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Abstract

Network misconfiguration has caused a raft of high-profile
outages over the past decade, spurring researchers to de-
velop a variety of network analysis and verification tools.
Unfortunately, developing and maintaining such tools is an
enormous challenge due to the complexity of network con-
figuration languages. Inspired by work on intermediate lan-

guages for verification such as Boogie and Why3, we develop
NV, an intermediate language for verification of network
control planes. NV carefully walks the line between expres-
siveness and tractability, making it possible to build models
for a practical subset of real protocols and their configu-
rations, and also facilitate rapid development of tools that
outperform state-of-the-art simulators (seconds vs minutes)
and verifiers (often 10x faster). Furthermore, we show that it
is possible to develop novel analyses just by writing new NV
programs. In particular, we implement a new fault-tolerance
analysis that scales to far larger networks than existing tools.

CCS Concepts: · Networks→ Protocol testing and ver-

ification; · Theory of computation → Automated rea-

soning; Verification by model checking.

Keywords: Network Verification, Network Simulation, Con-
trol Plane Analysis, Router Configuration Analysis, Interme-
diate Verification Language
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1 Introduction

Following the explosive rise in the number of internet users
and the emergence of cloud computing, networks have seen
significant growth in their size and complexity. However,
network operators have a hard time keeping up with this
unprecedented growth: in the past few years, network mis-
configuration incidents have caused outages whose effects
range from popular websites like Facebook being inaccessi-
ble [42] to cloud services going offline [35, 41, 46], to airlines
grounding their flights [23, 34, 37].

To help improve network reliability, researchers have de-
veloped numerous verification and testing tools over the last
decade. One wave of tools included Anteater [33], Header-
Space Analysis (HSA) [26], Veriflow [27], NetKAT [4, 18, 44],
NoD [31] and Bayonet [19]. These tools were designed to
analyze the network data plane, the component of a network
responsible for forwarding (or blocking) user traffic from
point A to point B. The tools developed can check both de-
terministic and probabilistic properties of how packets flow
through the data plane, and scale to networks with thousands
of devices and millions of packet-forwarding rules.

A second wave of tools has focused on analyzing the net-
work control plane. The control plane is the component of
a network that gathers information about available routes
(paths) to destinations and chooses which routes to use. Once
the control plane has chosen its preferred routes, it passes
them off to the data plane, which implements them. From
time to time, the control plane will receive new information
about the available routes (e.g., when failures occur), and
when it does, it may compute new routes to a destination.
Tools that analyze the control plane, such as C-BGP [40],
rcc [15], Batfish [17], ARC [21], ERA [14], Bagpipe [49],
MineSweeper [6], FastPlane [32], and ShapeShifter [8], will
analyze the router configurations that specify how routes are
to be chosen and will compute the outcome of those choices
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(i.e., compute the routes that will be used by the data plane).
These tools can then answer questions such as whether the
control plane will compute a route from A to B (i.e., control
plane reachability), or whether it will compute route from A
to B regardless of which single link failure occurs (i.e., con-
trol plane fault tolerance). However, control plane tools are
usually less scalable than the data plane tools, particularly
when it comes to checking properties like control plane fault
tolerance, which may involve computing different routes
from A to B for every possible failure scenario.
This paper focuses exclusively on control plane analysis

tools and the difficulty of building such tools.1 Much of this
difficulty arises from the fact that router vendors such as
Cisco and Juniper each have their own proprietary config-
uration languages that consist of an enormous number of
ad hoc commands that are specific to a particular protocol,
such as OSPF or BGP. To analyze a network control plane,
one must first parse these varied configuration languages
and interpret their semantics.

Fortunately, colleagues at Intentionet have built Batfish [17],
a tool that parses these configurations and creates an in-
termediate representation (IR) on top of which researchers
can develop their own analyses. Indeed, researchers from a
number of different institutions have built verification and
simulation tools using Batfish as a front end [6ś8, 14, 20, 21].

While Batfish is a remarkably useful front end for manag-
ing configurations, its IR does not fundamentally change the
abstractions present in the vendor languages it supportsÐit
represents those surface-level abstractions directly. Doing so
has the advantage of being expedient and straightforward,
but causes Batfish to inherit some of the less desirable proper-
ties of the configuration languages themselves. In particular,
the Batfish IR is quite verbose: A recent examination of the
IR showed it contained 24 statements and more than 100
types of expressions. It has 19 ways just to modify fields of a
routing message. Implementing configuration analyses like
MineSweeper [6] requires understanding the semantics of
all these statements and expressions, which is challenging.
Moreover, Batfish continues to evolve, adding new vendor
features, and with them new components to its IR. This
makes it a challenge to maintain analysis tools. It is even
harder to develop and maintain tools like ShapeShifter [8]
that need to transform conventional routing protocols, as the
Batfish IR does not provide the łbuilding blocksž necessary
to represent new, non-standard routing protocols.

A Low-Level IR for Network Verification. Building so-
phisticated static analysis tools is no easy feat; it requires
familiarity with different domains such as programming lan-
guage semantics, automated reasoning techniques and, in
this case, networking. Fortunately, we can simplify the task
by first parsing source languages into a surface-level IR (i.e.

1Henceforth, whenever we refer to a łnetworkž, the reader may assume we
are referring to the control plane of the network unless stated otherwise.

Batfish’s IR), and then encoding the semantics of this IR into
a lower-level IR designed specifically for verification.

Such an architecture separates key concerns and simplifies
each aspect of the pipeline. Indeed, this methodology has
been used successfully for general-purpose programming
languages in systems such as Boogie [30], Why [16], and
CIVL [43]. The key challenge comes in the design of the
low-level intermediate language for verification: it should
be succint, expressive enough to encode the semantics of
the source language, and tractable enough to admit efficient
analysis of its features.

A Functional Language for Modeling Routing Proto-

cols. Our first contribution is the design of NV, a functional
language for modeling routing protocols. NV uses conven-
tional, expressive and compositional constructs with ordinary,
broadly-understood semantics, such as integers, booleans,
functions, and records. Additionally, it allows users to ex-
press unknowns, such as potential failures or actions of
neighboring networks, in a general way, using symbolic val-

ues, and lets users specify network properties via assertions.
NV’s design provides building blocks for modeling both

standard routing protocols and variations thereon. The latter
is quite useful as large cloud providers have been known
to tweak standard protocols for internal use; accommodat-
ing these tweaks is easier in NV. In addition, these building
blocks can be used to implement transformations of NV pro-
grams. Optimizations, such as partial evaluation, or transfor-
mations, such as message [8] or topology [7, 22] abstractions
can be implemented as NV-to-NV transformations, indepen-
dent of one another and of the back-end analysis used. Prior
to this research, designing a network verification tool in-
volved simultaneously interpreting the low-level commands
from various vendors (Cisco, Juniper, Arista, Force10, etc.),
optimizing their representation, and converting them to the
appropriate structure (e.g., SMT constraints) all at once.
The most difficult design challenge in NV was oriented

around the definition of a dictionary (finite map) type. These
dictionaries need to be expressive enough to encode the key-
value stores and the sets processed bymost routing protocols,
yet simple enough to admit efficient encodings both as SMT
formulae for use in symbolic verification techniques, and
as multi-terminal binary decision diagrams (MTBDDs) for
simulation-based analysis. Such efficient encodings are key
to scaling NV to large networks. We chose a design that
revolves around total maps, allowing us to efficiently repre-
sent concepts such as the set of all possible route announce-
ments; limited the allowed index operations to constants and
symbolic variables; and carefully defined the aggregation
operations (map, mapIte and combine).

To show the design of NV is effective, and that it carefully
walks the tight line between expressiveness and tractability,
we develop a translation from a subset of the control plane
components of Batfish’s IR to NV. This translation covers the
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same control plane features as MineSweeper [6] (excluding
iBGP) and a superset of the features that tools like ARC [21]
model. In particular, it includes encodings of eBGP, OSPF,
static and connected routes as well as redistribution between
these protocols. Our default eBGP encoding does not include
the full path, instead abstracting the path as its length (or,
optionally, as the set of traversed nodes), but does include
communities, local preference, multi-exit discriminator and
policy that modify these fields. Our OSPF encoding includes
OSPF areas and weighted link costs. This paper focuses ex-
clusively on the control plane, and hence data plane features
of configurations such as Access Control Lists, or protocols
such as iBGP, whose analysis requires examination of the
data plane, are not explored here.

Efficient and Flexible Analysis Tools. Our second con-
tribution involves the implementation of two important net-
work analyses over NV programs.

The first is an efficient network simulator, which com-
putes the routes of the network described by an NV program.
The simulator’s design is inspired by the ShapeShifter simu-
lator [8], which uses BDDs. However, where ShapeShifter is
hard-coded to simulate a couple of chosen protocol abstrac-
tions, our simulator efficiently simulates any NV program.
Moreover, thanks to the close correspondence between NV
and OCaml, NV functions may be compiled and natively
executed rather than interpreted. We show that the NV
simulator is on average an order of magnitude faster than
simulators such as Batfish (seconds for NV vs minutes for
Batfish), while also consuming less memory (2GB vs 16GB)
and scaling to larger networks (over a 1000 routers).
The second tool is a verifier that operates via translation

to SMT formula. While the NV simulator scales to larger
networks, NV’s SMT-based verifier is able to process sym-
bolic values (such as a value representing all possible neigh-
bor advertisements). This SMT-based verifier is inspired by
MineSweeper [6], but, like our simulator, operates over any
NV program. For networks that do simple, shortest-path
routing, MineSweeper and NV’s SMT encoding have com-
parable performance, but when more complex policy is im-
plemented, MineSweeper is 10x times slower than NV, and
eventually times out as the network grows.

Novel Network Analyses. The third contribution of this
paper is to show how NV’s expressiveness helps researchers
formulate new analyses with minimal effort. By providing a
programming language that allows users to express network
models easily, one can directly construct non-standard mod-
els that correspond to new analyses. NV makes it easy to
play with these non-standard models, rapidly prototyping
one and then the next to see what does and does not work.
We present a novel fault tolerance analysis implemented

directly as a simple NV-to-NV program transformation. Con-
trary to previous approaches to fault tolerance ([6, 17, 21, 22]),
this analysis scales well, computes precise routes, does not

impose restrictions on the policy or features used, and is
exhaustive. It is also quite a bit more flexible than past anal-
yses: One can consider any combination of node and link
failures they feel is relevant. Since fault tolerance is one of
the most important and difficult properties of networks to
check, this analysis on its own, despite its simplicity, is quite
a breakthrough. And it was originally prototyped in just a
few minutes, rather than taking weeks or months of work,
as past fault tolerance analyses have.

2 An Overview of NV

2.1 How Routing Works

To learn how to route traffic to different destinations, routers
rely on a number of distributed routing protocols. In these pro-
tocols, routers exchange routing messages with their neigh-
bors. These messages (often called łroutesž) contain informa-
tion about a path through the network to a given destination.
Protocols carry different information such as the path itself
(BGP), its hop count (RIP) or physical distance (OSPF, ISIS),
or some complex combination of attributes (IGRP, EIGRP).

A router can be configured to run one or more protocols,
and each protocol can be configured via a different set of
policy parameters. For instance an Internet service provider
might tag routes in BGP to indicate łthis route was learned
from Verizonž, and then drop the route when exporting it to
AT&T to avoid carrying transit traffic for free.

For each destination, a router selects a single best route
among the ones received from neighbors (after applying
any import policies). Subsequently, it forwards this route to
its neighbors, perhaps after transforming it (e.g., by incre-
menting the path length) and applying any export policies.
Eventually, this procedure reaches a stable state, where all
routers have selected the best routes available to them from
their neighbors. It is this stable state that is of interest, as
operators want to ensure that it adheres to their specifica-
tion. Such specifications usually relate to connectivity, traffic
engineering, security or other business considerations.

2.2 An Example Configuration

The distributed nature of routing makes configuration Ð and
the subsequent verification taskÐ a challenging problem. But
that’s not the sole challenge in working with configurations.
Figure 1 shows a configuration snippet for a single router
in the Cisco IOS format; briefly, the first part (lines 1-3)
describes physical connections with other devices, while the
second part (lines 5-14) describes the protocols that the router
is running (OSPF, Static, BGP) and their configurations. For
example, line 12 tells OSPF to inject statically configured
routes, such as the one configured on line 5, into its routing
table. Finally, lines 16-23 define user route policies. Even in
this small snippet, some of the challenges for formal analysis
of such configuration languages quickly become apparent:
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1 interface Ethernet0

2 ip address 172.16.0.0/31

3

4 ip route 192.168.1.0 255.255.255.0 192.168.2.0

5 bgp router 1

6 redistribute static

7 neighbor 172.16.0.1 remote -as 2

8 neighbor 172.16.0.1 route -map RMO out

9

10 router ospf 1

11 redistribute static metric 20 subnets

12 distance 70

13 network 192.168.42.0 0.0.0.255 area 0

14

15 ip community -list standard comm1 permit 1:2 1:3

16 ip prefix -list pfx permit 192.168.2.0/24

17 route -map RMO permit 10

18 match community comm1

19 match ip address prefix -list pfx

20 set local -preference 200

21 route -map RMO permit 20

22 set metric 90

Figure 1. A small fragment of a router configuration.

1. Complex instruction set: Many distinct commands per-
form logically similar operations. For example, line 13 as-
signs the value 70 to the administrative distance of redis-
tributed routes, and line 21 assigns the value 200 to the BGP
local-preference parameter. Similarly, they use specific data
structures, such as prefix-list and community-list to
match routes, instead of generic data structures that serve
multiple purposes. Cisco IOS [10] alone contains over 15000
configuration commands, and over 300 for BGP alone.

2. Lack of reusable building blocks:Configuration languages
lack building blocks. Building blocks are useful for creating
new, non-standard structures, and expressing transforma-
tions or abstractions of protocols, which may accelerate veri-
fication. Programmable building blocks also allow engineers
to describe łmeta-protocolsž, such as our fault-tolerance anal-
ysis, and make it possible to easily attack old problems in
new and better ways.
3. Incomplete semantics: The semantics of the protocols

are not explicit in the configuration. Instead, they are scat-
tered throughout the configuration and the protocol RFC.
For instance, how the BGP protocol selects a route is partially
captured through configuration and partially specified by the
RFC. By making the semantics explicit in a well-understood
metalanguage, we can open up the field of network reliability
research to a broader audience.

NV is designed to address each of these concerns.

2.3 Encoding BGP in NV

The Border Gateway Protocol (BGP) is the protocol used
to exchange routing information between networks on the
internet. In its most basic form BGP implements shortest-
path routing; however, the protocol includes several knobs
which operators can use to implement more sophisticated
policies. To define a model of BGP in NV one defines:

1. a transfer function, defining how routes are transformed
as they are propagated through the network, and

2. a merge function, defining how a node selects a best route.

Figure 2a presents a cut-down model of BGP in NV. In this
model, we consider a single destination and represent routes
towards it as optional values. No value indicates the absence
of a route; otherwise, a BGP route consists of a record with
five components: the path length (length), an integer known
as local preference (lp), an integer known as multi exit dis-
criminator (med), a set of integers known as communities
(comms), and an originator (origin) indicating which node
initially announced the route. Intuitively, the local prefer-
ence value allows an operator to override the shortest-path
selection, while the multi-exit discriminator is used by exter-
nal peers to provide a tie-breaker in case there are multiple
connections to their network. Finally, communities are tags
that a router can attach, remove or test on a route, allowing
network operators to implement custom policies.
The transfer function computes the route to be propa-

gated over an edge in the network using the route selected
by the propagating node. In our working example it sim-
ply increases the path length by 1, but in general, it can be
used to describe more complex transformations, such as the
BGP policy of fig. 1. Finally, when choosing between two
routes, the merge function selects the route with the highest
local-preference value, or, if they are equal, the one with the
shortest path length. If the path lengths are also equal the
multi exit discriminator is used to break the tie.

2.4 Using NV for Verification

Having defined a model of BGP as in fig. 2a, we can use NV
to verify properties about a network running BGP. To do so,
we provide a topology, the initial route of each node and an
assertion to verify as in fig. 2b.

Modeling Unknowns. Operators are often interested in
verifying properties with respect to factors outside their con-
trol. Such factors could be potential hardware failures (a
failed link or device), or a route sent from a peer network.
Inspired from other solver-aided languages [47], NV uses
symbolic values to model such łunknownsž. A symbolic value
is not bound to a single concrete value; rather it represents
any possible value of its type. In the example of fig. 2b a sym-
bolic value models the fact that node 4 may send arbitrary
routes. Intuitively, this represents an external network (node
4) that peers with our network (nodes 0-3).

Specifying Properties. To specify a property of the con-
verged (stable) state of the network we may define an as-

sertion. An assertion is simply a predicate over a node and
the final route it has selected. In the case of fig. 2b, our spec-
ification asserts that node 4 cannot hijack traffic from our
network, i.e. nodes internal to our network should prefer the
route that originated from node 0.
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1 type bgp = {length:int; lp:int; med:int;

2 comms:set[int]; origin:node}

3

4 type attribute = option[bgp]

5

6 let transBgp (e: edge) (x: attribute) =

7 match x with

8 | None -> None

9 | Some b -> Some {b with length = b.length +1}

10

11 let isBetter x y =

12 match x,y with

13 | _, None -> true

14 | None , _ -> false

15 | Some b1, Some b2 ->

16 if b1.lp > b2.lp then true

17 else if b2.lp > b1.lp then false

18 else if b1.length < b2.length then true

19 else if b2.length < b1.length then false

20 else if b1.med <= b2.med then true else false

21

22 let mergeBgp (u: node) (x y: attribute) =

23 if isBetter x y then x else y

(a)

2

3 0

1

4

1 include bgp

2 let nodes = 5

3 let edges = {0n=1n;0n=2n;1n=4n;2n=4n;1n=3n;2n=3n}

4

5 symbolic route : attribute

6

7 let trans e x = transBgp e x

8

9 let merge u x y = mergeBgp u x y

10

11 let init (u : node) =

12 match u with

13 | 0n ->

14 Some {length =0; lp=100; med =80; comms ={}; origin =0n}

15 | 4n -> route

16 | _ -> None

17

18 let assert (u : node) (x : attribute) =

19 match x with

20 | None -> false

21 | Some b -> if (u <> 4n) then b.origin = 0n else true

(b)

Figure 2. (a) shows a basic model of BGP in NV. (b) shows a network running BGP. Nodes 0-3 model an internal network and
node 4 a peer announcing an unknown route to nodes 1-2. Can we verify that node 4 cannot hijack traffic from our network?

2.5 Implementing Network Analyses

To verify properties of a network, we need to compute its
stable states, also known as its solutions. A state of a network
is a labelling function L that maps each node to a route.
Such a state is stable when given a node and the routes
associated with its neighbors, there is no incentive for the
node to adopt a route that differs from the one it already has.
More precisely, we define the choices of node u as the routes
received from neighbors, i.e. the set of routes computed by
applying the transfer function over each edge (v,u) and the
label L (v ) of the neighbor:

choices(u) = {a | e = ⟨v,u⟩, a = trans e L (v )}

The label of a node u can then be described as a combination
of the choices provided from its neighbors and its initial
route:

L (u) = init(u) ⊕ a1 . . . ⊕ an

when choices(u) = {a1, . . . ,an }

and x ⊕ y ≜ merge u x y

When the equation above holds for every node u in the net-
work, the function L defines a stable state for the system.
While not formulated in exactly the same way, these defi-
nitions reflect the same notion of stability as developed in
earlier work by Griffin et al. [24] and Sobrinho [45].

SimulatingRouting Protocols. Oneway to compute a sta-
ble state is through simulation. Network simulation mimics
the route exchange process in which routers engage. It com-
putes a fixpoint of the process in which each node uses the
merge function to select the best route among the received

ones, then modifies that route according to the transfer func-
tion and further propagates it to its neighbors (see section 5.1,
algorithm 1). To achieve high performance, our simulator
processes routes for multiple destinations in bulk [8], via
a novel implementation of maps based on multi-terminal

binary decision diagrams (MTBDDs) [11].
To simulate the network, we need to execute the merge

and transfer functions. Typically network simulators do this
by using an interpreter [17, 32]. However, interpreters can
be slow, particularly when route policy is complex. An alter-
native (by two orders of magnitude in certain cases) relies
on native execution to compute routes; this is enabled by
NV’s conventional language design. Section 5.1 details the
compilation and linking with a simulator process.

SMT Verification. A second way to check properties of
converged network states is through SMT [6]. The SMT-
based approach does not model the convergence procedure;
instead, it captures the stable solutions of the network using
constraints. The challenge in creating an efficient SMT encod-
ing is that high-level programs introduce abstractions that
do not favor SMT reasoning. Much like a regular compiler,
NV relies on an optimizing pipeline to produce tractable con-
straints. Section 6.2 shows that NV’s systematic approach to
optimizations results in improved performance compared to
state-of-the-art control plane verifiers like MineSweeper.

The strength of the SMT-based analysis lies in its ability to
perform symbolic reasoning. With respect to NV, this means
that it can indeed reason about all possible assignments to a
symbolic value. Returning to our working example in fig. 2b,
the SMT analysis will refute our assertion: node 4 may send
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1 include bgp

2 type attribute = option [(set[node],bgp)]

3

4 let trans e (x : attribute) =

5 let (u,v) = e in

6 match x with

7 | None -> None

8 | Some (s, b) ->

9 (match transBgp e b with

10 | None -> None

11 | b' -> Some (s[u := true], b')

12

13 let merge u x y =

14 match x,y with

15 | _, None -> x

16 | None , _ -> y

17 | Some (s1,b1), Some (s2,b2) ->

18 let b = mergeBgp u b1 b2 in

19 if (b = b1) then (s1, b) else (s2, b)

Figure 3.Model capturing traversed nodes

d

Figure 4. A FatTree network with two link failures inside a
pod; the failures do not affect nodes outside the pod.

a better route than node 0 (e.g. one with same path length as
the route from node 0 but lower med value) and since there
are no configured route filters on nodes 1 and 2, node 4 can
successfully hijack traffic from our network.
In contrast, exhaustive analysis using approaches based

on normalization, such as simulation, is usually impractical.
Instead, one explores a limited set of cases deemed interest-
ing for the assertion under test, by by providing concrete
values in place of symbolic ones.

2.6 Modeling Protocols

Large cloud providers are known to run modified versions
of protocols in-house. For instance, a recent MineSweeper
feature request was to change the way in which BGP ranks
routes [38]. Such changes require familiarity with low-level
code that generates the constraints encoding BGP’s route
ranking. Moreover, this change does not apply to other tools,
such as Batfish, which would need another patch. In contrast,
in NV it suffices to tweak the merge function (for example,
by adapting the translation from Batfish to NV), and the
change is automatically usable by all available analyses.

Furthermore, operators have information specific to their
networks and the properties they want to check. They can
leverage this information and NV’s flexibility to adapt the
model to their needs, for example by capturing more details
or making it more abstract. For instance, to reason about
waypointing (i.e. does a route traverse certain nodes) we may
augment the routes with a set of traversed nodes (fig. 3).

1 let transFail transBase e (x : dict[edge , α ]) =

2 mapIte (fun e' -> e = e')

3 (fun v -> None)

4 (transBase e) x

5

6 let mergeFail mergeBase u x y =

7 combine (mergeBase u) x y

8

9 let initFail initBase u = createDict (initBase u)

Figure 5.Meta-Protocol for Fault Tolerance Analysis

2.7 Programming New Analyses

An NV program does not necessarily have to emulate a rout-
ing protocol. Fault tolerance analysis is the holy grail of
network verification tools: simulators cannot provide ex-
haustive guarantees, and SMT-based approaches do not scale.
We implement Ð in just a few lines of NV code Ð a fault toler-
ance analysis that leverages sharing in our flexible map data
structure to simulate all possible failure scenarios at once.
Our analysis is orders-of-magnitude faster than the naive
simulator-based approach of independently trying out all fail-
ure scenarios, and faster than SMT-based approaches while
also scaling to large networks (i.e. with tens of thousands of
links) that are out-of-reach to SMT verifiers (section 6).

The NV program of fig. 5 defines ameta-protocol that mod-
els routes under different failure scenarios, using a map from
edges to routes. Intuitively, each map entry defines a single
link failure scenario. The transfer function over an edge e
uses an if-then-else operation over the map (see, section 3.1)
to apply the transfer function of a regular routing protocol
(e.g. the BGP transfer function transBgp of fig. 2a) over all
map entries except the one which corresponds to e; that en-
try is replaced with a dropped route. Here we assume that a
dropped route is denoted as a None value, but one can easily
generalize the meta-protocol of fig. 5 to use different łdefaultž
values. The merge function uses the combine primitive to
perform a pointwise application of the merge function for
the underlying protocol.
The analysis can be easily extended to multiple link fail-

ures or even combinations of link and node failures. For
instance, to compute the routes when there is a failed node
and a link failure, we augment the map keys to be tuples
of a node and an edge and adjust the transfer function to
drop the route if it’s being propagated over a failed link or
from/towards a failed node.

The key insight behind our analysis is that, usually, a fault
in the network only affects the routers that are topologically
łclosež to it. This is because networks are often built with
some redundancy to sustain hardware faults. For instance,
in the example of fig. 4 link failures inside a pod (a group
of 4 routers, 2 pink and 2 blue in this case) do not affect the
routes of nodes outside of it. More generally, faults can be or-
ganized in classes, each class triggering a different behavior.
Unfortunately, determining those classes statically (i.e. with-
out solving the routing problem) is a difficult open problem
[22]. The key to the performance of our analysis is that it
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d ::= symbolic x : ty | require e | let x : ty = e | type t = ty

v ::= NuN | true | false | None | Some v | (v1, v2) | {ℓ1 : v1; . . . ; ℓn : vn }
e ::= v | x | let x : ty = e1 in e2 | fun (x : ty) → e | e1 e2 | Some e

| (e1, e2) | {ℓ1 : e1; . . . ; ℓn : en } | e.ℓ | if e1 then e2 else e3

| (match e0 with | p1 → e1 . . . | pn → en)

ty ::= int⟨N+⟩ | bool | node | edge | option[ty] | α | ty1 → ty2

| (ty1, . . . , ty2) | {ℓ1 : ty1, . . . , ℓn : tyn } | dict[ty1, ty2]

Figure 6. Core NV syntax

create : β → dict[α, β ]
get : dict[α, β ]→ α → β

set : dict[α, β ]→ α → β → dict[α, β ]
map : (β → γ ) → dict[α, β ]→ dict[α, γ ]
mapIte : (α → bool) → (β → γ ) → (β → γ ) → dict[α, β ]→ dict[α, γ ]
combine : (β → β → γ ) → dict[α, β ]→ dict[α, β ]→ dict[α, γ ]

Figure 7. NV supported map operations.

dynamically finds these classes. It does so by leveraging the
MTBDD implementation of maps which, by construction,
groups together map entries with the same value.

3 The NV Language

NV has many features of a typical functional language (fig. 6),
including let-bindings, match statements, (non-recursive)
functions, and data structures such as options, tuples, records,
and maps. NV also has a set data type, which is imple-
mented as a map to boolean values. The base types are
booleans, integers, nodes, and edges. Furthermore, integers
are parametrized by a number of bits; for example, we write
int8 for the type of 8-bit integers and 5u8 for the 8-bit rep-
resentation of the value 5. Lack of an annotation means a
32-bit size. Specifying the number of bits allows for more
accurate modeling of protocol semantics and enables time
and space savings in MTBDD-based analyses (section 5.1).
NV also supports let-polymorphism, though the messages
exchanged between nodes must have a concrete type.
An NV program is a series of declarations (d) capturing

the topology of a network, the type of the routes exchanged,
and the init, transfer, and merge functions that describe
the semantics of the protocol (fig. 8).

NV also includes declarations to support verification. The
first is an assert function, which expresses a specification
about the converged state of a node. Users may also declare
variables that are bound to a symbolic value [47]. A symbolic
value represents a class of values as opposed to a single con-
crete value. In NV, their exact interpretation depends on the
analysis. SMT-based analyses treat symbolic values as repre-
senting any concrete value. Analyses based on normalization
(e.g. a simulator) require concrete, non-symbolic values. In
this case, symbolics are treated as inputs to the program;
prior to execution, symbolic values are fixed to concrete
ones, provided by the programmer or by random generation.

A user may also constrain the class of concrete values that
a symbolic value represents by providing a boolean requires

nodes : int

edges : set[edge]
init : node→ α

transfer : edge→ α → α

merge : node→ α → α → α

assert : node→ α → bool

Figure 8. NV required declarations and types.

clause. Any assignment of a concrete value to a symbolic one
must ensure that the requires expression evaluates to true.

3.1 Semantics of Maps

One of the more interesting aspects of NV is its treatment of
maps. Giving semantics to maps is straightforward (e.g. as a
function), but efficiently implementing them in an interpreter
or as constraints is not as easy. We found that total maps

admit efficient implementations both when interpreted and
when encoded as constraints.

The key principles driving our design of maps in NV are
derived from their use in the context of routing:

1. Maps are typically indexed using statically-known values.
For instance, routers route or block particular, known,
subnets. They attach a particular tag to a BGP message.
These values appear as constants in the configuration and
need not be computed dynamically.

2. The final solutions of routing algorithms are maps from
IP subnets to routes. Computing those solutions does not
require aggregation operations, such as folds, across those
maps. On the other hand, routing algorithms do need to
compute routes for all subnets, so we do need operations
that apply functions across all elements of the map.

3. There is a lot of symmetry in networks. Hence, many
different keys may be associated with the same value.
For instance, in our fault tolerance analysis the map keys
represent many different failure scenarios, but the values
are taken from an often small set of routes (e.g. as in fig. 4).

Points 1 and 2 are critical to our tuple-based SMT encoding
of maps (section 5.2), while point 3 motivated our MTBDD-
based interpretation of maps (section 5.1). In fact, we enforce
point 1 by requiring that the keys used in map get/set opera-
tions are constants, rather than arbitrary expressions.
Figure 7 shows the map operations in NV. Map get (also

written m[k]) and set (written m[k := v]) return and update
the value associated with key k of the map, respectively. The
combine function merges the values of two maps key-wise.

In line with the principles above, our maps support opera-
tions such as map, which maps a function over the values of a
map, and mapIte, which maps one of two different functions
over the values, based on a boolean function over their cor-
responding key. Intuitively, mapIte is useful to implement
operations that would otherwise require the map operation
to access both keys and values (e.g., filtering routes based

964



PLDI ’20, June 15ś20, 2020, London, UK Nick Giannarakis, Devon Loehr, Ryan Beckett, and David Walker

on their prefix). While more general, this operation Ð com-
monly known as mapi Ð cannot be efficiently implemented
using our MTBDD encoding of maps (section 5.1).

Tradeoffs and Limitations. When designing an interme-
diate verification language there is a tension between the
expressivity needed to model the source language(s) and the
tractability of analysis. In designing NV, we limited ourselves
to constructs that admit efficient and complete verification
procedures (section 5). In addition to our restrictions on
map operations, we have omitted features such as recur-
sive functions and datatypes. These conditions, while overly
restrictive for a general-purpose language, can (with few
exceptions) be easily accommodated in our context.

One such exception is BGP’s record of a route’s path as a
string. At each hop, BGP will push the name of the router
onto the front of the string. A user may construct route
filters using regular expressions over the string. Such oper-
ations cannot be modeled in NV, though that may change
in the future. Fortunately, however, verification (as opposed
to implementation) does not usually require a precise model
of such featuresÐapproximations suffice. For instance, one
recent analysis [8] demonstrated such features can be over-
approximated without loss of precision in real networks.

4 Translating Router Configurations

To obtain NV programs from actual router configurations,
we modify Batfish to emit NV code. We first infer the basic
structure of the network (the topology and which protocols
are in use), then translate the configuration route-maps that
implement network-specific policy.

4.1 Modeling the Topology and Active Protocols

In this stage, we infer the physical connectivity between
routers, the different protocols that each router runs, and
the prefixes (subnets) they announce.

For the topology, the translation is simple. We create one
node in the graph for each router, and add edges between
each pair for which Batfish has inferred physical connec-
tivity. Representing the protocols is also straightforward.
Each router in a network may run several routing protocols,
and may also contain hardcoded static or connected routes.
This information is stored in a table, known as a Routing
Information Base (RIB), that holds information for all ac-
tive protocols. The RIB also contains a selection of which
protocol’s route is best according to network policy.

We model the RIB as a map from prefixes (destinations) to
a record containing each protocol’s route to that destination.
The example in fig. 9 maintains one each for OSFP and BGP,
and two more for hardcoded routes. The fields of ribEntry
are options because there may be no route through a given
protocol. The selected field denotes the protocol whose
route was chosen as best: 0 for OSFP, 1 for BGP, etc.

1 type ribEntry = {

2 ospf : option[ospfRoute ];

3 bgp : option[bgpRoute ];

4 static : option[staticRoute ];

5 connected : option[connectedRoute ];

6 selected : option[int2] }

7

8 type ipv4Prefix = (int , int5)

9 type attribute = dict[ipv4Prefix , ribEntry]

Figure 9. Type of routes exchanged in our network model.

4.2 Modeling the Policy

Network operators implement policy over a network using
a mechanism called route-maps. A route-map is a list of
statements which test and modify certain characteristics of a
route. For instance, a route-map applied on a BGP connection
may check if a certain tag is present and increase or decrease
the local preference value accordingly.
Abstractly, route-maps contain two types of statements:

conditional statements which test properties of the route, and
mutation statements which modify attributes of the route.

Intermediate Policy Representation. Converting route-
maps to NV is complicated somewhat by the different ab-
straction levels ś route-maps operate over a single route,
while our NV encoding processes all routes at once using
the dict data type. To convert route-maps to NV expres-
sions, we go through a directed acyclic graph (DAG) based
intermediate representation. We represent each route-map
as a DAG in which non-leaf nodes correspond to conditional
statements, and leaf nodes correspond to a list of mutation
statements. This representation allows us to separate prefix
processing (map keys) from route processing (map values)
by swapping DAG nodes to reorder conditional statements.

Figure 10a shows a route-map that sets the local-preference
value of a BGP route based on the attached communities and
the destination prefix. The DAG of fig. 10b captures the se-
mantics of this route-map; note that if no route-mapmatches,
the route is implicitly dropped (denoted by ⊥).

A natural translation from this DAG representation to NV
is a chain of if-then-else expressions, which are mapped over
routes in the RIB. However, since route-maps may test not
only the route but also the prefix (i.e. the keys in the RIB), we
must use the mapIte operation, which may test map keys.
Doing so, however, requires some extra effort: conditional
statements on the prefix must be executed first, so they may
appear as predicates for mapIte.

Fortunately, our DAG-based IR makes this easy; we need
only swap nodes in the DAG until all nodes which condition
on the prefix are at the top (i.e. any parents also condition
on the prefix). Figure 10c shows the result of applying this
transformation to the DAG in fig. 10b. Translating to an NV
expression using mapIte is easy now; the pink nodes are
used as predicates to mapIte, while the rest are translated
as if-then-else chains over the map values (fig. 10d).
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(a)

1 route -map RM1 permit 10

2 match community comm1

3 match ip address prefix -list pfx

4 set local -preference 200

5 route -map RM1 permit 20

6 match community comm2

7 set local -preference 100

(b)

match comm1

match ipmatch comm2

lp <- 200lp <- 100⊥

tf

f t

f

t (c)

match ip

match comm1match comm2

lp <- 200lp <- 100⊥

tf

f t

f

t

(d)

1 let map_option f o = match o with | None -> None | Some x -> f x

2

3 let transRouteMap (x : dict[ipv4Prefix ,option[bgp]]) = mapIte (fun pre -> matchPrefix pre pfx)

4 (fun ov -> map_option (fun v -> if matchComm comm1 v then Some {v with lp = 200} else

5 if matchComm comm2 v then Some {v with lp = 100} else None) ov)

6 (fun ov -> map_option (fun v -> if matchComm comm2 v then Some {v with lp = 100} else None) ov) x

Figure 10. (a) defines a single route-map, RM1; (b) shows its DAG representation. (c) shows the transformed DAG, where all
conditional statements on prefixes are on the top of the DAG, and finally, (d) is what the resulting NV function looks like.

5 Network Analyses

5.1 Simulation

A control plane simulator is an algorithm that mimics the
exchange and processing of routes as dictated by the seman-
tics of the protocols in play. Existing simulators such as Bat-
fish [17] and FastPlane [32] are invaluable industrial tools for
testing the consequences of various routing configurations.
The key difference between our simulator and these others
is that they are designed to simulate specific protocols (e.g.,
BGP, OSPF, etc) where as our simulator simulates the NV
programming language. A standard interpreter implemen-
tation that treats NV structures as ordinary functional data
structures would have led to non-competitive performance.
To accelerate performance, we use specialized data structures
(e.g., MTBDDs) and domain-specific optimizations.

The SimulationAlgorithm. Algorithm 1 presents the core
simulation algorithm. We use the notation ⟦e⟧ to denote exe-
cution of the functional components of NV, including the init,
transfer and merge functions. We describe the non-standard
elements of the interpreter in the following subsection.
The goal of the algorithm is to compute the solution L

to the system. Recall that such a solution is a stable state of
the system. In other words, the solution L (v ) at every node
v must be equal to the merge of its initial attribute with all
attributes transferred from its neighbors (see section 2.5).

Overall, the algorithm for computing solutions is a work-
list algorithm that stores the nodes to be processed on a
priority queue (q). Lines 6-9 initialize the solution L and
populate the queue with all nodes in the network. Lines 10-
11 select a node from the queue to process, or, if there are
none left, terminate the algorithm.2

Lines 12-20 explain how to process a node u. To do so,
u sends its current attribute to all of its neighbors v . Each
neighbor v may need to update its solution. The neighbor
v checks whether it has previously received information
from u (i.e., if u ∈ received(v )). If not, it can simply merge
the new information with its current solution (lines 19-20).
Otherwise, v’s solution contains stale information from u.

2The algorithm is not guaranteed to terminate. Past work [12, 24, 45] has
studied criteria for termination that can be checked.

The simple thing to do in this case is to recompute a merge
of all received messages, including the new one from u (line
18). However, this is costly, so we use an observation from
ShapeShifter [8], which is that when (merge old new) = new

it suffices to merge new into the existing solution rather than
recomputing a merge of all received messages (lines 15-17).

Interpreting NV with MTBDDs. Multi-Terminal binary
decision diagrams (MTBDDs) are a variant of BDDs capable
of representing functions from finite domains to arbitrary
values (rather than just to booleans). MTBDDs have been
used for symbolic model checking of domains requiring rich
structure, such as probabilistic systems [2]. We leverage the
fact that MTBDDs store one copy of each leaf Ð since NV
maps typically contain many repeated values, an MTBDD
representation is quite compact. Moreover, the NV simulator
frequently applies the same operation to each entry in a map
Ð sharing of leaves means we need apply the operation only
once per distinct entry. Finally, the canonical structure of
MTBDDs enables efficient equality tests. Fast (in)equality
tests significantly improve simulator performance by quickly
testing if a node’s attribute changed after a merge operation.

To represent a map as an MTBDD, we must represent its
domain as a series of binary decisions. With the exception of
maps and functions, types in NV are designed to be finitary,
hence they can be represented in such a fashion. For instance,
finite integers are represented bitwise; fig. 11a shows the
MTBDD corresponding to a total map from 3-bit integers to
values of type option[int].

Most map operations reduce to constructing BDDs and
combining them with the MTBDD that represents the map.
Figure 11 illustrates how to construct several MTBDDs for
simple functions over 3-bit integers and apply them. Al-
though MTBDDs provide us many advantages, constructing
BDDs and combining them can be computationally expen-
sive. To amortize the cost of these operations we cache them;
in practice, cache hits are likely to occur frequently during
simulation since multiple nodes have similar configurations
(e.g. filtering the same communities).

Native Simulation. Past implementations of control plane
simulators ([17, 32]) have interpreted computational elements
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Algorithm 1 Network Simulator

1: procedure Update(L, q, v , route)
2: if route , L (v ) then L (v ) ← route; q ← q ∪ {v }

3:
4: procedure simulate(V, E, init, trans, merge)
5: q ← {}

6: for u ∈ V do

7: L (u ) ← init(u ) ▷ Best route of node u
8: received(u ) (u ) ← init(u ) ▷ Routes received at u
9: q ← q ∪ {u }

10: while q , empty do

11: u ← pop q ▷ Propagate u ’s route
12: for v ∈ neighbors(u ) do
13: new← ⟦trans((u, v ), L (u ))⟧
14: if u ∈ received(v ) then ▷ Is there a stale route?
15: old← received(v ) (u )
16: if ⟦merge(v, old, new)⟧ = new then ▷ Incremental update
17: Update(L, q, v , ⟦merge(v, L (v ), new⟧)

18: else Update(L, q, v ,
⋃
⟦merge⟧ received(v )) ▷ Full update

19: else Update(L, q, v , ⟦merge(v, L (v ), new)⟧)
20: received(v ) (u ) ← new

of control plane protocols. Of course, interpreters are gen-
erally much slower than compiled programs. In our case,
because we have already mapped the ad hoc vendor configu-
ration languages into a functional programming language,
the work required to compile NV is significantly reduced.
Indeed, we can translate NV’s computational core to OCaml,
use OCaml’s compiler to obtain assembly code, and link the
compiled binary to the simulator.
The translation from NV to OCaml is straightforward

for most constructs; functions, options, integers, booleans,
and tuples all have corresponding constructs in OCaml. The
notable exception is maps, as there is no MTBDD-based
map construct in OCaml, and so we must reuse the MTBDD
librarywe developed for the interpreter. This library converts
the abstract syntax of NV values into keys for MTBDDs and
allows NV values to be stored in the leaves of MTBDDs.
However, it does not allow arbitrary OCaml values to be used
as keys/values in MTBDDs. To bridge the gap between this
library and the OCaml representation of the rest of the NV
values, we convert a subset of OCaml into NV (an embedding)
and, conversely, convert the subset of NV that may be used
as map keys/values back into OCaml (an unembedding).

5.2 SMT-based verification

The key insight in SMT verification of control planes is that
one does not need to model the message-passing process
directly[6, 24]. Instead, one can specify the requirements on
the stable stateÐthat is, that every node holds an attribute
equal to the merge of its initial state and the transfer of its
neighbor’s attributes. If the converged states are specified
by a formula N (shown in section 2.5) and we wish to verify
a property P holds in those states, it suffices to show that

(a)

b2

b1

b0

Some 0

(b)
b2

false true

(c)
b2

None Some 1

Figure 11. Implementation of mapIte (fun k -> k > 3)

opt_incr (fun v -> None) (create (Some 0)), which
increments the length of routes with key greater than 3, and
drops others, for a map from 3-bit integers to the Some 0

value. (a) MTBDD for a map (create (Some 0)) (presented
is an unreduced MTBDD). Nodes are labelled with a bit (b2
is most significant). If a bit is false, one follows the dashed
line to find the corresponding structure; otherwise, the solid
line. Here, any bit pattern leads to (Some 0). (b) MTBDD
encoding of the (fun k -> k > 3). (c) The result of mapIte,
by performing an MTBDD apply operation on (a) and (b) and
mapping opt_incr and (fun v -> None) over the result.

N ∧ ¬P is unsatisfiable; that is, there is no converged state of
our network in which P does not hold.
As with the simulator, the key difference between NV’s

SMT verification engine and previous network verification
engines, like the one implemented in MineSweeper, is the
flexibility of the system. Rather than encoding specific proto-
cols directly as SMT formulae, we encode features of the NV
language. Most importantly, we can optimize NV programs
far more systematically than was possible during the ad hoc,
one-pass translation used in e.g.MineSweeper.

An Optimizing Pipeline to SMT. SMT solvers offer theo-
ries for reasoning about complex constructs such as datatypes
and arrays. Unfortunately, we have found that such theo-
ries perform relatively poorly in this context. As a result,
before converting NV to SMT, we eliminate complex NV data
types through a series of mostly standard source-to-source
transformations.

Map Unrolling. Map operations are chosen to allow pro-
grammers to specify maps with huge domains, such as the
domain of all 232 IP addresses, but to only pay a cost propor-
tional to the subset that is used, such as the (much smaller)
set of IP addresses that appear in the network. In particular,
because there are no aggregation operations over the the
entire map, such as a fold, entries that are never accessed via
a get operation need not be represented. We implement such
sparse maps as tuples, via a map unrolling process, where an
element of the tuple is reserved for each key that accesses
the map. Map accesses then become tuple projections.
When the keys used to access a map are constants, im-

plementing the map as a tuple is straightforward Ð collect
all the n constant keys used in the program and create a
n-tuple with an entry for each constant. However, we also
allow indexing maps with symbolic values, whose value is
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unknown at compile time. To accommodate both n constant
keys c1, . . . , cn andm symbolic keys s1, . . . , sm , we use a tu-
ple of size n +m where the value associated with ci appears
in element i and the value associated with sj appears in ele-
ment n + j. Of course, symbolic key sj may actually resolve
to the constant ci . In this case, the computation must be as if
the constant ci was used in sj ’s place. To do this, we encode
map get on a symbolic key as follows (map set is similar).
Here, assume we have one constant key c and two symbolic
keys s1, s2.
1 encode(m[s]) = if s = c then encode(m).0 else

2 if s = s1 then encode(m).1 else encode(m).2

OptionUnboxing. Expressions of type option[A] are trans-
lated to pairs of type (bool, A) where the first component
is false for None (and the second component is irrelevant),
and true for Some.

Tuple Expansion and Flattening. After maps and options
have been eliminated, the only complex data type left are
tuples. We eliminate them too by flattening nested tuples and
expanding variables of tuple type, and then simply encode
the flat tuples as independent variables/expressions.

Partial Evaluation. Our transformations often lead to an
explosion in program size as they introduce many interme-
diate expressions. To mitigate this, we partially evaluate the
program and apply some additional simplifications before
SMT encoding, normalizing away most of the clutter intro-
duced by language abstractions and transformations.

From Expressions to Constraints. To translate an NV
program to constraints, we follow a standard model checking
approach: we inline all functions and rename variables to
ensure that bindings are unique. After applying the trans-
formations above, the remaining expressions have a direct
translation to SMTLIB2. Importantly, the translation only
relies on the quantifier-free core and linear arithmetic (or
bitvector) fragments of SMT solvers, which helps achieve
good solver performance and guarantees completeness.

6 Evaluation

To evaluate NV3, we conducted experiments on several bench-
marks, including a collection of real data center and wide-
area network topologies along with a collection of synthetic
router configurations based on real policies. We evaluate NV
along several dimensions: (i) the performance of its symbolic
SMT-based analysis compared to MineSweeper [6], (ii) the
performance of the new fault-tolerance analysis compared to
MineSweeper, (iii) the performance of its simulation engine
compared to Batfish [17], and (iv) the impact of native com-
pilation on network analysis time. We run all experiments
on a 2015 Mac with a 4Ghz i7 CPU and 16GB of memory.

3The source code for NV and the networks used for experiments can be
found at https://github.com/NetworkVerification/nv

6.1 Networks Studied

For data center topologies, we focus on FatTree [1] designs,
commonly used to interconnect large numbers of servers
while providing fault tolerance and high bisection bandwidth.
Fattree designs are parameterized by k , the number of łpodsž,
and by varying k , one can explore the impact of topology size
on analysis time. For routing, modern datacenter designs use
the eBGP routing protocol [29] for its scalability and policy-
rich configurability, coupled with variants of shortest path
routing and equal cost multipath (ECMP) load balancing.
We consider two different policies described in the liter-

ature: a pure shortest-path routing policy (denoted using
SP), and a variant that uses tagging and filtering to disallow
łvalley routingž’ [9], i.e. dropping routes that go through the
same layer of the fat tree multiple times (denoted FAT).

To evaluate our fault tolerance, we consider both the (sym-
metric) data center networks as well as an asymmetric wide-
area network topology (USCarrier, consisting of 174 nodes
and 410 links) from the Topology Zoo [28] with a policy
previously synthesized by NetComplete [13].

6.2 Performance of SMT Verification

We compare our SMT-based analysis with MineSweeper, the
state-of-the-art SMT verifier for control planes. For the ex-
periment we use six FatTree networks running the routing
policies described above, and ranging in size from 80 to 180
routers (nodes)4. MineSweeper and NV solve slightly differ-
ent problems; Minesweeper asserts facts about a data packet
in the network, which requires modeling the part of the con-
trol plane that affects this data packet. On the other hand,
NV currently only models the control plane and does not
consider data packets. However, since there are no dataplane
access control lists (ACLs) in the examples, the encodings are
similar [6]. Each leaf in the fat tree announces a destination
prefix; we pick a node at random (called the destination).
For MineSweeper, we assert that a data packet sent from

4SP(k) and FAT(k) each have (5/4)k2 nodes and k3 edges
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Figure 12. SMT time to solve the constraints for NV and
MineSweeper (MS). MineSweeper timeouts after 30 minutes
for FAT10 and FAT12.
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any node in the network, with a concrete destination IP that
matches the prefix of our destination, reaches the destination.
Similarly, in NV, we assert that every node has a route to the
prefix announced by the destination node.

Discussion. Figure 12 compares the SMT time for the con-
straints generated by MineSweeper and NV. Our goal is not
to compare the absolute verification time, but rather to ob-
serve differences in performance trends.

Networks based on shortest-path routing have similar ver-
ification time and scaling pattern. The FAT networks, which
route based on more complex policy, provide more interest-
ing data. For NV, SMT time is 40-50x slower compared to the
SP networks. On the other hand, MineSweeper only verified
the smaller 80 node network, with a slowdown of more than
500x. It is difficult to pinpoint the cause of this difference
between the two; however, it is likely that some of the opti-
mizations MineSweeper performs do not kick in when deal-
ing with more complex policy. For instance, MineSweeper
also performs some forms of partial evaluation. However,
unlike NV, MineSweeper reduction rules are rather ad-hoc,
as they are defined over a language that was designed for
neither partial-evaluation nor translation to constraints.
Unsurprisingly, MineSweeper computes the SMT encod-

ing faster than NV (not shown in fig. 12). This is because
MineSweeper builds on top of the original structure of the
problem, while NV requires many transformations to re-
duce the abstractions introduced. However, the bottleneck
remains the constraint solver; the encoding procedure can be
further optimized, and even parallelized, but it is not obvious
how to improve the performance of the SMT solver.

6.3 Performance of Fault Tolerance Analysis

Next, we examine the performance of our map-based fault
tolerance analysis that simulates all faults at once.

Comparisonwith SMT-basedApproaches. Currently, the
only other tool that provides exhaustive fault-tolerance veri-
fication of networks with expressive policy is the SMT-based
analysis of MineSweeper. Figure 13a compares the verifi-
cation performance of our analysis; MineSweeper; and the
SMT backend of NV, when verifying single link fault toler-
ance. As witnessed in the previous experiment, SMT-based
techniques have certain scaling limits even when failures Ð
which largely increase the state space Ð are not considered.
Unsurprisingly, in the presence of failures the performance of
the SMT-based analysis deteriorates even faster before even-
tually timing out. In contrast, our MTBDD-based analysis
leverages the symmetries in failure scenarios and computes
the routes for any possible failure in a matter of seconds.

Failure Analysis Scaling. We further evaluate how the
fault tolerance analysis scales as we increase the size of the
networks and the number of failures (fig. 13b). We note that

precise fault tolerance analysis of some of these networks is
out of reach of existing network analysis tools5.
In the highly symmetric fat tree topologies, the analysis

scales linearly with the number of link failure combinations.
For instance, considering a single link failure, scaling is prac-
tically linear in the number of links. Of course, the number
of unique failure combinations grows exponentially as we
increase the bound on link failures, as demonstrated by the
slowdownwhen considering 2 or 3 link failures for a network
like FAT28, which has roughly 22,000 links.
On the other hand, USCarrier faces greater impact when

the number of failures is increased; this is because the net-
work is less symmetric and lacks redundancy to sustain mul-
tiple failures. As more edges fail, the network’s behavior
changes significantly. Hence, by the time we reach 3 link fail-
ures, the routes computed for each scenario can vary wildly,
reducing the sharing that MTBDDs exploit.

Single-prefix vs All-prefixes. An alternative model takes
advantage of disjoint prefixes, i.e. prefixes whose routing
solutions can be computed independently. We found that
fault tolerance analysis for each destination prefix separately
is more effecient than doing all-prefixes simultaneously, for
a number of reasons. First, single-prefix models have signifi-
cantly more uniform routes among different failure scenarios
and hence the underlying MTBDDs achieve better sharing.
Second, single-prefix models make the most of native execu-
tion thanks to a reduced number of embedding/unembedding
operations (see next section for details). Third, we amortize
the compilation cost of native simulation, as we compile
once and then run multiple simulations, one per destina-
tion. In addition, we could run the simulations for different
destinations in parallel, further reducing execution time.

Figure 13c shows the total execution time for these choices.
In particular, it compares the performance of the fault toler-
ance analysis for 1 link failure over each prefix independently
vs. all-prefixes simultaneously. The networks used are SP16
and FAT16. A total of 128 destinations are announced in
these networks, hence the single prefix analysis was run
128 times (but compiled once). Doing the analysis on each
prefix separately using the native simulator resulted in 3-7x
times speedup (with no parallelism) compared to doing all
prefixes simultaneously. We discuss the performance of the
interpreter and native execution in the next section.

6.4 Simulation Performance

To gauge the performance of our simulator, we measure how
it fares compared to Batfish when solving the all-prefixes
routing problem for networks ranging in size from 500 to
1280 nodes. Batfish is written in Java, and employs a paral-
lelized simulation engine. Figure 14 shows that our MTBDD-
based simulator is an order of magnitude faster than Batfish.
More importantly, as the network size grows, the runtime

5ARC [21] can scale, but is not compatible with rich policy (e.g., tagging)
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Figure 13. (a) shows the total time of our fault tolerance analysis and the SMT approaches of NV and MineSweeper for a
single-prefix. (b) shows how our fault tolerance analysis scales (excludes compilation time) as the size of the network and
the failures increase. (c) compares the total time (including compilation time) to do fault tolerance analysis over all prefixes
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Figure 14. All-prefixes analysis time (Batfish runs out-of-
memory after FAT28). NV uses the interpreter for simulation.
NV-native uses the native simulator but excludes compilation
time. NV-native-total includes OCaml’s compilation time.

of NV only marginally increases, while Batfish has a steeper
trend. The same is true of the memory consumption of the
two; NV peaks at 2GB for FAT32 while Batfish runs out of
memory (16GB) on the smaller FAT28. Although Batfish’s
route model is more detailed, these performance differences
are mainly attributed to the MTBDD representation of a
router’s RIB in NV; these networks advertise hundreds of
prefixes and the ability to compactly represent them and
process them in bulk is key to scaling the simulation.

Native and Interpreted Simulation. Native execution can
deliver significant performance improvements compared to
conventional interpreter-based simulators, but it also has
inherent overheads. Compiling a large OCaml program to
assembly is a time consuming process, sometimes more so
than the simulation itself. Furthermore, embedding and un-
embedding values betweenNV andOCaml also induces some
overhead, although we try to minimize that through caching.
In the all-prefix simulations of fig. 14, execution time of

the native simulator is constrained by embedding/unembed-
ding operations on maps. As the policy is rather simple, the
overhead of these operations dominates execution time. On
the other hand, if more complex operations are used, native
simulation can significantly outperform the interpreted one.
An example of this is our fault tolerance analysis (fig. 13c,

orange and green bars): the functions applied over maps are
more complex (applying a full transfer function) and thus
the embedding operations are amortized. Overall, it makes
sense to use the native simulator in applications where the
benefits of faster execution outweigh the overheads of com-
pilation, such as simulating networks with complex policy,
running analyses like fault tolerance, and/or doing multiple
simulations by instantiating symbolic values with different
concrete values which amortizes the compilation cost.

7 Related Work

Analysis ofData Planes. Over the past decade, researchers
have developed many systems for analysis or verification
of network data planes. Examples include systems such as
Anteater [33], Header-Space Analysis (HSA) [26], NoD [31],
and Veriflow [27]. These systems operate by pulling snap-
shots of the current data plane from a set of routers and then
checking that the data plane exhibits key properties such as
reachability, isolation, or absence of black holes.
NetKAT [4] is another line of work in this vein. NetKAT

offers a rich specification language based on Kleene Algebra
with Tests (KAT). The operators supplied by NetKAT suffice
to encode a network’s topology as well as the forwarding
behavior of its data plane. However, NetKAT cannot encode
the semantics of network control plane protocols such as
BGP. Such protocols compare routes to one another, discard-
ing some and forward others, and they continue executing
until they find a set of łstable paths.ž
McNetKAT is an extension of NetKAT with probabilistic

operations [18, 44]. Such probabilistic operations make it
possible to reason about expected congestion and probabilis-
tic failures. Indeed, McNetKAT has studied verification of
data plane fault tolerance properties extensively. Their sys-
tem also leverages variants of BDDs to scale their analysis
to the point of being able to analyze data centers with a few
hundred nodes in a few minutes [44]. The work in this pa-
per on control plane fault tolerance properties complements
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the work on McNetKAT rather than competing with it. In
addition to differing by virtue of analyzing the control plane
rather than the data plane, our work adopts a different fail-
ure model (we consider a bounded number of failures rather
than an arbitrary number of probabilistic failures).
It is also possible to extend data plane models with state-

ful primitives [3, 5, 36, 39, 48]. These stateful models can
represent various kinds of middle boxes including NATs or
stateful firewalls. Bayonet [19] combines probabilistic prim-
itives with stateful operations. Gehr et al. [19] show that
these stateful systems can be also used to model control
plane protocols such as OSPF. However, analysis of these
stateful systems appear to scale much more poorly than NV
or other tools designed specifically for control plane analy-
sis. For instance, it takes Bayonet several minutes to analyze
networks that have just 30 nodes [19].

Modeling Control Planes. Batfish [17] is a network analy-
sis framework that parses network configuration files, simu-
lates control plane execution, generates a dataplane and then
runs a dataplane analysis over that data plane. One of the
benefits of using Batfish over simpler data-plane-only analy-
sis tool kits of the kind mentioned in the prior paragraphs,
is that Batfish allows a user to ask łwhat ifž questions: What
if this link were to fail? By simulating control plane seman-
tics afresh under such speculative conditions, Batfish can
answer those questions. The data plane tools that simply
download the current dataplane from a set of routers cannot.
Batfish also serves as a platform for developing new control
plane analyses. Tools such as ARC [21], MineSweeper [6],
ShapeShifter [8], and Bonsai [7] have all been implemented
on top of Batfish. One of the central contributions of NV
is to make the process of constructing these auxiliary tools
simpler by creating a more compact, compositional and ex-
pressive intermediate language for representing network
protocols. Of course, NV continues to depend upon Batfish
for its front end. Moreover, unlike Batfish, NV does not com-
pute a data plane, nor does it support protocols like iBGP
that rely on data plane elements.

ARC [21] is another system that may be viewed as a mod-
eling language for network control planes. ARC’s models
are graphs and it performs network analysis by executing
standard graph algorithms, such as shortest paths, over these
graphs. One of the advantages of this approach is that many
graph algorithms are guaranteed to be polynomial, whereas
the BDDs and SAT/SMT encodings used by NV result in
exponential algorithms in the worst case. On the other hand,
ARC is incapable of representing certain control plane fea-
tures, such as BGP local preference and communities.
Routing algebras [45] and metarouting [25] are another

line of work on building models of network control planes.
The key difference between these systems and NV lies in the
properties considered and the approach to checking them.

The work onMetarouting was concerned primarily with con-
vergence of protocols. Moreover, instead of developing tools
to check whether existing networks satisfy the properties of
interest, the work provides local, topologically-independent
criteria of the transfer function that imply various conver-
gence properties of the protocol. Additionally, it devises
combinators designed to ensure those key properties are
preserved when constructing new protocols. In contrast, NV
focuses on analyzing global, end-to-end properties of net-
works that depend upon a combination of network topology
and policy such as reachability and fault-tolerance. We use
SMT and BDD-based verification to validate these properties
and we have built tools that translate real configurations
into our declarative modelling language.

OtherControl Plane Fault ToleranceAnalyses. Asmen-
tioned above, ARC [21] may be viewed as a modelling lan-
guage for control plane protocols. Like NV, one of the focuses
of ARC is fault tolerance analysis, which they reduce to stan-
dard graph algorithms. Origami [22] is another fault toler-
ance analysis. It operates by exploiting symmetries in the net-
work’s policy and topology to reduce its size. It computes an
abstraction of the network using a counterexample-guided
abstraction refinement algorithm that uses an oracle to deter-
mine whether the property holds. An SMT verifier was used
as an oracle, but there is no reason that an MTBDD-based
analysis could not be used instead. Like ARC, Origami also
imposes restrictions on policy (though the restrictions are
less stringent). Furthermore, its abstraction only preserves
an approximation of the original routes, making it unsuitable
for reasoning about properties beyond reachability.

Verification Languages. NV was inspired, in part, by the
Rosette solver-aided language [47]. Rosette embeds a sym-
bolic compiler in the Racket programming language to trans-
late solver-aided programs into logical constraints that can
be solved by SMT solvers. Like Rosette, NV is a functional
language with symbolic values and constraints. However,
NV differs from Rosette in both the tools it supports (e.g.,
MTBDDs) and the applications (networking) it attacks.

NV also draws inspiration from intermediate verification
languages such as Boogie [30], Why3 [16], and CIVL [43].
However, while these tools focus on general purpose pro-
gramming languages and the complications that come with
them (e.g., recursion), NV is specialized for the data struc-
tures, functions, and algorithms needed to analyze networks.
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