈ 𝜎
↑
in

→ 𝜎
↓
out

Q1 | Γ ⊢ e1 : 𝜌 Q2 | Γ ⊢ e2 : 𝜎2 Q3 ⊢ 𝜌
→≈ 𝜎2→𝜎

Q1,Q2,Q3 | Γ ⊢ e1 e2 : 𝜎
app-hmf-match

Q ⊢ 𝜌1 ≈ 𝜌2

Q ⊢ 𝜌1→𝜎
→≈ 𝜌2→𝜎

mfun

Q ⊢ 𝛼 ≈ 𝜌→𝛽 fresh 𝛽

Q ⊢ 𝛼
→≈ 𝜌→𝛽

mvar

Q ⊢ 𝜎1 ≈ 𝜎2 𝜎1 ̸∈ 𝜌
Q ⊢ 𝜎1→𝜎

→≈ 𝜎2→𝜎
mqant

The [mfun] and [mvar] rules are as before but extended to apply to impredicative 𝜌 types. The

[mqant] rule is added and matches an actual polymorphic parameter type 𝜎1 (where 𝜎1 cannot be

an unquantified 𝜌-type). This ensures that in the single id case, we must use the regular [mfun] rule
which forces the argument type to be instantiated (as 𝜌2) (and thus single id has type ∀𝛼.[𝛼→𝛼]).

The new functionmatch, together with the new type equivalence as shown in the previous section

are the only changes needed to phrase HMF as inference under a prefix! This again also implies that

only a modest extension to algorithm W is required to implement HMF under a prefix: indeed, the

subsume and funmatch implementations as shown in the original HMF paper [Leijen 2008,Fig.6&8]

closely match the function match rules that we show here. As argued in the introduction, if we

consider the complex polymorphic weight condition in the [app-hmf] rule, it can be considered

somewhat artificial and quite far removed from the relatively straightforward implementation

based on local matching.

We believe that stating both FreezeML and HMF using common prefix inference rules also makes

the relation between the two more clear – HMF disambiguates instantiation at applications by

inspecting the expected parameter type, while FreezeML disambiguates syntactically at variable

occurrences relying on syntax directed rules.

5 BIDIRECTIONAL INFERENCE UNDER A PREFIX
Almost all type inference systems in practice use a form of bidirectional type inference [Odersky et

al. 2001; Pierce and Turner 2000] where type information is not only inferred, but also propagated

up to the leaves of a derivation. One advantage is to improve type error messages, but often it is used

to enable type system extensions. For example, this technique can be used to check higher-ranked

types for lambda-bound parameters [Odersky and Läufer 1996; Peyton Jones et al. 2007]. It is

straightforward to add bidirectional type rules to inference under a prefix as well as shown in

Figure 6.

The checking judgement Q | Γ ⊢ e ←: 𝜎 states that an expresion e can be checked to have (the

input) type 𝜎 under a given environment Γ and (output) prefix Q. The [ann] rule switches from
inference mode to checking mode with a given type annotation 𝜎 . Dually, we can always apply the

[chk] rule to switch from checking mode to inference mode where we use the type equivalence

relation to ensure the inferred type 𝜏1 matches the checked type 𝜏2. The [func] rule splits a checked
function type to bind the parameter type directly and propagate the result type to the body. The

rule [genc] instantiates progagated polymorphic types.

For checking applications e1 e2 there is a choice: we can either first infer the type of the argument

and use that to check the function type ([app-func]), or we can first infer the type of the function

and use that to check the type of the argument ([app-argc]). The rule [app-func] is straightforward
and just propagates the inferred type of the argument 𝜏2 into the function type. For [app-argc] we
use a fresh type 𝛽 as a place holder for the argument type, and check if e1 is a function 𝛽→𝜏 . Here,

we propagate just the information that e1 must be a function with result type 𝜏 where we use 𝛽 to
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Q
↓
out

| Γ
↑
in

⊢ e
↑
in

←
: 𝜎
↑
in

with ⊨Q Q | Γ ⊢ e ←: 𝜎

Q | Γ ⊢ (e :𝜎) : 𝜎
ann

Q1 | Γ ⊢ e : 𝜏1 Q2 ⊢ 𝜏1 ≈ 𝜏2

Q1,Q2 | Γ ⊢ e ←: 𝜏2

chk

Q | Γ, x :𝜏1 ⊢ e ←: 𝜏2

Q | Γ ⊢ 𝜆x .e ←: 𝜏1→ 𝜏2

func

Q | Γ ⊢ e ←: 𝜎 𝛼 ̸∈ ftv(Q, Γ, e)

Q | Γ ⊢ e ←: ∀𝛼.𝜎
genc

Q1 | Γ ⊢ e1
←
: 𝜏2→𝜏 Q2 | Γ ⊢ e2 : 𝜏2

Q1,Q2 | Γ ⊢ e1 e2
←
: 𝜏

app-func

Q | Γ ⊢ e1 e2
←
: 𝛼 fresh 𝛼

Q | Γ ⊢ e1 e2 : 𝛼
app-chk

Q1 | Γ ⊢ e1
←
: 𝛽 → 𝜏 Q2 | Γ ⊢ e2

←
: Q1 [𝛽] fresh 𝛽

Q1,Q2 | Γ ⊢ e1 e2
←
: 𝜏

app-argc

Fig. 6. Bidirectional type checking rules

be able to refer to the (inferred!) expected type of the argument. We propagate this type to check

the argument as Q1 [𝛽]. This is somewhat similar to boxy type inference [Vytiniotis et al. 2006]

where one would check the function type as 𝜏2→𝜏 where the boxed 𝜏2 represents inferred type

information that cannot be used for checking – in our prefix based system such boxes are handled

by abstract (fresh) type variables.

The new checking rules for applications can now be used to replace the inference rule for

application with [app-chk] where we just propagate a fresh result type 𝛼 . We have now neatly

separated out different parts of the original [app] rule: the creation of a fresh result type 𝛼 in

[app-chk], the inference of the argument in [app-func], and finally the equivalence of the function

type 𝜏1 to 𝜏2→𝛼 using [chk] (combined with the use of the checking judgment in [app-func]).
The application checking rules are not syntax-directed though – which rule should we apply in

practice? This choice is not so clear cut [Dunfield and Krishnaswami 2021]; usually it is considered

best to use [app-argc] to propagate type information into the argument expression [Peyton Jones

et al. 2007; Pierce and Turner 2000] but this is not always the case, and it depends on intended

usage (and we discuss this in more detail in Section 6.3). In particular, at the moment our checked

type rules do not do anything, and just propagate known type information. At this point, these

rules can only improve type error messages in practice. In Section 6 though we look at a checking

rule for variables that actually takes the propagated type information into account.

6 STATIC OVERLOADING
After reconsidering existing systems like FreezeML and HMF in Section 4 in terms of inference

under a prefix, we now take a look at a novel application where we rely on prefixes to disambiguate

variables for static overloading. For example, we would like to write 𝜆x y.(x + 1, y + 1.0) and have

the (+) operations resolve to integer- and floating point addition respectively. One elegant solution

to overloading is the use of type classes [Wadler and Blott 1989]. Even though type classes are

very expressive and highly succesful in languages like Haskell and Lean, they are also a complex

extension that changes the semantics of types, and require sophisticated constraint solving of type

instance relations [Selsam et al. 2020; Vytiniotis et al. 2010] with many possible design choices
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from a language perspective [Jones and Diatchki 2008; Peyton Jones et al. 1997].

6.1 Overloading as Disambiguation
Instead, we consider a much simpler alternative here, and look at the most basic form of overloading

where we only disambiguate statically between different known versions of an overloaded function

f based on the local type context. This form of static overloading is quite common and for example

used in the C language to overload various aritmethic operations to work over integers and floats.

Another example is the C++ language which uses templates to provide rich static overloading for

any user defined functions.

For our purposes, we allow a function f to be defined with a qualified name, like modi/f , which
allows multiple definitions for f in different modules or namespaces. For example, we could have:

modi/show : int → string = . . .

modb/show : bool→ string = . . .

Generally, such qualified names can come from definitions in different imported modules, but

we may also directly allow programmers to use qualified names when defining functions (as if

the function is defined inside a mini-module). Note that these kinds of qualified names already

occur naturally in any language with namespaces or modules, and languages already need some

mechanism to deal with ambiguity: if one imports module modi and modb that both export the

show definition, to which definition should an unqualified show refer to? In Haskell for example,

one needs to use a fully qualified name to disambiguate.

Another advantage of using qualified names is that it does not require an upfront declaration

of the variables which can be overloaded, and we can always refer directly to each definition by

explicitly using their unique fully qualified name. As such we can view static overloading as a

source-to-source translation that only disambiguates identifiers to their fully qualified name.

The idea is now to use static type information at a call site to allow a programmer to write an

unqualified name, like show, and have it be disambiguated automatically to the full qualified name

depending on the type context. For example, show 1 is disambiguated to modi/show 1 since it is

used with an argument of type int. In contrast to type classes, static overloading rejects programs

where a variable cannot be disambiguated uniquely, like 𝜆x . show x for example
3
.

Even in this restricted form, static overloading can be quite useful in practice as it handles many

common cases of first-order overloading. However, even though the idea is simple, it clearly does

not work well with standard HM inference. If we consider 𝜆x . show x again, we can “guess” the

type int for the lambda-bound x parameter, and in that case we can accept the expression and

disambiguate to modi/show – or guess type bool and elaborate to modb/show instead. Similarly, if

we allow non-principal types for let-bindings we can also derive different disambiguations.

Trying to specify static overloading directly on top of HM would again require complex side-

conditions and rules – and it is not obvious if such solution even exists since static overloading is

in direct tension with the HM lambda rule.

6.2 Bidirectional Disambiguation
If we use inference under a prefix though, we avoid all these problems since parameter types are no

longer guessed, and let-bindings have a principal type by construction. For example, the expression

𝜆x . show x is always rejected now since we cannot disambiguate on the abstract type variable that

is assigned to x. It turns out that extending HMQ with static overloading is quite straightforward:

we only need to extend the bidirectional rules of Figure 6 with a case for variables:

3
This is of course a severe restriction as it prohibits abstraction over overloaded variables. However, Following Lewis

et al. [2000], we believe such abstraction should be a separate and orthogonal concept though, where we use implicit

parameters in combination with static overloading, as is done in the Koka language for example [Leijen 2021].
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unique m/x :𝜎 ∈ Γ with Q ⊢ 𝜎 ⊑ 𝜏

Q | Γ ⊢ x ←: 𝜏 ⇝ m/x
varc

Q ⊢ 𝜏1 ≈ 𝜏2 fresh 𝛼

Q ⊢ ∀𝛼.𝜏1 ⊑ 𝜏2
instancec

We use unique notation in the [varc] rule to mean: “for all m/x :𝜎 ∈ Γ, there exists exactly one

declaration that satisfies Q ⊢ 𝜎 ⊑𝜏”. The bidirectional type rules provide the type information

required to disambiguate the variable. For example, we can derive the type of show 1 as:

unique modi/show : int→string ∈ Γ
with {𝛼=string} ⊢ int→string ⊑ int→𝛼

{𝛼=string} | Γ ⊢ show ←
: int→𝛼 ⇝ modi/show

varc

∅ | Γ ⊢ 1 : int
int

{𝛼=string} | Γ ⊢ show 1
←
: 𝛼 fresh 𝛼

{𝛼=string} | Γ ⊢ show 1 : 𝛼

∅ | Γ ⊢ show 1 : string
gensub

appc

app-func

In essence, extending HMQ with static overloading as disambiguation over qualified names is as

simple as shown here, and the [varc] and [instancec] rules are also straightforward to implement.

However, there are still some implementation and design issues to consider which we discuss in

the following sections.

6.3 Arguments First versus Functions First
In the previous example show 1 we used the [app-func] rule to push the type of the argument into

the function derivation in order to resolve show using [varc]. However, sometimes we need to do

the opposite and push the function type into the argument in order to disambiguate. Suppose we

have an overloaded definition of neg as:

modi/neg : int → int
modf/neg : float → float
with sqrt : float→float. If we now consider the expression 𝜆x . sqrt (neg x) we can only accept

this if we use [app-argc] on the application sqrt (neg x) to propagate the float result type into
the argument expression neg x. Otherwise, if we use [app-func] we cannot disambiguate the neg
variable (since x has an abstract type at that point).

The optimal choice between using [app-argc] or [app-func] cannot be made locally at an appli-

cation node and depends on the sub-expressions. A straightforward implementation that tries all

combinations would be exponential in number of nested application nodes. Instead, following the

“Pfenning recipe” [Dunfield and Krishnaswami 2021], we propose a syntax-directed approach that

can be decided locally and can be easily understood by the programmer. This is also the approach

used in the Koka language [Leijen 2021].

In particular, we always prefer to use [app-argc] where we propagate the expected argument

types into the arguments. The only exception is for a direct n-ary application to a variable of the

form f e1 . . . en. In such case we infer the least amount of arguments i such that we can disambiguate

f , and then propagate the remaining argument types into the remaining argument expressions:

least 0 ⩽ i ⩽ n with fresh 𝛼 i+1, . . ., 𝛼n
unique m/f :𝜎 ∈ Γ with Q ⊢ 𝜎 ⊑ 𝜏1→ . . .→ 𝜏 i → 𝛼 i+1→ . . .→ 𝛼n→ 𝜏

Q1 | Γ ⊢ e1 : 𝜏1 . . . Qi | Γ ⊢ ei : 𝜏 i Qi+1 | Γ ⊢ ei+1
←
: Q[𝛼 i+1] . . . Qn | Γ ⊢ en

←
: Q[𝛼n]

Q,Q1, . . .,Qn | Γ ⊢ f e1 . . . ei . . . en
←
: 𝜏

appN
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This strategy is straightforward to implement: first try to disambiguate f (without any inference

of the arguments) and keep inferring one argument at a time until f can be disambiguated, and

then use checking rules for the remaining arguments. There are two drawbacks to this approach:

a left-to-right bias, and argument types are never propagated into a lambda expression. As an

example of the left-to-right bias, consider the following definitions:

modi/add : int → int → int
modf/add : float → float → float
The expression 𝜆x . add 1 (neg x) can be accepted by [appN] since after inferring the type of 1,

add is resolved to modi/add and the int type is propagated into the neg x argument which can

subsequently be disambiguated to modi/neg x. However, the expression 𝜆x . add (neg x) 1 is not
accepted since the type of neg x cannot be inferred (as neg cannot be uniquely disambiguated).

Secondly, since we otherwise always prefer to propagate types into arguments, no argument type

is progagated into a lambda expression. For example (𝜆x . show x) 1 is rejected.
We believe though that having an easy rule for type propagation is preferable to trying to

maximise the accepted programs, and the current rule seems to work out well in practice within the

Koka language. Nevertheless, further experience may be warranted and other design approaches

may be valid as well. For example, following Serrano et al. [2020], instead of strictly inferring from

left-to-right we may first take a quick look at all expressions and infer “easy” expressions first. Or

following Xie and Oliveira [2018], if the function expression in an application is syntactically a

lambda expression, we could choose to propagate the argument types into the function.

6.4 Spooky Action at a Distance
As discussed in Section 3.3, in an implementation of HMQ we need to be careful to not leak type

information between separate sub derivations. The example given was

𝜆x . (inc x, show x)
where inc has type int→int. According to the type rules, this expression should be rejected since

x will have an abstract type in each derivation of inc x and show x and thus show cannot be

disambiguated. However, if we naively use algorithmW, the type of x :𝛼 is substituted after checking

inc x to x : int, and subsequently show x can be disambiguated! When using HMQ extended with

static overloading, it is important to use algorithm WQ (or the direct algorithm inferD) which uses

fresh type variables for each occurrence of a 𝜆-bound parameter (and correctly rejects the example

expression).

7 RELATEDWORK
Damas and Milner [1982] introduce the now common HM type rules and show that type inference

with algorithm W is sound and complete. This work builds on earlier work by Hindley [1969], who

shows principal types exist for objects in combinatory logic, and Milner [1978] who gives the first

description of algorithm W.

Prefixes. As discussed in Section 2.7, the main idea of inference under a prefix comes from the

work on impredicative type inference in MLF as described by Le Botlan and Rémy [2003]. The prefix

in MLF is much richer though and contains both polymorphic rigid bounds, 𝛼=𝜎 , and polymorphic

flexible bounds 𝛼 ⩾ 𝜎 , where 𝛼 can be any instance of 𝜎 . We can also quantify over bounds as ∀Q.𝜎
which, as shown in Section 2.7, could be useful for HMQ as well – as it allows us to unify both

generalization rules into a single one. MLF is still a HM style system though where the type of

𝜆-bound parameters is “guessed”. We believe it should be possible though to extend HMQ naturally

to MLFQ by extending the prefix to contain rich MLF bounds and the equivalence relation to MLF

equivalence. Leijen [2009] describes a restriction of MLF to only use flexible polymorphic bounds
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which would lend itself well to a HMQ extension as it simplifies unification between polymorphic

types.

Gundry, McBride, and McKinna [2010] describe type inference under a context Θ defined as:

Θ ::=∅ | Θ, 𝛼 : ∗ | Θ, 𝛼 :=𝜏 : ∗ | Θ, x :𝜎 | Θ#
where 𝛼 : ∗ can be viewed as an MLF instance constraint 𝛼⩾⊥, and where 𝛼 :=𝜏 : ∗ corresponds
to our 𝛼=𝜏 bindings. The other forms are environment bindings x :𝜎 and ordering constraints #.
A context restricted to just 𝛼 : ∗ and 𝛼 :=𝜏 : ∗ bindings is written as Ξ, which can be viewed as a

dependency ordered prefix. Indeed, the generalization rule is defined as [Gundry 2013,Fig. 2.9]:

Θ0# ⊢ e : 𝜏 ⊣ Θ1 # Ξ

Θ0 ⊢ e : ∀Ξ.𝜏 ⊣ Θ1

gen-ctx

∀∅.𝜏 = 𝜏

∀(𝛼 : ∗,Ξ).𝜏 = ∀𝛼.(∀Ξ.𝜏)
∀(𝛼 :=𝜏 ′ : ∗,Ξ).𝜏 = [𝛼 :=𝜏 ′] (∀Ξ.𝜏)

which corresponds closely to the [genx] rule of Section 2.7 (and the corresponding MLF generaliza-

tion rule) where we quantify over a prefix, written here as ∀Ξ.𝜏 , where all monomorphic bounds

are substituted. The main idea of having dependency ordered contexts is to simplify generalization

where there is no need in the [gen-ctx] rule to compute the free type variables in the environment

(similar to using level-based generalization [Kiselyov 2022; Kuan and MacQueen 2007; Rémy 1992]).

The (algorithmic) application rule also closely matches our [app] rule:

Θ0 ⊢ e1 :𝜏1 ⊣ Θ1 Θ1 ⊢ e2 :𝜏2 ⊣ Θ2 Θ2 ⊢ 𝜏1 ≡ 𝜏2→𝛼 ⊣ Θ3 fresh 𝛼

Θ0 ⊢ e1 e2 : 𝛼 ⊣ Θ3

app-ctx

Here the context is statefully threaded through the rules but we believe it should be possible to

define consistent context composition similar to our prefix composition such that sub derivations

can be composed independently.

Constraint Based Inference. Type inference based on constraint generation has many similarities

to the prefix based approach. These systems generate sets of unification (and instantiation and

generalization) constraints of the form 𝜏1 ≡ 𝜏2. Pierce [2002,§22.3] describes constraint based

inference for a monomophic calculus with essentially the following abstraction and application

rules:

C | Γ, x :𝜏1 ⊢ e : 𝜏2

C | Γ ⊢ 𝜆x .e : 𝜏1→𝜏2
fun-con

C1 | Γ ⊢ e1 : 𝜏1 C2 | Γ ⊢ e2 : 𝜏2 fresh 𝛼

C1 ∪ C2 ∪ {𝜏1 ≡ 𝜏2→𝛼} | Γ ⊢ e1 e2 : 𝛼
app-con

Their [app-con] is very similar to our [app] rule except that the constraint {𝜏1 ≡ 𝜏2→𝛼} is directly
included while in HMQ one derives a prefix Q3 from the equivalence relation Q3 ⊢ 𝜏1 ≈ 𝜏2→𝛼 .

In that sense, a prefix is a restricted form of a general constraint set which makes it closer to

an implementation based on (in-place) substitutions. Just like the standard HM type rules, the

constraint based system of Pierce still “guesses” types for lambda bound parameters.

In contrast, Heeren, Hage, and Swierstra [2002] describe a bottom-up constraint based system

which uses abstract fresh variables for lambda-bound parameters. As part of the bottom-up inference,

there is no top-down Γ environment, but instead a bottom-up assumption environment A. The
abstraction, variable, and application rules are [Heeren 2005, Fig. 4.5]:

M ∪ {𝛼} | C | A ⊢ e : 𝜏 fresh 𝛼

M | C ∪ {𝛼 ≡ 𝜏 ′ | x :𝜏 ′ ∈ A} | A/x ⊢ 𝜆x .e : 𝛼→𝜏
fun-bu

fresh 𝛼

M | ∅ | {x :𝛼} ⊢ x : 𝛼
var-bu

M | C1 | A1 ⊢ e1 : 𝜏1 M | C2 | A2 ⊢ e2 : 𝜏2 fresh 𝛼

M | C1 ∪ C2 ∪ {𝜏1 ≡ 𝜏2→𝛼} | A1 ∪ A2 ⊢ e1 e2 : 𝛼
app-bu
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(where M is the set of monomorphic type variables used for the generation of generalization

constraints in the let-rule). These bottom-up algorithmic type rules are closer to HMQ as the types

of the lambda-bound parameters are abstract. Moreover, the use of an assumption together with

the [var-bu] and [fun-bu] rules is also close to algorithmWQ (Section 3.3) where we use fresh type

variables for each occurrence and unify them all eventually at the 𝜆 expression, corresponding to

the {𝛼 ≡ 𝜏 ′ | x :𝜏 ′ ∈ A} constraint set in [fun-bu]. However, depending on how type constraints

𝜏1 ≡ 𝜏2 are resolved, further restrictions may be needed to ensure all let-bindings have a principal

type. With the addition of those restrictions, we believe that Heeren’s bottom-up algorithm can be

a valid implementation for HMQ.

Unifying Substitutions. McAdam [1999] describes a new inference algorithm W ′ which does

not have a right-to-left bias by computing substitutions for each subderivation independently and

afterwards unifying the substitutions:

inferW ′ (Γ, e1 e2) =

let (𝜃1, 𝜏1) = inferW ′ (Γ, e1)
let (𝜃2, 𝜏2) = inferW ′ (Γ, e2)
let 𝜃 = Us (𝜃1, 𝜃2)
let 𝛼 = fresh

let 𝜃 ′ = unify(𝜃𝜏1, 𝜃𝜏2→𝛼)
return (𝜃 ′ ◦ 𝜃 ◦ 𝜃1, 𝜃 ′𝛼)

The 𝜃 = Us (𝜃1, 𝜃2) operation unifies two substitutions such that 𝜃 ◦ 𝜃1 = 𝜃 ◦ 𝜃2 (and 𝜃 is the most

general substitution to do so). This is very similar how HMQ uses the notion of a consistent union of

prefixes. In particular, if we keep all prefixes as an idempotent mapping, these are just substitutions

and we can use McAdam’s Us algorithm to compute the consistent union of two prefixes (as shown

in Section 3.1.2).

8 CONCLUSION
Type inference under a prefix gives us declarative type rules that we believe are close to the clarity of

the original HM rules. At the same time, we are able to “read off” the algorithm from the declarative

type rules. HMQ can serve as foundation to specify practical type systems in a declarative way

that serves both purposes: users can easily reason about what programs are accepted by the type

checker, while compiler writers can derive sound implementations from those same rules.
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Γ
↑
in

⊢hm e
↑
in

: 𝜎
↓
out

x :𝜎 ∈ Γ
Γ ⊢hm x : 𝜎

varhm

Γ, x :𝜏1 ⊢hm e : 𝜏2

Γ ⊢hm 𝜆x . e : 𝜏1→ 𝜏2
funhm

Γ ⊢hm e : ∀𝛼.𝜎
Γ ⊢hm e : [𝛼 :=𝜏]𝜎

insthm

Γ ⊢hm e1 : 𝜎 Γ, x :𝜎 ⊢hm e2 : 𝜏

Γ ⊢hm let x = e1 in e2 : 𝜏
lethm

Γ ⊢hm e1 : 𝜏2→ 𝜏 Γ ⊢hm e2 : 𝜏2

Γ ⊢hm e1 e2 : 𝜏
apphm

Γ ⊢hm e : 𝜎 𝛼 ̸∈ ftv(Γ, e)
Γ ⊢hm e : ∀𝛼.𝜎

genhm

Fig. 7. HM type rules.

Γ
↑
in

⊢hms e
↑
in

: 𝜏
↓
out

gen(Γ, 𝜏) = ∀𝛼.𝜏 with 𝛼 = ftv(𝜏) − ftv(Γ)

x :∀𝛼.𝜏 ∈ Γ
Γ ⊢hms x : [𝛼 :=𝜏]𝜏

varhms

Γ, x :𝜏1 ⊢hms e : 𝜏2

Γ ⊢hms 𝜆x . e : 𝜏1→ 𝜏2
funhms

Γ ⊢hms e1 : 𝜏1 Γ, x :𝜎 ⊢hms e2 : 𝜏2 𝜎 = gen(Γ, 𝜏1)
Γ ⊢hms let x = e1 in e2 : 𝜏2

lethms

Γ ⊢hms e1 : 𝜏2→ 𝜏 Γ ⊢hm e2 : 𝜏2

Γ ⊢hms e1 e2 : 𝜏
apphms

Fig. 8. Syntax directed HM type rules.

A THE DAMAS-HINDLEY-MILNER TYPE RULES
Figure 7 gives the standard HM type rules [Damas and Milner 1982]. A judgment Γ ⊢hm e : 𝜎 states

that an expression can be given type 𝜎 under a type environment Γ. Γ, and e are inherited (i.e.

input) while 𝜎 is synthesized (i.e. output). We write Γ, x :𝜎 to extend a type environment Γ with a

fresh binding x :𝜎 where x ̸∈ dom(Γ) (which we can always ensure by appropriate renaming).

The [varhm] rule derives the type of a variable that is bound in the environment. This will

always be a monomorphic type 𝜏 for lambda-bound variables but can be polymorphic for let-bound

variables as the [lethm] rule allows a 𝜎 type for the binding. As discussed in the introduction, the

[abshm] rule allows “guessing” any 𝜏1 type for the parameter. The [insthm] rule is another source
of “guessing”, as we can freely instantiate a polymorphic binder to any 𝜏 ′ that fits the derivation.

A.1 Syntax Directed Type Rules
As a step towards an inference algorithm, we can also give syntax directed rules for the HM rules

as shown in Figure 8. Following Damas and Milner [1982], we always instantiate variables and

generalize at let-bindings.

A.2 HM Type Inference: AlgorithmW
Damas and Milner [1982] describe a type inference algorithm W (shown as inferW in Figure 9)

which always infers a most-general type, and they show it is sound and complete with respect to

the inference rules:
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unify : (𝜏1, 𝜏2) → 𝜃

unify (𝛼, 𝛼) =

id

unify (𝛼, 𝜏) or (𝜏, 𝛼) | 𝛼 ̸∈ ftv(𝜏) =

[𝛼 :=𝜏]
unify (𝜏1→𝜏2, 𝜏

′
1
→𝜏 ′

2
) =

let 𝜃1 = unify(𝜏1, 𝜏 ′1)
let 𝜃2 = unify(𝜃1𝜏2, 𝜃1𝜏 ′2)
(𝜃2 ◦ 𝜃1)

gen : (Γ, 𝜏) → 𝜎

gen(Γ, 𝜏) =

let 𝛼 = ftv(𝜏) − ftv(Γ)
∀𝛼. 𝜏

inferW : (Γ, e) → (𝜃, 𝜏)
inferW (Γ, x) =

let ∀𝛼. 𝜏 = Γ(x)
let 𝛽 = fresh

(id, [𝛼 :=𝛽]𝜏)
inferW (Γ, e1 e2) =

let (𝜃1, 𝜏1) = inferW (Γ, e1)
let (𝜃2, 𝜏2) = inferW (𝜃1Γ, e2)
let 𝛼 = fresh

let 𝜃3 = unify(𝜃2𝜏1, 𝜏2→ 𝛼)
(𝜃3 ◦ 𝜃2 ◦ 𝜃1, 𝜃3𝛼)

inferW (Γ, 𝜆x .e) =

let 𝛼 = fresh

let (𝜃, 𝜏) = inferW ((Γ, x :𝛼), e)
(𝜃, 𝜃𝛼 → 𝜏)

inferW (Γ, let x = e1 in e2) =

let (𝜃1, 𝜏1) = inferW (Γ, e1)
let 𝜎 = gen(𝜃1Γ, 𝜏1)
let (𝜃2, 𝜏2) = inferW ((𝜃1Γ, x :𝜎), e2)
(𝜃2 ◦ 𝜃1, 𝜏2)

Fig. 9. Algorithm W

Theorem A.8. (Algorithm W is sound)
If (𝜃, 𝜏) = infer (Γ, e), then 𝜃Γ ⊢hm e : 𝜏 .

Theorem A.9. (Algorithm W is complete)
If Γ ⊢hm e : 𝜎 , then (𝜃, 𝜏) = infer(Γ, e) and gen(𝜃Γ, 𝜏) ⊑ 𝜎 .
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F
↑
in

| Q
↓
out

| Γ
↑
in

⊢ e
↑
in

: 𝜎
↓
out

with ⊨Q, and F ∩̸ ftv(Γ)

x :𝜎 ∈ Γ
∅ | ∅ | Γ ⊢ x : 𝜎

var

F | Q | Γ ⊢ e : ∀𝛼.𝜎
F , 𝛼 | Q | Γ ⊢ e : 𝜎

inst

F | Q | Γ ⊢ e : 𝜎 𝛼 ̸∈ ftv(Q, Γ)
F | Q | Γ ⊢ e : ∀𝛼.𝜎

gen

F | Q | Γ, x :𝛼 ⊢ e : 𝜏

F, 𝛼 | Q | Γ ⊢ 𝜆x . e : 𝛼 → 𝜏
fun

F | Q · 𝛼=𝜏 ′ | Γ ⊢ e : 𝜏 𝛼 ̸∈ ftv(Q, Γ)
F | Q | Γ ⊢ e : [𝛼 :=𝜏 ′]𝜏

gensub

F1 | Q1 | Γ ⊢ e1 : 𝜏1 F2 | Q2 | Γ ⊢ e2 : 𝜏2 Q3 ⊢ 𝜏1 ≈ 𝜏2→ 𝛼

F1, F2, 𝛼 | Q1,Q2,Q3 | Γ ⊢ e1 e2 : 𝛼
app

F1 | Q1 | Γ ⊢ e1 : 𝜎 F2 | Q2 | Γ, x :𝜎 ⊢ e2 : 𝜏 ftv(𝜎) ⊆ ftv(Γ)
F1, F2 | Q1,Q2 | Γ ⊢ let x = e1 in e2 : 𝜏

let

Fig. 10. Type rules under a prefix using a fresh name supply F (where we write F1, F2 for the disjoint union
F1 ⊎ F2)

B HMQWITH EXPLICIT FRESH NAMES
Figure 10 gives full inductive type rules for HMQ using an explicit fresh name supply F . The fresh 𝛼

notation used in Figure 2 is essentially a convenient shorthand for the rules here with an explicit

name supply. We write F1, F2 for the disjoint union of F1 and F2, where F1, F2 � F1 ⊎ F2. Every time

we used fresh 𝛼 in the rules in Figure 2, we now pick a fresh 𝛼 from the name supply F (as F, 𝛼)
in [inst], [fun], and [app]. As in the original rules, we rely on 𝛼-renaming in the [inst] rule such
that the quantifier matches the fresh name. A well-formedness condition for the new rules is that F
is disjoint from the free type variables in the environment, with F ∩̸ ftv(Γ). This ensures that for
every derivation the fresh names are indeed fresh and do not contain type variable names occurring

in the environment. Note that for the output prefix Q and type 𝜎 , we have ftv(Q, 𝜎) ⊆ ftv(F, Γ) –
that is, all output type variables are either fresh or occur free in the environment.

The need for fresh names in HMQ is not ideal, and one might have hoped to see a local condition

instead, for example:

Q | Γ ⊢ e : ∀𝛼.𝜎 𝛼 ̸∈ ftv(Q, Γ)
Q | Γ ⊢ e : 𝜎

inst-wrong

Unfortunately, such local constraints still allow the introduction of artifical sharing by using the

same variable name in separate sub-derivations, which eventually leads to non-principal derivations

again. Consider for example const id 1 with const :∀𝛼𝛽. 𝛼 → 𝛽 → 𝛼 . If we instantiate const to
𝛼 → 𝛽 → 𝛼 , we could instantiate the quantifier for id to also be 𝛽 (if we can use [inst-wrong]),
leading to:

∅ | Γ ⊢ const : 𝛼→𝛽→𝛼 ∅ | Γ ⊢ id : 𝛽→𝛽 . . . ⊢ 𝛼→𝛽→𝛼 ≈ (𝛽→𝛽) → 𝛾

{𝛼=𝛽→𝛽,𝛾=𝛽→𝛼} | Γ ⊢ const id : 𝛾

∅ | Γ ⊢ const id : 𝛽→(𝛽→𝛽)
gensub

app

and thus const id 1 gets type int→int instead of the expected ∀𝛼.𝛼→𝛼 . The formalization in

Figure 10 ensures that separate sub-derivations all use unique names by using a disjoint union of
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F
↑
in

| Q
↓
out

| Γ
↑
in

⊢s e
↑
in

: 𝜏
↓
out

with ⊨Q, and F ∩̸ ftv(Γ)

x :∀𝛼. 𝜏 ∈ Γ
𝛼 | ∅ | Γ ⊢s x : 𝜏

vars

F | Q | Γ, x :𝛼 ⊢s e : 𝜏

F, 𝛼 | Q | Γ ⊢s 𝜆x . e : 𝛼 → 𝜏
funs

F1 | Q1 | Γ ⊢s e1 : 𝜏1 F2 | Q2 | Γ ⊢s e2 : 𝜏2 Q3 ⊢ 𝜏1 ≈ 𝜏2→ 𝛼

F1, F2, 𝛼 | Q1,Q2,Q3 | Γ ⊢s e1 e2 : 𝛼
apps

F1 | Q0 | Γ ⊢s e1 : 𝜏1 F2 | Q2 | Γ, x :𝜎 ⊢s e2 : 𝜏2 (Q1, 𝜎) = gen(Q0, Γ, 𝜏1)
F1, F2 | Q1,Q2 | Γ ⊢s let x = e1 in e2 : 𝜏2

lets

gen : (Q, Γ, 𝜏) → (Q, 𝜎)
gen(Q · 𝛼=𝜏 ′, Γ, 𝜏) = gen(Q, Γ, [𝛼 :=𝜏 ′]𝜏) if 𝛼 ̸∈ ftv(Q, Γ)
gen(Q, Γ, 𝜏) = (Q,∀𝛼. 𝜏) if dom(Q) ⊆ ftv(Γ), with 𝛼 = ftv(𝜏) − ftv(Γ)

Fig. 11. Syntax directed type rules under a prefix

the names used in each sub-derivation (and thus, we cannot both instantiate const and id with a

shared 𝛽 as in our example).

Lemma B.10. (Free type variables are either fresh or occur free in the environment)
If F | Q | Γ ⊢ e : 𝜎 , then ftv(Q, 𝜎) ⊆ ftv(F, Γ).

Proof. (Of Lemma B.10) By induction over the type rules. □

B.1 Syntax Directed Type Rules for HMQ
Figure 11 gives the syntax directed type rules for HMQ. We can make the declarative type rules

(Figure 10) syntax-directed in the usual way by applying full instantiation at the leaves of the

derivation at a variable occurrence, and applying full generalization at let bindings. The [vars] rule
now instantiates the type of variable fully with fresh variables 𝛼 for the quantifiers – just like in

the [inst] rule this may require 𝛼-renaming of the quantifiers.

Generalization now takes place in the [lets] rule using the gen function that takes the prefix

Q, the environment Γ, and a monotype 𝜏 , and returns a new prefix Q′ and generalized type 𝜎 .

The new prefix Q′ only has bindings that still occur in Γ with dom(Q′) ⊆ ftv(Γ). The first case of
generalization essentially applies [gensub] for all binders 𝛼 in Q that do not occur free in Γ. The
second case corresponds the [gen] rule and to generalization in HM type rules (see Figure 8) where

we quantify over all free variables in 𝜏 that do not occur free in Γ.

Theorem B.11. (The syntax directed HMQ rules are sound)
If F | Q | Γ ⊢s e : 𝜏 , then also F | Q | Γ ⊢ e : 𝜏 .

Theorem B.12. (The syntax directed HMQ rules are complete)
If F | Q | Γ ⊢ e : 𝜎 , then also F | Q′ | Γ ⊢s e : 𝜏 with (Q, 𝜎) = gen(Q′, Γ, 𝜏).

B.2 AlgorithmWQ
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unify : (𝜏1, 𝜏2) → 𝜃

unify (𝛼, 𝛼) =

id

unify (𝛼, 𝜏) or (𝜏, 𝛼) | 𝛼 ̸∈ ftv(𝜏) =

[𝛼 :=𝜏]
unify (𝜏1→𝜏2, 𝜏

′
1
→𝜏 ′

2
) =

let 𝜃1 = unify(𝜏1, 𝜏 ′1)
let 𝜃2 = unify(𝜃1𝜏2, 𝜃1𝜏 ′2)
(𝜃2 ◦ 𝜃1)

unifies : [𝜏] → 𝜃

unifies [] or [𝜏] = id
unifies (𝜏1 :𝜏2 :𝜏) =

let 𝜃1 = unify(𝜏1, 𝜏2)
let 𝜃2 = unifies (𝜃1𝜏2 : 𝜃1𝜏)
(𝜃2 ◦ 𝜃1)

gen : (Γ, 𝜏) → 𝜎

gen(Γ, 𝜏) =

let 𝛼 = ftv(𝜏) − ftv(Γ)
(∀𝛼. 𝜏)

inferWQ : (Γ, e) → (𝜃, 𝜏)
inferWQ(Γ, xi) =

let 𝛼 = Γ(x)
(id, 𝛼 i)

inferWQ(Γ, x) =

let ∀𝛼. 𝜏 = Γ(x)
let 𝛽 = fresh

(id, [𝛼 :=𝛽]𝜏)
inferWQ(Γ, e1 e2) =

let (𝜃1, 𝜏1) = inferWQ(Γ, e1)
let (𝜃2, 𝜏2) = inferWQ(𝜃1Γ, e2)
let 𝛼 = fresh

let 𝜃3 = unify(𝜃2𝜏1, 𝜏2→ 𝛼)
(𝜃3 ◦ 𝜃2 ◦ 𝜃1, 𝜃3𝛼)

inferWQ(Γ, 𝜆xn .e) =

let 𝛼 = fresh

let (𝜃1, 𝜏) = inferWQ((Γ, x :𝛼), e)
let 𝜃2 = unifies(𝛼, 𝜃1𝛼1, . . ., 𝜃1𝛼n)
(𝜃2, 𝜃2𝛼 → 𝜃2𝜏)

inferWQ(Γ, let x = e1 in e2) =

let (𝜃1, 𝜏1) = inferWQ(Γ, e1)
let 𝜎 = gen(𝜃1Γ, 𝜏1)
let (𝜃2, 𝜏2) = inferWQ((𝜃1Γ, x :𝜎), e2)
(𝜃2 ◦ 𝜃1, 𝜏2)

Fig. 12. Algorithm WQ

Figure 12 gives a type inference algorithm WQ for HMQ which is closely based on algorithm W.

The algorithm assumes a pre-processing step where every lambda binding x is annotated (as xn)
with the total number of occurrences n in the body of the lambda, and where every lambda bound

variable occurrence is annotated with its (unique) occurrence i (as xi). This way, we can generate

an initial fresh variable 𝛼 for a lambda bound variable, and use that to generate a unique fresh

type variable 𝛼 i per occurrence. Eventually, we unify all 𝛼 i occurrences again. This removes any

accidental propagation of type inference unifications between different derivations which happens

in plain algorithm W.

This use of a unique type variable per occurrence may delay unification errors until the moment

all occurrences are unified. However, at the same time it may improve the precision of the type

error since we can for example pick the most probable error instead of the the one that occurs

first [Heeren et al. 2003], i.e. for 𝜆x . (inc x, sqr x, not x) we can give an error for the single bool
occurrence since the two int occurrences are more common.

Theorem B.13. (Algorithm WQ is sound)
If (Q, 𝜏) = inferWQ(Γ, e) with ftv(Γ) = ∅, then F | Q | Γ ⊢s e : 𝜏 (for some F ).

Theorem B.14. (Algorithm WQ is complete)
If F | Q | Γ ⊢s e : 𝜏 , then also (Q, 𝜏) = inferWQ(Γ, e).
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The soundness theorem requires initially an environment without free type variables, such that

it contains only let bindings. This is needed since unification errors may be delayed in algorithm

WQ until the lambda-binding, whereas the type rules always require ⊨Q at every step. For the

inductive proof we need to use a more general theorem to account for this.

29



C PROOFS
C.1 Substitutions
A substitution 𝜃 is an idempotent function from type variables to types. The (finite) domain of of 𝜃

is the set of type variables such that 𝜃 (𝛼) ≠ 𝛼 for any 𝛼 ∈ dom(𝜃 ), while the codomain consists of

the free type variables of its range.

We use the notation [𝛼 :=𝜏] for a singleton substitution 𝜃 with domain {𝛼} and 𝜃 (𝛼) = 𝜏 . We

usually write substitution application with explicit parenthesis as 𝜃 (𝜏) but sometimes shorten to

just 𝜃𝜏 when appropriate
5
.

We write 𝜃 ⊑ 𝜃 ′ if 𝜃 is amore general (or less specific) substitution than 𝜃 ′, such that 𝜃 ′ = 𝜃 ′′ ◦ 𝜃
for some 𝜃 ′′. We say that two substitutions are equivalent if each is as-general as the other,

i.e. 𝜃1 ⊑ 𝜃2 ∧ 𝜃2 ⊑ 𝜃1 ⇔ 𝜃1 ≡ 𝜃2 (such substitutions are not always exactly equal since they can

potentially differ on a renaming between type variables 𝛼1:=𝛼2 where either direction is possible).

Properties C.15. (Substitution)
1. For any 𝜏 and well-formed 𝜃 , dom(𝜃 ) ̸∈ ftv(𝜃 (𝜏)).
2. For any 𝜏 with dom(𝜃 ) ̸∈ ftv(𝜏), 𝜃 (𝜏) = 𝜏 .

3. For a well-formed 𝜃 with 𝛼 ̸∈ ftv(𝜃, 𝜏 ′), 𝜃 ( [𝛼 :=𝜏 ′] (𝜏)) = [𝛼 :=𝜃 (𝜏 ′)] (𝜃 (𝜏)).

Proof. (of Property C.15.3 ) We have 𝛼 ̸∈ ftv(𝜃, 𝜏 ′) (1), and thus 𝜃 (𝛼) = 𝛼 (2). Induction on 𝜏 .

Case [𝜏 = 𝛼]:

𝜃 ( [𝛼 :=𝜏 ′] (𝛼))
= 𝜃 (𝜏 ′) { def . }
= [𝛼 :=𝜃 (𝜏 ′)] (𝛼) { def . }
= [𝛼 :=𝜃 (𝜏 ′)] (𝜃 (𝛼)) { (2) }

Case [𝜏 = 𝜏1]: with 𝛼 ̸∈ ftv(𝜏1) (3):
𝜃 ( [𝛼 :=𝜏 ′] (𝜏1))

= 𝜃 (𝜏1) { (3). }
= [𝛼 :=𝜃 (𝜏 ′)] (𝜃 (𝜏1)) { (3), (1), prop 𝐶.15.2 }

Case [𝜏 = 𝜏1→𝜏2]:

𝜃 ( [𝛼 :=𝜏 ′] (𝜏1→𝜏2))
= 𝜃 ( [𝛼 :=𝜏 ′]𝜏1→ 𝜃 ( [𝛼 :=𝜏 ′]𝜏2) { def . }
= [𝛼 :=𝜃 (𝜏 ′)] (𝜃 (𝜏1)) → [𝛼 :=𝜃 (𝜏 ′)] (𝜃 (𝜏2)) { ind . hyp. }
= [𝛼 :=𝜃 (𝜏 ′)] (𝜃 (𝜏1→𝜏2)) { def . }

□

Lemma C.16. (Substitution cancelation)
If 𝛼 ̸∈ ftv(𝜏) and 𝜃 is well-formed with 𝛼 ∈ dom(𝜃 ), then 𝜃 = [𝛼 :=𝜏 ′] ◦ 𝜃 (for any 𝜏 ′).

Proof. (of Lemma C.16) With 𝛼 ∈ dom(𝜃 ), we have for any 𝜏 , 𝛼 ̸∈ ftv(𝜃 (𝜏)) (1) (due to prop C.15.1).

Therefore,

( [𝛼 :=𝜏 ′] ◦ 𝜃 ) (𝜏)
= [𝛼 :=𝜏 ′] (𝜃 (𝜏)) { def }
= 𝜃 (𝜏) { (1), prop 𝐶.15.2 }

□

5
Note that we do not use the common notation 𝜏 [𝛼 :=𝜏 ′ ] but always write this as [𝛼 :=𝜏 ′ ] (𝜏 ) (or [𝛼 :=𝜏 ′ ]𝜏 ).
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Lemma C.17. (Substitution commutation)
If 𝛼 ̸∈ ftv(𝜃 ) (1), then 𝜃 ◦ [𝛼 :=𝜏] = [𝛼 :=𝜃 (𝜏)] ◦ 𝜃

Proof. (of Lemma C.17) For any 𝜏 ′, we have:
(𝜃 ◦ [𝛼 :=𝜏]) (𝜏 ′)

= 𝜃 ( [𝛼 :=𝜏] (𝜏 ′)) { def . }
= [𝛼 :=𝜃 (𝜏)] (𝜃 (𝜏 ′)) { prop 𝐶.15.3 }
= ( [𝛼 :=𝜃 (𝜏)] ◦ 𝜃 ) (𝜏 ′) { def . }

□

Lemma C.18. (Equivalence of Composed Substitutions)
If 𝜃1 ◦ [𝛼 :=𝜏1] = 𝜃2 ◦ [𝛼 :=𝜏2] with 𝛼 ̸∈ ftv(𝜃1, 𝜏1, 𝜃2, 𝜏2), then 𝜃1 = 𝜃2 with 𝜃1 (𝜏1) = 𝜃1 (𝜏2).

Proof. (of Lemma C.18) We have 𝜃 = 𝜃1 ◦ [𝛼 :=𝜏1] = 𝜃2 ◦ [𝛼 :=𝜏2] (1), with 𝛼 ̸∈ ftv(𝜃1, 𝜏1, 𝜃2, 𝜏2)
(2). For any 𝜏 with 𝛼 ̸∈ ftv(𝜏), we have 𝜃1 (𝜏) = 𝜃2 (𝜏) (3):

𝜃1 (𝜏)
= (𝜃1 ◦ [𝛼 :=𝜏1]) (𝜏) { 𝛼 ̸∈ ftv(𝜏), (2) }
= 𝜃 (𝜏) { (1) }
= (𝜃2 ◦ [𝛼 :=𝜏2]) (𝜏) { (1) }
= 𝜃2 (𝜏) { 𝛼 ̸∈ ftv(𝜏), (2) }
and thus 𝜃1 (𝜏1) = 𝜃1 (𝜏2) (4):

𝜃1 (𝜏1)
= (𝜃1 ◦ [𝛼 :=𝜏1]) (𝛼) { (2) }
= (𝜃2 ◦ [𝛼 :=𝜏2]) (𝛼) { (1) }
= 𝜃2 (𝜏2) { (2) }
= 𝜃1 (𝜏2) { (2), (3) }
Therefore:

𝜃1 ◦ [𝛼 :=𝜏2]
= [𝛼 :=𝜃1 (𝜏2)] ◦ 𝜃1 { Lemma 𝐶.17, (2) }
= [𝛼 :=𝜃1 (𝜏1)] ◦ 𝜃1 { (4) }
= 𝜃1 ◦ [𝛼 :=𝜏1] { Lemma 𝐶.17, (2) }
= 𝜃2 ◦ [𝛼 :=𝜏2] { (1) }
and thus 𝜃1 = 𝜃2. □

C.2 More General Substitutions

Properties C.19.
1. id ⊑ 𝜃 (for any 𝜃 )

2. If 𝜃1 ⊑ 𝜃2 then 𝜃1 ◦ 𝜃 ⊑ 𝜃2 ◦ 𝜃 .
3. If 𝜃 (𝛼) = 𝜃 (𝜏) with 𝛼 ̸∈ ftv(𝜏), then [𝛼 :=𝜏] ⊑ 𝜃 .

4. If 𝜃1 ◦ 𝜃2 ⊑ 𝜃 then 𝜃 = 𝜃 ′ ◦ 𝜃2 with 𝜃1 ⊑ 𝜃 ′.
5. If 𝜃 ⊑ 𝜃1 ◦ 𝜃2 and dom(𝜃1) ∩̸ dom(𝜃 ), then 𝜃 ⊑ 𝜃2.

Proof. (of Property C.19.1) For any 𝜃 ,
𝜃

= 𝜃 ◦ id { def . }
□
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Proof. (of Property C.19.2) With 𝜃1 ⊑ 𝜃2, we have 𝜃2 = 𝜃 ′ ◦ 𝜃1 (1), and thus:

𝜃2 ◦ 𝜃
= (𝜃 ′ ◦ 𝜃1) ◦ 𝜃 { (1) }
= 𝜃 ′ ◦ (𝜃1 ◦ 𝜃 ) { assoc. }

□

Proof. (of Property C.19.3) We have 𝜃 (𝛼) = 𝜃 (𝜏) (1).
𝜃 (𝛼) = 𝜃 (𝜏)

⇒ 𝜃 = 𝜃 ′ ◦ [𝛼 :=𝜏] { ? (add extra substitution property?) }
□

Proof. (of Property C.19.4) We have 𝜃1 ◦ 𝜃2 ⊑ 𝜃 (1).
𝜃

= 𝜃 ′′ ◦ 𝜃1 ◦ 𝜃2 { (1), some 𝜃 ′′ }
= 𝜃 ′ ◦ 𝜃2 { assume 𝜃 ′ = 𝜃 ′′ ◦ 𝜃1 (2) }
and

𝜃 ′

= 𝜃 ′′ ◦ 𝜃1 { (2) }
⇒ 𝜃1 ⊑ 𝜃 ′

□

Proof. (of Property C.19.5) We have 𝜃 ⊑ 𝜃1 ◦ 𝜃2 (1) and dom(𝜃1) ∩̸ dom(𝜃 ) (2)
𝜃1 ◦ 𝜃2

= 𝜃 ′ ◦ 𝜃 { (1) }
= 𝜃3 ◦ 𝜃4 ◦ 𝜃 { for some 𝜃3, 𝜃4 with dom(𝜃4) ∩̸ dom(𝜃1) }
since dom(𝜃4 ◦ 𝜃 ) ∩̸ dom(𝜃1), it must be that 𝜃2 = 𝜃4 ◦ 𝜃 , and thus 𝜃 ⊑ 𝜃2. (TODO: more formal

proof?) □

C.3 Prefixes
The solution to a prefix is also a solution to any subset:

Lemma C.20. (Consistent weakening)
If 𝜃 ⊨Q1 ∪ Q2, then also 𝜃 ⊨Q1.

Proof. (of Lemma C.20) We have 𝜃 ⊨Q1 ∪ Q2 (1) and need to show 𝜃 ⊨Q1. From (1) and [solution],
we have ∀(𝛼=𝜏) ∈ Q1 ∪ Q2 . 𝜃 (𝛼) = 𝜃 (𝜏), and thus ∀(𝛼=𝜏) ∈ Q1. 𝜃 (𝛼) = 𝜃 (𝜏) with 𝜃 ⊨Q1. □

The least solution of a subset of a prefix is less specific than the prefix solution:

Lemma C.21. (Consistent union)
If ⊨Q1 ∪ Q2, then ⟨Q1⟩ ⊑ ⟨Q1 ∪ Q2⟩.

Proof. (of Lemma C.21) By definition ⟨Q1 ∪ Q2⟩ ⊨Q1 ∪ Q2, and by lemma C.20 ⟨Q1 ∪ Q2⟩ is a solution
of Q1, ⟨Q1 ∪ Q2⟩ ⊨Q1. By definition of prefix solution we now have ⟨Q1⟩ ⊑ ⟨Q1 ∪ Q2⟩.
An important property is that a prefix solution of a subset is a right identity:

Lemma C.22. (Prefix extension)
If ⊨Q1 ∪ Q2, then ⟨Q1 ∪ Q2⟩ = ⟨Q1 ∪ Q2⟩ ◦ ⟨Q1⟩.
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Proof. (of Lemma C.22) We have ⊨Q1 ∪ Q2 (1) and need to show ⟨Q1 ∪ Q2⟩ = ⟨Q1 ∪ Q2⟩ ◦ ⟨Q1⟩. By
(1) and Lemma C.21, ⟨Q1⟩ ⊑ ⟨Q1 ∪ Q2⟩, which implies ⟨Q1 ∪ Q2⟩ = 𝜃 ◦ ⟨Q1⟩ for some 𝜃 . Therefore

⟨Q1 ∪ Q2⟩
= 𝜃 ◦ ⟨Q1⟩ { (2) }
= 𝜃 ◦ ⟨Q1⟩ ◦ ⟨Q1⟩ { subst . idem. }
= ⟨Q1 ∪ Q2⟩ ◦ ⟨Q1⟩ { (2) }

□

A nice property of an extracted bound is that we get a stronger form of Lemma C.22 where we can

write the prefix solution as a composition of each sub-solution:

Lemma 3.7. (Extraction corresponds to composition of prefix solutions)
If ⊨Q and Q = Q′ · 𝛼=𝜏 , then ⟨Q⟩ = ⟨Q′⟩ ◦ [𝛼 :=𝜏].

Proof. (of Lemma 3.7) We have ⊨Q (1), and Q = Q′ · 𝛼=𝜏 , and thus Q = Q′ ⊎ {𝛼=𝜏} (2) with
𝛼 ̸∈ ftv(Q′, 𝜏) (3) (and need to show ⟨Q⟩ = ⟨Q′⟩ ◦ [𝛼 :=𝜏]). From (1), we have∀𝛽=𝜏 ′ ∈ Q. Q[𝛽] = Q[𝜏 ′],
and thus from (2,3),∀(𝛽=𝜏 ′) ∈ Q′ . Q[𝛽] = Q[𝜏 ′] andQ[𝛼] = Q[𝜏] (4). From (3,4) and Lemma C.19.3,

[𝛼 :=𝜏] ⊑ ⟨Q⟩ and thus ⟨Q⟩ = 𝜃 ◦ [𝛼 :=𝜏] for some 𝜃 (5), and from (3,5) ∀(𝛽=𝜏 ′) ∈ Q′ . 𝜃 (𝛽) = 𝜃 (𝜏 ′).
A minimal solution for 𝜃 is ⟨Q′⟩, and therefore ⟨Q⟩ = ⟨Q′⟩ ◦ [𝛼 :=𝜏]. □

Lemma C.24. (Prefixes with a common solution are consistent)
For any consistent Q1 and Q2, if Q1⊑𝜃 and Q2⊑𝜃 , then Q1,Q2 is consistent with (Q1,Q2) ⊑ 𝜃 .

Proof. (Of Lemma C.24) We have ⊨Q1 (1a) with Q1⊑𝜃 (1b), and ⊨Q2 with Q2⊑𝜃 . By definition,

from (1a), ∀𝛼=𝜏 ∈ Q1. ⟨Q1⟩𝛼 = ⟨Q1⟩𝜏 , and thus by (1b) we also have ∀𝛼=𝜏 ∈ Q1. 𝜃𝛼 = 𝜃𝜏 with 𝜃 ⊨Q1

(2) and similarly, 𝜃 ⊨Q2 (3). It follows by definition that we also have 𝜃 ⊨ (Q1 ∪ Q2) and thus Q1,Q2

is consistent. Since ⟨Q1,Q2⟩ is minimal by definition, we also have (Q1,Q2) ⊑𝜃 . □

C.4 Consistent Prefixes are Substitutions

Proof. (Of Theorem 2.6) For any consistent Q we have a minimal solution ⟨Q⟩ (= 𝜃 ) which is a

well-formed idempotent substitution of the form [𝛼1:=𝜏1, . . ., 𝛼n:=𝜏n] (with 𝛼 i pairwise distinct and

dom(𝜃 ) ∩̸ codom(𝜃 ) (1)). Define Q′ as {𝛼1=𝜏1, . . ., 𝛼n=𝜏n}. The minimal solution for Q′ is also 𝜃

and thus Q ≡ Q′ where Q′ is an idempotent mapping (by (1)). □

Theorem C.25. (For a consistent prefix, any binder can be extracted)
If ⊨Q and (𝛼=𝜏) ∈ Q, then Q ≡ Q′ · 𝛼=𝜏 ′ (with Q[𝜏] = 𝜏 ′).

Proof. (Of Lemma C.25) Since ⊨Q, by Theorem 2.6, we have a idempotent mapping Q0 (1) with
Q0 ≡ Q (2). Since𝛼=𝜏 ∈ Q, wemust haveQ0 = Q′ ∪ {𝛼=𝜏 ′} for some 𝜏 ′. SinceQ0 is an idempotent

mapping (1), we have 𝛼 ̸∈ ftv(Q′, 𝜏 ′), and we can use [extract] to conclude Q0 = Q′ · 𝛼=𝜏 ′ and by
(2), Q0 ≡ Q′ · 𝛼=𝜏 ′. Moreover, by (2), Q[𝜏] = Q0 [𝜏 ′], and since Q0 is idempotent (1), Q0 [𝜏 ′] = 𝜏 ′,
and therefore Q[𝜏] = 𝜏 ′. □

C.5 Type Equivalence
Type equivalence is sound.

Proof. (of Theorem C.34) We have Q ⊢ 𝜏 ≈ 𝜏 ′ (1) (and need to show Q[𝜏] = Q[𝜏 ′]). We proceed by

induction over the rules of (≈ ).
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Case [eq-id]: 𝜏 = 𝜏 ′, and we have ∅ ⊢ 𝜏 ≈ 𝜏 . It follows directly that Q[𝜏] = ∅[𝜏] = 𝜏 = 𝜏 ′ = Q[𝜏 ′].
Case [eq-var] 𝜏 = 𝛼 , and we have {𝛼=𝜏 ′} ⊢ 𝛼 ≈ 𝜏 ′ with 𝛼 ̸∈ ftv(𝜏 ′) (2).

Q[𝛼]
= ⟨{𝛼=𝜏 ′}⟩(𝛼) { assumption }
= [𝛼 :=𝜏 ′] (𝛼) { def . }
= 𝜏 ′ { def . }
= [𝛼 :=𝜏 ′] (𝜏 ′) { (2) }
= Q[𝜏 ′] { def . }

Case [mvarr]: similar to the previous case.

Case [eq-fun]: We have Q1 ⊢ 𝜏1 ≈ 𝜏 ′1, Q2 ⊢ 𝜏2 ≈ 𝜏 ′2, and ⊨Q1 ∪ Q2. By induction Q1 [𝜏1] = Q1 [𝜏 ′1]
and Q2 [𝜏2] = Q2 [𝜏 ′2] (2). We can now derive:

(Q1 ∪ Q2) [𝜏1→𝜏2]
= (Q1 ∪ Q2) [𝜏1] → (Q1 ∪ Q2) [𝜏2] { def . }
= (Q1 ∪ Q2) [Q1 [𝜏1]] → (Q1 ∪ Q2) [Q2 [𝜏2]] { lemma 𝐶.22 }
= (Q1 ∪ Q2) [Q1 [𝜏 ′1]] → (Q1 ∪ Q2) [Q2 [𝜏 ′2]] { (2) }
= (Q1 ∪ Q2) [𝜏 ′1] → (Q1 ∪ Q2) [𝜏 ′2] { lemma 𝐶.22 }
= (Q1 ∪ Q2) [𝜏 ′1→𝜏 ′

2
] { def . }

□

Lemma C.26. (Consistent solutions)
If Q ⊑ 𝜃 , then 𝜃 ⊨Q.

Proof. (of LemmaC.26) Since ⟨Q⟩ ⊑ 𝜃 ,𝜃 = 𝜃 ′ ◦ ⟨Q⟩ for some𝜃 ′. Since ⟨Q⟩ ⊨Q, we have∀(𝛼=𝜏) ∈ Q. ⟨Q⟩(𝛼) = ⟨Q⟩(𝜏).
Therefore, ∀(𝛼=𝜏) ∈ Q. (𝜃 ′ ◦ ⟨Q⟩)(𝛼) = (𝜃 ′ ◦ ⟨Q⟩)(𝜏), and 𝜃 ⊨Q. □

Lemma C.27. (Consistent strengthen)
If Q1 ⊑ 𝜃 and Q2 ⊑ 𝜃 , then ⊨Q1 ∪ Q2 and Q1 ∪ Q2 ⊑ 𝜃

Proof. (of Lemma C.27) We have Q1 ⊑ 𝜃 (1) and Q2 ⊑ 𝜃 (2). From (1) and Lemma C.26, we have

𝜃 ⊨Q1, and thus∀(𝛼=𝜏) ∈ Q1 . 𝜃 (𝛼) = 𝜃 (𝜏) (3). Similarly, from (2) we have∀(𝛼=𝜏) ∈ Q2. 𝜃 (𝛼) = 𝜃 (𝜏)
(4). Therefore, by (3,4) ∀(𝛼=𝜏) ∈ (Q1 ∪ Q2). 𝜃 (𝛼) = 𝜃 (𝜏), and thus 𝜃 ⊨Q1 ∪ Q2 (5) (and ⊨Q1 ∪ Q2)).
By definition, (5) implies ⟨Q1 ∪ Q2⟩ ⊑ 𝜃 . □

Type equivalence is complete.

Proof. (of Theorem C.35) We have 𝜃 (𝜏1) = 𝜃 (𝜏2) (1). We proceed by induction over the shape of

𝜏1, 𝜏2.

Case [𝜃 (𝜏) = 𝜃 (𝜏)]: We have 𝜏 = 𝜏1 = 𝜏2, and thus by [eq-id], ∅ ⊢ 𝜏1 ≈ 𝜏2, and ∅ ⊑ 𝜃 (since

𝜃 = 𝜃 ◦ id).
Case [𝜃 (𝛼) = 𝜃 (𝜏2)]: If 𝛼 = 𝜏2, we have the previous case 𝜃 (𝜏) = 𝜃 (𝜏). Since 𝜃 is idempotent, we

otherwise have 𝛼 ̸∈ ftv(𝜏2) (2). By [eq-var], {𝛼=𝜏2} ⊢ 𝛼 ≈ 𝜏2. Moreover, by (2) and Property C.19.3),

we also have [𝛼 :=𝜏2] ⊑ 𝜃 .

Case [𝜃 (𝜏1) = 𝜃 (𝛼)]: as the previous case with [mvarr].
Case [𝜃 (𝜏1→𝜏2) = 𝜃 (𝜏 ′

1
→𝜏 ′

2
)]: We have 𝜃 (𝜏1) = 𝜃 (𝜏 ′

1
) and 𝜃 (𝜏2) = 𝜃 (𝜏 ′

2
). By ind. hyp. Q1 ⊢ 𝜏1 ≈ 𝜏 ′1

(2) with Q1 ⊑ 𝜃 and Q2 ⊢ 𝜏2 ≈ 𝜏 ′2 (3) with Q2 ⊑ 𝜃 . By lemma C.27, we have ⊨Q1 ∪ Q2 (3) and
Q1 ∪ Q2 ⊑ 𝜃 , and thus by (2,3,4), Q1,Q2 ⊢ 𝜏1→𝜏2 ≈ 𝜏 ′1→𝜏 ′

2
.
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□

C.6 Computing Prefixes
We can replace sub-prefixes with equivalent constraints:

Lemma C.28. (Prefix replacement)
If Q1 ≡ Q2, then Q ∪ Q1 ≡ Q ∪ Q2.

Proof. (of Lemma C.28) We have Q1 ≡ Q2 and by definition ⟨Q1⟩ = ⟨Q2⟩ (1) (and need to show

Q ∪ Q1 ≡ Q ∪ Q2). Since Q1 ⊑ Q ∪ Q1, we have from Lemma C.21, ⟨Q ∪ Q1⟩ = 𝜃1 ◦ ⟨Q1⟩ (2) and
similarly, ⟨Q ∪ Q2⟩ = 𝜃2 ◦ ⟨Q2⟩ (3) for some 𝜃1, 𝜃2.

By definition, 𝜃1 is a least substitution such that ∀(𝛼=𝜏) ∈ Q. (𝜃1 ◦ ⟨Q1⟩)(𝛼) = (𝜃1 ◦ ⟨Q1⟩)(𝜏)
(4) ∧ ∀(𝛼=𝜏) ∈ Q1. (𝜃1 ◦ ⟨Q1⟩)(𝛼) = (𝜃1 ◦ ⟨Q1⟩)(𝜏). The second part induces no constraints on 𝜃1
since it holds for any substitution, so 𝜃1 only needs to be the least substitution such that (4) holds.

Similarly, 𝜃2 is the least substitution such that ∀(𝛼=𝜏) ∈ Q. (𝜃2 ◦ ⟨Q2⟩)(𝛼) = (𝜃2 ◦ ⟨Q2⟩)(𝜏) (5)
holds. With (1,5), 𝜃2 is also the least substitution for ∀(𝛼=𝜏) ∈ Q. (𝜃2 ◦ ⟨Q1⟩)(𝛼) = (𝜃2 ◦ ⟨Q1⟩)(𝜏)
and with (4) it follows that 𝜃1 ≡ 𝜃2 (6). We can now derive:

⟨Q ∪ Q1⟩
= 𝜃1 ◦ ⟨Q1⟩ { (2) }
= 𝜃1 ◦ ⟨Q2⟩ { (1) }
≡ 𝜃2 ◦ ⟨Q2⟩ { (6) }
= ⟨Q ∪ Q2⟩ { (3) }

□

Using the replacement Lemma, we can show that we can simplify duplicate bounds:

Proof. (of Theorem 2.5 ) We have Q′ ⊢ 𝜏1 ≈ 𝜏2 (1) By (1) and Lemma C.34 and C.35, we have that

⟨Q′⟩ is the least substitution such that Q′ [𝜏1] = Q′ [𝜏2]. Since 𝛼 ̸∈ ftv(Q′, 𝜏1, 𝜏2) (Lemma ??) and

Lemma 3.7, we have that 𝜃1 = ⟨Q′ ∪ {𝛼=𝜏1}⟩ = ⟨Q′ · 𝛼=𝜏1⟩ = ⟨Q′⟩ ◦ [𝛼 :=𝜏1], and thus 𝜃1 is a least
solution such that 𝜃1 (𝛼) = 𝜃1 (𝜏1) = 𝜃1 (𝜏2). Writing Q0 = {𝛼=𝜏1, 𝛼=𝜏2}, ⟨Q0⟩ is also a least solution
such that Q0 [𝛼] = Q0 [𝜏2] = Q0 [𝜏2], and we have ⟨Q0⟩ ≡ 𝜃1, and thus Q0 ≡ Q′ ∪ {𝛼=𝜏1}. It follows
from Lemma C.28 that Q ∪ Q0 ≡ Q ∪ Q′ ∪ {𝛼=𝜏1}. □

Lemma C.29.
If ⊨Q, we can simplify Q to an equivalent mapping ⌊Q⌋.

Proof. (of LemmaC.29) Since⊨Q, for any duplicate binding {𝛼=𝜏1, 𝛼=𝜏2} ⊆ Q, we have ⟨Q⟩[𝜏1] = ⟨Q⟩[𝜏2]
and by Lemma C.35, Q′ ⊢ 𝜏1 ≈ 𝜏2 (for some Q′ ⊑ Q), and by Theorem 2.5 we can simplify the du-

plicate binding to Q′ ∪ {𝛼=𝜏1} (with 𝛼 ̸∈ ftv(Q′)). Repeated application reduces Q to a mapping

⌊Q⌋.

Lemma C.30.
If ⊨Q, we can order all bindings in ⌊Q⌋ as 𝛼1=𝜏1 · . . . · 𝛼n=𝜏n.

Proof. (of Lemma C.30) If there is no possible order in the bounds of a mapping ⌊Q⌋, there must a

subset Q′ ⊆ ⌊Q⌋ where for all bounds 𝛼=𝜏 ∈ Q′, 𝛼 ∈ ftv(Q′, 𝜏). Since this is a cyclic dependency,
such Q′ has no solution (with an idempotent substitution). This contradicts our assumption that Q
is consistent.
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C.7 Solving Prefixes
We can show that solve (see Section 3.1.1) is sound, complete, and terminating:

Theorem C.31. (Solve is sound)
If solve(Q) = 𝜃 then 𝜃 ⊨Q.

Theorem C.32. (Solve is complete)
If 𝜃 ⊨Q, then solve(Q) = 𝜃 ′ with 𝜃 ′⊑𝜃 (and thus, 𝜃 ′ = ⟨Q⟩).

Theorem C.33. (Solve terminates)
For any Q, solve(Q) terminates.

Theorem C.34. (Equiv is sound)
If equiv(𝜏1, 𝜏2) = 𝜃 then 𝜃𝜏1 = 𝜃𝜏2.

Theorem C.35. (Equiv is complete)
If 𝜃𝜏1 = 𝜃𝜏2, then equiv(𝜏1, 𝜏2) = 𝜃 ′ with 𝜃 ′⊑𝜃 .

C.8 Stable Derivations

Lemma C.36. (Derivations are stable under more general environments)
If F | Q | Γ, x :𝜎 ⊢ e : 𝜏 with Q⊑𝜃 and 𝜃𝜎 ′⊑𝜎 , we also have F , F ′ | Q | Γ, x :𝜎 ′ ⊢ e : 𝜏 ′ with some

fresh F ′ and a 𝜃 ′ such that (𝜃 ′ ◦ 𝜃 )𝜏 ′ = 𝜏 with dom(𝜃 ′) ⊆ F ′.

Proof. (Of Lemma C.36) We have a derivation F | Q | Γ, x :𝜎 ⊢ e : 𝜏 . If we bind x with a more

general 𝜎 ′ (with 𝜃𝜎 ′⊑𝜎), we get at a leaf ∅ | ∅ | Γ, x :𝜎 ′ ⊢ x : 𝜎 ′ (instead of 𝜎). We can now use

[inst] to instantiate any outer quantifiers 𝛼 (as ∀𝛼.𝜎 ′′) (using the fresh F ′). Therefore, there might

be extra prefix constraints for 𝛼 (due to ≈ in [app]). However, eventually we can use [gensub] to
remove those (since 𝛼 ∩̸ ftv(F, Γ)). This may still leave some unconstrained 𝛼 ∈ 𝛼 in ftv(𝜏 ′) and we
may need to apply a substitution 𝜃 ′ eventually (with dom(𝜃 ′) ⊆ F ′) such that (𝜃 ′ ◦ 𝜃 )𝜏 ′ = 𝜏 . (todo:

formalize this proof?)
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C.9 Completeness of the Type Rules
We use x𝜆 for lambda bound variables, and xlet for let-bound variables. We can decompose a HM

type environment into a substitution and HMQ environment where all lambda-bound variables are

bound to a (fresh) variable:

∅ � id (∅)
Γ, x𝜆 :𝜏 � (𝜃 ◦ [𝛼 :=𝜏]) (Γ′, x𝜆 :𝛼) where Γ � 𝜃Γ′, fresh 𝛼 [split-mono]
Γ, xlet :𝜎 � 𝜃 (Γ′, xlet :𝜎) where Γ � 𝜃Γ′ [split-poly]
We can now state completeness as:

Theorem C.37. (Completeness & most general typings)
If Γ ⊢hm e : 𝜎 with Γ � 𝜃0Γ

′
, thenwe also have F | Q | Γ′ ⊢ e : 𝜎 ′ for some F ∩̸ ftv(Γ′), and𝜃 = 𝜃 ′ ◦ 𝜃0

with dom(𝜃 ′) ⊆ F and codom(𝜃 ′) ⊆ ftv(Q, 𝜎 ′), such that Q⊑𝜃 and 𝜃𝜎 ′⊑𝜎 .
For the inductive proof we have strengthened the earlier Theorem 2.4 to decompose Γ into 𝜃0 and

Γ′, where 𝜃 ′ only substitutes fresh variables (dom(𝜃 ′) ⊆ F ).

Proof. (of TheoremC.37)We have Γ ⊢hm e : 𝜎 (1) with Γ � 𝜃0Γ
′
(1a), andwe need to show F | Q | Γ′ ⊢ e : 𝜎 ′

(I) for some𝜃 = 𝜃 ′ ◦ 𝜃0 withQ ⊑ 𝜃 (II), and𝜃𝜎 ′ ⊑ 𝜎 (III) (and dom(𝜃 ′) ⊆ F and codom(𝜃 ′) ⊆ ftv(Q, 𝜎 ′)
(IV)).

We proceed by induction on the typing rule Γ ⊢hm e : 𝜎 :

Case [varhm]: We have x :𝜎 ∈ Γ (2). With 𝜃 = 𝜃0 (3) (and 𝜃 ′ = id (4)) , we consider two cases:

x𝜆 :𝜏 ∈ Γ and xlet :𝜎 ∈ Γ. For a let-bound xlet, we have:
x :𝜎 ∈ Γ′ { [split-poly] }

⇒ ∅ | ∅ | Γ′ ⊢ x : 𝜎 { [var], (I) }
where ∅⊑𝜃 (II) holds by definition, and 𝜃𝜎 = 𝜎 (3,[split-poly]) and thus 𝜃𝜎 ⊑𝜎 (III). Otherwise, a
lambda-bound x𝜆 :𝜏 ∈ Γ, and thus x𝜆 :𝛼 ∈ Γ′ with 𝜃𝛼 = 𝜏 (5) [split-mono], and we can derive:

x :𝛼 ∈ Γ′ { [split-mono] }
⇒ ∅ | Γ′ ⊢ x : 𝛼 { [var], (I) }
where ∅⊑𝜃 (II) always holds, and by (5) 𝜃𝛼 ⊑𝜏 (III). For both cases, by (4), dom(𝜃 ′) = ∅ ⊆ F and

codom(𝜃 ′) ⊆ ftv(Q, 𝜎) (IV).
Case [funhm]:We have Γ, x :𝜏1 ⊢hm e : 𝜏2 with Γ, x :𝜏1 � 𝜃0 (Γ′, x :𝛼) (2) (with a fresh𝛼 ̸∈ (F ∪ ftv(Γ, Γ′, 𝜏2, 𝜏 ′2))
(2a)),𝜃0𝛼 = 𝜏1 (2b), and by induction F | Q | Γ′, x :𝛼 ⊢ e : 𝜏 ′

2
(3) with𝜃 = 𝜃 ′ ◦ 𝜃0 (3a), dom(𝜃 ′) ⊆ F

and codom(𝜃 ′) ⊆ ftv(Q, 𝜏 ′
2
) (3b), such that Q⊑𝜃 (3c) and 𝜃𝜏 ′

2
⊑𝜏2 (3d). We can now derive:

F | Q | Γ′, x :𝛼 ⊢ e : 𝜏 ′
2
{ (3) }

⇒ F , 𝛼 | Q | Γ′ ⊢ e : 𝛼 → 𝜏 ′
2
{ [fun], (2a), (I) }

From (3c), we have directly Q⊑𝜃 (II).
𝜃 (𝛼 → 𝜏 ′

2
)

= 𝜃𝛼 → 𝜃𝜏 ′
2

{ subst . }
⊑ 𝜃𝛼 → 𝜏2 { (3d) }
= 𝜃 ′ (𝜃0𝛼) → 𝜏2 { (3a) }
= 𝜃 ′𝜏1→ 𝜏2 { (2b) }
= 𝜏1→ 𝜏2 { (3b), (III) }
From (3b), it follows dom(𝜃 ′) ⊆ F and codom(𝜃 ′) ⊆ ftv(Q, 𝛼→𝜏 ′

2
) (IV)

Case [apphm]: By (1), we have Γ ⊢hm e1 : 𝜏2→ 𝜏 (2a) and Γ ⊢ e2 : 𝜏2 (2b), and by induction

F1 | Q1 | Γ′ ⊢ e1 : 𝜏3 (3a) and F2 | Q2 | Γ′ ⊢ e2 : 𝜏4 (4a), where we pick F1 ∩̸ F2 (2c). For the first
derivation, we have𝜃1 = 𝜃 ′

1
◦ 𝜃0,Q1⊑𝜃1,𝜃1𝜏3 ⊑ 𝜏2→ 𝜏 , dom(𝜃 ′

1
) ⊆ F1, and codom(𝜃 ′1) ⊆ ftv(Q1, 𝜏3)

(3b). For the second derivation,𝜃2 = 𝜃 ′
2
◦ 𝜃0,Q2⊑𝜃2,𝜃2𝜏4 ⊑ 𝜏2, dom(𝜃 ′2) ⊆ F2, and codom(𝜃 ′2) ⊆ ftv(Q2, 𝜏4)
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(4b).
We can now derive:

codom(𝜃 ′
1
) ⊆ ftv(Q1, 𝜏3) { (3b) }

⇒ codom(𝜃 ′
1
) ⊆ ftv(F1, Γ′) { Lemma 𝐵.10 }

⇒ codom(𝜃 ′
1
) ∩̸ F2 { (2c), F2 ∩̸ ftv(Γ′) . }

and similarly codom(𝜃 ′
2
) ∩̸ F1. Moreover dom(𝜃 ′

1
) ⊆ F1 (3b) implies with (2c) that dom(𝜃 ′

1
) ∩̸ F2. A

similar argument holds for 𝜃 ′
2
and therefore the (co)domains of 𝜃 ′

1
and 𝜃 ′

2
are disjoint, and thus

𝜃 ′
1
◦ 𝜃 ′

2
= 𝜃 ′

2
◦ 𝜃 ′

1
(5). As an aside, this property is why we need fresh names as otherwise sharing

between the two sub-derivations can occur and (5) would not hold.

We can now define 𝜃 ′ = 𝜃 ′
1
◦ 𝜃 ′

2
◦ 𝜃0 (2d), and derive:

Q2⊑𝜃2 { (4b) }
= Q2⊑𝜃 ′2 ◦ 𝜃0 { (4b) }
⇒ Q2⊑𝜃 ′1 ◦ 𝜃 ′2 ◦ 𝜃0 { def . }
= Q2⊑𝜃 ′ { (2d), (4c) }
Since dom(𝜃 ′

1
) ∩̸ codom(𝜃2) (4b), we have 𝜃 ′𝜏4 = 𝜃2𝜏4 (4b) and thus 𝜃

′𝜏4 ⊑ 𝜏2 (4d). By (5), we also

have 𝜃 ′ = 𝜃 ′
2
◦ 𝜃 ′

1
◦ 𝜃0, and we can use the same reasoning for the left derivation to conclude

Q1⊑𝜃 ′ (3c) and 𝜃 ′𝜏3⊑𝜏2→𝜏 (3d).
From (3d,4d) it follows that 𝜃 ′𝜏3 = 𝜏2→𝜏 and 𝜃 ′𝜏4 = 𝜏2 since these are monotypes. Therefore,

𝜃 ′𝜏3 = 𝜃 ′𝜏4→ 𝜏 . We now define 𝜃 = [𝛼 :=𝜏] ◦ 𝜃 ′ for some fresh 𝛼 ̸∈ F1, F2 (6). Since 𝛼 is fresh and

Lemma B.10, we have 𝜃𝜏3 = 𝜃 (𝜏4→ 𝛼), and from Theorem C.35 it follows Q3 ⊢ 𝜏3 ≈ 𝜏4→ 𝛼 (7),
with Q3⊑𝜃 (7a).

From (3c,6), we have Q1⊑𝜃 and by (4c,6) Q2⊑𝜃 . With (7a), and Lemma C.24 we have Q1,Q2,Q3

is consistent with Q1,Q2,Q3 ⊑ 𝜃 (II). Together with (3a,4a,7), we can now use [app] to conclude

F1, F2, 𝛼 | Q1,Q2,Q3 | Γ′ ⊢ e1 e2 : 𝛼 (I) and by (6), 𝜃𝛼 ⊑𝜏 (III). Finally, by (3b,4b,6), we also have

dom(𝜃 ) ⊆ F1, F2, 𝛼 with codom(𝜃 ) ⊆ ftv((Q1,Q2, 𝛼), 𝛼) (IV).
Case [lethm]: We have Γ ⊢hm e1 : 𝜎 with Γ � 𝜃0Γ

′
(2), and Γ, x :𝜎 ⊢hm e2 : 𝜏 (3). By induction, we

have F1 | Q1 | Γ′ ⊢ e1 : 𝜎1 (4a) and F2 | Q2 | Γ′, x :𝜎 ⊢ e2 : 𝜏2 (5a), with F1 ∩̸ F2 (6). For the left

derivation, we have 𝜃1 = 𝜃 ′
1
◦ 𝜃0, Q1⊑𝜃1, 𝜃1𝜎1 ⊑ 𝜎 , dom(𝜃 ′

1
) ⊆ F1, and codom(𝜃 ′

1
) ⊆ ftv(Q1, 𝜎1)

(4b). For the right derivation, we similarly have 𝜃2 = 𝜃 ′
2
◦ 𝜃0, Q2 ⊑ 𝜃2, 𝜃2𝜏2 ⊑ 𝜏 , dom(𝜃 ′

2
) ⊆ F2, and

codom(𝜃 ′
2
) ⊆ ftv(Q2, 𝜏2) (5b).

We now proceed as in the [apphm] case, and define 𝜃12 = 𝜃 ′
1
◦ 𝜃 ′

2
◦ 𝜃0 (7) with 𝜃 ′1 ◦ 𝜃 ′2 = 𝜃 ′

2
◦ 𝜃 ′

1

(7a). Just as in the [apphm] case, it follows that Q1⊑𝜃12 (4c), Q2⊑𝜃12 (5c), and 𝜃12𝜎1⊑𝜎 (4d), and
𝜃12𝜏2⊑𝜏 (5d). From (4c,5c) it follows from Lemma C.24 that Q1,Q2 is consistent with Q1,Q2 ⊑ 𝜃12

(8).
We cannot yet apply [let] as we need to satisfy the side condition ftv(𝜎1) ⊆ ftv(Γ′). Suppose

there is a 𝛼 ∈ ftv(𝜎1) with 𝛼 ̸∈ ftv(Γ′). In that case we can apply either [gen] or [gensub] depend-
ing on whether 𝛼 ∈ ftv(Q1). If 𝛼 ∈ ftv(Q1), we have by Lemma 2.6, Q1 ≡ Q3 · 𝛼=𝜏3 (9), and we

can apply [gensub] to derive F1 | Q3 | Γ′ ⊢ e1 : 𝜎3 with 𝜎3 = [𝛼 :=𝜏3]𝜎1. From (9) and Lemma 3.7,

⟨Q1⟩ = ⟨Q3⟩ ◦ [𝛼 :=𝜏3]. From (4c), this implies 𝜃12 = 𝜃12 ◦ [𝛼 :=𝜏3] (9a). We can now derive:

𝜃12𝜎1 ⊑ 𝜎 { (4d) }
= 𝜃12( [𝛼 :=𝜏3]𝜎1) ⊑ 𝜎 { (9a) }
= 𝜃12𝜎3 ⊑𝜎 { (9b) }
Similarly, if 𝛼 ̸∈ ftv(Q1) we can apply the [gen] rule.
Therefore, after repeated application we have F | Qn | Γ′ ⊢ e1 : 𝜎n with Qn⊑𝜃12 and 𝜃12𝜎n⊑𝜎 ,

andQn,Q2⊑𝜃12 (9c). Furthermore, since𝜃12𝜎n⊑𝜎 and (5a), we have by LemmaC.36, F2, F3 | Q2 | Γ′, x :𝜎n ⊢ e2 : 𝜏 ′
2

with (𝜃 ′ ◦ 𝜃12)𝜏 ′2⊑𝜏2 (10) as well, where F3 is fresh and dom(𝜃 ′) ⊆ F3. Therefore, we can define

𝜃 = 𝜃 ′ ◦ 𝜃12 with (9c) Qn⊑𝜃 , 𝜃𝜎n⊑𝜎 , and Qn,Q2⊑𝜃 (II). We can now finally apply [let] to derive
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F1, F2, F3 | Qn,Q2 | Γ′ ⊢ let x = e1 in e2 : 𝜏 ′
2
(I), with (5d,10) 𝜃𝜏 ′

2
⊑𝜏 (III) (and like the [apphm] case,

dom(𝜃 ) ⊆ ftv(F1, F2, F3) and codom(𝜃 ) ⊆ ftv((Qn,Q2), Γ′) (IV)).
Case [insthm]: We have Γ ⊢hm e : ∀𝛼.𝜎 with Γ � 𝜃0Γ

′
(2), and thus by induction F | Q | Γ′ ⊢ e : 𝜎 ′

(3) with𝜃 = 𝜃 ′ ◦ 𝜃0 (3a) such thatQ⊑𝜃 (3b) and𝜃𝜎 ′⊑∀𝛼.𝜎 (3c), and dom(𝜃 ′) ⊆ F and codom(𝜃 ′) ⊆ ftv(Q, 𝜎 ′)
(3d). We can assume a fresh 𝛼 ̸∈ F by 𝛼-renaming (4).
From (3c) and [instance], we must have 𝜎 ′ = ∀𝛼.𝜎0 (5) (for some 𝜎0). We can thus derive:

F | Q | Γ′ ⊢ e : ∀𝛼.𝜎0 { (3, 5) }
⇒ F, 𝛼 | Q | Γ′ ⊢ e : 𝜎0 { (4), (I) }
From (3b), we directly have Q⊑𝜃 (II). Moreover, by (3c,5) 𝜃 (∀𝛼.𝜎0) ⊑∀𝛼.𝜎 . Since 𝛼 is fresh, we

must have 𝜃𝜎0 ⊑ 𝜎 (III). Finally, from (3d) and (4), it follows directly that dom(𝜃 ′) ⊆ F , 𝛼 and

codom(𝜃 ′) ⊆ ftv(Q, 𝜎 ′) (IV).
Case [genhm]: We have Γ ⊢hm e : 𝜎 with Γ � 𝜃0Γ

′
(2), and 𝛼 ̸∈ ftv(Γ) (3), and thus by induction

F | Q | Γ′ ⊢ e : 𝜎 ′ (3a) with 𝜃 = 𝜃 ′ ◦ 𝜃0 (3b) such that Q⊑𝜃 (3c) and 𝜃𝜎 ′⊑𝜎 (3d) (and F ∩̸ ftv(Γ′)
(3e)). From (3) and the definition of (� ), we have 𝛼 ̸∈ ftv(Γ′) (4).
With 𝛼 ∈ ftv(𝜎), then from (3d) we have 𝛼 ∈ ftv(𝜃𝜎 ′) (5a) and thus 𝛼 ̸∈ dom(𝜃 ) (5c). We now have

three cases to consider:

A. Suppose𝛼 ̸∈ ftv(Q), in that casewe can apply [gen] with (3a,4) and derive F | Q | Γ′ ⊢ e : ∀𝛼.𝜎 ′
(I) with (3c) Q⊑𝜃 (II) and (3d,5c) 𝜃 (∀𝛼.𝜎 ′) ⊑∀𝛼.𝜎 (III). Todo: (IV).

B. Suppose we have 𝛼 ∈ dom(Q), in that case by (3c), 𝛼 ∈ dom(𝜃 ) but that contradicts (5c).
C. Otherwise, we must have 𝛼 ∈ codom(Q). With Theorem C.25, this implies Q ≡ Q1 · 𝛽=𝜏

(6a) with 𝛼 ∈ ftv(𝜏) (6b) and 𝛽 ̸∈ ftv(Q1, 𝜏) (6c).
Suppose 𝛽 ∈ ftv(Γ′). If x𝜆 : 𝛽 ∈ Γ′, then with (3c) we have x𝜆 :𝜏 ∈ Γ with 𝛼 ∈ ftv(Γ) (6b)
which contradicts (3). Otherwise, xlet :𝜎0 ∈ Γ′ with 𝛽 ∈ ftv(𝜎0) which implies by (3b,3c) that

𝛽 ∈ dom(𝜃 ′), and thus 𝛽 ∈ F – but that contradicts (3e). Therefore, we must have 𝛽 ̸∈ ftv(Γ′)
(7). With (6c,7) we can now use [gensub] to derive F | Q1 | Γ′ ⊢ e : [𝛽 :=𝜏]𝜎 ′, where (3c,6a)
Q1⊑𝜃 , and 𝜃 ◦ [𝛽 :=𝜏] = 𝜃 , and thus 𝜃 [𝛽 :=𝜏]𝜎 ′ ⊑ 𝜎 . We can repeatedly apply [gensub]
until case (A) applies.

□
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C.10 Soundness of the Type Rules

Theorem 2.3. (Soundness)
If F | Q | Γ ⊢ e : 𝜎 , then we can also derive Q[Γ] ⊢hm e : Q[𝜎].
We use the substitution Lemma from HM in the soundness proof:

Lemma C.39. (Weakening of HM)

If Γ ⊢hm e : 𝜎 then also 𝜃Γ ⊢hm e : 𝜃𝜎 .

We often use this LemmawhenQ1⊑Q, andQ1 [Γ] ⊢hm e : Q1 [𝜎], thenwe also haveQ[Γ] ⊢hm e : Q[𝜎].

Proof. (of Theorem 2.3) By induction on the typing rules of F | Q | Γ ⊢ e : 𝜎 :

Case [var]: We have x :𝜎 ∈ Γ (1) and Q = ∅ (2), and thus Q[Γ] = Γ (3) and Q[𝜎] = 𝜎 (4).
x :𝜎 ∈ Γ { (1) }

⇒ Γ ⊢hm x : 𝜎 { [varhm] }
= Q[Γ] ⊢hm x : Γ [𝜎] { (3, 4) }

Case [fun]: We have F | Q | Γ, x :𝛼 ⊢ e : 𝜏 (1) (with 𝛼 ̸∈ F ). We can now derive:

Q[Γ, x :𝛼] ⊢hm e : Q[𝜏] { induction over (1) }
= Q[Γ], x :Q[𝛼] ⊢hm e : Q[𝜏] { def . }
⇒ Q[Γ] ⊢hm 𝜆x .e : Q[𝛼] → Q[𝜏] { [funhm] }
= Q[Γ] ⊢hm 𝜆x .e : Q[𝛼→𝜏] { def . }

Case [app]: We have F1 | Q1 | Γ ⊢ e1 : 𝜏1 (1) and F2 | Q2 | Γ ⊢ e2 : 𝜏2 (2) with Q3 ⊢ 𝜏1 ≈ 𝜏2→𝛼 (3)
and ⊨Q1,Q2,Q3 (4). Writing Q = Q1,Q2,Q3, we have by Lemma C.21, Q1⊑Q, Q2⊑Q, and Q3⊑Q
(6).

Q1 [Γ] ⊢hm e1 : Q1 [𝜏1] { induction over (1) }
⇒ Q[Γ] ⊢hm e1 : Q[𝜏1] { Lemma 𝐶.39, (6), (7) }
and also:

Q2 [Γ] ⊢hm e2 : Q2 [𝜏2] { induction over (2) }
⇒ Q[Γ] ⊢hm e2 : Q[𝜏2] { Lemma 𝐶.39, (6), (8) }
Furthermore:

Q3 ⊢ 𝜏1 ≈ 𝜏2→ 𝛼 { (3) }
⇒ Q3 [𝜏1] = Q3 [𝜏2→ 𝛼] {Theorem 𝐶.34 }
⇒ Q[𝜏1] = Q[𝜏2→𝛼] { (6) }
⇒ Q[𝜏1] = Q[𝜏2]→Q[𝛼] { def . }
and by (7), Q[Γ] ⊢hm e1 : Q[𝜏2]→Q[𝛼], and with [apphm] and (8), we have Q[Γ] ⊢hm e1 e2 : Q[𝛼].
Case [gensub]: We have F | Q · 𝛼=𝜏 | Γ ⊢ e : 𝜎 (1) with 𝛼 ̸∈ ftv(Q, Γ) (2). Writing Q′ for Q · 𝛼=𝜏 ,
we can derive:

Q′ [Γ] ⊢hm e : Q′ [𝜎] { induction over (1) }
= Q[[𝛼 :=𝜏]Γ] ⊢hm e : Q[[𝛼 :=𝜏]𝜎] { Lemma 3.7 }
= Q[Γ] ⊢hm e : Q[[𝛼 :=𝜏]𝜎] { (2) }

Case [gen]: We have F | Q | Γ ⊢ e : 𝜎 (1) with 𝛼 ̸∈ ftv(Q, Γ) (2). We can derive:

Q[Γ] ⊢hm e : Q[𝜎] { induction over (1) }
⇒ Q[Γ] ⊢hm e : ∀𝛼.Q[𝜎] { [genhm], (2) }
= Q[Γ] ⊢hm e : Q[∀𝛼.𝜎] { (2) }
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Case [inst]:We have F | Q | Γ ⊢ e : ∀𝛼.𝜎 (1) with𝛼 ̸∈ F (2), and F , 𝛼 ∩̸ ftv(Q, Γ) and thus𝛼 ̸∈ ftv(Q, Γ)
(3). We can derive:

Q[Γ] ⊢hm e : Q[∀𝛼.𝜎] { induction over (1) }
= Q[Γ] ⊢hm e : ∀𝛼.Q[𝜎] { (3) }
⇒ Q[Γ] ⊢hm e : [𝛼 :=𝛼] (Q[𝜎]) { [insthm], (3) }
= Q[Γ] ⊢hm e : Q[𝜎] { def . }

Case [let]: We have F1 | Q1 | Γ ⊢ e1 : 𝜎 (1) and F2 | Q2 | Γ, x :𝜎 ⊢ e2 : 𝜏 (2) with ftv(𝜎) ⊆ ftv(Γ)
(3) and ⊨Q1,Q2 (4). Writing Q = Q1,Q2, by Lemma C.21, we also have Q1⊑Q and Q2⊑Q (5). We

can derive:

Q1 [Γ] ⊢hm e1 : Q1 [𝜎] { ind . over (1) }
⇒ Q[Γ] ⊢hm e1 : Q[𝜎] { Lemma 𝐶.39, (5), (6) }
and similarly:

Q2 [Γ, x :𝜎] ⊢hm e2 : Q2 [𝜏] { ind . over (2) }
⇒ Q[Γ, x :𝜎] ⊢hm e2 : Q[𝜏] { Lemma 𝐶.39 (5), (7) }
We can now apply [lethm] to derive Q[Γ] ⊢hm let x = e1 in e2 : Q[𝜏].

□

Created with Madoko.net.
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