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Abstract

We propose a performance analysis tool for learning-enabled
systems that allows operators to uncover potential perfor-
mance issues before deploying DNNs in their systems. The
tools that exist for this purpose require operators to faith-
fully model all components (a white-box approach) or do
inefficient black-box local search. We propose a gray-box
alternative, which eliminates the need to precisely model all
the system’s components. Our approach is faster and finds
substantially worse scenarios compared to prior work. We
show that a state-of-the-art learning-enabled traffic engi-
neering pipeline can underperform the optimal by 6× — a
much higher number compared to what the authors found.

CCS Concepts

• Computing methodologies → Machine learning; •
Networks→ Network performance analysis; Network

reliability; Network management.

Keywords

Machine Learning for Systems, Performance Analysis
ACM Reference Format:

Pooria Namyar, Michael Schapira, Ramesh Govindan, Santiago
Segarra, Ryan Beckett, Siva Kesava Reddy Kakarla, Behnaz Arzani.
2024. End-to-End Performance Analysis of Learning-enabled Sys-
tems. In The 23rd ACM Workshop on Hot Topics in Networks (HOT-
NETS ’24), November 18–19, 2024, Irvine, CA, USA. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3696348.3696875

1 Introduction

Operators have started to use deep neural networks (DNNs)
in the computation pipeline of many cloud systems [3, 24, 26,
30, 36, 44, 46, 47]. In these learning-enabled systems, DNNs
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Figure 1:We propose a gray-box approach that uses gradient
to analyze performance of learning-enabled systems. Existing
white-box heuristic analyzers have limited expressiveness and
scalability [13, 32, 33] as they require an exact model of the
system (including the DNN) in optimization or logic. Local search
methods fail to find bad inputs as they ignore all the details about
the underlying system.

run faster than optimal algorithms [36, 46] and perform bet-
ter than heuristics when the optimal solution is either com-
putationally expensive or unknown [26, 47].
Operators train and test individual DNNs for common

workloads and network conditions. However, they cannot
check whether the end-to-end learning-enabled system (which
includes the DNN and other computational components)
performs well across all possible inputs. They need tools
that can quickly answer questions such as: How much can
the performance of a learning-enabled system deviate from
the optimal or other baselines? What inputs cause learning-
enabled systems to underperform? Are there in-distribution
inputs (those from the same distribution as the training set)
that would cause the DNN-based system to underperform?

It is hard to build such a tool (§3). Verification techniques
(DNN verifiers) ensure DNN’s correctness by proving specific
invariants on the DNN in isolation [10, 22, 43] rather than
evaluating the performance of the entire system. White-box
heuristic analyzers [13, 32, 33] can analyze the end-to-end
performance in theory but require an exact model of the
DNN and other components of the system, either in opti-
mization or in first-order logic. This requirement limits their
expressiveness and scalability. For instance, we find that
MetaOpt [33] is unable to analyze a state-of-the-art learning-
enabled traffic engineering system (see §5).
Local black-box search algorithms apply to any system,

including learning-enabled ones. However, they cannot effi-
ciently search large input spaces and often fail to find practi-
cal adversarial inputs [32, 33]. These methods neglect all the
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Figure 2: A Traffic Engineering pipeline that uses DOTE to
route the demands and its goal is to minimize the maximum link
utilization or MLU (TM = Traffic Matrix).

valuable information about the system and its components,
which could have potentially helped with their search.

In this paper, we propose a gray-box approach (§3.2) that
uses the gradient of the system to guide the search for adver-
sarial inputs. Our insight is that if the components within the
learning-enabled system satisfy certain properties, we can
use the chain rule to combine the gradients from each indi-
vidual component to estimate the end-to-end gradient of the
entire system (see §3). We can then search in the direction of
this gradient to find inputs that cause the learning-enabled
system to underperform. Our method is faster and easier to
use than white-box alternatives because it does not need an
exact mode for each component and can be parallelized. It is
also more effective than black-box local search methods.
We use DOTE [36] to illustrate our approach (§4). DOTE

is a state-of-the-art traffic engineering system that replaces
the optimization-based methods with a DNN to route traf-
fic within a wide-area network [17, 19]. Our approach finds
inputs that can cause DOTE to increase link utilization by
over 6× compared to the optimal (§5). This suggests that
using DOTE in production can cause unnecessary conges-
tion, delays, and packet drops under certain demands. In
contrast, the authors of DOTE [36] found that maximum link
utilizations were within 1.05× of the optimal on the test data.

Our contributions are as follows:
• We show it is important to analyze the impact of DNNs as
part of the entire systems in which they are deployed in
order to evaluate their risk (see §2).
• We propose the idea for an analyzer that allows us to
use gradients [14] to guide the search for bad inputs and
discuss the further research we need to conduct to extend
it to any learning-enabled system.
• We show the viability of this idea by applying it to DOTE
and showing that it can perform significantly worse than
what its authors reported.

1 2

3

Demand Routing A Routing B Routing C
src-dst rate path rate path rate path rate
1-2 100 1-2 100 1-3-2 100 1-2 100
1-3 100 1-3 100 1-2-3 100 1-2-3 100

MLU𝐴 1 MLU𝐵 1 MLU𝐶 2

Figure 3: Importance of analyzing the impact of DNNs on the
final performance of learning-enabled systems. (left) topology
with link capacities = 100. (right) a set of demands and three
possible routings. Routing A and B use different split ratios but
result in the same MLU.

2 Learning-enabled Traffic Engineering

Recent wide-area network traffic engineering (WAN TE)
solutions incorporate DNNs into their computation pipelines
to improve the speed or performance [3, 24, 26, 30, 36, 46].
For example, a state-of-the-art learning-enabled TE sys-

tem, DOTE [36], (Figure 2) uses a DNN that takes the 𝐾 most
recent traffic matrices as input and predicts the traffic split
ratios for the next epoch. These split ratios dictate how each
source should split its traffic to each destination over a set of
predetermined paths. DOTE uses a post-processor to ensure
the DNN’s outputs are feasible and meet network constraints
(e.g., the sum of a demand’s split ratios should be 1).

Before using such a learning-enabled TE system, opera-
tors must ensure that it performs well – efficiently routes
customer demands – under diverse network conditions and
adapts to demand or topology changes [1, 34]. We argue that
this is hard to do if we only consider the DNN in isolation.

Suppose an operator wants to minimize the maximum link
utilization (MLU), which is a commonly used objective in
WAN TE [17]. The split ratios (DNN’s output) alone do not
determine how DOTE impacts the MLU. In fact, two very
different sets of split ratios may produce the same MLUs
depending on the underlying demands (Figure 3). Therefore,
we need to analyze the end-to-end pipeline instead of focus-
ing on the DNN in isolation. This means we need to use these
split ratios to route the demands and measure the MLU.

Many of the operators’ questions about DOTE require an
end-to-end analysis of the system’s performance:
• How much can DOTE’s MLU deviate from the optimal?
• What inputs cause DOTE to underperform?
• Are there inputs from the training data distribution that
could cause DOTE to underperform?
• How does MLU of DOTE compare to another learning-
enabled design, such as Teal?

The same observation applies to other recent work [26, 46]
that uses similar pipelines but differs in the DNN architecture
or the components involved.
We observe that we need fundamentally new techniques

(compared to what exists today [13, 33]) to answer these
questions and analyze the performance of learning-enabled
pipelines. We discuss this assertion next.



End-to-End Performance Analysis of Learning-enabled Systems HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

3 End-to-End Performance Analysis

An end-to-end performance analyzer for a learning-enabled
system must: (1) reason about the DNN’s impact on the
overall system performance and (2) find inputs that cause
the learning-enabled system to underperform compared to
an acceptable baseline (e.g., the optimal).

We next discuss why today’s performance analyzers can-
not solve this problem.

3.1 Drawbacks of Existing Systems

White-box analyzers require describing the entirety of
the learning-enabled system (which includes the DNN) and
modeling it in a format that these tools support (either as
an optimization [33] or in first-order logic [13, 32]). This
requirement limits their scalability and expressiveness. These
methods cannot:

Analyze large and complex DNNs. Prior work that mod-
els DNNs in optimization or logic has limited ability to ex-
press complex architectures and does not scale well [10,
11, 21, 22, 27, 37, 43]. They only support small and specific
neural network architectures with specific activations (i.e.,
piece-wise linear activations such as ReLU). However, recent
learning-enabled systems [26, 36, 46] use complex DNNs
that fall outside of this category. It is difficult to extend exist-
ing tools to support these DNNs [10], and doing so requires
approximations that adversely impact their ability to scale.
Jointly model all components within a system. It

may be possible to efficiently model individual pieces of a
learning-enabled pipeline. However, modeling them jointly
requires faithfully capturing the dependencies between a
diverse set of components. For instance, the outputs of one
component are variables that serve as inputs to the next.
These dependencies can result in non-convex, non-linear
formulations, which are computationally hard to solve [33].
Black-box local search methods are an alternative to
white-box heuristic analyzers [32]. They are general as they
do not require any information about the system and its
components [8, 23]. They iteratively search for adversarial
inputs by selecting a new input in each iteration, executing
the learning-enabled system and the optimal on these inputs,
measuring their performance, and using the gap to guide
future iterations. However, these methods get stuck in local
optima and fail to find any useful adversarial input even for
simple heuristics [32, 33].

3.2 A Gray-box Alternative

We explore the design of a gray-box tool to analyze the end-
to-end performance of learning-enabled systems. Instead of
requiring a detailedmodel of the entire system, we use partial
information about its components to efficiently navigate the

H1 () H2 () M𝑎𝑑𝑣 ()

SystemH()

▽𝑥M𝑎𝑑𝑣 (𝑦0) = ∇𝑦M𝑎𝑑𝑣 (𝑦0)∇𝑧H2 (𝑧0)∇𝑥H1 (𝑥0)

𝑧𝑥 𝑦 M𝑎𝑑𝑣 (𝑦)

Figure 4: Using the chain rule to compute the end-to-end gra-
dient of the systemH as a function of the gradient of individual
componentsH1 andH2.

search space and find “adversarial” inputs that cause the
system to underperform.
Inspired by gradient-guided search algorithms [14], we

propose using the gradient of the system to guide the search
process: we search in the direction of the gradient to maxi-
mize the performance gap relative to the optimal.
LetH(𝑥) denote the entire learning-enabled system, in-

cluding the DNN(s). SupposeM𝑎𝑑𝑣 (H (𝑥)) is a function that
quantifies how ”adversarial” the output ofH(𝑥) is. Our goal
is to find inputs 𝑥 that lead to large values ofM𝑎𝑑𝑣 (H (𝑥)).
To find these adversarial inputs, we can move in the direction
of the gradient ofM𝑎𝑑𝑣 (H (𝑥)):

𝑥 (𝑖+1) ← 𝑥 (𝑖 ) + 𝛼∇𝑥M𝑎𝑑𝑣 (H (𝑥 (𝑖 ) )) (1)

where 𝑥 (𝑖 ) represents the input in iteration 𝑖 , 𝛼 is the step
size, and∇𝑥M𝑎𝑑𝑣 (H (𝑥 (𝑖 ) )) is the gradient in iteration 𝑖 . This
iterative search method is guaranteed to converge to a global
optimum [7] when the functionM𝑎𝑑𝑣 (H (.)) is convex. Oth-
erwise, it may find a local optimum.
Equation (1) still requires modeling a complex learning-

enabled system as a closed form expression H(𝑥), which
goes against our initial goal for an easy-to-use gray-box
solution. However, we can use this idea as the basis for a
novel and practical search technique. We use the fact that
DNNs are piecewise sub-differentiable1. If the other compo-
nents within the learning-enabled system are also piecewise
sub-differentiable, we can formulate our search in terms of
the combination of the gradients of each of the individual
components (see §6 for extension to other cases).
Formally, we can use the chain rule [14] (Figure 4) to

compute the gradient of M𝑎𝑑𝑣 (H (𝑥)). We first express
M𝑎𝑑𝑣 (H (𝑥)) as a composite function of the individual
system components:M𝑎𝑑𝑣 (H𝑛 (H𝑛−1 (. . . (H2 (H1 (𝑥)). Each
function H𝑖 represents a component of the system that
takes the output of H𝑖−1 as input and produces an output
that feeds intoH𝑖+1. We can compute the gradient of each
H𝑖 with respect to its own input separately and use the
chain rule to compute the gradient ofM𝑎𝑑𝑣 (H (𝑥)). Finally,
1They consist of components that are themselves individually differentiable
(e.g., convolutional layers). These layers may be interspersed with other
layers that are not differentiable such as ReLU activations.
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we perturb the input in the direction of the gradient to
increaseM𝑎𝑑𝑣 . This approach is mathematically equivalent
to Equation (1).
We do not need an exact model of each function H𝑖 to

compute the gradients. We can either compute the gradient
through itsmathematical representation or compute it locally
through samples of the function [39].
These techniques enable our gray-box solution as we do

not need a detailed model of the entire system. Our solution
has two important benefits: (1) following the gradient enables
fast search and can help find bad inputs quickly, and (2)
we can compute the gradient of each function in parallel,
which allows us to speed up the search even further. These
properties help us scale our analyzer beyond what existing
tools are capable of (§5).

4 Gray-box Analysis of DOTE

We apply this technique to DOTE [36], a learning-enabled TE
solution, to demonstrate its viability in practice. For this, we
first need to define the functionM𝑎𝑑𝑣 , which measures how
“adversarial” an output of DOTE is in terms of the end-to-end
system performance (the final MLU in Figure 2).
The performance ratio. In [36], the efficacy of DOTE rela-
tive to the optimal is defined as the ratio between DOTE’s
MLU and that of the optimal. Accordingly, a natural defi-
nition for M𝑎𝑑𝑣 is the highest MLU ratio (called DOTE’s
performance ratio) for a given demand 𝑑 :

M𝑎𝑑𝑣 (𝑑) B
MLUDOTE (𝑑)
MLUOPT (d)

= max
𝑓

MLUDOTE (𝑑)
MLU(𝑑, 𝑓 ) (2)

where our goal is to find split ratios 𝑓 that result in the
minimum possible MLU (the optimal split ratios) for each
demand matrix 𝑑 . The maximization in Equation (2) captures
these split ratios by minimizing the denominator.
Equation (2) is a non-convex function of the demand 𝑑 .

This implies that we may end up converging to a local op-
timum if we use the gradient-based search method. Prior
work [6] shows how we can rewrite this non-convex func-
tion as an equivalent convex objective to find the global
optimum. It essentially constrains the set of demands to
those the optimal TE solution can route without congestion
(i.e., MLU(𝑑, 𝑓 ) = 1). The modified objective is:

M𝑎𝑑𝑣 (𝑑) B MLUDOTE (d) (3)
over the space 𝑑 ∈ {𝑑 | ∃𝑓 : MLU(𝑑, 𝑓 ) = 1}

Note that the maximum possible MLU ratio from Equa-
tion (3) is equivalent to the one from Equation (2). This is
because there is a linear relation between the MLU and the
demands. Therefore, we can always normalize any demand
from Equation (2) so that it falls in the feasibility space of
Equation (3). The normalization step does not impact the

optimal split ratios and only reduces the optimal MLU by the
normalization factor. If DOTE’s split ratios remain the same,
we can guarantee that the performance ratio also stays the
same. We discuss later how to deal with cases where this
does not hold.
Using Lagrangian relaxation.We need to express the end-
to-end loss function as an unconstrained optimization before
computing the gradient. A standard technique to do this is
called Lagrangian relaxation:

min
𝜆

max
𝑑, 𝑓
L𝑓 𝑖𝑛𝑎𝑙 (𝑑, 𝑓 , 𝜆) B M𝑎𝑑𝑣 (𝑑) + 𝜆(MLU(𝑑, 𝑓 ) − 1) (4)

where the Lagrange multiplier 𝜆 is a penalty term that en-
courages the optimizer toward values of 𝑑 and 𝑓 such that
MLU(𝑑, 𝑓 ) = 1 (Equation (3) is feasible).
Equation (4) is an instance of a minimax optimization

where we minimize over 𝜆 (outer) and maximize over 𝑑 and
𝑓 (inner). We use multi-step gradient descent ascent [35]
to solve this problem iteratively. In each iteration, we first
solve the inner maximization problem by taking 𝑇 gradient
ascent steps over 𝑑 and 𝑓 (𝑇 is configurable). We then use
the updated values of 𝑑 and 𝑓 to estimate the gradient of the
outer minimization and take a gradient descent step over 𝜆:

𝑑 (𝑖+1) ← 𝑑 (𝑖 ) + 𝛼𝑑∇𝑑L𝑓 𝑖𝑛𝑎𝑙 (𝑑 (𝑖 ) , 𝑓 (𝑖 ) , 𝜆 (𝑖 ) ) (5)

𝑓 (𝑖+1) ← 𝑓 (𝑖 ) + 𝛼 𝑓 ∇𝑓 L𝑓 𝑖𝑛𝑎𝑙 (𝑑 (𝑖 ) , 𝑓 (𝑖 ) , 𝜆 (𝑖 ) )

𝜆 (𝑖+1) ← 𝜆 (𝑖 ) − 𝛼𝜆∇𝜆L𝑓 𝑖𝑛𝑎𝑙 (𝑑 (𝑖 ) , 𝑓 (𝑖 ) , 𝜆 (𝑖 ) )

where 𝛼𝑑 is a hyper-parameter that determines step sizes in
the demand search space (similarly for 𝑓 and 𝜆) and∇𝑑L𝑓 𝑖𝑛𝑎𝑙

denotes the gradient with respect to the demands. We deter-
mine these gradients using the chain rule (§3).
Other TE Objectives.We can extend our analysis to other
traffic engineering objectives, such as those that maximize
total flow [1] or maximize concurrent flow [36]. To do so, we
need to describe the end-to-end performance function and
compute the gradients.

The main challenge is that the linear relationship between
the performance function and demands may not hold for
other objectives, such as total flow. Therefore, we cannot
replace the non-convex function in Equation (2) with the
convex alternative in Equation (3) without losing optimality
guarantees. We address this issue by changing the feasible
space of Equation (3) to include demands that the optimal
would achieve a given performance 𝑃 ({𝑑 | ∃𝑓 : OPT(𝑑, 𝑓 ) =
𝑃}). We then search for the value of 𝑃 that results in the
largest performance ratio. Our method is fast (§5), so we can
run it multiple times. For MLU, solving for 𝑃 = 1 is sufficient.
The optimal formulation may contain additional con-

straints, such as capacity constraints [17, 34]. We can relax
them using the Lagrangian method.
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Method Discovered
MLUDOTE
MLUOPT

Runtime

DOTE’s test set 1.05× −
Random Search 1.22× 25 seconds

MetaOpt − 6 hours
Gradient-based 6× 50 seconds

Table 1: Our proposed method discovers an MLU ratio of 6×
for DOTE-Hist while others fail to produce meaningful analysis.

Method Discovered
MLUDOTE
MLUOPT

Runtime

DOTE’s test set 1.05× −
Random Search 1.25× 20 seconds

MetaOpt − 6 hours
Gradient-based 3.47× 54 seconds

Table 2: Our proposed method discovers an MLU ratio of 3.47×
for DOTE-curr while others fail to produce meaningful analysis.

5 Performance Analysis of DOTE: Results

We evaluate DOTE using our gray-box performance analyzer
and show it finds substantially worse adversarial inputs than
a white-box tool and a straw-man black-box search algo-
rithm. We also show it is fast and uncovers the performance
ratio in a few minutes.
We use the 𝐾-shortest paths algorithm [48] to configure

the set of available paths for each demand (𝐾 = 4). We
constrain the demands to be below a maximum value (the av-
erage link capacity) to ensure they are realistic. We evaluate
two different versions of DOTE:
- DOTE-Hist takes the last 12 traffic demands as input and
estimates the split ratios for the next epoch (see [36]).

- DOTE-Curr is a modified version of DOTE that takes the
current traffic as input. This is similar to other learning-
enabled traffic engineering systems such as Teal [46].
We report DOTE’s performance ratio (§4) based on its

MLU on the Abilene topology [40] and repeat each experi-
ment 5 times to ensure the results are stable. We run each
method for 6 hours or until they terminate. We report the
runtime as the earliest point at which the method identified
a gap and was unable to make further improvements. We run
all experiments on an AMD Opteron 2.4 GHz CPU with 24
cores and 64GB of memory. We also set 𝛼𝑑 = 𝛼𝜆 = 𝛼 𝑓 = 0.01
and 𝑇 = 1 (unless mentioned otherwise).
Baselines. We compare our solution to (1) the performance
of DOTE on its test set, (2) Random search (a black-box
method), and (3) MetaOpt [33] (a white-box approach). We
extended MetaOpt’s code to support DNNs and all the other
components in DOTE’s pipeline. We had to replace DOTE’s
non-linear activation function with a piece-wise linear alter-
native to be able to use MetaOpt.
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Demands norm by avg link capacity

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n 

of
 

 d
em

an
ds

Adversarial
Training

Figure 5: Comparing the demand sizes in the adversarial input
from our gray-box approach with a representative sample from
DOTE’s training data.

DOTE exhibits higher MLU relative to the optimal (Ta-

bles 1 and 2). Using both variants of DOTE (DOTE-hist and
DOTE-curr) can lead to a substantially higher MLU com-
pared to the optimal (6× and 3.47×, respectively). This is
much larger than the gap DOTE’s authors discovered by
evaluating it on the test data (they found DOTE is always
within 1.05× of the optimal).

DOTE-curr has a smaller gap compared to DOTE-hist be-
cause DOTE-hist attempts to estimate the split ratios from
the past demands, which can fail if the traffic distribution sud-
denly changes. However, DOTE-curr is aware of the traffic
in the next epoch.
Our analyzer outperforms other baselines. It efficiently
finds adversarial inputs that lead to significantly worse per-
formance compared to black-box random search methods
(MLU ratios 2.78 to 5× larger). Our runtimes are around
1 minute, whereas MetaOpt could not find any MLU ratio
even after 6 hours. We need to jointly model the DNN and
all the other components in optimization to use MetaOpt.
This increases the complexity of the optimization solver and
reduces its scalability.
The adversarial demands (Figure 5).We find the adver-
sarial demands from our tool are different from the demands
in DOTE’s training set. The training data contains demands
where most pairs exchange small traffic. In contrast, only a
few pairs exchange the majority of the traffic in the adver-
sarial examples.
It is important to ensure that DOTE is resilient to such

changes in demand before we deploy it in production. These
changes may occur in practice, such as when a fiber cut
happens and causes a shift in the traffic distribution. We can
use the adversarial samples from our tool and add them to
DOTE’s training set to improve its performance for such
cases. If the operator is only interested in adversarial inputs
that typically occur in practice, we can also include additional
constraints to ensure that our tool generates inputs from
these specific distributions (see §6).
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step size 𝛼𝑑 Discovered
MLUDOTE
MLUOPT

Runtime
0.01 3.47× 54 seconds
0.005 3.47× 73 seconds
0.05 3.46× 44 seconds

Table 3: Sensitivity of the gradient-based approach to the
hyper-parameter 𝛼𝑑 (Equation (5)). We set 𝛼𝜆 = 0.01 and
𝛼 𝑓 = 0.01.

Sensitivity Analysis (Table 3). The step size in Equation (5)
is a hyper-parameter in our approach. It introduces a trade-
off: smaller step sizes allow us to find larger gaps because
they traverse the space in smaller granularities and can get
closer to the global optimal. However, they take longer to
converge. Larger step sizes may find a slightly lower perfor-
mance gap because they jump around the optimal point.

6 Extensions and Generalizations

We show our idea for a gray-box performance analyzer based
on gradient-based search is viable. There are several possible
directions that require more research:
Comparing to other learning-enabled systems. In §4, we
compare DOTE to the optimal solution. We can also compare
it to other learning-enabled TE pipelines [26, 46]. To do so,
we have to modify the performance function in Equation (2)
and replace the optimal MLU with that of a given baseline,
such as Teal.
Constraining bad inputs. Our method searches for adver-
sarial inputs over the entire input space by default, but we
can also limit it to search over realistic inputs. In the con-
text of traffic engineering, these are the demands that are
sparse and exhibit locality [33]. We can encode these as addi-
tional constraints on the feasible space in Equation (3). Then,
we can apply the Lagrangian relaxation (§4) to transform
the constrained optimization into an unconstrained one and
conduct the search using the gradient.
Beyond single adversarial example.We can also extend
our gradient-based search method to: (1) learn and generate
a corpus of examples that can cause the learning-enabled
systems to underperform in one shot (as opposed to just
a single bad input), and (2) find adversarial examples that
belong to a specific distribution (e.g., those that have the same
distribution as the training data).We can use the output of the
former and augment the training data with the adversarial
samples to improve the DNN. The latter can help operators
find the worst-typical performance of the DNN.

To enable these use-cases, we can potentially use the sys-
tem’s gradient to train two neural networks: a generator
and a discriminator (as in GANs [15]). The generator learns

to generate plausible inputs that would cause the learning-
enabled system to underperform. The discriminator deter-
mines whether the inputs from the generator are from the
specified distribution. These two components work together
to create a set of realistic adversarial inputs from a target
distribution (see [15]).
Mechanisms that approximate non-differentiable com-

ponents. Some learning-enabled systems [24, 30, 47] may
introduce objectives that are not (sub)differentiable. If we
approximate non-differentiable components in the learning-
enabled systems with differentiable functions, we can still
compute the gradient, apply the chain rule, and conduct the
search. Many functions enable such approximations. A DNN
is one such example that can learn to approximate a function
from samples of its outputs [38]. We can integrate the train-
ing of this DNN into our search (Equation (4)) by adding a
regularization term that minimizes the difference between
the true output of the non-differentiable component (ℎ̄) and
the output of the DNN that approximates it (𝑓𝜃 (.)):

min
𝜃
L𝑑𝑖 𝑓 𝑓 B | |𝑓𝜃 (𝑥) − ℎ̄ | |22

Another similar option is to use a Gaussian process [39].
Future research should determine what approximations are
most effective.
Partitioning the performance analysis. In some cases,
it can be hard to approximate the component because of its
inherent complexity [38]. Instead, we can explore techniques
to break down the learning-enabled system into smaller sub-
systems and use a different approach to analyze each of these
sub-systems.
Consider a learning-enabled pipeline with the following

sub-systems in order:H1, . . . ,H𝑛−1, andH𝑛 . One potential
idea is to start from the last sub-system H𝑛 and find the
inputs to this function that constitute its “adversarial space”
(worst-case scenarios). Once we find this adversarial space,
we move one step back: we analyzeH𝑛−1 and find how to
push it to produce outputs in H𝑛’s adversarial space (i.e.,
what we found in the previous step). We then continue to
iterate in this manner until we analyze the entire system and
produce the set of inputs that cause the overall system to
underperform. In other words, we move backwards stage-
by-stage through each component until we find inputs to
the learning-enabled system that cause the entire system to
underperform.
We can analyze the (approximately) differentiable sub-

systems using our gradient searchmethod (§4).We canmodel
other sub-systems as an optimization [16] or in logic [9]
and use existing performance analyzers [33]. This approach
scales better since we can model each sub-system more effi-
ciently in isolation than jointly modeling all of them.
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The key to our partitioning approach is the notion of
an adversarial space for any given sub-system. This is the
space of inputs for that subsystem that drives it to perform
poorly. However, existing tools [13, 33] only generate a single
adversarial instance. We can adopt prior work that explore
ways to extrapolate from these instances into an adversarial
space [20].
Improving robustness of learning-enabled systems.

We can potentially use the adversarial examples from our
gradient-based search method to improve the learning-
enabled system. One way to do this is to add these examples
to the DNN’s training data but we need to ensure that this
does not adversely impact the DNN’s average performance.
Beyond learning-enabled system. Although we have fo-
cused our paper on learning-enabled systems, our approach
is more broadly applicable to the performance analysis of any
system with (approximately) piecewise sub-differentiable
components. As such, it can augment the suite of perfor-
mance analyzers currently in our toolkit [13, 33]. To use our
approach, we only have to model the objective of the system
and estimate the gradient of its components. This is simpler
that exactly and jointly modeling all the components as in
other tools.

7 Related Work

Performance Analysis Tools. Prior work [2, 4, 5, 32, 33]
develops tools to analyze the performance of heuristics and
network control algorithms. MetaOpt [32, 33] formulates the
heuristic as an optimization and finds adversarial inputs us-
ing Stackleberg games and Bilevel optimization. Virelay [13]
models resource allocation heuristics in formal methods and
uses SMT solvers [9]. Other work [2, 4, 5] develop custom
tools to answer performance queries in specific domains
(e.g., congestion control). These tools need an exact model
of the entire system either as optimization or in first-order
logic, which limits their ability to analyze learning-enabled
systems (§3.1).
Adversarial Attacks for Neural Networks. [18, 25, 28, 29]
focus on adversarial attacks for classification tasks. Their
goal is to measure the sensitivity of neural networks and find
the minimum perturbation to an existing input that would
cause the neural network’s classification to change. This is
different from our goal: we consider neural networks as part
of an end-to-end system and want to find an input from
scratch that would cause the system to underperform.
Safety of DNNs [11, 21, 22, 27, 37, 43] ensure DNNs match
user-define safety properties. A few focus on DNNs in net-
works and systems [10, 41, 42]. However, these solutions
(1) evaluate safety of the DNN in isolation and (2) can only
analyze specific DNN architectures (e.g., feed-forward neural
networks with piece-wise linear activations).

Other work [12, 31] focuses on finding malicious inputs
for network control algorithms. [45] improves the robustness
of RL policies by finding difficult environments, but they can
only compare the RL policy with static rule-based policies.
Our work focuses on DNN-based systems and enables com-
parison with complex baselines (including other DNN-based
systems or the optimal).

8 Conclusion

We discuss the importance of analyzing DNNs as part of
the entire system in which they are deployed. To evaluate
these learning-enabled systems, we propose a gray-box per-
formance analyzer that uses gradients to identify bad inputs.
We demonstrate that this approach overcomes the limita-
tions of white-box and black-box local search methods. We
also outline future research to extend and generalize this
gray-box method.
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