
1

Distributed AI Platform for the 6G RAN
Ganesh Ananthanarayanan, Xenofon Foukas, Božidar Radunović, Yongguang Zhang

Microsoft Corp.
{ga, xefouk, bozidar, ygz}@microsoft.com

Abstract—Cellular Radio Access Networks (RANs) are rapidly
evolving towards 6G, driven by the need to reduce costs and
introduce new revenue streams for operators and enterprises. In
this context, AI emerges as a key enabler in solving complex
RAN problems spanning both the management and application
domains. Unfortunately, and despite the undeniable promise
of AI, several practical challenges still remain, hindering the
widespread adoption of AI applications in the RAN space. This
article attempts to shed light to these challenges and argues
that existing approaches in addressing them are inadequate for
realizing the vision of a truly AI-native 6G network. Motivated
by this lack of solutions, it proposes a generic distributed AI
platform architecture, tailored to the needs of an AI-native RAN
and discusses its alignment with ongoing standardization efforts.

Index Terms—6G RAN, Distributed AI, Radio Access Network,
vRAN, AI RAN.

This work has been submitted to the IEEE for possible publication. Copyright may be transferred
without notice, after which this version may no longer be accessible.

I. INTRODUCTION

Cellular Radio Access Networks (RANs) are undergoing a
paradigm shift. The main driver behind this evolution is the
reduction of the high CapEx and OpEx that telco operators
are faced with and the introduction of new revenue streams.
This transformation started with the launch of 5G, which
introduced several key changes in the way that the network
is being deployed and managed. As illustrated in Fig. 1, it
turned the monolithic base stations into disaggregated and
virtualized components – Central Unit (CU), Distributed Unit
(DU) and Radio Unit (RU) – that can be deployed on top
of commodity hardware across several locations (far edge,
near edge, cloud), simplifying their lifecycle management
and release of new features. Furthermore, it introduced open
and programmable interfaces, allowing the deployment of
applications on top of RAN Intelligent Controllers (RICs),
to further accelerate innovation. Finally, it introduced new
radio access technologies, like Massive MIMO and millimeter
waves, and pushed the densification of the network to new
limits, with the goal of expanding the network capacity and
enabling new types of applications (e.g., IoT).

While the shift to 5G has so far served as a transitional
phase, the emerging 5G Advanced and 6G networks are
expected to truly unlock the networks’ potential in two ways.
First, by developing sophisticated control and management
solutions that can tackle a plethora of long-withstanding
network problems (e.g., in the context of radio resource
management, mobility, energy savings, etc.), which have been
further amplified by the added complexity of 5G. Second,
by introducing new transformative applications (e.g., joint
communication-sensing, security, slicing), that can add value
and provide differentiation for operators and verticals.

Far edge Near edge Cloud

Operator premises

<1ms 1-10ms > 10ms
>100Gbps <100Gbps <10Gbps

CUDU CUDU

CU

RU

Fig. 1. High-level overview of the 5G RAN. The virtualized RAN
infrastructure capabilities can vary depending on the location.

In this context, AI is expected to play a pivotal role. The
recent advances in the domain of generative AI have acted as
a catalyst in drawing the attention of the telecommunications
industry to the benefits of AI in solving the aforementioned
problems. AI is an ideal fit for many long standing RAN
problems, which involve pattern recognition of signals for
classification, predicting traffic and devising solutions for com-
putationally intractable problems, such as scheduling. In fact,
the influence of AI is becoming so big in the telco space, that
the general consensus is that next generation mobile networks
should be AI-native, with both the industry and academia
rallying behind initiatives like the AI-RAN Alliance [1].

Unfortunately, while the promise of AI in the RAN is
undoubtedly high, its potential still remains untapped, due to
several practical roadblocks. First, the high accuracy of AI
models is contingent to the existence of rich data sources.
Given that RAN base stations are distributed across tens of
thousands of locations, one would have to deal with sev-
eral problems related to the collection and transmission of
vast amounts of data. Second, RAN applications leveraging
AI models present heterogeneous characteristics in terms of
their compute requirements, response latency and privacy
constraints. When operating over a distributed hierarchy of
edges and the cloud, the varied compute availabilities and net-
work bandwidths pose a significant challenge for operational
deployments and handling AI RAN application constraints is
far from straightforward.

Motivated by these observations, in this article, we attempt
to shed light to the challenges of designing and deploying
AI models for the RAN. We argue that existing approaches,
which rely on the static data collection and orchestration of
AI models are not suitable to meet the demands of AI-native
6G networks. Building on these observations, we present our
vision of a distributed AI architecture that is tailored to the
needs and requirements of an AI-native RAN, and we outline
our thoughts of how our proposed architecture can be aligned
with the ongoing standardization efforts.

2

II. THE NEED FOR AI IN RAN

Here, we discuss why the need for AI in the RAN space is
becoming increasingly important. The AI-RAN Alliance has
succinctly grouped AI use cases in three key domains [1]:
1) AI-for-RAN – This refers to utilizing AI to optimize and
enhance the RAN performance, motivated by the need to use
the limited spectrum efficiently. The demand for more traffic
has led to the introduction of new, higher frequency bands.
These bands offer more capacity but lower coverage, leading
to an increase in the overall tower density. Furthermore, new
radio resource allocation technologies, like Massive MIMO,
see the use of large antenna arrays as a way to further increase
the cell capacity. Assigning users to different bands and
managing interference across cells by adjusting scheduling,
power control and antenna assignments leads to a search space
explosion, which is computationally intractable to manage
with conventional optimization methods, making the use of
AI a compelling alternative [2].

Similar to radio resource optimization, there exist a whole
set of infrastructure optimization problems, caused by the
increased 5G complexity, which AI promises to solve. Telco
operators often manage close to 100k RAN sites. Predictive
maintenance for an infrastructure at that scale (e.g., dealing
with hardware issues, software bugs, etc.) is a challenge on
its own. The virtualization of the RAN adds an extra layer of
complexity, making the identification and root cause analysis
of performance issues far from obvious [3]. Finally, in the
context of energy efficiency, a lot of effort has been on how
to reduce the power consumption of various elements, while
maintaining the network coverage and quality, with several
AI-based research works showing promising results [4].
2) AI-and-RAN – This domain focuses on the compute shar-
ing (e.g., CPU, GPU) between RAN network functions and
AI applications, for efficient utilization of the infrastructure.
Typically, virtualized RAN functions utilize the infrastructure
lightly (typically < 50% utilization) [5], for reasons inherent
to the characteristics of the RAN workload. vRAN servers
have to be provisioned for peak capacity, but they typically
serve significantly less traffic (e.g., due to the diurnal traffic
patterns). This inefficiency persists even at times of peak
usage due to imbalances in the computational demand when
processing uplink and downlink traffic [6].

In contrast to cloud computing, where the sharing of
compute resources is commonplace, sharing resources with
RAN workloads introduces significant challenges. The real-
time nature of the RAN means that sharing can lead to deadline
violations and adversely affect network performance. Several
recent proposals have demonstrated how AI can be leveraged
to share the infrastructure in both CPUs [6] and GPUs [7].
3) AI-on-RAN – This domain encompasses use cases that
leverage the RAN infrastructure to support AI applications. A
key enabler of such use cases are the open interfaces exposed
by the RAN functions, which can allow third-parties to tap
into RAN data and/or affect RAN traffic-related decisions, in
order to enhance the application capabilities. One example
that falls under this category is localization via sensing. By
leveraging channel state information exposed by the physical

Buffer

Status

Reports

Sounding

Reference

Signals

Traffic

Prediction

Intra-slice

scheduler

Signal

Quality

Prediction

Inter-slice

scheduler

Platform

KPIs

Data

Imputation

&

Aggregation

Anomaly

Detection

Root

Cause

Analysis

RAN slicing scheduler using predicted qualities

Anomaly detection and root cause analysis

RAN

KPIs

Fig. 2. Graphs of AI/ML models for RAN applications

layer of the RAN, one can perform user localization, which
can be important for several use cases, like asset tracking and
self-driving cars [8]. AI-based techniques leveraging physical
layer information can also be employed to provide context-
aware security [9], in consideration of battery-constrained
devices. Finally, more traditional AI-based applications, like
video analytics could also leverage the interplay with the RAN,
to accommodate latency critical use-cases (e.g., [10]).

III. BACKGROUND

A. Canonical application examples

To help with highlighting the need for a distributed AI RAN
platform, we define two AI application examples (Fig. 2),
which we use as a reference for the remainder of this article.
RAN slicing scheduler – A scheduler allocates radio re-
sources across network slices (inter-slice scheduling) and
across users of the same slice (intra-slice scheduling). Both
schedulers use the traffic demand information provided by
the phones through buffer status reports, to try and predict
the traffic load for the upcoming period [11]. They also use
physical layer sounding reference signals to predict the users’
signal quality. The inter-slice scheduler makes scheduling
decisions at coarse granularities (e.g., seconds) and feeds its
decisions to the real-time intra-slice scheduler. This example
illustrates both AI-on-RAN (predicting load using buffer status
reports) as well as AI-for-RAN (scheduling decisions).
Anomaly detection and root cause analysis – A service
management and orchestration framework tries to detect RAN-
related anomalies and identify their root cause for potential
mitigations towards AI-for-RAN. Since the anomalies can
originate both from the RAN and the platform, the application
collects data from both sources [3]. It also applies imputation
and aggregation techniques, to deal with noisy/missing data
and to reduce their volume. It then processes the collected
statistics, to detect if an anomaly is present, and if so, it
attempts to localize it and detect its root cause.

From these examples, we see that a typical AI RAN appli-
cation, rather than being a monolith, may consist of a sequence
of blocks. Each block can do its own data pre-processing and
can include an ML model in itself, with substantial research
and development driving its release. Those blocks are chained
together into a graph (e.g., by solution providers), where the

3

output of one model (e.g., mobility predictor) becomes the
input of the next (e.g., resource block scheduler). Typically
the traffic volume between components reduces from left to
right, as more data gets processed and aggregated (signified
with narrower arrows in the examples).

B. Distributed edge infrastructure

The RAN infrastructure is typically deployed across a dis-
tribution of far and near edges, extending to the cloud (Fig.1).
As we move from the far edge to the cloud, more compute
resources become available for the AI RAN applications.
However, choosing the cloud for deployment (e.g., due to the
presence of GPUs) is not always the right choice. The abun-
dance of resources comes at the expense of reduced bandwidth
and higher latency. This can be crucial factors for applications
such as the example anomaly detector, which requires large
volumes of input data, or the RAN slicing scheduler, which is
latency-sensitive in its allocation decisions.

IV. CHALLENGES TO BUILD AI RAN APPLICATIONS

We now discuss the challenges of deploying AI RAN appli-
cations, that make the case for a distributed AI RAN platform.

A. Data collection

Different applications require different feature sets, that
might have heterogeneous characteristics in terms of type, time
granularity, etc. For example, the radio resource scheduling
application might require real-time data from the RAN net-
work functions, while the anomaly detection might need to
combine aggregate data from both the RAN and the platform
in time windows of seconds. Similarly, the anomaly detection
application might rely on the inter-arrival time between IQ
samples, while the scheduler might require the actual raw IQ
samples carrying the sounding reference signals.

The heterogeneity in the input features of AI applications is
what makes the data collection process challenging. Exposing
raw data from all possible data sources is not a viable option,
as it would lead to a huge volume of data that one would
have to process, store and transmit. For example, capturing
all the raw IQ samples from the physical layer of the RAN
translates into several gigabits of traffic per second, even for a
single base station with four antennas. Similarly, capturing all
the CPU scheduling events of a server, in order to detect if a
platform anomaly due to CPU interference is present, would
result in the collection of millions of events per second.

The current standard practice to bypass this roadblock is to
expose a set of coarse-grained data sources, that are applicable
to a wide range of use cases. These data sources are exposed
through static APIs specified by standardization bodies like
3GPP and O-RAN. For instance, O-RAN defines the E2
interface for the collection of pre-defined RAN KPIs in the
form of so-called static “service models”, and the O2 interface
for the collection of monitoring data from the platform.Any
change to a data source (e.g. reporting the 90th percentile of
packet latency instead of max), requires the standardization
body consensus.This can be a long process that is typically

met with skepticism, due to performance concerns that might
arise when modifying mission critical RAN and platform code.

In conclusion, data collection challenges force AI RAN
applications to be developed and deployed as an afterthought,
subject to the available data sources, rather than in a truly
AI-native way, where the data collection is application-driven.

B. RAN AI application orchestration

The disaggregated nature of the RAN means that its network
functions might be deployed across the edges and the cloud.
This raises a fundamental question as to what should be
the location in which the blocks of AI applications should
reside. Answering this question is far from straightforward.
It involves matching the applications’ requirements to the
capabilities of the infrastructure, which can vary in terms of
compute resources, network bandwidth, latency, etc, depend-
ing on the location (Fig. 1). The placement decision could
also be affected by other factors, such as privacy concerns,
since operators might have a preference or legal obligation to
process certain data streams in their own premises.

The many constraints and trade-offs make the deployment
of AI RAN applications a major challenge. First, a developer
needs to understand the underlying constraints which may
differ from one deployment to another. Second, they need to
carefully choose what data to collect and where to place the
various application blocks, to maintain high accuracy, while
respecting the constraints. Third, deployed applications will
naturally have competing requests for the same resources,
meaning that it falls on the developer to design their appli-
cation with placement flexibility in mind. Finally, as alluded
to in the case of AI-and-RAN, AI RAN applications have to
coexist with other AI applications (non-RAN) that also execute
on the edge such as video analytics and self-driving cars [10].
In the absence of a structured framework, AI RAN applications
have to be developed with ad hoc programming interfaces and
manually distributed by developers. As a result, they are rarely
deployed at scale in production settings and have led to their
potential remaining largely untapped.

V. DISTRIBUTED AI PLATFORM FOR RAN

We present our vision for distributed AI-native RAN plat-
form, with the architecture illustrated in Fig. 3. It builds on top
of three components; i) programmable probes for the flexible
collection of data, ii) AI processor runtimes for the deployment
of AI applications across the distributed compute fabric, and
iii) an orchestrator for the coordination of the platform.
Programmable probes for dynamic data collection – To
allow developers to define optimal feature sets for their AI
applications, we propose the use of dynamic probes for
the platform (i.e., OS kernel) and the userspace (i.e., RAN
network functions) to programmatically collect data. Through
the probes, a developer could write small pieces of code to
access raw events and data structures and summarize them in
a custom way. This would expose the right features for training
and inference, while minimizing the volume of generated data.
For example, a developer could leverage a probe to access the
raw IQ samples of the base station to feed them directly to the

4

AI processor runtime

AI processor runtime

AI processor runtime

Far

edge

Telemetry

& control

Platform

Cloud

Near

edge

Telemetry

& control

Platform

RAN

Workload

P

P

P

Telemetry

& control

Message
Bus

P Userspace

P In-kernel
Runtime API

Runtime API Distributed AI

Orchestrator

AI Application

Graph

RAN

Workload
P

RAN

Workload
P

Runtime API

RAN AI app

block
AI app block (e.g.,

Augmented Reality)

AI app block

 (e.g., video analytics)

RAN AI app

block

Programmable Probes

Application
(e.g. Augmented Reality)

Application
(e.g. Video Analytics)

RAN AI app

block

Fig. 3. Distributed AI platform architecture.

application, like in the example of the RAN slicing scheduler.
Alternatively, they could pre-process them and export a derived
KPI, like in the case of the anomaly detection application.
The same approach could also be used to capture platform
data (e.g., capture the incoming TCP packets and calculate
the average inter-packet delay).

While this approach provides flexibility in tailoring the
data collection process to the AI application’s requirements,
it also introduces safety concerns (e.g., illegal memory
accesses). For this, we propose to use probes based on the
eBPF technology, which has recently caught the attention of
the telco industry [12], [13]. eBPF allows the injection of
code to instrumentation points, subject to a static verification
process that guarantees the safety of the injected code. While
eBPF originates in the Linux kernel, recent advances [12]
have expanded its use to userspace RAN applications.

AI processor runtime – Considering the constraints and
trade-offs that characterize the various locations of the in-
frastructure, an AI-native platform should allow the seamless
deployment of AI applications to the most suitable loca-
tion, without the developer having to worry about providing
location-specific flavors (i.e., implementations). In the pro-
posed architecture, this is achieved through the AI processor
runtime. The runtime can be deployed at any location where
AI applications are expected to run and introduces an API
for its interactions with the applications. The runtime should
provide the following functionalities:

– Data ingestion and control: It should enable the ingestion
of data captured through the local programmable probes and
their exposure to applications. It should also enable the issuing
of API calls towards the RAN functions and the platform for
closed loop control.

– Data exchange: It should allow the exchange of data
streams amongst the blocks of AI applications deployed in
different locations through a common message bus. Similarly,
it should enable the exposure and issuing of RPCs for applying
control decisions.

– Execution environment: It should implement the process
of running inference or training tasks, by abstracting the
underlying compute resources (e.g., CPUs and GPUs) and
exposing them to the AI applications, catering to both RAN

and non-RAN AI applications.
– Life-cycle management: It should provide a standard inter-
face to deploy, update, and remove AI applications, as well as
to monitor their performance and resource utilization.

The distributed AI RAN platform does not prescribe an
implementation for the AI processor runtime, as long as
it provides the functionalities described above. We eschew
making a prescription because we believe that the framework
should be extensible to include existing and future runtime
environments and messaging technologies, thus not restraining
AI developers. As an example, one could consider using
Docker containers combined with a WebAssembly (WASM)
runtime as a highly portable and sandboxed execution
environment, while the message bus implementation could be
based on REST or gRPC calls.

Orchestrator – The distributed AI framework is overseen by
an orchestrator (Fig 3) that is responsible for the placement
of the AI applications across the AI processor runtimes. The
orchestrator allows for dynamic addition or removal of ap-
plications, and also handles dynamic changes to the available
resources (compute and network). It also allows to plug in
diverse policies that trade off between compute at the different
edges and the network load between the edges.

Applications are exposed to the orchestrator in the form of
blocks in a graph.The blocks are characterized by requirements
in terms of compute, memory, network, latency, as well as
other constraints (e.g., the locations where the block is not
allowed to run due to privacy concerns). The orchestrator
takes into account both the developer requirements and the
capabilities of the infrastructure and places the blocks to the
AI processor runtimes that maximize the overall utility of the
platform. Unique to AI workloads are inference parameters
that influence resource demand [10], and hence is a resource
allocation knob for the orchestrator. Examples of inference
parameters would be data sampling rates, or AI models for
anomaly detection. The sampling rate directly impacts the
compute and network demand, while the choice of model
dicates the compute demand, including the necessity for GPUs.
We propose the AI RAN applications to expose their inference
parameters to the orchestrator, and design the orchestrator to
dynamically change the inference parameters.

We use the example applications of Fig. 2 to explain the
operation of the orchestrator. We consider a far-edge location
without a GPU and a limited amount of CPUs, a near-
edge location with a single GPU, and a cloud location with
many GPUs. Under this setup, we consider the three cases
of Fig. 4. In the first case, we install the anomaly detection
application. Given that the root cause analysis model requires
a GPU, the orchestrator places it at the near edge and the
rest of the applications’ blocks at the far edge, minimizing the
amount of outgoing traffic. In the second case, we install the
RAN slicing scheduler application in addition to the anomaly
detector. The latency-sensitive inter-slice scheduler requires a
GPU, however the one available at the near edge is already
reserved. Therefore, the orchestrator migrates the root cause
analysis model to the cloud, since it is not latency sensitive,
and deploys the inter-slice scheduler to the near edge. The

5

Far edge

(Realtime / CPU-only)
Near edge

(Near real time

CPU + few GPUs)

Data

Imputation &

Aggregation

Anomaly

Detection

Anomaly

Detection

Cloud

(Non real time

CPU + Many GPUs)

Root

Cause

Analysis

C
a

se
 1

C
a

se
 2

Root

Cause

Analysis

Traffic

Prediction
Intra-slice

SchedulerSignal Quality

Prediction

Traffic

Prediction
Intra-slice

SchedulerSignal Quality

PredictionC
a

se
 3

Data

Imputation &

Aggregation

Inter-slice

Scheduler

Inter-slice

Scheduler

Fig. 4. Distributed deployment scenarios for orchestrated AI applications.

Runtime API

Far edge AI processor runtime

Programmable userspace
probes

Programmable in-kernel
probes

Router

Fast IO
(shared memory)

Zero-copy pub-sub channels

OS threads

WebAssembly Instance

AI app

OS threads

WebAssembly Instance

AI app

OS threadsOS threads

Admission control & scheduling

WebAssembly Instance

AI app Message Bus
Endpoint

AI processor runtime

Fig. 5. Architecture of far edge AI processor runtime.

latency-tolerant intra-slice scheduler is also deployed at the
near edge, since there is not enough CPU capacity at the
(preferable) far edge location. Finally, in the third case, we
illustrate how the orchestrator handles the completion of the
anomaly detector and reschedules the radio resource scheduler.
With the anomaly detector removed, CPU resources are freed
up at the far edge, so the orchestrator migrates the intra-slice
scheduler there, reducing the traffic sent to the near edge.

VI. AN EFFICIENT AI PROCESSOR RUNTIME FOR THE FAR
EDGE

We advocate that a highly optimized far edge runtime is
required, as it is expected to host real-time AI applications (e.g.
the RAN slicing scheduler), as envisaged with a concept of
dApps [14]. As such, it needs to have sub-millisecond reaction
times. Furthermore, the far edge is resource constrained, with
only a small fraction of CPUs available for AI applications,
and with a small or no GPU present. Our proposed design is
illustrated in Fig. 5 and has the following characteristics:
Tight integration with the probes – The AI processor run-
time communicates with the probes through fast IO channels
using shared memory and a zero-copy mechanism. This allows
the passing of data between the probes and the AI applications
with very low compute and latency overhead.
Efficient, flexible and secure execution environment – We
have experimented with the use of WASM as an execution en-
vironment and observed its benefits. It enables the sandboxing
of applications with a very small overhead, while maintaining
near-native runtime performance. The interaction with the rest
of the system for the acceleration of inference or the data

A variant of hybrid designO-RAN based design

RAN vendor

dApp

RT-RIC

RAN P

A1

Platform P

xApp

Near RT-RIC

RAN P
E2

RAN P

Platform P

O1

O2

rApp

Non RT-RIC

AI processor
runtime

AI processor
runtime

AI processor
runtime

RAN vendor

Proprietary design

RAN P

Platform P

RAN P

Platform P

RAN P

Platform P

Far-edge AI
processor

runtime

Near-edge AI
processor

runtime

Cloud AI
processor

runtime

RAN vendor

RAN P

Platform P

RAN P

Platform P

O1

O2

RAN P

Platform P

rApp

Non RT-RIC

AI processor
runtime

Far-edge AI
processor

runtime

Near-edge AI
processor

runtime

First-party AI app block Third-party AI app block Message bus O-RAN interface Proprietary interface

Fig. 6. Deployment options for integration of distributed AI platform
with the RAN.

collection can take place through API calls exposed by the
WASM Interface (WASI). For example, wasi-nn could be used
for the exposure of the CPUs and the GPUs (when available).
Admission control & real-time resource allocation – All
AI applications deployed on the processor runtime need to
request a fraction of the CPU time or the GPU area. An
admission control process ensures that this request can be
met, while also serving other applications. Once deployed, an
appropriate schedule is imposed by the runtime (for example,
for the CPU we leverage the Linux deadline scheduler).

VII. OPEN VS CLOSED ARCHITECTURE AND INTERFACES
FOR INTEGRATION WITH RAN

Despite the progress within the O-RAN community, many
fundamental tensions remain around control interfaces. For
example, several major vendors do not support the idea of
a near real-time RIC [15], expressing concerns regarding
the network stability and security. If RAN vendors allow
developers to exert fine-grained control on the RAN behavior,
these may clash with the proprietary algorithms vendors
have implemented. Also, some vendors argue that exposing
sensitive RAN data may affect the security of the network
and the data privacy. Vendors are also reluctant to open up
some of their interfaces, as this may reduce their competitive
advantage. All these concerns are important, and different
operators take different stances on them. Our view is that
the distributed AI platform proposed in this article should
be a building block that can be customized appropriately for
different use cases. Next, we briefly discuss some examples
of deployment options (also illustrated in Fig. 4).
O-RAN based design – One extreme is an O-RAN based
design (Fig. 6, left), allowing any first or third-party vendor
to deploy AI applications across the RAN infrastructure. One
could leverage the O-RAN RICs and integrate the AI processor
runtimes in them as apps (i.e., rApps, xApps, dApps). For the
local data collection and control operations, the AI processor
runtimes could leverage the open RIC interfaces (e.g., E2,
O1), augmented with programmable probes and exposed to the
AI runtimes through appropriate adapters. The communication
between the AI processor runtimes could be facilitated by a
message bus, which could be standardized and realized as
an overlay network on top of the RIC fabric. For the far-
edge, and considering that there is currently no real-time RIC

6

specification, one could leverage our far-edge AI processor
runtime design as a blueprint.
Proprietary design – Another extreme is a proprietary design,
fully controlled by the RAN vendor (Fig. 6, middle). In this
case, the group that is in charge of the RAN product devel-
opment could also be in charge of developing and managing
the AI platform and of defining proprietary interfaces for data
collection and control. A different group of the RAN vendor
could deploy and manage their own AI RAN applications,
without having to constantly go through the RAN product
development group, to ask them to introduce new features
or expose more data. By decoupling the responsibilities, the
vendor can accelerate its innovation, while still maintaining a
full control over the RAN behavior.
Hybrid design – It is also possible to create a hybrid
solution (Fig. 6, right), that would be a mix of proprietary AI
processor runtimes and runtimes running on top of standard O-
RAN RICs (e.g., only non RT-RIC). AI applications could be
composed of a mixture of first-party and third-party AI blocks,
where the proprietary data and control interfaces of the RAN
functions can only be accessed by the first-party AI blocks,
whereas thrid-party blocks can only access APIs exposed by
the standard interfaces. This would allow the RAN vendor to
maintain control over the RAN behavior, while still allowing
third-party developers to innovate.

VIII. CONCLUSIONS

In this paper we focused on the topic of AI as a key enabler
behind realizing the 6G vision. We argued about the benefits
of introducing AI across several dimensions of the RAN,
from the management and infrastructure up to the application
layer. Based on these observations, we outlined the challenges
for deploying AI solutions, stemming from the requirements
of the applications and the characteristics of the RAN in-
frastructure. Motivated by these challenges, we proposed a
distributed AI platform architecture. Its goal is to alleviate the
common painpoints of deploying AI applications in the RAN
without being prescriptive about the implementation details.
This allows the platform to be tailored to the needs of the
infrastructure provider or a standardization body. We believe
that by identifying the future requirements and by initiating a
discussion on the architecture of a 6G AI platform we can help
both the standards and the vendors to create new opportunities
for introducing AI solutions in this space.

Ganesh Ananthanarayanan is a Senior Principal Researcher at Microsoft.
His research focuses on systems and networking, with current work on AI
inference systems. He received his PhD from UC Berkeley.

Xenofon Foukas is a Principal Researcher at Microsoft. His research interests
are on networks and distributed systems with his current focus on edge
computing. He received his PhD from the University of Edinburgh.

Božidar Radunović is a Senior Principal Researcher at Microsoft Research.
His research interests are in design and building next generation cloud and
edge infrastructure. He received his PhD from EPFL.

Yongguang Zhang is currently a Partner Principal Researcher at Microsoft
Research. He is currently leading the cloud RAN platform R&D. He received
his Ph.D. in Computer Science from Purdue University.

REFERENCES

[1] A.-R. Alliance, “Integrating AI/ML in Open-RAN: Overcoming Chal-
lenges and Seizing Opportunities,” AI-RAN Alliance, Tech. Rep., Aug
2024.

[2] I. A. Bartsiokas et al., “ML-based radio resource management in 5G and
beyond networks: A survey,” IEEE Access, vol. 10, pp. 83 507–83 528,
2022.

[3] C. Sun et al., “SpotLight: Accurate, Explainable and Efficient Anomaly
Detection for Open RAN,” in ACM MobiCom (To appear), 2024.

[4] L. Kundu et al., “Towards Energy Efficient RAN: From Industry
Standards to Trending Practice,” arXiv preprint arXiv:2402.11993, 2024.

[5] “Building Software-Defined, High-Performance, and Efficient vRAN
Requires Programmable Inline Acceleration,” Nvidia Developer (online),
2023, https://developer.nvidia.com/blog/building-software-defined-hig
h-performance-and-efficient-vran-requires-programmable-inline-accel
eration/.

[6] X. Foukas and B. Radunovic, “Concordia: Teaching the 5g vran to
share compute,” in Proceedings of the 2021 ACM SIGCOMM 2021
Conference, 2021, pp. 580–596.

[7] L. L. Schiavo et al., “Yinyangran: Resource multiplexing in gpu-
accelerated virtualized rans,” in IEEE INFOCOM, 2024, pp. 1–10.

[8] S. E. Trevlakis et al., “Localization as a key enabler of 6g wireless
systems: A comprehensive survey and an outlook,” IEEE Open Journal
of the Communications Society, 2023.

[9] A. Chorti et al., “Context-aware security for 6g wireless: The role of
physical layer security,” IEEE Communications Standards Magazine,
vol. 6, no. 1, pp. 102–108, 2022.

[10] Y. Zhang et al., “Vulcan: Automatic query planning for live ML
analytics,” in NSDI 24. Santa Clara, CA: USENIX Association, Apr.
2024, pp. 1385–1402.

[11] A. Balasingam et al., “Application-Level service assurance with 5g RAN
slicing,” in NSDI 24. Santa Clara, CA: USENIX Association, Apr. 2024,
pp. 841–857.

[12] X. Foukas et al., “Taking 5g ran analytics and control to a new level,”
in ACM MobiCom, 2023, pp. 1–16.

[13] D. Soldani et al., “ebpf: A new approach to cloud-native observability,
networking and security for current (5g) and future mobile networks (6g
and beyond),” IEEE Access, vol. 11, pp. 57 174–57 202, 2023.

[14] S. D’Oro et al., “dApps: Distributed applications for real-time inference
and control in O-RAN,” IEEE Communications Magazine, vol. 60,
no. 11, pp. 52–58, 2022.

[15] “AT&T, all in with Ericsson, seems to have shut the door to xApps,”
LightReading (online), 2024, https://www.lightreading.com/open-ran/a
t-t-all-in-with-ericsson-seems-to-have-shut-the-door-to-xapps.

