
GAUSSIAN FLOW BRIDGES FOR AUDIO DOMAIN TRANSFER WITH UNPAIRED DATA

Eloi Moliner∗

Acoustics Lab, DICE
Aalto University, Espoo, Finland

eloi.moliner@aalto.fi

Sebastian Braun Hannes Gamper

Microsoft Research Redmond
first.last@microsoft.com

ABSTRACT

Audio domain transfer is the process of modifying audio signals to
match characteristics of a different domain, while retaining the orig-
inal content. Examples include transferring room acoustics or al-
tering audio effects such as distortion. This paper investigates the
potential of Gaussian Flow Bridges, an emerging approach in gen-
erative modeling, for these problems. The presented framework ad-
dresses the transport problem across different distributions of audio
signals through the implementation of a series of two determinis-
tic probability flows. The proposed framework facilitates manipula-
tion of the target distribution properties through a continuous con-
trol variable, which defines a certain aspect of the target domain.
Notably, this approach does not rely on paired examples for train-
ing. To address identified challenges on maintaining the speech con-
tent consistent, we recommend a training strategy that incorporates
chunk-based minibatch Optimal Transport couplings of data samples
and noise. Comparing our unsupervised method with established
baselines, we find competitive performance in tasks of reverberation
and distortion manipulation. Despite encoutering limitations, the in-
triguing results obtained in this study underscore potential for further
exploration.

Index Terms— audio processing, probabilistic modeling, ma-
chine learning

1. INTRODUCTION

The search for data-driven methods that allow for controlled mod-
ification of audio signals has attracted considerable attention and
research efforts throughout the past decade. The majority of pro-
posed techniques are dependent on supervised learning, necessitat-
ing the availability of paired “input” and “target” samples for ef-
fective training. A prominent instance of this is speech enhance-
ment, which has seen significant advancements in performance due
to meticulously designed data processing pipelines and optimization
strategies [1]. However, the requirement for paired samples intro-
duces substantial constraints, making it impractical in certain sce-
narios. Obtaining such data can be challenging or impossible due to
the high cost and effort involved in producing or collecting it, lim-
ited access to specific real-world conditions, potential mismatches
when using synthetic data, or difficulties in achieving precise time
alignment between pairs. Consequently, unsupervised methods of-
fer a promising research avenue. In the context of audio, there have
been several contributions in this direction, employing techniques
such as mixture-invariant training [2], or various forms of generative
adversarial networks [3, 4, 5].

Recent studies have demonstrated the effectiveness of diffusion
models in unsupervised audio restoration and editing. A known ap-
proach consists of utilizing the generative priors from diffusion mod-
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els to sample from posterior distributions [6]. However, this frame-
work requires exact knowledge of a forward degradation and is not
readily applicable for general settings. A work closely related to
ours is by Popov et al. [7], who employed a bridge to transport mel-
spectrograms for voice conversion and instrument timbre transfer.
Similarly, Manor and Michaeli explored a technique called ”DDPM
inversion” for unsupervised editing of mel-spectrograms [8].

In this study, we explore a method we term Gaussian Flow
Bridges (GFBs), which offers a general way to handle audio domain
transfer tasks in an unsupervised manner. GFBs address a transport
problem between probability densities, known as the Schrödinger
bridge problem [9], by applying two deterministic processes or
flows. The first process transforms an audio waveform into a latent
vector within a Gaussian distribution, while the second changes this
latent vector into a modified waveform. GFBs enable many-to-many
mappings within audio domains. This approach aligns with concepts
previously explored as “Dual Diffusion Implicit Bridges” [10], or
“DDIM inversion”[11]. This paper applies this idea through the
Flow Matching framework [12], hence the distinct terminology.

Unlike prior work [7, 8], our research focuses on the devel-
opment of GFBs in the waveform domain. This approach elimi-
nates the need for a spectrogram inversion model, thereby simpli-
fying the operational framework. A pivotal aspect of our study is
addressing the complexities introduced by waveform representation
in GFBs, particularly when maintaining content fidelity in speech
signals. These complexities often manifest as undesirable artifacts,
including abrupt identity shifts or unintelligible speech. Our work
adheres to optimal transport principles and underscores the impor-
tance of linear transformation paths within the GFB framework, sug-
gesting that maintaining linear trajectories is crucial for preserving
content integrity. To enhance the model performance while adher-
ing to this principle, we introduce a training methodology that uses
chunk-based minibatch optimal transport (OT) couplings.

The experiments outlined in Sec. 4 delve into two key areas:
speech reverberation and distortion. While our methodology show-
cases promising results in these domains, it is important to empha-
size the broader applicability of the discussed approach.

2. BACKGROUND

2.1. Continuous Normalizing Flows

Continuous Normalizing Flows (CNFs) are designed to iteratively
transport samples between two probability distributions, q0 and q1,
across a defined time interval τ ∈ [0, 1]. Let xτ denote the sam-
ple at any time τ within this interval, starting with x0 ∼ q0, and
ending with x1 ∼ q1. The underlying process is formalized with
an Ordinary Differential Equation (ODE), characterized by a time-
dependent vector field:

dxτ = u(xτ , τ)dτ. (1)
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Fig. 1. (Top) Illustration of a GFB in one-dimensional space. (Mid-
dle) A sequential display of spectrograms, showcasing the stages of
audio signal transformation. (Bottom) Geometrical interpretation
highlighting the mapping of data points through encoding and de-
coding within a Gaussian space.

With a specified vector field u, it becomes feasible to transport sam-
ples from x0 ∼ q0 to x1 ∼ q1 and vice versa by solving the ODE
both in the forward direction, where τ varies from 0 to 1, and in the
backward direction, where τ varies from 1 to 0. Particularly, when
one of these distributions is a tractable one, such as a Gaussian de-
fined by p1 = N (0, I), CNFs function as generative models and
exhibit notable parallels with diffusion models [13].

2.2. Conditional Flow Matching

Several works [12, 14] approximate the vector field u(xτ , τ) with
a deep neural network vθ(xτ , τ) with parameters θ. This approxi-
mation is achieved by optimizing the parameters θ to minimize the
following Conditional Flow Matching objective:

LCFM = Eτ,q0,q1∥vθ(xτ , τ)− u(xτ , τ |x0,x1)∥2, (2)

where E is the expectation operator. As suggested in [14, 12], a
valid strategy for designing the probability path is linear interpola-
tion: xτ = (1 − τ)x0 + τx1, corresponding to a vector field with
constant velocity over time: u(xτ , τ |x0,x1) = x1 − x0. Such pa-
rameterization leads to linear trajectories which, when one of the
distributions is a Gaussian, represent optimal transport paths [12].

Conditional information, if available, can be used to direct the
trajectories using a technique known as Classifier-Free Guidance
[15], where a conditional vector c is added as an auxiliary input to
the model. This allows the conditional influence to be modulated as

ṽθ(xτ , c, τ) = γvθ(xτ , c, τ) + (1− γ)vθ(xτ , c = ∅, τ), (3)

where vθ(xτ , c = ∅, τ) implies that the conditioning vector c is not
included, and the hyperparemeter γ weights both model evaluations.

3. METHODS

3.1. Gaussian Flow Bridges

The Gaussian Flow Bridges (GFB) method involves a two-step pro-
cess using two deterministic flows evaluated in opposite directions,
an encoder and a decoder. As represented in Fig. 1, a starting sam-
ple x0 ∈ Rn at τ = 0 is first encoded using an unconditional vector

field model vθ(xτ , τ) into a Gaussian distribution q1 = N (0, I) at
τ = 1, producing a latent sample x1 ∈ Rn. This latent sample
is then decoded with a conditional model ṽθ(xτ , c, τ), yielding a
modified sample x̃c

0 ∈ Rn. The condition c is a continuous variable,
enabling GFB to create a diverse range of outcomes based on c. It
is worth noting that although the encoding and decoding processes
are designed to be optimal transport paths between different distribu-
tions and a Gaussian, this does not guarantee optimal displacement
between the endpoints themselves.

The bottom of Fig 1 represents our interpretation of the GFB
concept from a geometric perspective. The data points x0 are de-
scribed as part of a data manifold Mdata ⊂ Rn. Through the en-
coding, these points are mapped to a Gaussian noise space or hy-
persphere (Mprior). During decoding, the conditional vector field
guides these points to a specific subset of the original data manifold
x̃c
0 ∈ Mc, which depends on c. We hypothesize that the optimal

endpoints xc
0, those that reflect the attributes specified by c while

minimally altering unrelated features, should ideally lie in close Eu-
clidean proximity to the initial sample x0. This conjecture supports
the notion that leveraging a Gaussian distribution as a bridge can
facilitate a valid approximation.

3.2. Chunk-based minibatch optimal transport couplings

As will be shown in the analysis Sec. 4.3, we observe that GFBs
struggle to preserve content that should be orthogonal to the con-
ditioning variable c. We hypothesize that this issue arises because
the sampling trajectories deviate from straight linear paths and ex-
hibit curvature. As suggested in [16, 14, 17], such curvature arises
from employing data-independent couplings during training. Specif-
ically, when the pairs of data x0 and noise x1 are sampled indepen-
dently, the resulting training trajectories tend to intersect. This in-
tersection causes the model to approximate a suboptimal average of
these paths, rather than identifying distinct, optimal paths individu-
ally [14]. Such convergence towards an average trajectory deviates
from the intended direct paths and can potentially harm the efficacy
and reliability of the GFB strategy.

With the goal of minimizing trajectory curvature, some works
propose to assign the data/noise pairs during training using a mini-
batch optimal transport strategy [17, 18] . According to their find-
ings, this approach effectively minimizes the trajectory curvature
and reduces the variance of gradients during training [17]. How-
ever, we realize that this strategy does by default not scale well for
data of very high dimensionality, such as audio waveforms, which
are typically sampled at high rates. As the dimensionality increases,
the number of possible data configurations grows exponentially, ne-
cessitating larger minibatch sizes for effective coverage. This leads
to increased computational and memory requirements, potentially
causing bottlenecks in our training pipeline.

We observe that speech signals have high information density,
with significant data concentration occurring within localized time
windows of just a few milliseconds. To adapt the above approach
for practical use with audio data, we propose redefining minibatches
{x(i)

0 ∈ RN}Bi=0, which originally comprise B instances of size N ,
into smaller chunks of size Nc ≪ N . This results in minibatches
with a larger number of instances Bc = B N

Nc
The next step involves computing an optimal transport coupling

between the chunked minibatch and an equally sized set of noise
samples. We start calculating a matrix Cij of pairwise L2 distances
between all the elements i and j in the two minibatches. This ma-
trix Cij is used by an optimal transport solver to assign the cor-
responding pairs (x0, x1). We use off-the-shelf solvers from the



Algorithm 1 Training with chunk-based minibatch OT
for each training iteration do

Sample minibatches {x(i)
0 }Bi=0 ∼ q0 and {x(j)

1 }Bj=0 ∼ q1
Split (x0, x1) into chunks
Compute Cij = ∥x(i)

0 − x
(j)
1 ∥22

Solve OT for Cij , get coupling (x0, x1)
Reshape (x0, x1) to the original length
xτ ← (1− τ)x0 + τx1 , τ ∼ U(0, 1)
LCFM(θ)← Eτ,q0,q1∥vθ(xτ , τ)− (x1 − x0)∥22
θ ← update(θ,∇θLCFM(θ))

end for

Python Optimal Transport library [19], in particular, when using
Nc = 512, we use ot.emd, an exact optimal transport solver. When
experimenting with smaller Nc, we instead opted for ot.sinkhorn, an
entropy-regularized solver that provides approximate OT solutions
at a lower computational cost. After, the coupled pairs are reshaped
to their original dimensions and the CFM objective (Eq. 2) is com-
puted. The training loop employing the chunk-based minibatch OT
methodology is detailed in Algorithm 1.

4. EXPERIMENTS

We conducted experiments in two areas, namely speech reverbera-
tion and distortion. In speech reverberation, we focused on the task
of acoustics transfer, which extends beyond the dereverberation task
to modifying the characteristics of reverberation. Such a controllable
approach holds potential for a variety of applications in augmented
and virtual reality [20], where the ability to modify audio signals to
match expected acoustics can significantly enhance listener experi-
ence. We design a GFB where the initial distribution pdata contains
speech with undetermined acoustic properties and the terminal dis-
tribution pc comprises speech signals with a specified acoustic con-
dition c. We experiment with two reverberation descriptors: rever-
beration time (T60) and clarity (C50).

For distortion, we explore our method’s ability to handle non-
linear effects, with our experiments focusing on speech clipping.
Here, the GFB is trained with both clipped and clean speech signals,
and the goal is to transform initial samples to a specific Signal-to-
Distortion Ratio (SDR). Additionally, we provide qualitative insights
into guitar distortion manipulation in the companion webpage1.

4.1. Experimental setup

As training data, we used studio quality speech samples from VCTK
[21]. For our reverberation experiments, we convolved the speech
recordings with single-channel room impulse responses (RIRs), col-
lected by combining several public datasets [22, 23, 24, 25, 26], us-
ing RIRs with T60 values ranging from 0 to 1s. For the clipping
experiment, the training speech samples were clipped at different
SDR levels. During the training, we also include, with a probabil-
ity of 10%, clean speech samples. The reverberation descriptors T60

and C50, and the SDR in the case of declipping, are estimated and
concatenated into a conditioning vector c. All signals are resampled
to 16 kHz and are randomly cropped to a segment size of 4.09 s.

In our experiments, we use a backbone architecture vθ based on
the Short-Time Fourier Transform (STFT). A forward and an inverse
STFT are applied wrapping trainable neural network layers in a sim-
ilar way as in [6]. The complex-valued spectrograms are processed

1Code and examples available at microsoft.github.io/GFB-audio-
control/dist/

timeFig. 2. Averaged trajectory curvature with respect to time τ when
different coupling strategies are used. The shaded area represents
the 25% and 75% percentiles.

as double-real signals, stacking the real and imaginary parts into the
channel dimension. The architecture is a U-Net with roughly 44 M
trainable parameters, mainly consisting of 2-Dimensional convolu-
tional layers, The conditioning vector c, alongside with the time vari-
able τ , is fed into the neural network through feature modulations.
During training, the conditioning vector c is randomly dropped with
a probability of 20%, to allow unconditional sampling and the use
of Classifier-Free Guidance. All models compared in the experi-
ments are trained for 300k iterations using the Adam optimizer, with
a learning rate of 10−4, and a batch size of 8.

4.2. Coupling configurations and trajectory curvature analysis

Our investigation begins by examining the influence of the training
couplings on the sampling trajectories. Following the methodologies
described in [16, 14], we utilize a surrogate metric to analyze trajec-
tory curvature C(τ) = ∥(x1 − x0) − ∂xt

∂τ
∥22, which compares the

local slope at every time τ with the total displacement. Ideally, if the
paths were completely straight, this metric should yield a value of 0.

Figure 2 displays the distribution of C(τ) values for different
timesteps during the forward sampling process. These trajectories
begin from each example in the test set at τ = 0 and progress to-
ward a Gaussian distribution at τ = 1. We compare the results
obtained with a model trained on the reverberant speech dataset with
the default training setup (independent couplint) against other mod-
els trained with the proposed chunked minibatch OT (C-OT) cou-
plings. For the latter, we study the effect of the chunk length Nc

which, assuming a fixed sample length N and batch size B, affects
directly the chunked minibatch size Bc = B N

Nc
. Three different

chunk lengths Nc are considered: 512, 256, and 128 samples; which
correspond to 32, 16 and 8 ms.

The results reveal that the use of C-OT couplings significantly
reduces the observed curvature, with a consistent reduction when
the chunk size Nc is decreased, showcasing the effect of the C-OT
couplings. It can also be observed that all configurations show lower
curvature values around the midpoint of the process (t ≈ 0.5), but
these values notably increase toward the extremes, specially at t ≈
1. This observed behavior inspires the adoption of a discretization
scheme based on a raised cosine schedule that prioritizes smaller
time steps at the extremes: τi<T = 0.5 + 0.5 cos(πi/T + π)). We
used this schedule, with T = 25 steps, in the rest of experiments.
Although not the primary focus of this study, the observed lower
curvature of C-OT couplings indicate a potential for more efficient
sampling compared to conventional flow or diffusion-based models.

4.3. Speech reverberation evaluation
Our investigation focuses on assessing the performance of differ-
ent models in reverberation control, emphasizing the trade-off be-
tween two aspects: acoustics accuracy and speech content consis-
tency. Acoustics accuracy assesses the model’s capability to recre-
ate speech aligned with predetermined acoustic features, particularly

https://microsoft.github.io/GFB-audio-control/dist/
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Fig. 3. Scatter plots illustrating the trade-offs between SR-CS and
WER versus T60 and C50 errors for models conditioned on specific
acoustic features. Points represent aggregated test set results, high-
lighting the effects of chunk length (Nc) and CFG scale (γ).

T60 and C50. To quantify the models’ fidelity in reproducing the
target acoustic characteristics, we utilize a blind acoustic parame-
ter estimator [27]. We calculate the mean absolute error between the
model-predicted T60 and C50 values and their actual measurements.

When analyzing speech content consistency, we assess the
model’s ability to retain the original speech content. This involves
addressing two critical issues: alterations in speaker identity and
potential loss of intelligibility. To adress the first issue, we measure
the cosine similarity between embeddings derived from the speaker
recognition model [28], we refer to this metric as Speaker Recog-
nition Cosine Similarity (SR-CS). With respect to the second, we
compare Automatic Speech Recognition transcripts before and after
the GFB. We use the ”small” version of Whisper [29] and report
the Word Error Rate (WER) with the original sample’s transcription
as a benchmark. We assume these two models to be robust and
approximately invariant to acoustics.

We use a test set conforming 20 minutes of 4-s length studio
quality speech examples from DAPS [30], a different dataset than
the one used for training. These examples are convolved with a set
real RIRs containing uniformly balanced T60 values ranging from 0
to 1s, and C50 values ranging from 0 to 25 dB. We use 320 RIRs
extracted from datasets not used during training [31, 32, 33, 34]. All
the examples in the test set are transformed to 8 different endpoints
using the proposed GFB, each of them corresponding to a distinct
conditioning setting with specific T60 and C50 values.

In Figure 3, we provide a detailed analysis reflecting the aver-
age SR-CS and WER in relation to both T60 and C50 errors. These
scatter plots are generated from the averaged results across the test
set. The figure illustrates the outcomes for various models trained
using different C-OT couplings, wherein the chunk length Nc varies.
Additionally, each model’s behavior concerning the Classifier-Free
Guidance scaling parameter γ is examined. Our observations reveal
that, for smaller Nc, the speech consistency gets improved, but usu-
ally at the cost of reduced acoustic accuracy. In addition, the param-
eter γ reflects a notable trade-off, as increasing this value allows for
more precise adjustments in acoustics characteristics at the expense
of introducing artifacts that compromise speech consistency.

Additionally, we assess the proposed method performance for
dereverberation. We utilize the speech consistency metrics SR-CS
and WER, the MOS prediction metric DNSMOS [35], and the cep-
stral distance [36]. In our evaluation, two state-of-the-art baselines
are included, CRUSE [1] and STORM [37]. Unlike the proposed
method, these baselines were trained using paired data. Results are

SR-CS WER DNSMOS Cepstral
distance 
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Fig. 4. Objective evaluation on speech dereverberation.
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Fig. 5. Objective evaluation on speech declipping.

shown on a subset of the test set, specifically 160 utterances with T60
values falling within the range of 0.5 to 1. The conditioning parame-
ters for the diffusion bridge are set to T60=0.1s and C50=20dB, a dry
but not anechoic specification. We conduct a comparative analysis
between the model trained with independent coupling and the one
trained with C-OT coupling, employing Nc = 512 and γ = 1. The
results are presented in Figure 4. Although none of the compared
versions of the proposed method surpass the baseline performance,
the results of the C-OT method notably converge closely. It should
be noted that the proposed method and the baselines were trained
using different data, thus the results depend on the models’ general-
ization capabilities.

4.4. Declipping evaluation
The performance of both versions of our method in the task of speech
declipping is compared against the clipped speech and SPADE [38],
a popular sparsity-based declipping baseline. In Figure 5, we report
three objective metrics: SR-CS and WER, as introduced in Section
4.3, and NISQA [39], a MOS prediction model that is known to cor-
relate well with declipping performance. The results show a strong
improvement of the proposed method against SPADE in terms of
NISQA. However, in terms of WER and SR-CS, GFB does not reach
the same consistency scores of SPADE, and neither of the clipped
speech. We also notice that the usage of C-OT couplings is critical
at reducing the WER in this setting.

5. CONCLUSION

This paper studied the application of GFBs for unsupervised audio
domain transfer, with experiments on reverberation and distortion
control. The experiments show that, in the majority of cases, GFBs
effectively manage to alter an audio effect characteristic while pre-
serving the content integrity, a notable achievement considering it
was not specifically trained for this task. Furthermore, the method
exhibits the ability to generalize to unseen speakers and acoustic
conditions. Qualitative assessments indicate that GFBs yield re-
sults free from typical artifacts seen in speech reverberation and
declipping. However, occasional inconsistencies in speech content
and speaker identity are observed, posing a significant challenge for
the method’s potential applications. Nonetheless, the performance
of GFBs shows promising progress, paving the way for further en-
hancements and applications in diverse tasks and domains.
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