
Control Plane Compression
Ryan Beckett

Princeton University

Aarti Gupta

Princeton University

Ratul Mahajan

Intentionet

David Walker

Princeton University

ABSTRACT
We develop an algorithm capable of compressing large net-

works into smaller ones with similar control plane behav-

ior: For every stable routing solution in the large, original

network, there exists a corresponding solution in the com-

pressed network, and vice versa. Our compression algorithm

preserves a wide variety of network properties including

reachability, loop freedom, and path length. Consequently,

operators may speed up network analysis, based on sim-

ulation, emulation, or verification, by analyzing only the

compressed network. Our approach is based on a new the-

ory of control plane equivalence. We implement these ideas

in a tool called Bonsai and apply it to real and synthetic

networks. Bonsai can shrink real networks by over a factor

of 5 and speed up analysis by several orders of magnitude.

CCS CONCEPTS
• Networks → Network reliability; Network manage-
ment; • Software and its engineering→ Formal methods;

KEYWORDS
Network Verification, Stable Routing Problem

ACM Reference Format:
Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2018.

Control Plane Compression. In SIGCOMM ’18: ACM SIGCOMM 2018
Conference, August 20–25, 2018, Budapest, Hungary.ACM, New York,

NY, USA, 14 pages. https://doi.org/10.1145/3230543.3230583

1 INTRODUCTION
Configuration errors are a leading cause of network outages

and security breaches [3, 21, 28, 33, 35, 40]. For instance, a

recent misconfiguration disrupted Internet connectivity for

millions of users in the USA for over 1.5 hours, and similar

incidents last year impacted users in Japan, India, Brazil,

Azerbaijan, and beyond [7].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5567-4/18/08. . . $15.00

https://doi.org/10.1145/3230543.3230583

The root cause of many of these errors is simply complex-

ity: Networks typically run one or more distributed routing

protocols that exchange information about available paths

to destinations. The paths that are advertised and preferred

by routers are determined by their configuration files, which

can easily contain tens of thousands of low-level, vendor-

specific primitives. Unfortunately, it is nearly impossible for

human network operators to reason about the correctness

of these files, let alone that of behavior that results from

distributed interactions between many routers.

To minimize errors in configurations, researchers have

taken a number of approaches to find bugs and check correct-

ness, including static analysis [5, 16], simulation [17, 19], em-

ulation [31], monitoring [25, 26, 29, 44], model checking [37],

systematic testing [15, 39], and verification [6, 20, 42]. Yet

for almost all such techniques, scaling to large networks

remains challenging. For example, in Batfish [19], a testing

tool, the time it takes to model control plane dynamics limits

the number of tests that can be administered. Similarly, the

cost of the verification tool Minesweeper [6] grows expo-

nentially in the worst case, and in practice, tops out at a few

hundred devices—far short of the 1000+ devices that are used

to operate many modern data centers.

In this paper, we tackle these problems by defining a new

theory of control plane equivalence and using it to compress

large, concrete networks into smaller, abstract networks with

equivalent behavior. Because our compression techniques

preserve many properties of the network control plane, in-

cluding reachability, path length, and loop freedom, analysis

tools of all kinds can operate (quickly) on the smaller net-

works, rather than their large concrete counterparts. In other

words, this theory is an effective complement to ongoing

work on network analysis, capable of helping accelerate a

wide variety of analysis tools. Moreover, because our trans-

formations are bisimulations, rather than over- or under-

approximations, tools built on our theory can avoid both

unsound inferences and false positives.

Intuitively, the reason it is possible to compress control

planes in this fashion is that large networks tend to contain

quite a bit of structural symmetry—if not, they would be even

harder to manage. For instance, many spine (or leaf or aggre-

gation) routers in a data center may be similarly configured;

and, as we show later, symmetries exist in backbone network

as well. Recently, Plotkin et al. [36] exploited similar intu-

ition to develop other tools for network verification. How-

ever, they operate over the (stateless) network data plane,

476

https://doi.org/10.1145/3230543.3230583
https://doi.org/10.1145/3230543.3230583
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3230543.3230583&domain=pdf&date_stamp=2018-08-07

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker

i.e., the packet-forwarding rules, whereas we operate over

the control plane, i.e., the protocols that distribute the avail-
able routes. While both the data and control planes process

messages (data packets and routing messages, respectively),

the routing messages interact with one another whereas the

data packets do not. More specifically, data packet process-

ing depends only on the static packet-forwarding rules of a

router; it does not depend on other data packets. In contrast,

routing messages interact: the presence and timing of one

(more preferred) message can cause another (less preferred)

message to be ignored. Such interactions create dynamics not

present in stateless data planes and can even lead to many

different routing solutions for the same network. In other

work, Wang et al. [41] also observed that compression can

lead to improved control plane analysis performance, and

they designed an algorithm for compressing BGP networks

that can speed analysis of convergence behavior. In contrast,

our algorithms are designed to preserve arbitrary path prop-

erties of networks. Such properties include reachability, loop

freedom, absence of black holes and access control. We also

define our algorithms over a generic protocol model so we

can apply the ideas to a wide range of protocols ranging

from BGP to OSPF to static routes.

More specifically, we make two core contributions:

A Theory of Control Plane Equivalence. Our theoretical
development begins by defining the Stable Routing Problem

(SRP), a generic model of a routing protocol and the network

on which it runs. SRPs can model networks running a wide

variety of protocols including distance-vector, link-state, and

path-vector protocols. SRPs are directly inspired by the stable

paths problems (SPP) [22], but rather than describing the

protocols’ final solution using end-to-end paths (as SPPs

do), SRPs describe runtime routing behavior in terms of

local processing of routing messages, as configurations do.

In addition to modeling raw configurations more closely, this

distinction allows SRPs to capture a wider variety of routing

behaviors that emerge at runtime, including static routing

and other protocols that may generate loops. Consequently,

our formulation of SRPs is similar to the protocolmodels used

by routing algebras [23, 38], though this earlier work focused

on convergence rather than network compression or analysis

of topologically-sensitive properties such as reachability.

With a network model in hand, we turn to the process

of characterizing network transformations. Intuitively, we

would like to define transformations that convert concrete

networks into abstract ones that make equivalent control

decisions and generate similar forwarding behavior. How-

ever, doing so directly is challenging as validating that two

SRPs are equivalent is as hard as the control plane verifica-

tion problem we are trying to speed up in the first place!

We address this challenge by defining a class of network

transformations that we call effective abstractions. These ab-
stractions are characterized by conditions designed to be

checked efficiently, and locally, without the need for a global

simulation. Our central theoretical result is that these con-

ditions imply behavioral equivalence of the concrete and

abstract networks.

An Efficient Compression Algorithm. Our theory paves

the way for a practical algorithm for automatically comput-

ing compact, abstract control planes from configurations

of large networks. The algorithm is based on abstraction

refinement: Starting with the coarsest possible abstraction

it iteratively refines the abstract network, checking at each

step to determine whether or not it has found an effective

abstraction. To implement such checks efficiently, we use a

variety of efficient data structures such as Binary Decision

Diagrams to represent configuration semantics. In practice,

the algorithm reduces network sizes significantly, bringing

more networks into range for various analyses. For example,

our tool was able to compress an operational 196-node data

center network down to 26 nodes and to reduce the number

of edges by a factor of roughly 100. A 1086-node WAN using

eBGP, iBGP, OSPF and static routes was compressed down

to 137 nodes and its edge count was reduced by a factor 7.

2 OVERVIEW

The Stable Routing Problem. Intuitively, a network is just
a graph G where nodes are routers and edges are links be-

tween them. The network’s control plane has a collection of

router-local rules that determine how routing messages are

processed. Different routing protocols use different kinds of

messages. For instance, in RIP, a simple distance-vector pro-

tocol, messages include destination prefix and hop count. In

contrast, BGP messages include a destination prefix, an AS-

path, a local preference and other optional data. We call all

such messages attributes regardless of their contents. While

routing protocols differ significantly in many respects, they

can be factored into two generic parts: (1) a comparison rela-

tion that prefers certain attributes, and (2) a transfer function

that transforms incoming and outgoing messages.

An SRP instance assembles all of these ingredients: (1)

a graph defining the network topology, (2) a destination

to which to route, (3) a set of attributes, (4) an attribute

comparison relation, and (5) an attribute transfer function.

Its solution (L) associates an attribute with each node, which

represents the route chosen by the node. Every SRP solution

has the property that nodes have not been offered an attribute

by a neighbor that is preferred more than the chosen one.

An SRP solution also implicitly defines a forwarding relation:

If a receives its chosen attribute from b, then a will forward

traffic to b. There can be multiple solutions to an SRP.

477

Control Plane Compression SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

𝑎
𝑏#

𝑑
𝑏%

1

1

02

1

12

2

2 2 𝑎
𝑏#

𝑑
𝑏%

1

1

02
𝑎) 𝑑*𝑏+

1 02

(a) Message flow (b) Solution (c) Abstraction

Figure 1: An example RIP network.

As an example, consider the RIP network in Figure 1(a).

The destination node is d. It initiates the protocol by send-

ing messages that contain the hop count to the destination.

The RIP comparison relation prefers the minimal attribute

(i.e., the shortest path to the destination). The RIP transfor-

mation function adds one to each attribute along each link.

Figure 1(b) shows the resulting solution.

Network Abstractions. Our goal is to define an algorithm

that, given one SRP, computes a new, smaller SRP that ex-

hibits “similar” control plane behavior. We call the input SRP

the concrete network, and the output SRP (denoted ŜRP) the
abstract network. A network abstraction defines precisely the

relationship between the two. It is a pair of functions (f , h),
where f is a topology abstraction that maps the nodes and

edges of the concrete network to those of the abstract net-

work, and h is an attribute abstraction that maps the concrete

attributes in control plane messages to abstract ones.

We define "similarity" using control plane solutions that

emerge after running a routing protocol. More precisely, two

networks are control-plane equivalent (CP-equivalent) when:
There is a solution L to the concrete network iff there is
a solution L̂ to the abstract network where (i) routers are
labeled with similar attributes, as defined by the attribute
abstraction; and (ii) packets are forwarded similarly, as
defined by the topology abstraction.

CP-equivalence is powerful because it preserves many

properties such as reachability, path length, way-pointing,

and loop-freedom. Moreover, because the connection be-

tween abstract and concrete networks is tight (i.e., a bisim-

ulation) as opposed to an over-approximation, bugs found

when verifying the abstract network, correspond to real bugs

in the concrete network (i.e., no false positives). Likewise,

because our abstractions are not under-approximations, if

we verify that there are no violations of a property in the

abstract network, then there are no violations of the property

in the concrete network (i.e., no false negatives).

Figure 1(c) shows a CP-equivalent abstraction of the exam-

ple network. The topology abstraction f maps the concrete

node a to â, b1 and b2 to b̂, and d to d̂ , while the attribute
abstraction h is simply the identity function, leaving hop

count unchanged. The abstraction is CP-equivalent because

there is only one stable solution to both abstract and concrete

networks, and given a concrete node n, the label associated

𝑎

𝑏#

𝑑

𝑏%

(c)

𝑎

𝑏& 𝑏'

𝑑

𝑏(

(a)

𝑎

𝑏

𝑑

(b)

Figure 2: (a) Concrete BGP network. (b) Unsound ab-
straction (has a loop). (c) Sound abstraction.

with that node is the same as the label associated with f (n).

For instance, b1 is labeled with attribute 1 and so is b̂, its
corresponding node in the abstraction. One can also observe

that the forwarding relation in the concrete network is equiv-

alent (modulo f) to the forwarding relation in the abstract

network. For instance, concrete node b1 forwards to d and

the corresponding abstract node b̂ forwards to d̂ as well.

Effective Abstractions.While CP-equivalence is our goal,

we cannot evaluate pairs of networks for equivalence directly—

naively, one would have to simulate the behavior of the pair

of networks on all possible inputs, an infeasible task. Instead,

we formulate a set of conditions on network abstractions

that imply CP-equivalence and can be evaluated efficiently.

Effective abstractions are those that satisfy these conditions.

While these conditions help us identify abstractions for

protocols such as RIP and OSPF, there is a serious complica-

tion for BGP. One of the conditions is transfer-equivalence,
i.e., the routing information is transformed in a similar way

in concrete and abstract networks. However, BGP routers

employ an implicit loop-prevention mechanism that rejects

routes that contain their own AS (Autonomous System, an

identifier for the network) number. Consequently, even when

two routers have identical configurations, their transfer func-

tions are slightly different because they reject different paths.

To handle this complication, we define a refined set of con-

ditions, called the BGP-effective conditions. These conditions
also imply CP-equivalence and can be evaluated efficiently,

though the relationship between abstract and concrete net-

works is more sophisticated; the function mapping nodes in

the concrete to the abstract networks is not fixed but instead

depends on the (one of possibly multiple) solutions to which

the control plane converges.

More precisely, given a concrete SRP and an effective ab-

straction, which produces ŜRP , a BGP-effective abstraction

provides an intermediate network SRP . This intermediate

network is similar to ŜRP except that an abstract node n̂ in

ŜRP is split into several nodes—one for each possible forward-

ing behavior of n̂. Importantly, we prove that the number

of instances node n̂ needs to be split into, is bounded by

k , where k is the number of different local preference val-

ues that the concrete nodes may use. (Operators use local

preferences to implement policy-based path selection.)

478

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker

Figure 2 shows a situation in which these sorts of diffi-

culties arise. Assume the middle routers (b1, b2, b3) of the
concrete network have identical configurations and prefer

to route traffic down rather than up. Despite this prefer-

ence, one of the three must route upwards. In the figure, b1
happens to be that router. This solution is stable—no router

receives a route from a neighbor that it prefers to the current

route (if router b1 were to receive a route from a, the path
to d would be b1.a.b1.d , a loop which b1 would reject). And

yet, despite identical configurations, routers b1 and b2 for-
ward in different directions. Figure 2(b) shows a naive (and

incorrect) abstraction in which all three of b1, b2 and b3 are
collapsed to the same node. This abstract network in (b) is

not CP-equivalent to the network in (a), because mapping

the solution to (a) in (b) requires generating a forwarding

loop. However, there does exist a smaller CP-equivalent ab-

stract network—the network depicted in Figure 2(c). The

latter network is capable of mapping the solution depicted

in Figure 2(a) without introducing a forwarding loop.

From Theory to Practice. Our theory provides the basis

for developing an efficient algorithm for control plane com-

pression. Based on abstraction refinement, our algorithm first

generates the coarsest possible abstraction and then repeat-

edly splits abstract nodes until the resulting network satisfies

the conditions of an (BGP-)effective abstraction.

Figure 3 visualizes the algorithm on the BGP network of

Figure 2(a). As a first step in Figure 3(a), we generate the

coarsest possible abstraction: the destination is represented

alone as one abstract node and all other nodes are grouped

in a separate abstract node. This first abstraction is not an

effective abstraction—it does not satisfy a topological condi-

tion requiring that all concrete nodes (b1, b2, b3, a) associated
with one abstract node have edges to some concrete node

(d) in an adjacent abstract node. In this case, concrete node

a does not satisfy the condition. It is thus necessary to refine

the abstraction by separating nodes b1, b2, and b3 from a.
Figure 3(b) presents the second refinement step, where

the topological condition is satisfied but the BGP-effective

conditions are not: The nodes b1, b2, and b3 use one non-

default BGP local preference to prefer routing down rather

than up and as a consequence each node may exhibit up

to two possible behaviors. Consequently, we must split the

abstract node for b1, b2, and b3 into two separate nodes. We

do not know statically the mapping of concrete to abstract

nodes, so our visualization places all three concrete nodes in

each abstract node to represent all possible mappings.

Figure 3(c) happens to satisfy all conditions of a BGP-

effective abstraction. Consequently, the refinement process

terminates. The final abstraction includes 4 abstract nodes

and 4 total edges—a reduction in size from our concrete

network with 5 nodes and 6 edges. Although this simple

𝑎

𝑏# 𝑏$

𝑑

𝑏&

(a) Initial abstraction (b) Topological refinement

𝑎

𝑏# 𝑏$

𝑑

𝑏&

(c) Final abstraction

𝑎

𝑑

𝑏#'& 𝑏#'&

Figure 3: Abstraction refinement for the network in
Figure 2(a). Boxes represent abstract nodes.

example does not show much reduction, as we show later,

significant reductions are possible in larger networks.

Onward. The following sections describe our approach in

detail. §3 formalizes the SRP, §4 defines effective abstractions,

and §5 describes the compression algorithm. Throughout the

paper there are many theorems. The proofs of these theorems

can be found in the accompanying technical report [1].

3 STABLE ROUTING PROBLEM
An SRP formally captures all the routing behaviors that a

network can exhibit. We first define it formally and then

outline how it can model common routing protocols.

3.1 Definition and Solutions
We define one SRP per destination in the network. As shown

in Figure 4, an SRP instance is a tuple (G,A,ad,≺, trans).
Here,G = (V ,E,d) is a graph with a set of verticesV , a set of

directed edges E : V ×V , and a destination vertex d ∈ V .A is

a set of attributes that describe the fields of routing messages.

For example, when modeling BGP, A might represent tuples

of a 32-bit local-preference value, a set of 16-bit community

values, and a list of ASes representing the AS path. We also

define a new set A⊥ = A ∪ {⊥}, which adds a special value

⊥ to represent the absence of an attribute (routing message).

Further, the special attribute value ad represents the initial
protocol message advertised by the destination d .
In the SRP instance, ≺ is a partial order that compares

attributes and models the routing decision procedure that

compares routes using some combination of message fields.

If attribute a1 ≺ a2, then a1 is more desirable. Finally, trans
represents the transfer function that describes how attributes

are modified (or dropped) between routers. Given an edge

and an attribute from the neighbor across the edge, it deter-

mines what new attribute is received at the current node.

The transfer function depends on both the routing protocol

and node’s configuration.

Well-formed SRPs. In an SRP, the ≺ relation and trans func-
tion can compare andmodify attributes arbitrarily.While this

generality helps model a wide variety of routing protocols,

it also allows nonsensical behaviors. We define well-formed

479

Control Plane Compression SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

SRP instance SRP = (G, A, a
d
, ≺, trans)

G = (V , E, d) network topology
V topology vertices
E : V ×V topology edges
d : V destination vertex
A routing attributes
A⊥ = A ∪ {⊥} attributes or no attribute
a
d

: A⊥ initial route
≺ ⊆ A × A comparison relation
trans : E × A⊥ → A⊥ transfer function

Properties of well-formed SRPs

∀v . (v, v) < E self-loop-free
∀e . trans(e, ⊥) = ⊥ non-spontaneous

SRP solution L : V → A

L(u) =

a
d

u = d
⊥ attrsL (u) = ∅
a ∈ attrsL (u) that is minimal by (≺), attrsL (u) , ∅

attrsL (u) = {a | (e, a) ∈ choicesL (u)}
choicesL (u) = {(e, a) | e = (u, v), a = trans(e, L(v)), a , ⊥}
fwdL (u) = {e | (e, a) ∈ choicesL (u), a ≈ L(u)}

a1 ≈ a2 ⇐⇒ a1 ⊀ a2 ∧ a2 ⊀ a1

Network abstraction (f , h) : (V → V̂) × (A→ Â)

SRP = (G, A, a
d
, ≺, trans) concrete SRP instance�SRP = (Ĝ, Â, â

d
, ≺̂, �trans) abstract SRP instance

u 7→ û ≡ f (u) = û vertex abstraction notation
a 7→ â ≡ h(a) = â attribute abstraction notation

Effective abstractions

(d 7→ d̂) ∧ (∀d ′. d , d ′ =⇒ d ′ ̸7→ d̂) dest-equivalence
h(ad) = âd orig-equivalence
∀a . h(a) = ⊥ ⇐⇒ a = ⊥ drop-equivalence
∀a, b . a ≺ b ⇐⇒ h(a) ≺̂ h(b) rank-equivalence
∀e, a . h(trans(e, a)) = �trans(f (e), h(a)) trans-equivalence
∀u, v . (u, v) ∈ E ⇒ (û, v̂) ∈ Ê ∀∃−abstraction1
∀û, v̂ . (û, v̂) ∈ Ê ⇒ (∀u . u 7→ û ⇒ ∃v . v 7→ v̂ ∧ (u, v) ∈ E) ∀∃−abstraction2
BGP-effective abstractions

∀u, v . (u, v) ∈ E ⇐⇒ (û, v̂) ∈ Ê ∀∀−abstraction
∀e, a . e = (u, v) ∧ v < a .path =⇒ transfer-approx

h(trans(e, a)) = �trans(f (e), h(a))
CP-equivalence SRP ≡�SRP
L ∈ SRP ⇐⇒ L̂ ∈�SRP when:

1. ∀u . h(L(u)) = L̂(f (u)) label-equivalence
2. ∀u, v . (u, v) ∈ fwdL (u) ⇐⇒ (û, v̂) ∈ f̂wd

L̂
(û) fwd-equivalence

Figure 4: Technical cheat sheet. Definitions for SRPs, solutions, abstractions, and abstraction properties.

SRPs as those with two practical properties: (1) self-loop-
freedom: The graphmust not contain self loops: ∀v .(v,v) < E.
(2) non-spontaneity: If a neighbor has no route to the destina-
tion, then a router will not obtain a route from that neighbor.

While useful, non-spontaneity is not necessary for all of our

theoretical results (e.g., see SRPs for static routing).

Solutions. Given an SRP instance, we can describe its (pos-

sibly multiple) solutions. Intuitively, each solution is derived

from a set of constraints that requires that each node be

locally stable, i.e., it has no incentive to deviate from its cur-

rently chosen neighbor. For shortest path routing, an SRP

solution will be a rooted tree where each node points to the

neighbor with the shortest path. For policy-based routing

such as BGP, the paths may not be the shortest paths.

Formally, an SRP solution is an attribute labeling L : V →
A that maps each node to a final route (attribute) chosen to

forward traffic. The labeling L must satisfy the constraints

shown in Figure 4 (lower left). The labeling of the destination

node should be the special attribute ad. If there are no at-

tributes available from neighbors (attrsL(u) = ∅), then node

u has no route to the destination (⊥). Otherwise, L(u) is cho-
sen to be an attribute choice that is minimal according to the

comparison relation (≺). If there is more than one minimal

attribute, then any value can be chosen. The set of attributes

at a node stems from the choices from neighbors: for each

edge e = (u,v) from u, apply the transfer function from the

neighbor’s label to obtain a new attribute a = trans(e,L(v)),
ignoring any attributes that get dropped (a = ⊥).

Given an SRP solution, it is easy to determine the forward-

ing behavior. We define fwdL(u) as the set of edges e such
that the attribute learned from e is as good as the best choice
L(u) at u. The attribute need not be exactly L(u), but must

be at least as good (≈). If there is more than one such choice,

then a node may forward to multiple neighbors.

3.2 Modeling Common Routing Protocols
SRP can faithfully model common routing protocols. For ease

of exposition, assume for now that the network runs only

one routing protocol; we consider multi-protocol networks

and other configuration primitives in §6.

RIP (distance vector). RIP uses shortest paths to the desti-

nation based on hop count. The attributes, representing the

path length, are A = {0..15} as RIP uses a maximum path

length of 16; the destination attribute ad is 0; the compari-

son relation prefers shorter paths; and the transfer function

drops a route if it exceeds the hop count limit and increments

the path length otherwise.

480

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker

𝑎

𝑏#

𝑑

𝑏%

(100, ∅, [])

𝑎dd	tag(1)

(100,∅, [𝑑])
(100, ∅, [𝑏#, 𝑑])

(200, {1}, [𝑎, 𝑏#, 𝑑])

𝐢𝐟	has	tag 1 	𝐭𝐡𝐞𝐧
lp ≔ 200

A = ℕ	×	2ℕ	×	list(V)

a ≺ b ⇔
𝑎J 	= (100, ∅, [])

trans (u, v), a =		
⊥
	P
	
	

if	v ∈ a. path
Configuration	based

a. lp, a.path <
(b. lp, |b. path|)

Figure 5: Modeling BGP with SRP.

OSPF (link state). Open Shortest Path First is a popular

link state protocol where routers exchange link cost informa-

tion and compute the least-cost path to the destination. The

attribute set A = N is any natural number and represents

paths cost; the comparison relation compares this cost; and

the transfer function adds the (configured) link cost. A large

OSPF network may be split into multiple areas and prefer

intra-area routes over inter-area ones. We model this behav-

ior using attributes that are tuples of the path cost and a

boolean that indicates whether it is an inter-area route. The

comparison relation prioritizes intra-area routes followed

by path cost, and the transfer function changes the boolean

value when crossing an inter-area edge.

BGP (path vector). BGP is a widely-used path-vector pro-

tocol that provides flexibility for configuring policy and com-

puting non-shortest paths. We assume here that all routers

use their own AS number, i.e., eBGP (as in large data cen-

ters [30]) and discuss iBGP in §6. We model eBGP using

A = N × 2N × list(V), where the components are: (1) a local

preference value, (2) a collection of community tags, and (3)

a list of nodes defining the AS path. (Other BGP attributes

such as MEDs or origin type can be modeled similarly, but

are omitted for simplicity.) BGP’s comparison function first

compares local-preference followed by the AS path length.

Its transfer function appends the current AS to the AS path

when exporting a route. It also drops attributes that form a

loop when the current node is present in the AS path. Other-

wise, the router’s policy, per its configuration, is applied.

Figure 5 shows an example, where a.lp and a.path denote

components of an attribute a = (lp, tags, path). Assume that

in this network b2 prefers going through a to reach destina-

tion d and that this policy is achieved by configuring a to add
tag 1 to outgoing messages and configuring b2 to prefer this

tag. The configuration-driven part of the transfer function is

shown in the boxes for routers a and b2. Router a adds the

tag 1 to attributes it exports; and b2 checks for this tag, and
if present, assigns a higher (better) local preference value

than the default value (100), which ensures that b2 prefers
to go through a. The arrows in the figure indicate the final

!
"#

$
"%

⊥

true

⊥true A = {true}
!/ 	=⊥
trans e,a =		 If SR on e

otherwise
1
	6
	
	⊥SR	to	b%

SR	to	d

Figure 6: Modeling Static routing with SRP.

forwarding behavior of this network, and a solution labeling

L is shown next to each node.

Static routing. Operators configure static routes that de-

scribe which interface to use for a given destination. Figure 6

shows an example where routers a and b2 are configured

with static routes. We model static routing using the set of

attributesA = {true} which indicates the presence of a static
route. Since there is only one attribute, the comparison rela-

tion is trivially empty. The transfer function does not depend

on the neighbor at all; it returns true if there is a static route
configured locally along an edge and ⊥ otherwise.

4 EFFECTIVE ABSTRACTIONS
Wenowbuild on SRPs to describe the theory and implications

of effective network abstractions.

Network abstractions. We start by formalizing network

abstractions. A network abstraction relates two SRPs—a

concrete SRP = (G,ad ,A,≺, trans) and an abstract ŜRP =
(Ĝ, âd , Â, ≺̂,�trans)—using a pair of functions (f ,h). The topol-
ogy function f : V → V̂ maps each concrete graph node to

an abstract graph node, and the attribute function h : A→ Â
maps each concrete attribute to an abstract one. For conve-

nience, we will write u 7→ û to mean f (u) = û, and a 7→ â
to mean h(a) = â. We also freely apply f to edges and paths:

given an edge e = (u,v), f (e) means (f (u), f (v)); given a

path u1, . . . ,un , f (u1, . . . ,un) means f (u1), . . . , f (un).
Attribute abstraction allows the set of attributes to differ

between the concrete and abstract networks. This ability may

be used to convert attributes with concrete nodes into those

with related abstract nodes. For example, in the BGP network

in Figure 7, f maps bi nodes to the abstract node b̂, while h
maps the concrete AS path to its abstract counterpart.

4.1 Effective Abstraction Conditions
In a network abstraction, f and h can be arbitrary functions,

but we are interested only in abstractions that preserve the

control plane behavior of the concrete network. An effective
abstraction satisfies a set of relatively easy-to-check condi-

tions that imply CP-equivalence. These conditions, listed in

the middle right of Figure 4, are restrictions on the topology

function f and the attribute function h.

481

Control Plane Compression SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

𝑎

𝑏#

𝑑

𝑏%

𝑎&

𝑏'

𝑑(

(100, ∅, 𝑎&,𝑏', 𝑑()(100, ∅, a,𝑏%, d)

ℎ

𝑓

Figure 7: Example abstraction for a BGP network.

Topology abstraction conditions. Effective topology func-
tions obey two conditions. First, they preserve the identity of

the destination node (dest-equivalence). That is, the concrete
destination node, and only this node, should be mapped

to the abstract destination: d 7→ d̂ , d ′ ̸7→ d̂ . Second, the
topological mapping as a whole must be a (forall-exists)

∀∃−abstraction. A ∀∃−abstraction (both ∀∃−abstraction1
and ∀∃−abstraction2) demands that: (1) for every concrete

edge (u,v) there is a corresponding abstract edge (û, v̂) and
(2) for every abstract edge (û, v̂), all concrete nodes u where

u 7→ û must have an edge to some concrete node v where

v 7→ v̂ . Figure 8 shows an example of both a valid and invalid

∀∃−abstraction. The abstraction on the right is invalid be-

cause c does not have an edge to either a1 or a2 despite there

being an edge between b̂c and â in the abstract network.

Attribute abstraction conditions. The first conditions for
attribute abstraction, drop-equivalence and orig-equivalence,
state that the abstraction function must preserve the “no

route” and the destination attributes: h(⊥) = ⊥ and h(ad) =
âd . An abstraction must also preserve the comparison re-

lation’s attribute ordering (rank-equivalence). Finally, an
abstraction must preserve the transfer function (transfer-
equivalence), that is, applying the concrete transfer function

and abstracting the resulting attribute should be the same

as abstracting the attribute first, and then applying the ab-

stract transfer function. A critical aspect here is that, unlike

CP-equivalence, which is a network-wide property, transfer-

equivalence is a simple, local property that can be evaluated

efficiently by comparing the transfer functions.

4.2 Effectiveness implies CP Equivalence
We are now ready to prove that effective abstractions guar-

antee CP-equivalence in two steps. First, we demonstrate

that effective abstractions are label-equivalent (Figure 4). In
other words, for each solution L to SRP , there exists a cor-
responding solution L̂ to the abstract ŜRP (i.e., whenever
L labels u with a, L̂ labels f (u) with h(a)), and vice-versa.

Next, we show that given related labellings, the final control

plane behaviors are also related, i.e., they are equivalent with
respect to forwarding (fwd-equivalent as defined in Figure 4).

Our proof depends on the structure of the SRPs and their

solutions. In particular, when the SRP nodes dynamically

transmit information to one another, we would like to be able

𝑎"

𝑏" 𝑏$

𝑑

𝑐

(a) Concrete network

𝑎$

𝑏'

𝑑(

𝑐̂

(b) Valid abstraction

𝑎*

𝑏𝑐+

𝑑(

𝑎*

(b) Invalid abstraction

Figure 8: Topology abstraction.

to carry out the proof using induction. However, we cannot

do that if the SRP solutions contain loops, as the induction

would not be well-founded. Fortunately, most broadly-used

dynamic routing protocols are loop-free by design. We will

consider the simpler case of static routes, which can be con-

figured to create loops, separately.

Theorem 4.1. Any solution L to a well-formed, loop-free
SRP will form a DAG rooted at the destination d .

Using this property of stable solutions, we can prove that

for any concrete solution L, there is an abstract solution L̂

such that the solutions are label- and fwd-equivalent (and

vice-versa). The proof goes in two steps. First, we prune the

graph to include only edges in L or L̂ that are involved in

forwarding. Within such subgraphs, we can show by induc-

tion on the length of the forwarding paths that the subgraphs

satisfy label-equivalence and fwd-equivalence. It is then easy

to come to our desired conclusion by showing that adding

the removed edges back in does not affect the stable solution

of either the concrete or the abstract graph.

Theorem 4.2. Awell-formed, loop-free SRP and its effective
abstraction ŜRP are label- and fwd-equivalent.

Using Theorem 4.2, we may also conclude that any ef-

fective abstractions of common protocols, which produce

loop-free routing, are CP-equivalent. However, effectiveness

requires transfer-equivalence, which as mentioned previ-

ously commonly does not hold for BGP. That makes it im-

possible to obtain effective abstractions for BGP networks. In

the next subsection, we address this shortcoming by defining

another kind of abstraction that is applicable for BGP.

Static routing. Networks with static routes are not neces-

sarily loop-free. (The presence of a loop would clearly be

a bug, but we must be sure our theory is sound in such a

situation so we can use it to detect inadvertent bugs caused

by misconfiguration of static routes.) Fortunately, due to the

simple nature of static routing—static routes do not depend

on other routes learned from neighbors—we can prove its

correctness independently.

Theorem 4.3. A self-loop-free SRP and ŜRP for static rout-
ing with an effective abstraction will have fwd-equivalence.

482

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker

4.3 BGP with Loop Prevention
We model BGP using an abstraction: h((lp, tags, path)) =
(lp, tags, f (path)). BGP’s loop-prevention is problematic here

because it depends on the actual concrete path used, which

implies that two concrete nodes x and y with syntactically

identical configurations will actually have different trans-

fer functions and violate transfer-equivalence. Node x will

reject paths that have gone through x but not y, and node

y will reject paths that have gone through y but not x . If
we were somehow able to abstract away loop prevention,

we could attempt to have topology abstractions for BGP

that are transfer-equivalent. This observation motivates the

additional properties laid out for BGP in Figure 4.

BGP-effective abstractions. For BGP, we require dest-,

drop-, orig- and rank-equivalence as for ordinary effective ab-

stractions. However, as opposed to a ∀∃−abstraction, we re-
quire a slightly stronger (forall-forall) ∀∀−abstraction. This
constraint requires that there is an abstract edge between û
and v̂ if and only if there is a concrete edge between u and v .
This strong condition on the network topology allows us to

get away with a weaker condition than transfer-equivalence:

we relax the transfer-equivalence condition to what we call

transfer-approx. The latter condition is similar to transfer

equivalence, except it ignores differences caused by BGP

loop-prevention. Formally, it is specified as:

∀e,a. e = (u,v) ∧v < a.path⇒
h(trans(e,a)) = �trans(f (e),h(a))

Bounded behaviors. Now, given a BGP-effective abstrac-

tion, we know that, when loop-prevention happens, there

may be differences between the forwarding behaviors of dif-

ferent concrete nodes even when they have identical config-

urations. Fortunately, we can bound the number of different

behaviors that can arise dynamically, and, moreover, we can

infer that bound directly from the configurations.

First, let BL(û) be the set of possible behaviors of concrete
nodes related to abstract node û. Second, let prefs(v) be the
set of BGP local-preference values that may be assigned to

an announcement at node v . For example, if a configura-

tion explicitly sets the local-preference value to 200 or 300

depending on the route, and 100 is the default local pref-

erence, then the set prefs(v) = {100, 200, 300}. With these

definitions in hand, we can prove the following theorem.

Theorem 4.4. If a well-formed SRP and ŜRP for BGP has an
∀∀−abstraction and is transfer-approx, then for all solutions
L to SRP , and all abstract nodes û ∈ V̂ , |BL(û)| ≤ |prefs(û)|.

Abstraction refinement. A bound on the the number of

behaviors for nodes in BGP lets us refine an abstraction by

splitting apart abstract nodes into enough cases to recover

CP-equivalence. We now formalize this intuition.

𝑎

𝑏# 𝑏$

𝑑

𝑏&

𝑎'

𝑏'(

�̅�

𝑏'*

(𝑓-,	ℎ-) (𝑓2,	ℎ2)

𝑏3

𝑑4

𝑎5

(a) 𝑆𝑅𝑃 (b) 𝑆𝑅𝑃 (c) 𝑆𝑅𝑃9

(𝑓,	ℎ)

Figure 9: Abstraction refinement for Figure 2(a).

Suppose we are given an SRP = (G,A,ad ,≺, trans) for
BGP and its abstract version ŜRP = (Ĝ, Â, âd , ≺̂,�trans), which
are self-loop-free and created from a ∀∀−abstraction (f ,h).
We define a new abstraction SRP = (G,A,ad ,≺, trans) ob-
tained by splitting up each node v̂ into |prefs(v̂)| copies of
the node. We can view the mapping from SRP to ŜRP as the

composition of two abstractions (fr ,hr) from SRP to SRP ,

and (fs ,hs) from SRP to ŜRP , where the comparison and

transfer functions for SRP are copied from ŜRP . Given a new

abstraction (fr ,hr) where fr : V → V and hr : A→ A, we
say (fr ,hr) refines (f ,h), written as (fr ,hr) ⊑(fs ,hs) (f ,h) if
fr is an onto function, and f = fs ◦ fr and h = hs ◦ hr .
We now show that there is a bisimulation between the

solutions L and L as before. However, whereas the abstrac-

tion mapping f was known in advance, the refined mapping

fr may change depending on the particular solution L. For

example, Figure 9(a) shows one of three possible forwarding

behaviors for the network. As discussed earlier, with a dif-

ferent message arrival timing, other solutions would have

emerged. Depending upon this solution, different nodes, e.g.
{b1,b2} or {b1,b3} would be mapped to bn . We do not know

which concrete nodes are mapped to which abstract nodes,

but we do know that the abstraction has sufficiently many

nodes to characterize all possible behaviors.

Theorem 4.5. Suppose we have well-formed SRP , ŜRP , and
SRP for BGP with an effective abstraction (f ,h). There is a
solution L to SRP iff there is a solution L to SRP , such that
there exists a refinement (fr ,hr) ⊑(fs ,hs) (f ,h) and L and L
are label- and fwd-equivalent.

A key difference between Theorem 4.2 and Theorem 4.5,

is that the forwarding paths between the concrete network

(SRP) and the refined network (SRP) will only be equiva-

lent with respect to the original abstract network (ŜRP). For
example, in Figure 9(a), if we want to check that b2 and b3
forward along a path that satisfies some property p, then we

can not check it against only ba in Figure 9(b). Rather, we

have to check it against bn as well because there is another

stable solution where the roles of ba and bn are reversed.

483

Control Plane Compression SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

4.4 Properties preserved
As a consequence of CP-equivalence, for a solution L to the

concrete network, there exists a path s = x1, . . . ,xk where

the network forwards along s with labels L(x1), . . . ,L(xk)

iff for some solution L̂ to the abstract network, there is a path

f (s) where the abstract network forwards along f (s) with

labels L̂(f (x1)), . . . , L̂(f (xk)). Concretely, one can check

that any of the following properties hold on small abstract

networks and be sure the concrete counterpart satisfies the

property as well.

• Reachability: f (u) can reach f (v) in the abstract network
iff u can reach v in the concrete network.

• PathLength:All paths between f (u) and f (v) have length
n iff all paths between u and v have length n.
• Black Holes: Path s in the concrete network ends with

label ⊥ iff path f (s) ends with ⊥ in the abstract network.

• Multipath Consistency: Traffic sent from f (u) is reach-
able along some path to f (v) but dropped along another

path iff traffic from u is reachable along some path to v
and dropped along another path.

• Waypointing: Traffic will be waypointed through one of

{ f (w1), . . . , f (wn)} in the abstract network iff it will go

through one of {w1, . . . ,wn} in the concrete network.

• Routing Loops: There is a routing loop in the abstract

network iff there is one in the concrete network.

Convergence. The concrete network necessarily diverges

(has no stable solution) iff the abstract network necessarily

diverges. To see why, suppose the concrete network had no

stable solution, but the abstract network had a stable solu-

tion. This would violate CP-equivalence, since each abstract

solution has a corresponding concrete solution. Similarly, the

concrete network can converge (has some stable solution) iff

the abstract network can converge. However, CP-equivalence

alone does not guarantee that networks that might converge

or might diverge, like the naughty gadget in BGP [22], will

necessarily reduce to an abstract network that may diverge.

On the other hand, effective abstractions are stronger than

(imply) CP-equivalence. We postulate (but have not proven)

that an effective abstraction is sufficient to preserve con-

vergence. For example, it would appear that the concrete

network will have a dispute wheel [22] (the lack of which

is sufficient condition for convergence safety and robust-

ness) iff the abstract network has a dispute wheel (the nodes

in concrete network forming a dispute wheel will induce a

dispute wheel in their abstract counterpart).

4.5 Properties not preserved
While effective abstractions preserve the nature of forward-

ing paths, they do not, in general, preserve the number of

paths or the number of neighbors. Indeed, that is the point—

effective abstractions usually reduce the number of paths and

neighbors to speed analysis. Consequently, we cannot rea-

son faithfully about properties such as fault tolerance, load

balancing, or any QoS properties. For instance, in the ab-

stract network, a single link failure may partition a network

whereas in the concrete network, there may exist two or

more link-disjoint paths between all pairs of nodes, allowing

the concrete network to tolerate any single failure.

5 ABSTRACTION ALGORITHM
Earlier sections described the conditions under which an

abstraction will preserve CP-equivalence, but they give no

insight into how one might compute such an abstraction.

In this section, we describe an algorithm that computes an

abstraction directly from a set of router configurations.

5.1 Algorithm Overview
Our algorithm starts with the following observations. The

key requirement for computing an effective abstraction is to

ensure that we satisfy each required condition in Figure 4.

Some conditions such as orig-equivalence (h(ad) = âd), drop-
equivalence (h(a) = ⊥ ⇐⇒ a = ⊥) and rank-equivalence

(a ≺ b ⇐⇒ h(a) ≺̂ h(b)) depend only on the particular

protocol and choice of h. By fixing h in advance for each

protocol similar to those used in Figures 5 and 6, we can

guarantee that these conditions hold regardless of the con-

figurations. Other conditions such as dest-equivalence and

∀∃−abstraction depend on the topology, but not the policy

embedded in configurations.

Transfer-equivalence: h(trans(e,a)) = �trans(f (e),h(a)) is
the only condition that depends on user-defined policy. Sup-

pose two concrete edges e1 and e2 are mapped together by

the topology function f . We would have h(trans(e1,a)) =�trans(f (e1),h(a)) = �trans(f (e2),h(a)) = h(trans(e2,a)). One
simple way to ensure that this equality holds is to only com-

bine together nodes with the same transfer function. In our

example, trans(e1,a) = trans(e2,a) would suffice to allow e1
and e2 to map to the same abstract edge.

Based on the observations above, we fix h; our remaining

task is to find a suitable f that satisfies the topology abstrac-

tion requirements and only maps together edges with equiv-

alent transfer functions (for the destination d). We find such

a function f using an algorithm based on abstraction refine-

ment. We start with the coarsest possible abstraction where

there is a single abstract destination node d̂ and one other

abstract node for all other concrete nodes, and while the

abstraction violates ∀∃−abstraction or transfer-equivalence,

we refine it by breaking up the problematic abstract node

into multiple abstract nodes.

484

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker

ip community-list dept permit 65001:1
ip community-list dept permit 65001:2

route-map M 10
match community dept
set community 65001:3 additive
set local-preference 350

𝑐"

𝑐#′ 𝑐%

lp"′

lp#%′

1

…

0

Figure 10: BDD for a BGP policy on an interface.

For efficiency, before abstraction refinement, we process

router configurations in two different ways.

1. Destination Equivalence Classes (ECs). In our theoret-
ical account of routing, each SRP contains a single destina-

tion. However, in practice, configurations contain routing

information for many destinations simultaneously. Because

announcements for (most) destinations do not interact with

one another, we can partition the network into equivalence

classes based on where destinations are rooted. Each class

has a collection of destination IP ranges and destination

node(s). This partitioning allows us to build one abstraction

per class instead of one per address. To partition the network

into equivalence classes, we use a prefix-trie data structure

where the leaves of the trie contain a set of destination nodes.

2. Encoding transfer function using BDDs. In order to

efficiently find all interfaces that have equivalent transfer-

functions for a given destination (class), we use Binary Deci-

sion Diagrams (BDDs) [9] to represent the routing policy for

each interface. BDDs can compactly represent Boolean func-

tions and are a canonical representation for such functions.

Memoization combined with uniqueness of the representa-

tion means that two BDDs are semantically-equivalent iff

their pointers are the same. This turns checking equivalence

of any two transfer functions into an O(1) operation after

their BDDs are constructed.

As an example, consider the BGP routing policy in Fig-

ure 10. The policy checks if either the 65001:1 or 65001:2

community is attached to an inbound route advertisement. If

so, it adds the 65001:3 community and updates the local pref-

erence to 350. Each node in the BDD represents a boolean

variable used to represent state in the advertisement. Primed

variables represent output values after applying updates to

the advertisement. A solid arrow means the value is true,

while a dashed arrow means the value is false. There are

two leaf values: 0 and 1 which represent false and true, re-

spectively. Any path from the BDD root to 1 represents a

valid input-output relation. If c1, the variable representing
community 65001:1 is true, then the resulting advertisement

will have c ′
3
true (65001:3 attached), and will have a local

preference for the 32 bit value representation of 350.

Algorithm 1 Compute abstraction function f

1: procedure FindAbstraction(Graph G, Bdds bdds)

2: Specialize(bdds, G.d)

3: f← UnionSplitFind(G.V)

4: Split(f, {G .d })
5: while True do
6: V̂ ← Partitions(f)

7: for û in V̂ do
8: if |û | ≤ 1 then continue
9: Refine(G, bdds, f, û , |prefs(û) |)
10: V̂ ′ ← Partitions(f)

11: if |V̂ | = |V̂ ′ | then break
12: return SplitIntoBGPCases(f)

13:

14: procedure Refine(G, bdds, f, û , numPrefs)

15: map← CreateMap

16: for u ∈ û do
17: for e = (u, v) ∈ G.E do
18: pol← Get(bdds, e)

19: n← (numPrefs > 1 ? v : f (v))
20: map[u]← map[u] ∪ { (pol, n) }

21: for us ∈ GroupKeysByValue(map) do
22: Split(f,us)

5.2 The Algorithm
Algorithm 1 lists the steps used to compute the abstraction

function f given graph (G) and a collection of BDDs (bdds).
The first step is to specialize the bdds to the particular desti-

nationG .d (line 2). We use a union-split-find data structure

to maintain a collection of disjoint sets of concrete nodes

that represent the abstract nodes in the network. One of the

first steps is to split the collection of sets so thatG .d becomes

its own abstract node (line 4) and every other concrete node

remains as a single other abstract node. Next, it repeatedly

tries to refine the abstraction while it is not a effective ab-

straction. The algorithm iterates over each current abstract

node (set of concrete nodes). If the abstract node is already

fully concrete (line 8), then it continues, otherwise it refines

the abstraction. Refine iterates over each concrete node u in

the abstract node û and each edge from u to v , and builds a

map from u to a set of pairs of the BDD policy along edge

(u,v) and the neighboring node (line 20)—either the con-

crete neighbor (for ∀∀−abstraction) or the abstract neighbor
(for ∀∃−abstraction). Finally, we group entries of the map

(us) by those values that have the same pairs of policies and

neighbors, and then refine the abstraction by these groups

(line 22). This step ensures that groups of devices that have

different transfer functions or policies to different neighbors

are separated in the next iteration of the algorithm.

Figure 11 shows the output of the algorithm on a BGP-

based fattree network with two different routing policies. In

one case, the network uses shortest (AS) path routing, and in

the second case, the middle-tier of routers prefer to route via

485

Control Plane Compression SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

𝑑"

Shortest-path routing

Concrete
network

𝑑

Middle-tier prefers the bottom tier
𝑑"

Abstract
networks

Figure 11: Abstractions for a network running BGP on
a fattree topology using different policies.

the bottom tier. The abstract network is bigger in the second

case to capture the greater number of possible forwarding

behaviors of the middle-tier routers.

6 PRACTICAL EXTENSIONS

Multiple Protocols. Although the stable routing problem

is framed in terms of the behavior of a particular protocol,

devices in practice often run multiple protocols at once. One

can build a new SRP to model these interactions. For exam-

ple, if a network runs both OSPF and eBGP, then the SRP

could use attributes of the form A = ABGP ×AOSPF ×ARIB .

That is, track both OSPF and BGP, as well as ARIB , which

represents the main RIB that carries the best route (based

on administrative distance) between the various protocols

and records what protocol was chosen. Following ideas from

Batfish [19], we model route redistribution, where routes

from one protocol are injected into another, via the transfer

function. For instance, if OSPF routes are redistributed into

BGP, then BGP will allow routes from ARIB even when they

are from OSPF.

Access Control Lists. While ACLs do not affect control

plane routing information, they can prevent traffic from

being forwarded out an interface. For this reason, we conser-

vatively consider the ACL to be part of the transfer function,

which gets captured in the BDD, so that nodes will only

be abstracted together if they have the same ACLs with re-

spect to destination d . This ensures that the fwd-equivalence
property will remain valid.

iBGP. iBGP is a complicated protocol that recursively routes

packets for eBGP by communicating them over an IGP path.

If there is a valid abstraction for both the IGP and for eBGP,

and there is noACL in the network that blocks iBGP loopback

addresses, then multiple iBGP neighbors can be compressed

together. This is because (1) both iBGP neighbors will be sent

the same eBGP routes from neighbors, (2) these advertise-

ments will have the same IGP cost metric (since they must be

symmetric with respect to the IGP as well), and (3) although

the iBGP neighbors may have an edge between them, poten-

tially violating the self-loop-free requirement, this edge is

never used since iBGP does not re-advertise routes learned

over iBGP to other iBGP neighbors.

7 IMPLEMENTATION
We implemented our network abstraction algorithm in a

tool called Bonsai. It uses the Batfish [19] network analysis

framework to convert network configurations into a vendor-

independent intermediate representation. Bonsai operates

over this vendor-independent format to create a network

abstraction in the form of a smaller, simpler collection of

vendor-independent configurations. Tools built using this

framework, such as Batfish and Minesweeper, can then work

with the smaller configurations to speed up their analysis.

We use the Javabdd [43] library to encode router-level im-

port and export filters, as well as access control lists (ACLs) as

BDDs. Because Bonsai creates abstract networks per destina-

tion EC, and such ECs are disjoint,our implementation is able

to generate abstract networks and check their properties in

parallel. We only generate abstract networks for destination

ECs that are relevant for a query. For example, checking port-

to-port reachability would typically only require generating

a single abstract network for one EC.

8 EVALUATION
We evaluate Bonsai using a collection of synthetic and real

networks. We aim to answer the following questions: (i)

can Bonsai scale to large networks? (ii) can its algorithm

effectively compress networks? and (iii) can the abstract,

compressed networks be speed network analysis?

Networks studied.We study three types of synthetic net-

work topologies: Fattree [2], Ring, and Full-mesh. Each such

network uses eBGP to perform shortest path routing along

with destination-based prefix filters to each destination. These

networks are highly symmetric by design and we use them

to characterize compression as a function of network topol-

ogy and size. For each topology type, we scale the size and

measure the effectiveness and cost of compression.

While the synthetic networks focus on the effect of topol-

ogy on compression, in practice, most networks do not have

perfect symmetry. For this reason, we study operational net-

works of two different corporations. The first is a datacenter

network with 197 routers organized into multiple clusters,

each with a Clos-like topology (rather than a single, large

Clos-like topology). The network primarily uses eBGP and

static routing, with each router running as its own AS using

BGP private AS numbers. It also makes extensive use of route

filters, ACLs, and BGP communities. All together, it has over

540,000 lines of configuration. Although there are less than

486

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker

Topology Nodes / Edges Abs. Nodes / Edges Compression ratio Num ECs BDD time Compression time (per EC)
(a) Synthetic networks

Fattree

180 / 2124 6 / 5 30× / 424.8× 72 0.36 0.09

500 / 9100 6 / 5 83.33× / 1820× 200 1.29 0.26

1125 / 29475 6 / 5 187.5× / 5895× 450 7.87 0.75

Ring

100 / 100 51 / 50 1.96× / 2× 100 0.14 0.08

500 / 500 251 / 250 1.99× / 2× 500 0.33 2.29

1000 / 1000 501 / 500 2× / 2× 1000 0.34 12.26

Full Mesh

50 / 1225 2 / 1 25× / 1225× 50 0.18 0.07

150 / 4950 2 / 1 75× / 4950× 150 1.11 0.34

250 / 31125 2 / 1 125× / 31125× 250 3.31 5.48

(b) Real networks

Data center 197 / 16091 30.2 ± 2.2 / 143.6 ± 18.6 6.6× / 112× 1269 132.28 15.51

WAN 1086 / 5430 209.4 ± 36.5 / 759.4 ± 129.2 5.2× / 7.2× 845 11.35 1.83

Table 1: Compression results for synthetic and real networks. All times are in seconds.

200 routers in the network, there are over 16,000 physical

and virtual interfaces in the network.

The second operational network is a wide-area network

(WAN) with 1086 devices, which are a mix of routers and

switches. The network uses a eBGP, iBGP, OSPF, and static

routing, and consists of over 600,000 lines of configuration.

Synthetic network results. Table 1(a) shows the results of
running Bonsai on the synthetic networks. All experiments

were run on an 8-core Macbook Pro with an Intel i7 proces-

sor and 8GB of RAM. For each synthetic network, Bonsai

is able to compress the network quickly. For instance, the

largest Fattree topology with 1125 nodes takes around 7.9

seconds to build the BDD data structures and an average

of of .75 seconds per EC to compute the abstract network

for the 450 ECs. Because equivalence classes are processed

in parallel, it takes under a minute to abstract this network.

The compressed network size computed is 6 nodes.

For the Fattree and Full-mesh topologies, the compressed

network size stays constant as the concrete network grows.

For the ring topology, the compressed network size does

grow with the size of the network, and in particular, grows

with the diameter of the network. This is necessary since

the abstraction must preserve path length. Computing an

abstraction for the ring topologies is more expensive because

the compression algorithm is only able to split out a single

new abstract role with each iteration.

Bonsai’s compression has a large effect on network analy-

sis time. Figure 12 shows the total verification time to check

an all-pairs reachability query compared to topology size for

each type of synthetic network using Minesweeper [6]. We

use a timeout of 10 minutes. The verification time for abstract

networks includes the time used to partition the network,

build the BDDs, and compute the compressed network. In all

cases, abstraction significantly speeds up verification even

when taking into account the time to run Bonsai. Abstracting

the Full-mesh topology ran out of memory beyond a certain

point, due to the density of the topology.

Real network results. For both networks, we first com-

puted the BDDs and see how many devices have identi-

cal transfer functions from their configurations. In the dat-

acenter network, we initially found that there were 112

unique "roles" (set of policies) among the 197 routers. How-

ever, many of these differences could be attributed to BGP

community values that were attached to routers, but then

never matched on in any configuration file. To account for

these differences, we use the abstraction function for BGP:

h(lp, tags, path) = (lp, tags − {unused}, f (path)), which ig-

nores differences from such irrelevant tags. With this abstrac-

tion function, we find that there are only 26 unique "roles"

among the 197 routers. Further, most of the differences are

due to differences in static routes in the configurations. With-

out static routes, there would only be 8 unique roles. Table 1

(b) shows the compression results from this network. It takes

just over 2 minutes to compute the BDDs and roughly 15 sec-

onds on average to compute a good abstraction per EC. This

time is mainly due to the huge number of virtual interfaces.

The average compressed network size is around 30 nodes (a

6.6x reduction), and around 132 edges (a 112x reduction).

For theWAN, we found 137 unique "roles" among the 1086

devices. Many of the differences are from neighbor-specific,

prefix-based filters and ACLs. It takes around 11 seconds to

compute the BDDs for the network, and under 2 seconds per

EC to compute a good abstraction. The average compressed

size achieves a 5.2x reduction in the number of nodes and a

7.4x reduction in the number of edges.

Finally, to test the effectiveness of Bonsai at facilitating

scalable analysis of real networks, we run a reachability

query between two devices in Batfish, both with and with-

out abstraction. Batfish first simulates the control plane to

produce the data plane and then uses NoD [32] to compute

487

Control Plane Compression SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

(a) Fattree (b) Full Mesh (c) Ring

Figure 12: Minesweeper (MS) verification time with and without abstraction for an all-pairs reachability query.

all possible packets that can traverse between source and

destination nodes. With Bonsai, it takes 77 seconds to com-

plete the query. Without it, the query did not complete and

gave an out-of-memory error after running for over an hour.

9 RELATEDWORK

Network verification. The field of network verification

may be split into data plane verification [8, 25–27, 29, 32,

34, 44] and control plane verification [6, 15, 16, 19, 20, 42],

with our work sitting in the latter camp. However, Bonsai

is orthogonal to, and synergistic with, most of this reseach

as it compresses networks and leaves the analysis to other

tools, which typically operate much more quickly over the

compressed network. Bonsai works because large networks

typically contain symmetries, an observation made and ex-

ploited by Plotkin et al. [36], though Plotkin et al. focus on
data plane properties whereas we focus on control plane

properties. The only other control plane compression work

we are aware focuses on compressing BGP networks using

local rewrites to preserve convergence properties [41]. In

contrast, we introduce the SRP model to compress networks

running a wide-variety of protocols using both local and

some non-local (BGP splitting) rewrites. We aim to preserve

forwarding properties so network administrators can test for

reachability, access control and other path-based properties

rather than convergence.

Control plane models. A formal model of network con-

trol plane planes lies at the heart of our work. Many prior

works have developed such models to describe formally the

computation of routing protocols, their safety criteria, or to

generalize their computation [22, 23, 38]. Our model, SRP, is

inspired by Griffin et al.’s stable paths problem (SPP) which

described control plane solutions computed by path vector

protocols [22]. While both models describe stable solutions,

SRP formalizes device-level processing of routing informa-

tion instead of end-to-end paths. This difference allows it to

capture a broader range of control plane features.

SRPs are similar to routing algebras [23, 38], though we

have simplified our presentation slightly by allowing graph

edges to stand in for the labels used in routing algebras. How-

ever, themore significant difference is that while routing alge-

bras have been used to study convergence properties, which

are independent of network topology, we study topology-

dependent properties such as reachability, and developed

compression algorithms that preserve such properties.

Abstractions in verification. Conservative abstractions

are the mainstay of program verification in various forms

such as loop invariants [18, 24], abstract interpretation [13],

and counterexample guided abstraction refinement [4, 11, 12].

These abstractions enable sound analysis for verification

problems that are often undecidable or intractable. Tighter

abstractions based on symmetry and bisimulations have also

been used successfully to scale model checking [10, 14]. We

build on these foundations to seek useful abstractions for

compressing networks that preserve CP-equivalence.

10 CONCLUSION
Recently, researchers have made great progress in control

plane analysis, using a variety of techniques ranging from

simulation to verification. But the scale and complexity of

real networks often renders such techniques computation-

ally expensive or even intractable. To accelerate analysis, our

Bonsai tool automatically compresses a network and its con-

figurations by eliminating any structural symmetries. Bonsai

is based on a theory of control plane equivalence of two

networks and an efficient compression algorithm. We show

that it scales well and effectively compresses real networks.

Acknowledgements. We would like to thank the ACM

SIGCOMM reviewers and our shepherd Laurent Vanbever,

whose feedback helped improve this paper. This work was

supported in part by NSF Grants 1703493 and 1525936, and

gifts from Cisco and Facebook. Any opinions, findings, and

conclusions expressed herein are those of the authors and do

not necessarily reflect those of the NSF, Cisco or Facebook.

REFERENCES
[1] Control plane compression: Extended version. https://scholar.

princeton.edu/sites/default/files/rbeckett/files/paper_0.pdf.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data

center network architecture. In SIGCOMM, 2008.

488

https://scholar.princeton.edu/sites/default/files/rbeckett/files/paper_0.pdf
https://scholar.princeton.edu/sites/default/files/rbeckett/files/paper_0.pdf

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker

[3] M. Anderson. Time warner cable says outages largely re-

solved. http://www.seattletimes.com/business/time-warner-cable-

says-outages-largely-resolved, August 2014.

[4] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. Automatic

predicate abstraction of C programs. In PLDI, pages 203–213, 2001.
[5] L. Bauer, S. Garriss, and M. K. Reiter. Detecting and resolving policy

misconfigurations in access-control systems. ACM Trans. Information
and System Security, 14(1), June 2011.

[6] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. A general approach

to network configuration verification. In SIGCOMM, August 2017.

[7] BGPMon. http://www.bgpmon.net/.

[8] N. Bjørner, G. Juniwal, R. Mahajan, S. A. Seshia, and G. Varghese. ddNF:
An Efficient Data Structure for Header Spaces. November 2016.

[9] R. E. Bryant. Graph-based algorithms for boolean function manipula-

tion. IEEE Trans. Computers, 35(8):677–691, 1986.
[10] E. M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal

logic model checking. In Computer Aided Verification, CAV, 1993.
[11] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-

guided abstraction refinement. In CAV, pages 154–169, 2000.
[12] E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate

abstraction of ANSI-C programs using SAT. Formal Methods in System
Design, 25(2-3):105–127, 2004.

[13] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice

model for static analysis of programs by construction or approximation

of fixpoints. In POPL, pages 238–252, 1977.
[14] E. A. Emerson and A. P. Sistla. Symmetry and model checking. In

Computer Aided Verification, 5th International Conference, CAV, 1993.
[15] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. Millstein, V. Sekar, and

G. Varghese. Efficient network reachability analysis using a succinct

control plane representation. In OSDI, 2016.
[16] N. Feamster and H. Balakrishnan. Detecting BGP configuration faults

with static analysis. In NSDI, May 2005.

[17] N. Feamster and J. Rexford. Network-wide prediction of BGP routes.

IEEE/ACM Trans. Networking, 15(2), 2007.
[18] R. W. Floyd. Assigning meanings to programs. InMathematical Aspects

of Computer Science, volume 19 of Proceedings of Symposia in Applied
Mathematics, pages 19–32, 1967.

[19] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Ma-

hajan, and T. Millstein. A general approach to network configuration

analysis. In NSDI, October 2015.
[20] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan. Fast

control plane analysis using an abstract representation. In SIGCOMM,

August 2016.

[21] J. Godfrey. The summer of network misconfigurations.

https://blog.algosec.com/2016/08/business-outages-caused-

misconfigurations-headline-news-summer.html, 2016.

[22] T. G. Griffin, F. B. Shepherd, and G. Wilfong. The stable paths problem

and interdomain routing. IEEE/ACM Trans. Networking, 10(2), 2002.
[23] T. G. Griffin and J. L. Sobrinho. Metarouting. In SIGCOMM, pages

1–12, August 2005.

[24] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
mun. ACM, 12(10):576–580, 1969.

[25] A. Horn, A. Kheradmand, and M. Prasad. Delta-net: Real-time network

verification using atoms. In NSDI, March 2017.

[26] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and

S. Whyte. Real time network policy checking using header space

analysis. In NSDI, pages 99–112, April 2013.
[27] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis:

Static checking for networks. In NSDI, April 2012.
[28] Z. Kerravala. What is behind network downtime? proactive

steps to reduce human error and improve availability of net-

works. https://www.cs.princeton.edu/courses/archive/fall10/cos561/

papers/Yankee04.pdf, 2004.

[29] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow:

Verifying network-wide invariants in real time. In NSDI, April 2013.
[30] P. Lapukhov, A. Premji, and J. Mitchell. Use of BGP for routing in

large-scale data centers. Internet draft, 2015.

[31] H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada, N. P. Lopes, A. Ry-

balchenko, G. Lu, and L. Yuan. Crystalnet: Faithfully emulating large

production networks. In SOSP, pages 599–613, March 2017.

[32] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese.

Checking beliefs in dynamic networks. In NSDI, 2015.
[33] R. Mahajan, D. Wetherall, and T. Anderson. Understanding BGP mis-

configuration. In SIGCOMM, August 2002.

[34] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.

King. Debugging the data plane with anteater. In SIGCOMM, 2011.

[35] J. Networks. As the value of enterprise networks escalates, so does

the need for configuration management. https://www-935.ibm.com/

services/au/gts/pdf/200249.pdf, 2008.

[36] G. D. Plotkin, N. Bjørner, N. P. Lopes, A. Rybalchenko, and G. Varghese.

Scaling network verification using symmetry and surgery. In POPL,
January 2016.

[37] S. Prabhu, A. Kheradmand, B. Godfrey, and M. Caesar. Predicting

network futures with plankton. In Proceedings of the First Asia-Pacific
Workshop on Networking, APNet’17, pages 92–98, August 2017.

[38] J. a. L. Sobrinho. An algebraic theory of dynamic network routing.

IEEE/ACM Trans. Netw., 13(5):1160–1173, October 2005.
[39] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu. Symnet: Scalable

symbolic execution for modern networks. In SIGCOMM, 2016.

[40] Y. Sverdlik. Microsoft: misconfigured network device led to azure

outage. http://www.datacenterdynamics.com/content-tracks/servers-

storage/microsoft-misconfigured-network-device-led-to-azure-

outage/68312.fullarticle, 2012.

[41] A. Wang, A. J. T. Gurney, X. Han, J. Cao, B. T. Loo, C. Talcott, and

A. Scedrov. A reduction-based approach towards scaling up formal

analysis of internet configurations. In INFOCOM, April 2014.

[42] K. Weitz, D. Woos, E. Torlak, M. D. Ernst, A. Krishnamurthy, and

Z. Tatlock. Formal semantics and automated verification for the border

gateway protocol. In NetPL, March 2016.

[43] J. Whaley. Javabdd. http://javabdd.sourceforge.net/index.html.

[44] H. Yang and S. S. Lam. Real-time verification of network properties

using atomic predicates. IEEE/ACM Trans. Netw., April 2016.

489

http://www.seattletimes.com/business/time-warner-cable-says-outages-largely-resolved
http://www.seattletimes.com/business/time-warner-cable-says-outages-largely-resolved
http://www.bgpmon.net/
https://blog.algosec.com/2016/08/business-outages-caused-misconfigurations-headline-news-summer.html
https://blog.algosec.com/2016/08/business-outages-caused-misconfigurations-headline-news-summer.html
https://www.cs.princeton.edu/courses/archive/fall10/cos561/papers/Yankee04.pdf
https://www.cs.princeton.edu/courses/archive/fall10/cos561/papers/Yankee04.pdf
https://www-935.ibm.com/services/au/gts/pdf/200249.pdf
https://www-935.ibm.com/services/au/gts/pdf/200249.pdf
http://www.datacenterdynamics.com/content-tracks/servers-storage/microsoft-misconfigured-network-device-led-to-azure-outage/68312.fullarticle
http://www.datacenterdynamics.com/content-tracks/servers-storage/microsoft-misconfigured-network-device-led-to-azure-outage/68312.fullarticle
http://www.datacenterdynamics.com/content-tracks/servers-storage/microsoft-misconfigured-network-device-led-to-azure-outage/68312.fullarticle
http://javabdd.sourceforge.net/index.html

	Abstract
	1 Introduction
	2 Overview
	3 Stable Routing Problem
	3.1 Definition and Solutions
	3.2 Modeling Common Routing Protocols

	4 Effective Abstractions
	4.1 Effective Abstraction Conditions
	4.2 Effectiveness implies CP Equivalence
	4.3 BGP with Loop Prevention
	4.4 Properties preserved
	4.5 Properties not preserved

	5 Abstraction Algorithm
	5.1 Algorithm Overview
	5.2 The Algorithm

	6 Practical Extensions
	7 Implementation
	8 Evaluation
	9 Related Work
	10 Conclusion
	References

