
What do LLMs need to Synthesize Correct Router
Configurations?

Rajdeep Mondal
UCLA
USA

mondalrajdeep14@ucla.edu

Alan Tang
UCLA
USA

atang42@cs.ucla.edu

Ryan Beckett
Microsoft Research

USA
Ryan.Beckett@Microsoft.com

Todd Millstein
UCLA
USA

todd@cs.ucla.edu

George Varghese
UCLA
USA

varghese@cs.ucla.edu

Abstract
We investigate whether Large Language Models (e.g., GPT-
4) can synthesize correct router configurations with reduced
manual effort. We find GPT-4 works very badly by itself,
producing promising draft configurations but with egregious
errors in topology, syntax, and semantics. Our strategy, that
we call Verified Prompt Programming, is to combine GPT-4
with verifiers, and use localized feedback from the verifier
to automatically correct errors. Verification requires a spec-
ification and actionable localized feedback to be effective.
We show results for two use cases: translating from Cisco to
Juniper configurations on a single router, and implementing
a no-transit policy on multiple routers. While human input
is still required, if we define the leverage as the number of
automated prompts to the number of human prompts, our
experiments show a leverage of 10X for Juniper translation,
and 6X for implementing the no-transit policy, ending with
verified configurations.

CCS Concepts
• Software and its engineering → Application specific de-
velopment environments.

Keywords
CoSynth, network verification and synthesis, large language
models (LLMs)

ACM Reference Format:
Rajdeep Mondal, Alan Tang, Ryan Beckett, Todd Millstein, and George 
Varghese. 2023. What do LLMs need to Synthesize Correct Router 
Configurations?. I n T he 2 2nd ACM Workshop o n H ot Topics in 
Networks (HotNets ’23), November 28–29, 2023, Cambridge, MA,

This work is licensed under a Creative Commons Attribution International 
4.0 License.
HotNets ’23, November 28–29, 2023, Cambridge, MA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0415-4/23/11.
https://doi.org/10.1145/3626111.3628194

USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3626111.3628194

1 Introduction
While GPT-4 and other large language models (LLMs) have
shown great success in some domains (e.g., writing poems,
passing the LSAT) they have been shown to have issues in
other domains (e.g,. math, word puzzles) [3]. Language mod-
els have had some success in helping users write sequen-
tial programs in systems like AlphaCode [10], CoPilot [7],
Codex [4] and Jigsaw [8]. They have also been explored as
promising assistants for software testing and debugging [13].
Our work investigates code generation by LLMs for a dif-
ferent domain. We examine GPT-4’s ability to write router
configuration files, traditionally written by humans, that help
tune routes and forwarding decisions and are critical for net-
work operation. Our early experiments show that GPT-4 by
itself is an “idiot-savant", capable of brilliance but also mak-
ing simple errors that an operator would be fired for making.

Critics have derided LLMs as mere “stochastic parrots” [2],
because they produce text (say of a program) syntactically by
predicting the next word based on a statistical model derived
by training on a vast corpus of text from the Internet. Our
broader goal beyond synthesizing configs is to see whether
LLMs can be fused with other programs (via APIs) to resem-
ble a “stochastic owl” that understands program semantics.

A plausible way to introduce semantics is to pair a LLM
with an automatic verifier such as a SAT solver or a model
checker. But verification is not a panacea. First, a verifier
cannot prove correctness without a specification. In practice,
specifications are incomplete, so not all solutions are in fact
acceptable to the user. Second, for the verifier to automatically
(with minimal human aid) interact with the LLM, the verifier
must provide actionable feedback. We found it was easier for
the LLM to correct itself using feedback from modular verifi-
cation of components of a network (individual routers [11] or
even route maps within a router [12]), rather than the network
as a whole.

Figure 1 shows the traditional method of pair programming
(PP), embodied in systems like GitHub CoPilot [7], where a

189

https://doi.org/10.1145/3626111.3628194 
https://doi.org/10.1145/3626111.3628194 
https://doi.org/10.1145/3626111.3628194 
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626111.3628194&domain=pdf&date_stamp=2023-11-28


HotNets ’23, November 28–29, 2023, Cambridge, MA, USA Mondal, et al.

Figure 1: Pair Programming using human correction

human and an AI work together to author a program. In pair
programming, the AI and the human form a tuple (𝐴,𝐻 ) and
the human 𝐻 manually checks for correctness of the output of
the AI 𝐴 and then manually issues correction prompts to 𝐴 as
shown in the figure. Such manual initial prompting and subse-
quent manual correction is often called prompt engineering.

Figure 2 shows our alternate vision. In what we call Veri-
fied Prompt Programming (VPP), the AI, the human, and a
verification suite (𝑉 ) form a triple (𝐴,𝐻,𝑉 ). The verification
suite checks for correctness and automatically issues localized
corrections. 𝑉 may abandon automatic correction after some
number of trials, and the human must still correct manually.
However, our hypothesis is that human effort is reduced as
the output grows “closer” to a correct program.

Notice that there is a fast inner loop between 𝑉 and 𝐴,
where verifier results are automatically fed back to GPT-4.
Since verifier feedback is often cryptic, we use simple code
that we call a humanizer that converts the feedback to natural
language prompts that are given to GPT-4. When 𝑉 either
determines the final configuration is correct or a time bound
elapses,𝑉 sends the output back to the user as part of the slow
manual loop. We examine a “reduced work hypothesis": that
the work in the manual loop in Figure 2 is significantly less
than then the manual work in Figure 1

To quantify reduced human effort we introduce a simple
measure that may be useful in other VPP contexts. Define
leverage as the ratio 𝐿 of the number of automated prompts in
Figure 2 to the number of human prompts. Leverage measures
the effect of the verifier suite, the potential improvement in
going from (𝐴,𝐻 ) to (𝐴,𝑉 ,𝐻 ), keeping the language model
𝐴 and the human 𝐻 the same. Note that the leverage can differ
across multiple iterations of the same experiment, due to the
stochastic nature of the LLM output.

The reader may think the real leverage is the improvement
from 𝐻 to (𝐴,𝐻 ), or from 𝐻 to (𝐴,𝑉 ,𝐻 ). But this depends
on the capability of the human 𝐻 and is hard to make uniform
or repeatable. Given how error-prone (𝐴,𝐻 ) is for configu-
rations, we find it more natural to measure the improvement
caused by VPP. Our definition also assumes every automatic
correction in Figure 2 would otherwise be done by a human
in Figure 1.

Figure 2: Verified prompt programming

The reduced work hypothesis is that the leverage 𝐿 > 1 is
high. Even if the leverage is low (say 1), since it is crucial that
router configurations be correct, combining with a verifier
seems critical. We were happy to find that in both use cases
we did end with verified configurations via GPT-4: this was
not obvious at the outset.

This vision and hypothesis extends beyond synthesizing
configs to more general programs. Prompt programming (as
opposed to prompt engineering) also reflects the use of APIs
and automatically generated feedback prompts that may be
more generally useful. However, network configs are a simple
enough domain to experiment with. Further, there exist config
verifiers (e.g., Campion [12] and Lightyear [11]) that provide
actionable localized feedback.

For the rest of this paper, we examine the reduced man-
ual work hypothesis and measure leverage for two use cases:
translating a config on a single router from Cisco to Juniper
syntax, and implementing a simple policy (“no transit") on
a network of 6 routers. We conducted these experiments dur-
ing February-March 2023. Section 2 describes the system
organization of a potential system we call COSYNTH. Sec-
tion 3 describes experiments with Cisco to Juniper translation,
while Section 4 describes implementing no-transit on multi-
ple routers. Section 5 compares our ideas to previous work
and Section 6 describes lessons learned.

2 System Organization
Figure 3 is a refinement of the more general Verified Pair Pro-
gramming (VPP) vision of Figure 2 that we call COSYNTH.
We emphasize we have not built COSYNTH. While we use
GPT-4 we have not been able to access the APIs, and so man-
ually simulated the API calls with prompts to ChatGPT. Our
goal is not to demonstrate a working system but instead to
explore GPT-4’s ability to author configurations, as in the
“Sparks of AGI" paper [3].

The verification suite shown in Figure 3 consists minimally
of two verifiers, a syntax verifier (we used Batfish [6]) and a
semantics verifier (we used different ones depending on the
use case). For our second use case, we used a third verifier, a
topology verifier (that we wrote in Python) as we found that
GPT-4 sometimes missed announcing routes to neighbors.
The user provides a precise natural language description of
the context (topology, routers, interfaces) and the desired task
(e.g. the Cisco config and a request to translate it to Juniper).

190



What do LLMs need to Synthesize Correct Router Configurations? HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

GPT-4 output is fed first to Batfish to check for syntax errors.
COSYNTH sends GPT-4 feedback about erroneous lines, “hu-
manized" in natural language (see Table 1 for examples). The
boxes labelled H in Figure 3 correspond to the humanizer in
Figure 2, which acts as an error parser and natural language
translator.

Figure 3: Verified prompt programming for Configs

If all syntax errors are corrected (if too many syntax correc-
tion attempts occur, COSYNTH punts to the user), the output
is passed to the semantics verifier. For our first use case, we
use Campion [12] as a verifier. For our second use case we use
Batfish’s symbolic route map analysis as the verifier, asking it
to verify local policies that together ensure the desired global
policy, as in Lightyear [11]. Once again, the semantic verifier
feedback is passed back, suitably humanized, to GPT-4. We
found that GPT-4 would sometimes correct a semantic error
while introducing a new syntax error, in which case we had
to return to the syntax verifier. When the semantic verifier
attests to a correct config or too many correction attempts
transpire, COSYNTH returns to the human.

When COSYNTH works with multiple routers, we used
another module called a “Modularizer" (Figure 3). For net-
work configs, the idea is that we start with a precise machine
readable (we use JSON) description of the “modules" which
in our case is the topology and the connections. The Mod-
ularizer outputs a sequence of Natural Language Prompts
that describes the topology to GPT-4 (e.g.,. Router 𝑅1 is con-
nected to Router 𝑅2 via interface 𝐼1 at 𝑅1 and 𝐼2 at 𝑅2). The
Composer puts back the pieces (in our case in a folder for
Batfish).

The modularizer follows the prompt engineering paradigm
"Give the Model Time to Think" [5], which suggests break-
ing a complex prompt into simpler sub-prompts. Exploiting
modularity is a way to do so for program synthesis. A second
technique we find useful is what is called single shot prompt-
ing [5]. We start each chat with a set of initial instruction
prompts (IIP) (Figure 3) loaded from a database for avoiding
common mistakes. The IIP database can be built and added
by experts over time. The I/O examples in Jigsaw [8] are an
IIP, but our IIP contains instructions rather than examples.

3 Cisco to Juniper Translation
We translate a Cisco configuration into an equivalent Juniper
one using Verified Prompt Programming. Batfish [6] is used
to identify syntax errors. Campion [12] is used to detect and
localize semantic differences that are used to refine the result.
We show examples of the issues encountered, and discuss
success and limitations of the approach.

3.1 Method
First, we provide the Cisco configuration, and the prompt:
"Translate the configuration into an equivalent Juniper config-
uration." GPT-4 will produce a translation into Junos format
that typically contains several errors and differences. We then
try to rectify these errors iteratively, using "humanized" feed-
back from the verifiers. We re-verify the entire configuration
on each iteration. For our experiment we focus exclusively
on behavior related to routing and forwarding, ignoring po-
tentially important features such as NTP servers.

To design the humanizer, which is a Python script, we
distinguish four classes of configuration errors:

Syntax errors: Batfish produces parse warnings identify-
ing relevant lines that do not use valid Juniper syntax.

Structural mismatch/conflict: This is when a component,
connection, or named policy is present in the original configu-
ration but not in the translation (or is present in the translation
but not the original). For example, if the original configura-
tion defined a BGP neighbor but there is no corresponding
neighbor in the translation, there would be a mismatch in
the routing connections. Campion is able to detect this, and
identify the missing or extra items.

Attribute differences: This is when a numerical attribute
has a different value between the two configurations. An ex-
ample is OSPF link cost difference between two correspond-
ing interfaces. Campion detects these and prints the attributes
for corresponding components.

Policy behavior differences: This is when a route map or
access control list has a semantic difference. Route maps are
used to filter incoming or outgoing route advertisements, so a
difference would mean that that there are some route adver-
tisements that are allowed by one router but not allowed by the
other. Campion is able to detect these and output the relevant
policy names, prefixes, and lines for these differences.

The distinction among errors helps for two reasons. First,
syntax errors and structural mismatches have to be handled
earlier since they can mask attribute differences and policy
behavior differences. Second, different types of errors require
different humanized prompts, while errors of the same type
can reuse similar prompts. Each type of error can be summa-
rized with a formulaic prompt with some fields inserted based
on the error reported by Batfish or Campion.

Table 1 shows the formulas and examples of generated
prompts. Batfish parse errors and warnings can be reused as
prompts for syntax errors. Prompts for structural mismatches
and attribute differences are easily generated from the relevant
components and attributes. Policy behavior differences are

191



HotNets ’23, November 28–29, 2023, Cambridge, MA, USA Mondal, et al.

Type Generated Prompt
Syntax
error

There is a syntax error:
‘policy-options prefix-list our-networks 1.2.3.0/24-32’

Structural
mismatch

In the original configuration,
there is an import route map for bgp neighbor 2.3.4.5,
but in the translation,
there is no corresponding route map

Attribute
difference

In the original configuration,
the OSPF link for Loopback0 has cost set to 1,
but in the translation, the corresponding
link to lo0.0 has cost set to 0

Policy
behavior
difference

In the original configuration, for the prefix 1.2.3.0/25,
the BGP export policy to_provider for BGP neighbor
2.3.4.5 performs the following action: ACCEPT.
But, in the translation,
the corresponding BGP export policy to_provider
performs the following action: REJECT

Table 1: Sample rectification prompts for translation gen-
erated using formulas (non-italicized text), and fields gen-
erated from Batfish and Campion (italicized text).

more difficult since it is not always clear how to describe the
affected input space that is treated differently. We opt for the
approach of giving a single concrete example.

3.2 Experience and Results

Error Type Fixed
Missing BGP local-as attribute Syntax error Yes
Invalid syntax for prefix lists Syntax error Yes
Missing/extra BGP route policy Structure conflict Yes
Different OSPF link cost Attribute error Yes
Different OSPF passive interface Attribute error Yes
Setting wrong BGP MED value Policy error Yes
Different prefix lengths match in BGP Policy error No
Different redistribution into BGP Policy error No

Table 2: Translation errors found and whether GPT-4 was
able to fix them with generated prompts.

We tried translating a Cisco configuration from the Batfish
examples [6] into Juniper format. This configuration was
short enough to fit within GPT-4 text input limits, but used
non-trivial features including BGP, OSPF, prefix lists, and
route maps. Progress is not monotonic: GPT-4 can fix one
error but introduce new errors that were not previously there.
Sometimes it even reintroduces errors that were previously
fixed! However, we were ultimately able to succeed in the
translation task, with a mix of automated and manual prompts.

Leverage: In one such test run, the entire cycle of prompts
was 2 human prompts and 20 automated prompts, for a lever-
age of 10X. Some of the 20 automatic prompt correction
cycles included minor cycles for syntax correction not just at
the start but also after correcting semantic errors. To be clear,
we “simulated” each API call by feeding our automatically
generated prompts manually to GPT-4.

Table 2 shows errors in the translation at some point and
whether GPT-4 was able to fix them using an automatically
generated prompt. In more detail:

Missing BGP local-as attribute: The translated BGP
neighbor declarations did not include a local AS attribute.
We label this a syntax error since it produces a parse warning.

Missing/extra BGP routing policy: An import or export
policy is used for a BGP neighbor in only one configuration.

Different OSPF link attributes: OSPF links have a num-
ber of attributes, and the translation sometimes contains dif-
ferences in link cost or passive interface settings.

Setting wrong BGP MED value: The translation of one
BGP routing policy did not update the BGP MED value. This
was caused by an error in translating one of the route map
clauses from the original Cisco configuration.

Different Redistribution behavior into BGP: Cisco and
Juniper formats handle route redistribution into BGP differ-
ently. Juniper typically does this using the same routing poli-
cies that control importing and exporting BGP routes while
Cisco configurations set a separate route map for route re-
distribution. In our case, Campion detected that the Juniper
configuration was redistributing some routes that the Cisco
configuration did not. This could be fixed by adding a "from
bgp" condition to a number of locations in the policy. Unlike
the previously described errors, GPT-4 was unable to fix this
when given the automatically generated prompt. Instead it
usually does nothing when asked to fix the error. However, it
was able to fix the problem when asked more directly to add
"from bgp" conditions to routing policies.

BGP prefix list issues: Another subtle issue occurred when
translating prefix lists. The original Cisco configuration con-
tains the following prefix list:

ip prefix-list our-networks seq 5 permit 1.2.3.0/24 ge 24

The noteworthy part is the "ge 24" which says to match pre-
fixes with length 24 or greater. There is no equivalent of this
syntax in Juniper, but for our use case, there are at least two
methods of getting similar behavior in Juniper with different
syntax. When GPT-4 is asked to translate the configuration, it
usually just omits the "ge 24" part, so the space of prefixes
matched will differ in the translation. When asked to fix this
problem, it sometimes generates configurations with incorrect
syntax. For example, it can output the following:

prefix-list our-networks { 1.2.3.0/24-32; }

which is not valid Juniper syntax.

4 Global Policies via Local Synthesis
Next, we used GPT-4 to generate router configs for a given
network topology based on local policies for each router,
inspired by Lightyear [11], which does control plane verifi-
cation by verifying local invariants. We limited our scope to
BGP.

For semantic correctness, we use two new modules. The
first is a "topology" verifier which checks whether the config
of a particular router follows the defined topology. It checks

192



What do LLMs need to Synthesize Correct Router Configurations? HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

whether GPT-4 sets up all interfaces, declares BGP neighbors
and announces networks correctly. Second, we run Batfish to
check local policies defined in the prompts; the outputs are
used to refine the result.

4.1 Method
We begin by specifying the task to GPT in an initial prompt
using a couple of sentences. The intention is to influence the
LLM to start ‘thinking’ in a certain fashion. Our goal is to
make the network follow the no-transit policy, under which
no two ISP’s should be able to reach other. However, all ISPs
should be able to reach the CUSTOMER and vice versa.

Figure 4: Star network topology used for local synthesis.

It is difficult to write a natural language description of the
topology, a task prone to human error. We wrote an automated
script that generates text given the topology as input. In our
experiments, we limited our scope to star networks where one
router would be attached to a CUSTOMER IP, while the other
routers are connected to different ISPs (Figure 4). All the
ISP routers are directly connected to the first router. The "net-
work generator" therefore only needs the number of routers
as input. It has two outputs: 1) a textual description and 2) a
JSON dictionary for the entire network topology. The textual
description is used as a prompt, while the JSON dictionary is
used later to check whether the generated configs match the
topology.

Local versus Global Policy Prompts? We tried specifying
to GPT-4 the global no-transit policy at once. GPT-4 gener-
ated two innovative strategies: filtering routes using AS path
regular expressions, and denying ISP prefixes from being
advertised to other routers from the customer router. Unfortu-
nately, we found after correcting topology and syntax errors,
when we provided feedback in terms of a counterexample
packet (as would be provided by a “global" network verifier
like Minesweeper), GPT-4 was confused and kept oscillating
between incorrect strategies. We found that specifying local
policies as in Lightyear [11] gave us better results because it
allowed us to localize verification errors to specific routers
and specific route maps within those routers.

We asked GPT-4 to generate configs for each router using
a new prompt each time, specifying the local policy for each
router. Specifically, the policy is that 𝑅1 should add a specific

community at the ingress to each ISP and then drop routes
based on those communities at the egress to each ISP. The
generated errors fell into three categories:

Syntax errors: GPT-4 generates a configuration with in-
valid Cisco syntax. Batfish produces parse warnings identify-
ing these errors.

Topology errors: GPT-4 incorrectly declares or misses
some BGP neighbors or forgets to announce certain networks.
For this, we use an automated "topology verifier", whose main
purpose is to systematically parse all the ethernet interface,
BGP neighbor and network declarations within the config
and match them against the network architecture listed in the
JSON dictionary. It then points out all the missing declarations
and topological inconsistencies.

Semantic errors / Policy errors: GPT-4 produces configs
that do not follow the intended local policy. We use Batfish
"Search Route Policies" for verification in this step. In case
there is a semantic error, Batfish produces an example where
the local policy is not followed. This example is then fed to
GPT-4 in a fresh prompt.

Classifying into separate categories allowed us to use dif-
ferent tools to address each one. Table 3 lists examples of
the rectifying prompts. Once all the errors are rectified, we
simulate the entire BGP communication using Batfish as a
final step, in order to ensure that the global policy is satisfied,
though the proof technique of Lightyear [11] could instead
be used to ensure that the local policies imply the global one.

4.2 Experience and Results
Since some GPT-4 errors were more common, we supplied it
an IIP (the Inital Instruction Prompt) as follows:

CLI prompts: GPT-4 would often generate commands to en-
ter on the Cisco command line interface, which is undesirable.
Thus we specifically asked it to generate the .cfg files.

Wrong keywords: While generating the configs, it would
often use certain keywords such as ‘exit’, ‘end’, ‘configure
terminal’, ‘ip routing’, ‘write’, ‘hostname’ and ‘conf t’. It
had a tendency to place some of them in the wrong locations.
Hence, we directed it not to use these keywords.

Match Community: GPT-4 sometimes tries to match di-
rectly on a community value, which is incorrect. Instead, a
community list must be declared that contains the community
value, and the route-map should match on the community
list. Thus we included another IIP telling GPT-4 to define and
match on community lists.

Adding Communities: When asked to add communities to
a route using a route-map, GPT-4 generates syntax similar to:
route-map ADD_COMMUNITY permit 10

set community 100:1
The above route-map erroneously replaces all existing com-
munities in the route with the community 100:1. So we added
an initial prompt saying that it should always use the "addi-
tive" keyword when adding a community to the route.

These initial prompts along with the syntax rectification
scheme of Table 3 are able to eliminate common syntax errors

193



HotNets ’23, November 28–29, 2023, Cambridge, MA, USA Mondal, et al.

Type Examples
Syntax
error

‘ip community-list standard
COMM_LIST_R2_OUT permit .+’ is wrong syntax.

Topology
error

1. Interface eth0/1 ip address does not match with
given config. Expected 2.0.0.1, found 2.0.0.2
2. Local AS number does not match.
Expected 1, found 3
3. Neighbor with IP address 1.0.0.1 and
AS 1 not declared
4. Incorrect network declaration. 7.0.0.0/24 is
not directly connected to R1

Semantic
error

The route-map DROP_COMMUNITY permits
routes that have the community 100:1. However,
they should be denied.

Table 3: Sample rectification prompts for local synthesis.
Batfish or the topology verifier provides the italicized text.

produced by GPT-4. Despite this, we found two egregious
cases where human intervention is needed:

Placing neighbor commands in the wrong location: In a
config file for BGP, all neighbor commands, which attach a
route-map to an interface, must be placed under the "router
bgp" block. Sometimes GPT-4 defines a route-map and then
associates it with an interface outside the "router bgp" block.
Batfish catches this syntax error, but the output is not infor-
mative enough for GPT-4 to be able to fix the issue.

AND/OR Semantics in match statements: For no-transit,
we asked GPT-4 to generate a config for 𝑅1 that would add
a specific community to every route incoming from 𝑅2, and
similarly for the other neighbors of 𝑅1 (Figure 4). We also
asked it to filter routes containing any such community on
the egress of the interfaces connecting 𝑅1 to 𝑅2 − 𝑅6. GPT-4
added the correct communities at the ingress, but at the egress
it incorrectly used AND semantics to filter routes, as in the
following route-map for the 𝑅1 − 𝑅2 interface:

r o u t e −map FILTER_COMM_OUT_R2 deny 10
match community 3
match community 4
match community 5
match community 6

r o u t e −map FILTER_COMM_OUT_R2 p e r m i t 20

Community list 3 is associated with routes incoming from
R3, community list 4 with those coming from R4, and so
on. We desire routes incoming from 𝑅3 − 𝑅6 to be filtered
out at the egress to 𝑅2. The above config will only filter
out routes that have all four communities. When we asked
Batfish whether the above route-map filters all routes that
match the community list 3, it produced a counterexample,
but this feedback to GPT-4 failed to rectify the issue. Instead,
a human prompt was needed to ask GPT-4 to declare each
match statement in a separate route-map stanza.

Leverage: In one such run, the entire cycle took 2 human
prompts and 12 automated prompts, for a leverage of 6X.

5 Previous Work
AlphaCode [10], CoPilot [7], Codex [4] and Jigsaw [8] and
numerous other recent systems use large language models
for program synthesis. While they concentrate on sequential
programs, the deeper difference is that they do not pair the
synthesizer with verifiers. Instead, AlphaCode, Codex, and
Jigsaw ask users to provide test cases and uses them to test
(but not verify) the synthesized program.

Alphacode [10] does not use a general purpose LLM but
instead leverages a curated data set of working programs.
Codex [4] uses repeated sampling instead of correction to
help generate programs that meet the test cases. Jigsaw [8]
does automatic syntax correction via AST-to-AST transforma-
tions. CoPilot [7] can suggest invariants but does not attempt
an axiomatic proof. These earlier systems do not address two
fundamental questions that we do: how to use a specifica-
tion, and how to provide localized feedback. However, their
techniques are complementary to ours, and can be used to po-
tentially improve leverage in Verified Prompt Programming.

The use of ChatGPT with the Kani Rust verifier [9] comes
closest to our vision. They finesse the specification question
(as we do for Cisco to Juniper) by focusing on program trans-
formations for which the source program is the specification.
They also do not use modularity or local specifications. More
fundamentally the Kani [9] use case does not do prompt pro-
gramming: the user always manually switches between the
verifier and the LLM, precluding possible leverage.

6 Conclusions
Our experiments are very preliminary but suggest:

1. Ramanujam Effect: As with the brilliant mathematician
Ramanujam, some of whose conjectures were incorrect and
needed Hardy’s help [1] for proofs, GPT-4 by itself is not
ready for use without a verifier, making elementary errors
that can bring networks down.

2. Verified Prompt Programming: Using a verifier and au-
tomated corrections via a humanizer, GPT-4 can synthesize
reasonable but not completely correct configurations for sim-
ple use cases, but the leverage in reduced human effort can be
high. Modular verification seems crucial to provide the LLM
with actionable feedback.

3. Local versus Global Specifications: Modular synthesis
is the dual to modular verification. The search space for the
LLM is large, which increases the chance that it will not be
able to correctly complete a synthesis task based on a global
specification. Instead the user needs to decide and describe
the "roles" each node plays in satisfying the global spec and
provide this information to the LLM.

Much further testing in more complex use cases is needed.
Can GPT-4 add a new policy incrementally without interfer-
ing with existing verified policy? While our paper is set in the
context of network configuration, the vision, definitions (e.g.,
leverage) and lessons (e.g., the need for actionable local feed-
back, modularity, humanizers and IIPs) seem more generally
useful to synthesize other programs.

194



What do LLMs need to Synthesize Correct Router Configurations? HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

References
[1] B. Bollobas. The man who taught infinity: how G.H. Hardy tamed

Srinivasa Ramanujan’s genius. https://theconversation.com/the-man-
who-taught-infinity-how-gh-hardy\-tamed-srinivasa-ramanujans-
genius-57585, 2023.

[2] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell. On
the dangers of stochastic parrots: Can language models be too big? In
Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency, FAccT ’21, page 610–623, New York, NY, USA,
2021. Association for Computing Machinery.

[3] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Ka-
mar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg, H. Nori, H. Palangi, M. T.
Ribeiro, and Y. Zhang. Sparks of artificial general intelligence: Early
experiments with GPT-4, 2023.

[4] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Ka-
plan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,
C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis,
E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,
J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford,
M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. Mc-
Grew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba. Eval-
uating large language models trained on code, 2021.

[5] DeepLearning.AI. ChatGPT Prompt Engineering for Devel-
opers. https://learn.deeplearning.ai/chatgpt-prompt-eng/lesson/1/
introduction, 2023.

[6] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. Millstein. A general approach to network con-
figuration analysis. NSDI’15, page 469–483, USA, 2015. USENIX
Association.

[7] github. Github CoPilot: Your AI Pair Programmer. https://github.com/
features/copilot, 2023.

[8] N. Jain, S. Vaidyanath, A. Iyer, N. Natarajan, S. Parthasarathy, S. Raja-
mani, and R. Sharma. Jigsaw: Large language models meet program
synthesis. In Proceedings of the 44th International Conference on Soft-
ware Engineering, ICSE ’22, page 1219–1231, New York, NY, USA,
2022. Association for Computing Machinery.

[9] Kani Rust Verifier Blog. Writing Code with ChatGPT? Improve it with
Kani. https://model-checking.github.io/kani-verifier-blog/2023/05/01/
writing-code-with-chatgpt-improve-it-with-kani.html, 2023.

[10] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond,
T. Eccles, J. Keeling, F. Gimeno, A. D. Lago, T. Hubert, P. Choy,
C. de Masson d’Autume, I. Babuschkin, X. Chen, P.-S. Huang, J. Welbl,
S. Gowal, A. Cherepanov, J. Molloy, D. J. Mankowitz, E. S. Robson,
P. Kohli, N. de Freitas, K. Kavukcuoglu, and O. Vinyals. Competition-
level code generation with AlphaCode. Science, 378(6624):1092–1097,
dec 2022.

[11] A. Tang, , R. Beckett, K. Jayaraman, T. Millstein, and G. Varghese.
Lightyear: Using modularity to scale BGP control plane verification.
SIGCOMM ’23, to appear. Association for Computing Machinery,
2023.

[12] A. Tang, S. K. R. Kakarla, R. Beckett, E. Zhai, M. Brown, T. Millstein,
and G. Varghese. Campion: Debugging router configuration differences.
SIGCOMM ’21, page 748–761, New York, NY, US, 2021. Association
for Computing Machinery.

[13] J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang. Software
testing with large language model: Survey, landscape, and vision, 2023.

195

https://theconversation.com/the-man-who-taught-infinity-how-gh-hardy\-tamed-srinivasa-ramanujans-genius-57585
https://theconversation.com/the-man-who-taught-infinity-how-gh-hardy\-tamed-srinivasa-ramanujans-genius-57585
https://theconversation.com/the-man-who-taught-infinity-how-gh-hardy\-tamed-srinivasa-ramanujans-genius-57585
https://learn.deeplearning.ai/chatgpt-prompt-eng/lesson/1/introduction
https://learn.deeplearning.ai/chatgpt-prompt-eng/lesson/1/introduction
https://github.com/features/copilot
https://github.com/features/copilot
https://model-checking.github.io/kani-verifier-blog/2023/05/01/writing-code-with-chatgpt-improve-it-with-kani.html
https://model-checking.github.io/kani-verifier-blog/2023/05/01/writing-code-with-chatgpt-improve-it-with-kani.html

	Abstract
	1 Introduction
	2 System Organization
	3 Cisco to Juniper Translation
	3.1 Method
	3.2 Experience and Results

	4 Global Policies via Local Synthesis
	4.1 Method
	4.2 Experience and Results

	5 Previous Work
	6 Conclusions
	References

