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Abstract. We introduce a multi-modal diffusion model tailored for the
bi-directional conditional generation of video and audio. We propose a
joint contrastive training loss to improve the synchronization between vi-
sual and auditory occurrences. We present experiments on two datasets
to evaluate the efficacy of our proposed model. The assessment of gen-
eration quality and alignment performance is carried out from various
angles, encompassing both objective and subjective metrics. Our findings
demonstrate that the proposed model outperforms the baseline in terms
of quality and generation speed through introduction of our novel cross-
modal easy fusion architectural block. Furthermore, the incorporation of
the contrastive loss results in improvements in audio-visual alignment,
particularly in the high-correlation video-to-audio generation task.

1 Introduction

Multi-media generation with diffusion models has attracted extensive attention
recently. Following breakthroughs in image [22] and audio generation [17], multi-
media generation like video remains challenging due to increased data and con-
tent size and the added complexity of dealing with both audio and visual com-
ponents. Challenges for generating multi-modal content include 1) time variant
feature maps leading to computationally expensive architecture and 2) audio
and video having to be coherent and synchronized in terms of semantics and
temporal alignment.

Existing research has predominantly concentrated on unidirectional cross-
modal generation, such as producing audio from video cues [19, 35] and vice
versa [10, 15]. These approaches typically employ a conditional diffusion model
to learn a conditional data distribution p(x|y). Although these models have
shown considerable promise, their unidirectional nature is a limitation to learn
joint multi-modal representations and general bi-directional use. However, Bayes’
theorem elucidates that a joint distribution can be decomposed into p(x, y) =
p(x|y)p(y) = p(y|x)p(x), suggesting that the construction of a joint distribu-
tion inherently encompasses bi-directional conditional distributions. With the
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advent of the iterative sampling procedure in diffusion models, classifier guid-
ance [2, 8, 28] has emerged as a viable approach for training an unconditional
model capable of conditional generation. This approach has been extensively
adopted in addressing the inverse problems associated with diffusion models,
such as image restoration [12] and text-driven generation [23].

MM-diffusion [25] represents a groundbreaking foray into the simultaneous
modeling of video and audio content. The architecture employs a dual U-Net
structure, interconnected through cross-attention mechanisms [31], to handle
both video and audio signals. Although MM-diffusion demonstrates impressive
results in terms of unconditional generation quality, it has two major limita-
tions: Firstly, it’s random-shift cross-attention mechanism is still complex and it
relies on a super-resolution up-scaling model to improve image quality. Secondly,
the focus has been on unconditional generation, while we focus on conditional
generation and improve the evaluation methodology.

In this study, we introduce an improved multi-modal diffusion architecture
with focus on bi-directional conditional generation of video and audio. This
model incorporates an optimized design that more effectively integrates video
and audio data for conditional generation tasks. More importantly, we leverage
a novel joint contrastive diffusion loss to improve alignment between video and
audio pairs. Our experiments on two different dataset employ both subjective
and objective evaluation criteria. We achieve superior quality than the baseline
and stronger synchronization.

The key contributions can be summarized as follows:

– We present an optimized version of the multi-modal latent-spectrogram dif-
fusion model, featuring a pretrained video autoencoder, a vocoder and an
easy fusion mechanism. This design aims to more effectively integrate cross-
modality information between video and audio, while also enhancing condi-
tional sampling quality.

– Drawing inspiration from uni-modal contrastive learning, we propose a novel
contrastive loss function tailored for the joint model. This function is instru-
mental in enhancing the alignment accuracy for the conditional generation
of video-audio pairs.

– Our experimental evaluations, performed on two distinct datasets, AIST++ [16]
and EPIC-Sound [9]. We propose to use metrics with improved correlation
human perception and practical relevance compared to prior work in the
field. The assessments, based on a range of subjective and objective metrics
demonstrate that our method outperforms the existing MM-diffusion [25] in
terms of quality, as well as non-contrastive variants in terms of temporal
synchronization.

2 Method

In this section, we provide an overview of the diffusion model employed, fol-
lowed by a description of the intricacies of the architecture design of the pro-
posed model. Finally, we introduce the joint contrastive loss that enhances the
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alignment of video and audio components. An overview of our model is shown
in Fig. 1.

2.1 Video-Audio Joint Diffusion Model
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Fig. 1: Overview of our proposed architecture and method. The detailed implementa-
tion of each U-Net block is depicted in the upper right corner and the intuition of our
design choice of easy fusion is available in Appendix. Training of the diffusion model
is performed on latent-spectrogram space.

Denoising diffusion models introduced a practical objective function for train-
ing the reverse process [6, 7, 26]:

En,ϵ[||ϵ− ϵθ(xn(x0), n)||2] or En,ϵ[||v − vθ(xn(x0), n)||2] (1)

where ϵθ represents the most commonly used parameterization in previous works [2,
7, 11,24,25,27], and vθ (velocity) has also shown promising results with a more
stable training process [26]. We adopt the latter method to train our model.

Video-Audio Modeling Our approach to video-audio joint modeling follows a
design analogous to the uni-modal diffusion model. Here, the data point x com-
prises two modalities: the video signal v0..N and audio signal a0..N . Consequently,
the optimization objective resembles the form in Eq.1:

Ljdiff = En,ϵ[||v − vθ(vn, an, n)||2] (2)

where v represents the velocity parameterization for both video and audio,
specifically v = [

√
αnϵv −

√
1− αnv0,

√
αnϵa −

√
1− αna0]. This implies that

the model vθ simultaneously predicts two outputs, embodying a joint diffusion
model that effectively manages both modalities.
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Guided Conditional Generation An intriguing aspect of diffusion models is their
capacity to enable conditional generation through guidance from a classifier, even
in the context of models trained without conditioning [2]. Typically, this guidance
method involves an additional classifier, pϕ(y|x), and utilizes the gradient term
∇xpϕ(y|x) to adjust the sampling direction during the denoising process.

However, in our model, which considers both video and audio modalities, we
can employ a more straightforward reconstruction guidance approach [8]. For
the video-to-audio generation case, we can formalize conditional generation as
follows (audio-to-video shares a similar formulation).

â0 = ā0 − λ
√
αn∇an

||v0 − v̂0||2︸ ︷︷ ︸
reconstruction guidance

an−1 =
√
αn−1â0 +

√
1− αn−1ϵa

(3)

where the gradient guidance is weighted by λ and ā0 is the unguided noisy audio
signal reconstruction at denoising step n. In the case of λ = 0, the generation
scheme is equivalent to the replacement method [28]. Both ϵa and ϵv are drawn
from an isotropic Gaussian prior at the start of the iteration. Therefore, these
equations depict an intermediate stage of the conditional generation process
using the DDIM sampling method [27]. Although the speed of sampling is not
the primary focus of our model, alternative ODE or SDE solvers can be employed
to expedite the denoising sampling process [11,18].

2.2 Joint Contrastive Training

To improve the synchronization of video and audio in our model, we utilize
principles of contrastive learning [21]. This approach has proven effective in
maximizing the mutual information I(a; v) for video-to-audio conditional gener-
ation [19,35]. The CDCD [35] method seamlessly integrates contrastive loss into
the video-to-audio conditional diffusion models, as given by

Lcont := EA log

[
1 +

pθ(a0:N )

q(a0:N |v0)
MEA′

[pθ(a¬0:N |v0)
q(a¬0:N )

]]
≈ Lcdiff(a0:N , v0)− η

∑
a¬
0 ∈A′

Lcdiff(a
¬
0:N , v0)

(4)

where the set A includes the correct corresponding audio samples, while A′

contains the mismatched negative samples of A. Lcdiff denotes the unimodal
conditional diffusion loss, with v representing the conditioning videos and M
indicating the number of negative samples. To streamline the training process,
we replace M with a weighting term η, eliminating the need to generate M
negative samples at each training step. This means at each training step, we can
sub-sample a batch of a¬ from the M samples for computational efficiency.

The above formulation pertains to training a classifier-free conditional dif-
fusion model. To adapt this approach to our joint diffusion loss, as described
in Eq.2, we observe that we are training an implicit conditional diffusion model
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pθ(an−1|an, vn). Eq.3 demonstrates that vn can be directly calculated during
conditional generation:

vn ∼ q(vn|v0) =
√
αnv0 +

√
1− αnϵv (5)

which implies that v1:N is fixed with a given ϵv and v0. Given this relation-
ship between vn and v0, we have following approximation pθ(an−1|an, v0) ≈
pθ(an−1|an, vn)q(vn|v0). Thus, we can bridge Eq.4 to our jointly trained multi-
modal diffusion model. For audio-to-video generation, we can follow the same
method above by swapping v and a. Finally, the resulting joint contrastive loss
can be represented by the following three terms:

Lcont = Ljdiff(a0:N , v0:N )− ηEa¬
0 ∼A′Ljdiff(a

¬
0:N , v0:N )

− ηEv¬
0 ∼V ′Ljdiff(a0:N , v¬0:N )

(6)

where V ′ denotes the set of negative samples for a0 and η adjusts the weight
of the contrastive term. It’s important to note that, instead of iterating over all
the V ′ and A′ samples, we choose to randomly draw a subset from them per
gradient descent step to reduce GPU memory consumption.

Creating Negative Samples In absence of a pre-existing high-quality dataset for
contrastive learning, we can generate negative samples through data augmenta-
tion. Specifically, we employ the following methods to create V ′ and A′ in the
context of paired positive data a, v. For brevity, we will only outline the genera-
tion of negative audio samples a¬. The creation of negative videos v¬ follows a
similar formulation:

– Random Temporal Shifts: We apply random temporal shifts to a, moving the
signal backward or forward by a random duration within some hundreds of
milliseconds.

– Random Segmentation and Swapping : We randomly draw a separate audio
segment, denoted as ad, with the same length as a. Subsequently, we sample
a random split point on both ad and a, allowing us to construct a¬ as either
concatenate(aleft

d , aright) or concatenate(aleft, aright
d ).

– Random Swapping : In this method, we randomly select a different audio
segment, ad, of the same length as a, and substitute a with ad.

The detailed training procedure is outlined in Appendix Algorithm.

3 Experiments

Datasets Our evaluation leverages two datasets, each offering unique challenges
and scenarios within the audio-video domain: AIST++ [16] is derived from the
AIST Dance Database [29]. This dataset features street dance videos with ac-
companying music. It serves a dual purpose in our evaluation, being used for both
video-to-audio and audio-to-video tasks. The EPIC-Sound [9] dataset consists
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Fig. 2: Conditioning video (top) with ground truth spectrogram below. The two bot-
tom spectrograms show the generated audio with CMMD and nCMMD conditioned
on the video. Sound events are highlighted with a green circle for matches and a red
circle for mismatches.

of first-person view video recordings that capture a variety of kitchen activities,
such as cooking, that are characterized by a strong audio-visual correlation. Due
to the significant motion and camera movement in the videos, which complicates
visual learning, we use EPIC-Sound exclusively for video-to-audio evaluation.

Baselines The MM-Diffusion model [25] stands as the only known baseline ca-
pable of handling both video-to-audio and audio-to-video synthesis tasks. For
our comparison, we employed the official MM-Diffusion implementation, utiliz-
ing weights trained on the 1.6 s 10fps AIST++ dataset at a resolution of 64×64.
Additionally, we present results from nCMMD, a variant of our CMMD model
that does not incorporate contrastive loss.

Feature Extraction & Data Preprocessing We sampled 18 frames from 10 fps
video sequences and the corresponding 1.8s audio at 16kHz. Video frames un-
derwent center cropping and resizing to a 128 × 128 resolution, or optionally
downsampling to 64× 64 for a comparison with the MM-Diffusion baseline. The
audio samples represented in a Mel Spectrogram have 80 channels and 112 time
steps. During test time, we use twice the training sequence length, i.e., 36 video
frames, if not specified otherwise.

As outlined in Appendix, we encoded videos using the Gaussian VAE from the
Stable Diffusion project [24], which effectively reduces image resolution by a fac-
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Fig. 3: Generated video with CMMD conditioned on the audio spectrogram.

tor of eight in both width and height. We utilized the pre-trained model weights3
without further fine-tuning. For audio features, we transformed waveforms sam-
pled at 16 kHz into 80-bin mel spectrograms using a Short-Time Fourier Trans-
form (STFT) with a 32 ms window and 50% overlap, yielding a time resolution
of 16 ms. The MelGAN vocoder was improved by the loss weightings from Hifi-
GAN [14] and notably improved by training on sequences of 4 s, as opposed to
the originally suggested 0.5 s. This adjustment aligns with the MelGAN archi-
tecture’s receptive field of approximately 1.6 s. The vocoder was trained on the
entire AudioSet [4] to ensure a broad sound reconstruction capability.

3.1 Metrics

Fréchet Distance Objective metrics to capture the perceived quality of video
and audio are often difficult to develop and have many imperfections. Especially
in generative tasks, where new content is created and no ground truth is avail-
able, such metrics are to be used with care. Popular approaches are statistical
metrics, which compare generated and reference distributions in some embed-
ding space, such as the Fréchet Audio Distance (FAD) [13] and Fréchet Video
Distance (FVD) [30]. We assess FVD in a pairwise manner [32, 33]: calculating
the score between the 5 times conditional generation results and the correspond-
ing ground truth test sets. To measure audio quality, we calculate FAD using
CLAP embeddings [3], which have been shown recently in [5] to represent acous-
tic quality much better than the widely used VGGish features. FAD scores are
calculated using the FAD toolkit [5] both individually for each generated sample
and for the entire set of samples generated by one model, using the test set as a
reference. Additionally, we also consider KVD [1] as a complementary metric of
visual quality for video contents.

Temporal Alignment For the dancing videos from AIST++, to evaluate the
temporal alignment of generated music, we use a beat tracking approach similarly
as in [35] to measure the rhythmic synchronicity. The music beats are estimated

3 https://huggingface.co/stabilityai/sd-vae-ft-mse
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Models CMMD nCMMD MM-Diff

FVD KVD FVD KVD FVD KVD

16 frames (64) 611 58 703 83 726 48
18 frames (64) 749 70 799 187 757 71
32 frames (64) 765 53 708 47 871 68
18 frames (128) 934 78 1036 136 N/A
36 frames (128) 973 49 882 49 N/A

Table 1: FVD and KVD results for different frame settings on AIST++ dataset.
Numbers in parentheses indicate the resolution of the evaluated frames.

using librosa [20] beat tracker and the hit rate between beats of generated and
ground truth audio is computed. We propose to use a tolerance of ±100 ms, which
corresponds approximately to the average perceivable audio-visual synchronicity
thresholds found in literature [34]. For reference, we also show results using a
larger tolerance of ±500 ms,which is equivalent to the 1 s quantization used
in [35]. While this significantly improve accuracy numbers, we consider this a
very inaccurate, close to random metric, as a 1 s window already contains 2 beats
at a average song tempo of 120 beats per minute. Since the beat tracking method
is applicable only to musical content, we reserve the alignment assessment for
EPIC-Sound to subjective evaluation.

Subjective Evaluation We conducted a user study with 14 participants to eval-
uate the audio-visual quality and synchronicity. Participants were recruited lab
internally on voluntary basis without restrictions except unimpaired vision and
hearing. No further demographical information was collected for privacy reasons.
For each example, we asked two or three questions about the quality of the gen-
erated content and the temporal alignment of video and audio events on MOS
scales from 1 (worst) to 5 (best). Specifically, for generated video, we asked to
rate the video quality and the temporal alignment. For audio generation from
AIST++ dance videos, we asked to rate separately the acoustic and musical
quality, and the temporal synchronization of the dancer to the music. For the
EPIC-Sound cases, we asked to rate the acoustic and semantic quality, and the
temporal synchronization of events. Semantic quality refers to whether the type
of sounds heard make sense given the scene seen in the video without paying
attention to temporal synchronization.

3.2 Objective Evaluation Results

The results for Fréchet Video Distance (FVD) and Kernel Video Distance (KVD)
comparing the proposed model and baseline models are detailed in Table 1. The
findings reveal that (n)CMMD consistently outperforms MM-Diffusion across a
variety of resolutions and sequence lengths. Specifically, CMMD demonstrates
a marginal superiority over nCMMD in shorter sequences. Conversely, nCMMD
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Fig. 4: Per-sample (boxes) and per-set (×) Frechet audio distance (FAD) results for
AIST++ (left) and EPIC-Sound (right). FAD is calculated for 50 output samples of
each model using CLAP embeddings with the respective test set as reference. Boxes
show the per-sample FAD distribution of these 50 samples, with red markers indicating
outliers beyond the whiskers which extend to 1.5 times the interquartile range. Note
that the per-set FAD scores for ground truth (gt) are larger than zero as only the small
subset of the test set used in the evaluation is compared to the whole test set used as
reference. Comparing FAD scores for identical set sizes avoids sample size bias [5].

exhibits slightly better quality in longer sequences, aligning with our subjective
assessments. MM-Diffusion, however, performs better only in terms of KVD for
low-resolution, short video sequences, which is the specific condition under which
this model was trained.

Fig. 4 illustrates the comparison of audio quality in a video-to-audio genera-
tion scenario. Our CMMD model surpasses the baseline in AIST++ music audio
quality, in terms of both per-sample FAD [5] and batch FAD metrics. There is
no significant difference between CMMD and nCMMD for both datasets.

Table 2 presents the beat alignment results for the AIST++ audios. The
table compares three different methods: CMMD, nCMMD, and MM-Diffusion.
In terms of beat tracking accuracy within a 100 ms tolerance, CMMD performs
the best, showing a improvement of 1-4%. As mentioned in 3.1, we do not con-
sider the results for tolerance of 500 ms meaningful as it allows very coarse and
ambiguous beat matches, so we do not suggest to draw conclusions from this
setting. It is only notable that this large inaccurate tolerance doubles accuracy
numbers, which we find misleading.

In the generation processes of audios for EPIC-Sound and videos for AIST++,
our primary reliance is on subjective evaluation, given the absence of robust met-
rics. To supplement this assessment, we present EPIC-Sound audio generation
visualization provided in Fig. 2, where we can observe that CMMD has bet-
ter alignment with the ground truth than nCMMD in terms of temporal sound
event alignment. Additionally, Fig. 3 presents a qualitative sample showcasing
audio-to-video generation in the context of AIST++.
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Hitrate tolerance CMMD nCMMD MM-Diff (Ruan2023) comments
±500 ms 89% 91% 89% not suggested tolerance
±100 ms 45% 44% 41%

Table 2: Comparison of Beat Tracking Accuracy (AIST++). The values in paren-
theses indicate the allowable margin of error for beat timing, with a smaller window
representing a stricter standard. Higher hit rates within lower tolerance thresholds sig-
nify superior temporal alignment.
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Fig. 5: Subjective results from user study for EPIC-Sound video conditioned audio
generation (left), AIST++ dance video conditioned audio generation (center), and
audio conditioned video generation (right).

3.3 Subjective Evaluation Results

In the subjective evaluation we used 85 videos. We used 5 different condi-
tions (audio or video as conditioning), two different sample generations per
CMMD and nCMMD model, one sample each per ground truth and baseline.
For AIST++ we evaluated audio to video and video to audio generation. For
EPIC-Sound, we evaluated only video to audio and there is no MM-Diffusion
baseline available.

The Mean Opinion Scores (MOS) are shown as boxplots in Fig. 5, where
the black bars show then median, the boxes show the inter-quartile range, and
the whiskers show the minimum and maximum values. Additionally, we test sta-
tistical significance using the Wilcoxon signed-rank test with p-value < 0.05 to
analyze close cases. We can see that the raters reliably detected the ground truth
samples attributing it the highest score, although often the scale was not used
fully. For the generated dance visuals from AIST++ audio (Fig. 5 right), we can
observe a significantly higher rating of our proposed models over MM-Diffusion
baseline. The nCMMD model has a slightly higher video quality with p=0.005.
The CMMD model shows a trending but non-significant better temporal align-
ment than nCMMD with p = 0.327. CMMD temporal alignment is significantly
better than MM-Diffusion baseline with p = 0.038.

For audio generation conditioned on AIST++ dance videos (Fig. 5 center),
we observe the temporal alignment of CMMD and nCMMD as well as their
acoustic quality better than MM-Diffusion. While these differences are smaller,
they are statistically significant. nCMMD has slightly better acoustic quality
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than CMMD, while there is no significance between CMMD and nCMMD tem-
poral alignment with p = 0.09, as can also be seen on their very close medians.
nCMMD outperforms MM-Diffusion in musical quality, while the spread is too
large to draw conclusions between CMMD and MM-Diffusion on musical quality.

For audio generation conditioned on EPIC-Sound videos (Fig. 5 left), CMMD
outperforms nCMMD in terms of semantic quality and temporal alignment due
to the use of the contrastive loss, while the acoustic quality is on par.

3.4 Discussion

The results in Fig. 5 on EPIC-Sound video to audio task show a clear benefit
of the contrastive loss to enforce stronger both temporal synchronization and
semantic alignment without sacrificing audio acoustic quality. In AIST++, the
contrastive loss improves the temporal synchronization MOS for the audio to
video condition, while it is inconclusive for the video to audio condition. However
for this condition, the 100ms beat tracking metric in Tab. 2 still indicates a
minor synchronization improvement. Interestingly, on AIST++ it seems that the
model trades off a small amount of quality in favor of better synchronization,
while objective metrics like FVD, KVD and FAD are on par or fluctuating
depending on condition. In general, the temporal synchronization results are
less pronounced for the AIST++ dance data, possibly due to the fact that the
alignment of human dancers with music may be harder to judge for several
reasons: 1) the dancers may vary in tempo or their internal rhythm may be
judged in ambiguous ways. 2) being off by one or two full beats may appear as
being in sync again.
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