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Figure 1: An illustration of the Magentic-One mutli-agent team completing a complex task
from the GAIA benchmark. Magentic-One’s Orchestrator agent creates a plan, delegates tasks
to other agents, and tracks progress towards the goal, dynamically revising the plan as needed.
The Orchestrator can delegate tasks to a FileSurfer agent to read and handle files, a WebSurfer
agent to operate a web browser, or a Coder or Computer Terminal agent to write or execute
code, respectively.

Abstract

Modern AI agents, driven by advances in large foundation models, promise to enhance
our productivity and transform our lives by augmenting our knowledge and capabilities.
To achieve this vision, AI agents must effectively plan, perform multi-step reasoning and
actions, respond to novel observations, and recover from errors, to successfully complete
complex tasks across a wide range of scenarios. In this work, we introduce Magentic-One,
a high-performing open-source agentic system for solving such tasks. Magentic-One uses
a multi-agent architecture where a lead agent, the Orchestrator, plans, tracks progress,
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and re-plans to recover from errors. Throughout task execution, the Orchestrator also di-
rects other specialized agents to perform tasks as needed, such as operating a web browser,
navigating local files, or writing and executing Python code. Our experiments show that
Magentic-One achieves statistically competitive performance to the state-of-the-art on three
diverse and challenging agentic benchmarks: GAIA, AssistantBench, and WebArena. No-
tably, Magentic-One achieves these results without modification to core agent capabilities or
to how they collaborate, demonstrating progress towards the vision of generalist agentic sys-
tems. Moreover, Magentic-One’s modular design allows agents to be added or removed from
the team without additional prompt tuning or training, easing development and making it
extensible to future scenarios. We provide an open-source implementation of Magentic-One,
and we include AutoGenBench, a standalone tool for agentic evaluation. AutoGenBench
provides built-in controls for repetition and isolation to run agentic benchmarks in a rig-
orous and contained manner – which is important when agents’ actions have side-effects.
Magentic-One, AutoGenBench and detailed empirical performance evaluations of Magentic-
One, including ablations and error analysis are available at https://aka.ms/magentic-one.

1 Introduction

Recent advances in artificial intelligence and foundation models are driving a renewed interest in
agentic systems that can perceive, reason, and act in the world to complete tasks on our behalf
[32, 59]. These systems promise to enhance our productivity by relieving us from mundane
and laborious tasks, and revolutionize our lives by augmenting our knowledge and capabilities
[16, 54, 6]. By leveraging the powerful reasoning and generative capabilities of large language
models (LLMs), agentic systems are already making strides in fields like software engineering
[66, 55], data analysis [4], scientific research [26, 7] and web navigation [79, 75].

Realizing the vision of agentic systems to transform our lives requires these systems to
not only achieve high performance in specific domains, but also to generalize to the diverse
range of tasks people may encounter throughout their day-to-day work and personal lives.
In this paper, we take steps towards creating such a generalist agentic system by introducing
Magentic-One.1 Magentic-One uses a team of agents, each specializing in generally-useful skills,
such as: operating a web browser, handling files, and executing code. The team is directed by
an Orchestrator agent which guides progress towards a high-level goal by iteratively planning,
maintaining working memory of progress, assigning tasks to other agents, and retrying upon
encountering errors. The Orchestrator uses two structured ledgers to achieve this and also
to decide which agent should take the next action. Together, Magentic-One’s agents achieve
strong performance on multiple challenging agentic benchmarks. Figure 1 shows an example of
Magentic-One solving one such benchmark task that requires multiple steps and diverse tools.

Key to Magentic-One’s performance is its modular and flexible multi-agent approach [51,
28, 53, 13, 52], implemented via the AutoGen2 framework [60]. The multi-agent paradigm
offers numerous advantages over monolithic single-agent approaches [51, 53, 6, 62], which we
believe makes it poised to become the leading paradigm in agentic development. For example,
encapsulating distinct skills in separate agents simplifies development and facilitates reusability,
akin to object-oriented programming. Magentic-One’s specific design further supports easy
adaptation and extensibility by enabling agents to be added or removed without altering other
agents, or the overall workflow, unlike single-agent systems that often struggle with constrained
and inflexible workflows.

To rigorously evaluate Magentic-One’s performance, we introduce AutoGenBench, an ex-
tensible standalone tool for running agentic benchmarks. AutoGenBench’s design enables repe-
tition, isolation, and strong controls over initial conditions, so as to accommodate the variance
of stochastic LLM calls, and to isolate the side-effects of agents taking actions. Using AutoGen-

1The name Magentic-One is a combination of the words multi and agentic.
2https://github.com/microsoft/autogen
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Bench, we evaluated Magentic-One on three agentic benchmarks. We observed task-completion
rates of 38% on GAIA [29] and 32.8% on WebArena [79]; and attained an accuracy of 27.7%
on AssistantBench [71]. These results place Magentic-One in a strong position, where it is
statistically competitive with other state-of-the-art (SOTA) systems, including those that are
specialized for a given benchmark. Follow-up ablation experiments and in-depth error analyses
reveal the additive value of each agent to Magentic-One’s performance, and highlight opportu-
nities for further improvement.

In summary, we contribute:

1. Magentic-One, a generalist multi-agent team with an open-source implementation. The
team consists of five agents: a Coder, Computer Terminal, File Surfer, Web Surfer, and
Orchestrator. Different agents can operate relevant tools such as stateful Web and file
browsers, as well as command line and Python code executors. The Orchestrator performs
several functions to guide progress towards accomplishing a high-level goal: it formulates
a plan, maintains structured working memory of progress, directs tasks to other agents,
restarts and resets upon stalling, and determines task completion.

2. AutoGenBench, a standalone tool for evaluating systems on agentic benchmarks, also
made available open-source.3 AutoGenBench handles configuring, running, and reporting
performance of agentic solutions while ensuring that all experiments start with well-known
initial conditions, and that agents cannot interfere with one another across runs.

3. Experimental results and analyses of Magentic-One’s performance on the GAIA, Web-
Arena, and AssistantBench benchmarks, demonstrating strong task completion rates
which are statistically competitive with other SOTA systems. We also examine the con-
tribution of individual agents and capabilities, and provide an error analysis to identify
the strengths and weaknesses of our multi-agent approach, along with opportunities for
improvement.

2 Related Work

Single-Agent Approaches. Recent advances in large language models (LLMs) such as GPT-
4 [33] have renewed interest in the development of autonomous agents that can solve tasks on
behalf of people [32, 59, 16, 60, 65, 49, 74, 43]. These modern agents have shown remarkable
skills in software development [55, 76, 66, 63], web manipulation [8, 75, 79, 31, 1], manipulation
of general graphical user interfaces [73, 61, 3, 34], and other domains [37, 54].

Common strategies for developing such agents [25, 62, 27, 6] include equipping LLMs with
tools such as for code execution and web browsing [40, 41, 46, 29] and prompting strategies
for better reasoning and planning such as CoT [58], ReACT [70] and few-shot prompting [79].
With the development of multimodal models, agents can also operate in visual domains with
techniques such as Set-of-Marks prompting [67] among others [67, 77, 36, 14]. To allow agents to
accomplish tasks that require multiple steps with improved reliability, agent systems can incor-
porate self-critique [61, 34, 38], and inference-time search [5, 69, 19, 50]. Finally, Agentic systems
can also benefit from memory and training either through explicit fine-tuning [72, 34, 24, 39] or
through memory mechanisms [57, 49]. Our work incorporates a subset of these techniques, and
distributes them across agents in Magentic-One’s multi-agent workflow, resulting in a modular,
easy-to-extend implementation.

Multi-Agent Approaches. The multi-agent paradigm presents an attractive modular and
flexible approach to tackling complex tasks [51, 28, 12, 53, 45, 60, 52, 13, 25, 62, 27, 6]. Com-
monly each agent either has access to different tools or has a different role in the team, sometimes

3https://aka.ms/agbench
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defined through the system prompt of the LLM or by explicit training. Sibyl presents a multi-
agent approach with a debate-based jury mechanism with tools for python code execution and
web browsing [56]. WebPilot uses a multi-agent system with global and local optimization in
planning for web based tasks [75]. Trase claims to use a multi-agent architecture with a top
level agent with self-critique and lower level agents [42]. A host of other multi-agent systems
and frameworks have also been introduced [21, 22, 11, 2, 15]. However, the previous meth-
ods differ from the architecture of Magentic-One which incorporates dynamic routing between
agents using the Orchestrator along with planning and recovery.

Agentic Evaluation. To evaluate agents on general multi-step tasks, numerous benchmarks
have been proposed in the literature [30, 79, 64, 23, 71, 68, 47, 8, 35, 20]. Given the general
and ubiquitous nature of the web, many of these benchmarks heavily incorporate [29, 71],
or exclusively consider [79, 8] browser-based tasks. These benchmarks either rely on non-
interactive traces through real websites such as Mind2Web [8], interaction with synthetically
created websites such as in WebArena [79], or interaction with real websites on the public
Internet such as GAIA [29]. In the former case, non-interactive benchmarks are limiting for
evaluating agentic systems since they do not allow agents to deviate from previously recorded
paths. This makes it impossible to evaluate error recovery, or find novel alternative strategies
for the given problem. Therefore, we focus on benchmarks that rely on interacting with live
websites – whether synthetic or public – as they are more faithful to real-world tasks. Moreover,
we prioritize benchmarks such as GAIA, which test generalist skills like data analysis or coding,
in addition to commanding web browsers to navigate pages. We contribute AutoGenBench as
a standalone tool to perform evaluation of agentic systems, relying on benchmarks from the
literature. Furthermore, we provide an in-depth error analysis of Magentic-One’s performance
contributing to work on debugging agentic systems [20].

3 Problem Setup

Complex Tasks. In this work our goal is to build a generalist agentic system capable of
solving complex tasks across a variety of domains. We define a task as complex if it requires,
or significantly benefits from, a process involving planning, acting, observing, and reflecting,
potentially multiple times. Acting refers to more than generating tokens, such as executing code,
using tools, or interacting in an environment. Observing, in this context, provides information
that was previously unavailable or unknowable. A task is defined by an input, a desired output
and an evaluation function to compare the desired output to any candidate output. The input
consists of a well-specified textual description and an optional arbitrary set of file attachments
which may include images, dataset files, audio clips among other things. For example, the input
task description could be “fact-check each claim in the attached PDF as correct or incorrect”
with a PDF file as an attachment. The desired output consists either of a textual answer
(possibly representing a structured object), or a specific state of the environment to reach. In
the fact-checking example, the output might be a string labeling each fact as correct or not,
e.g., “claim 1: correct, claim 2: incorrect, ...”. Here, the evaluation function might simply
determine whether the desired output and the proposed answer match exactly.

Agentic Systems. To complete a task, assume a computer which can be partially observed
and operated to complete the task. The computer constitutes the environment. An agentic
system can take as input the task description, and any related attachments that are present on
the computer environment. The system is allowed to do arbitrary processing to complete the
task, but must complete it within a time budget (e.g., 25 mins). For instance, on the computer,
the autonomous system can execute Python code, navigate the web using a browser, download
files locally, among other actions from its action space. The system’s ability to take action in,
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Figure 2: Magentic-One features an Orchestrator agent that implements two loops: an outer
loop and an inner loop. The outer loop (lighter background with solid arrows) manages the task
ledger (containing facts, guesses, and plan). The inner loop (darker background with dotted
arrows) manages the progress ledger (containing current progress, task assignment to agents).

and potentially modify, both the local and web environments is why we refer to the system
as agentic. After completing the task, the system returns a text answer, and a trace of its
observations and steps along the way. The final state of the environment is also captured in
sufficient detail to run the task evaluation. Note that this setting can be described as a Partially
Observable Markov Decision Process, similar to formalizations used by prior work [49]. Next,
we describe Magentic-One, our multi-agent system that can autonomously solve complex tasks.

4 Magentic-One Overview

Magentic-One is a generalist multi-agent system for autonomously completing complex tasks.
The team’s work is coordinated by an Orchestrator agent, responsible for task decomposition
and planning, directing other agents in executing subtasks, tracking overall progress, and tak-
ing corrective actions as needed. The other agents on the team are specialized with different
capabilities necessary for completing ad-hoc, open-ended tasks such as browsing the web and
interacting with web-based applications, handling files, and writing and executing Python code
(Figure 2).
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Together, the Magentic-One team collaborates to solve tasks on behalf of a user. For exam-
ple, suppose a user requests a survey and concise slide presentation of AI safety papers published
in the last month. Magentic-One will approach this task as follows. The Orchestrator will first
create a plan that breaks down the task into subtasks, such as searching for abstracts, download-
ing relevant papers, reading and summarizing the papers, and finally creating a presentation
out of the findings. This initial plan serves as providing a guide or rubric for acting, and may
not be followed exactly. Instead it can be interpreted as similar to chain of thought prompting
for the agents [58]. Once this initial plan is formed, the Orchestrator then selects an appropriate
agent and assigns it a subtask. For example, the WebSurfer agent might be directed to search
for and download AI safety papers, while the FileSurfer agent might be directed to open the
downloaded PDFs and extract relevant information. The Coder agent might create the presen-
tation by writing Python code to interact with various files, and the ComputerTerminal agent
would then execute the code written to produce the final output (or to report execution errors
the coder agent has yet to address). As the task progresses, the Orchestrator coordinates the
agents, monitors progress, and monitors for task completion.

In the following sections, we first describe Magentic-One’s inter-agent workflow, driven by
the Orchestrator, then describe each individual agent’s design, capabilities, and action space.

4.1 Magentic-One’s Multi-Agent Workflow

Figure 2 illustrates Magentic-One’s workflow in more depth. At a high level, the workflow
contains two loops, the outer loop maintains the task ledger, which contains the overall plan,
while the inner loop maintains the progress ledger, which directs and evaluates the individual
steps that contain instructions to the specialized agents.

Outer Loop. The outer loop is triggered by an initial prompt or task. In response, the
Orchestrator creates the task ledger to serve as short-term memory for the duration of the task.
Upon receiving the task, the Orchestrator reflects on the request and pre-populates the task
ledger with vital information– given or verified facts, facts to look up (e.g., via web search),
facts to derive (e.g., programmatically, or via reasoning), and educated guesses. These initial
educated guesses are important, and can allow the Orchestrator to express memorized closed-
book information in a guarded or qualified manner, allowing agents to potentially benefit, while
lessening the system’s overall sensitivity to errors or hallucinations. For example, agents might
only rely on the guesses when they get stuck, or when they run out of time and need to output
a best guess for the benchmark. Educated guesses are updated periodically, by the outer loop,
as new information becomes available.

Only after the facts and guesses in the task ledger have been populated, the Orchestrator
considers the makeup of the team it is directing. Specifically, it uses each team member’s
description, along with the current task ledger, to devise a step-by-step plan. The plan is
expressed in natural language and consists of a sequence of steps and assignments of those steps
to individual agents. Since the plan is used in a manner similar to chain of thought prompting
[58], it serves more as a hint for step-by-step execution – neither the Orchestrator nor the other
agents are required to follow it exactly. Since this plan may be revisited with each iteration of
the outer loop, we force all agents to clear their contexts and reset their states after each plan
update. Once the plan is formed, the inner loop is initiated.

Inner Loop. During each iteration of the inner loop, the Orchestrator answers five questions
to create the progress ledger:

• Is the request fully satisfied (i.e., task complete)?

• Is the team looping or repeating itself?

6



• Is forward progress being made?

• Which agent should speak next?

• What instruction or question should be asked of this team member?

When answering these questions, the Orchestrator considers both the task ledger (containing
facts, guesses, and a plan), and the current agent conversation context.

The Orchestrator also maintains a counter for how long the team has been stuck or stalled.
If a loop is detected, or there is a lack of forward progress, the counter is incremented. As long
as this counter remains below a threshold (≤ 2 in our experiments), the Orchestrator initiates
the next team action by selecting the next agent and its instruction. However, if the counter
exceeds the threshold, the Orchestrator breaks from the inner loop, and proceeds with another
iteration of the outer loop. This includes initiating a reflection and self-refinement step [48],
where it identifies what may have gone wrong, what new information it learned along the way,
and what it might do differently on the next iteration of the outer loop. It then updates the
task ledger, revises the original plan, and starts the next cycle of inner loop. Together, this
counter-based mechanism gives the agents a limited budget to recover from small errors, or to
persist through brief episodes of uncertainty in progress.

This nested-loop behavior continues until the Orchestrator determines the task is complete
or the team has reached some (parameterized and configurable) termination logic, such as
reaching a maximum number of attempts, or exceeding a specified maximum time limit.

Finally, upon termination of both loops, the Orchestrator reviews the full transcript, along
with the ledger, and reports either a final answer, or its best educated guess.

4.2 Magentic-One’s Agents

The Orchestrator agent in Magentic-One coordinates with four specialized agents: WebSurfer,
FileSurfer, Coder and ComputerTerminal. As the names suggest, each of these agents is op-
timized for a specific – yet generally useful – capability. In most cases, these agents are con-
structed around LLMs with custom system prompts, and capability-specific tools or actions.
For example, WebSurfer can navigate to pages, click links, scroll the viewport, etc. In other
cases, agents may operate deterministically, and do not include LLMs calls at all. For example,
the ComputerTerminal deterministically runs Python code, or shell commands, when asked.

This decomposition of high-level capabilities across agents, and low-level actions within
agents, creates a hierarchy over tool usage which may be easier for the LLMs to reason about.
For example, rather than deciding between dozens of possible actions, the Orchestrator needs
only to decide which agent to call to access a broad capability (e.g., browsing the web). The
chosen agent then selects from a limited set of agent-specific actions (e.g., clicking a button
versus scrolling the page).

We detail the implementation of each of the agents below:

• WebSurfer: This is a highly specialized LLM-based agent that is proficient in command-
ing and managing the state of a Chromium-based web browser. With each incoming
natural-language request, the WebSurfer maps the request to a single action in its action
space (described below), then reports on the new state of the web page (providing both a
screenshot and a written description). As an analogy, this configuration resembles a tele-
phone technical support scenario where the Orchestrator knows what to do, but cannot
directly act on the web page. Instead it relays instructions, and relies on the WebSurfer
to carry out actions and report observations.

The action space of the WebSurfer includes navigation (e.g. visiting a URL, performing a
web search, or scrolling within a web page); web page actions (e.g., clicking and typing);
and reading actions (e.g., summarizing or answering questions). This latter category of
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reading actions allows the WebSurfer to directly employ document Q&A techniques in the
context of the full document. This saves considerable return-trips to the orchestrator (e.g.,
where the orchestrator might simply command the agent to continue scrolling down), and
is advantageous for many tasks.

When interacting with web page elements (e.g., when clicking or typing), the WebSurfer
must ground the actions to specific coordinates or elements of the current web page. For
this we use set-of-marks prompting [67] in a manner similar to Web Voyager[14]. This
step relies on an annotated screenshot of the page, and thus is inherently multi-modal.
We further extended the set-of-marks prompt to include textual descriptions of content
found outside the visible view port, so that the agent can determine what might be found
by scrolling 4, or opening menus or drop-downs.

• FileSurfer: The FileSurfer agent is very similar to the WebSurfer, except that it com-
mands a custom markdown-based file preview application rather than a web browser. This
file preview application is read-only, but supports a wide variety of file types, including
PDFs, Office documents, images, videos, audio, etc. The FileSurfer can also perform com-
mon navigation tasks such as listing the contents of directories, and navigating a folder
structure.

• Coder: This is an LLM-based agent specialized through its system prompt for writing
code, analyzing information collected from the other agents, or creating new artifacts.
The coder agent can both author new programs and debug its previous programs when
presented with console output.

• ComputerTerminal: Finally, the ComputerTerminal provides the team with access to
a console shell where the Coder’s programs can be executed. ComputerTerminal can also
run shell commands, such as to download and install new programming libraries. This
allows the team to expand the available programming tool set, as needed.

Together, Magentic-One’s agents provide the Orchestrator with the tools and capabilities
that it needs to solve a broad variety of open-ended problems, as well as the ability to au-
tonomously adapt to, and act in, dynamic and ever-changing web and file-system environments.

5 Experiments

5.1 AutoGenBench and Setup

Overview. Agentic systems, such as Magentic-One, that interact with stateful environments,
pose unique challenges for evaluation. For example, if a task requires installing a Python
library, the first system to be evaluated will be disadvantaged: Its agents will have to first
write Python code that fails, then debug the problem, install the library, and finally try again.
Subsequent runs – perhaps with other agents or models – will then benefit from the library’s
presence, and thus may appear to perform better simply because they were executed later.
Conversely, an erroneous agent could take actions (e.g. deleting files, or placing the the system
in an inoperable state), that would harm all future tasks. To this end, it is crucial that any
evaluation be independent across tasks, and provide safety from dangerous side effects (e.g.,
from agents’ actions).

To address this challenge, we developed AutoGenBenchfor evaluating agentic systems. Given
a benchmark, which consists of a set of independent tasks and associated evaluation functions,

4Scrolling is needed because, like human users, the WebSurfer agent cannot interact with page elements that
are outside the active viewport.
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AutoGenBench allows users to run these tasks in a setting with tightly controlled initial condi-
tions: in each task, AutoGenBench will start from a blank slate with freshly initialized Docker
containers, providing the recommended level of consistency and safety. The results of each task
are logged in a central location on the host machine (outside of Docker), and can be ingested
for analysis by metrics scripts. Furthermore, AutoGenBench allows users to launch multiple
tasks in parallel to speed up evaluation, or to compute variance across repeated runs.

Benchmarks. Using AutoGenBench, we can implement and evaluate Magentic-One on a
variety of benchmarks. Our criteria for selecting benchmarks is that they should involve complex
multi-step tasks, with at least some tasks or steps requiring planning and tool use ( including
using web browsers to act on real or simulated webpages, handling files, etc.) We consider three
benchmarks in this work that satisfy this criteria: GAIA, AssistantBench, and WebArena.

GAIA [29] is a benchmark for general AI assistants with 465 multi-modal question–answer
pairs that are real-world and challenging, requiring multiple steps and multiple tools to solve
(e.g., navigating the web, handling files, etc.). Despite the complexity of the tasks, GAIA
questions are designed to be automatically and unambiguously verifiable, with each answer
consisting of a target string that can be checked by string matching. GAIA is split into an
open validation set with 165 question–answer pairs, and a test set with 300 questions (answers
hidden).5 An example of a GAIA task follows:

Example GAIA task: Of the cities within the United States where U.S. presidents
were born, which two are the farthest apart from the westernmost to the easternmost
going east, giving the city names only? Give them to me in alphabetical order, in a
comma-separated list.

In order to solve this task, one needs to perform multiple steps: use the web to find the birth
city of each U.S. president, retrieve the coordinates of these cities, identify the westernmost
and easternmost coordinates, then return the corresponding cities in alphabetical order. This
requires web navigation, coding, and reasoning abilities, illustrating the complexity of GAIA.

The second benchmark we consider is AssistantBench [71]. Similar in design to GAIA, As-
sistantBench is a set of 214 question–answer pairs that are realistic, time-consuming (requiring
a human several minutes to perform), and automatically verifiable. They require navigating
real-world websites and multi-step reasoning. As with GAIA, answers are evaluated by string
matching, but AssistantBench introduces an additional softer metric of accuracy that affords
a degree of partial credit [71]. AssistantBench is split into an open validation set with 33
question–answer pairs and a test set with 181 questions (answers hidden).6 An example of an
AssistantBench task follows:

Example AssistantBench task: Which supermarkets within 2 blocks of Lincoln
Park in Chicago have ready-to-eat salad for under $15?

This task requires the agent to use an online map (e.g., Bing Maps) to find supermarkets near
Lincoln Park, and then, for each supermarket found, to navigate to its website and check if it
has ready-to-eat salads under $15.

The final benchmark we consider is WebArena [79], which involves performing complex tasks
in a synthetic web environment. Each task requires multi-step planning and acting, and targets
one or more fully functional synthetic websites. It contains 812 tasks across five major website
categories (e.g., shopping, forums, maps, etc.), and a sixth category that requires interacting
with multiple websites. Tasks are evaluated by running per-task evaluation scripts in the context
of the running website to check that answers exactly or approximately match a target, and that
the page is left in the desired state (e.g., that a comment has been posted, or an item is in a

5Leaderboard: https://gaia-benchmark-leaderboard.hf.space/
6Leaderboard: https://huggingface.co/spaces/AssistantBench/leaderboard
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shopping cart). There is a public leaderboard for WebArena, but it is based on self-reported
results. 7 The dataset also provides no formal validation / test split across tasks [18]. We
developed our own split so that we might assess Magentic-One’s ability to generalize to tasks
in the unseen test set – which was evaluated only once. To split the tasks, we computed the
MD5 hash of each problem’s template id8, then assigned the 422 tasks with hashes starting
with digits 0-7 to the validation set (the remaining 390 tasks were assigned to the test set). An
example of a WebArena task, from the validation set, is as follows:

Example WebArena task: Tell me the count of comments that have received more
downvotes than upvotes for the user who made the latest post on the Showerthoughts
forum.

To solve this task, the agents have to navigate the Showerthoughts forum, find the profile of
the user with the latest post, retrieve all their comments, and finally count those with more
downvotes than upvotes. This illustrates the multi-step navigation nature of WebArena tasks.

Implementation Details. An identical configuration of Magentic-One was used for all three
benchmarks, but some additional set up code was needed for each. Namely, each benchmark
used a unique final prompt to ensure answers were expressed in the benchmark-specific pre-
scribed format. Additionally, set up code for WebArena included instructions to log in to
websites, which is not considered part of the task. Finally, WebArena refers to the Postmill
website as Reddit,9, causing agents to complain that they were on the wrong website. To address
this, we included the following prompt text:

“[This website is] a Postmill forum populated with a large sample of data crawled from
Reddit. Postmill is similar to Reddit, but the UI is distinct, and ’subreddits’ begin with /f/
rather than /r/ “

We include similar prompts for the three other WebArena sites, and we discuss this issue
more in section 6.3.

For Magentic-One, the default multimodal LLM we use for all agents (except the Comput-
erTerminal) is gpt-4o-2024-05-13. In a different configuration of Magentic-One, we experiment
with using OpenAI o1-preview10 for the outer loop of the Orchestrator and for the Coder,
while other agents continue to use GPT-4o. In this case, only a subset of the agents (e.g., the
WebSurfer) are multimodal since o1-preview can process only text as input. We implement
Magentic-One on the multi-agent platform AutoGen version 0.4 [60]. The code for Magentic-
One is made publicly available.11 The experiments reported here were conducted between
August and October 2024.

5.2 Results

Results. Table 1 shows the performance of Magentic-One compared to relevant baselines for
all three benchmarks. For GAIA and AssistantBench, we report only results for the test sets.
For WebArena there is no common test set, so we report results for all 812 tasks. We separately
show performance of Magentic-One when using only GPT-4o as the model for all agents, and
when using a combination of GPT-4o and o1-preview.12 We also include the highest-performing
baselines in the literature, for each benchmark, according to the leaderboards as of October 21,

7Leaderboard: https://docs.google.com/spreadsheets/d/1M801lEpBbKSNwP-vDBkC_pF7LdyGU1f_ufZb_

NWNBZQ/edit
8WebArena tasks are populated by expanding a smaller number of task templates.
9WebArena’s Postmill website is populated from data crawled from Reddit

10https://openai.com/index/introducing-openai-o1-preview/
11https://aka.ms/magentic-one
12We do not report results for Magentic-One (GPT-4o, o1) on WebArena since the o1 model refused to complete

26% of WebArena Gitlab tasks, and 12% of Shopping Administration tasks, making a fair comparison impossible.

10

https://docs.google.com/spreadsheets/d/1M801lEpBbKSNwP-vDBkC_pF7LdyGU1f_ufZb_NWNBZQ/edit
https://docs.google.com/spreadsheets/d/1M801lEpBbKSNwP-vDBkC_pF7LdyGU1f_ufZb_NWNBZQ/edit
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2024. This includes entries that are neither open-source, nor described by technical reports,
making them difficult to independently validate. Finally, we also include human performance
where available.

We use statistical tests to compare the performance of Magentic-One to baselines and say
that two methods are statistically comparable if the difference in their performance is not
statistically significant (α=0.05); details about our statistical methodology can be found in
Appendix A.

Magentic-One (GPT-4o, o1-preview) achieves statistically comparable performance to SOTA
methods on both GAIA and AssistantBench. On WebArena, only the GPT-4o variant was eval-
uated12, and it achieved comparable performance to most SOTA methods except for WebPilot
[75] and Jace.AI (which achieve statistically higher scores).

As noted earlier, WebArena does not have a hidden test set, thus posing some awkward
challenges for fair evaluation. To investigate this, we consider the self-imposed validation/test
splits that we created apriori. On the the validation set, Magentic-One correctly performed
35.1% of tasks (148 of 422), falling to 30.5% (119 of 390) for the test set. When setting up the
WebArena benchmark, we used the validation set to initially validate and debug our workflow.
This result suggests that extra attention paid on validation tasks has lead to at least mild
over-fitting. It is unclear whether other entries on the leaderboard performed similar analyses
or took similar precautions. We would encourage the WebArena authors to develop a hidden
test set for future comparison purposes.

Comparing Magentic-One (GPT-4o) and Magentic-One (GPT-4o, o1), the biggest gains
are observed on the GAIA benchmark. We hypothesize that this occurs because GAIA involves
tasks that require more logical reasoning and puzzle-solving compared to AssistantBench. These
are skills for which o1 was optimized.

Together, these results establish Magentic-One as a strong agentic system for completing
complex web- and file-based tasks. Moreover, achieving this level of performance across bench-
marks speaks to the team’s generality – note that among the baselines in Table 1, no prior
system (other than base models) has been been evaluated across all three benchmarks.

Performance Breakdown by Task Difficulty or Domain Each benchmark provides some
categorization of tasks by difficulty (GAIA, AssistantBench), or application domain (Web-
Arena). In Table 2, we breakdown performance by category, comparing Magentic-One to the
best-performing baselines for GAIA and AssistantBench, and to WebPilot [75], the best per-
forming WebArena baseline for which category-level results are available.

By breaking down performance by category, we immediately notice that Magentic-One ap-
pears to compete better on hard tasks (e.g., level 3, hard) vs. easy tasks (e.g. level 1, easy).
In fact, on AssistantBench, Magentic-One outperforms the best comparable baseline on the
hardest category. Similarly, on WebArena, Magentic-One differs from WebPilot mainly on the
Reddit category – again the apparent easiest category by score.

We hypothesize that Magentic-One introduces some fixed overhead or complexity that dis-
proportionately helps with long multi-step tasks, while introducing more opportunities for errors
on short few-step tasks. This presents an opportunity to enhance Magentic-One for simpler tasks
to achieve SOTA across all levels.

5.3 Ablations

In this section, we examine how different agents and capabilities contribute to Magentic-One’s
performance through ablation experiments.

Setup. On the validation set of GAIA [29], we perform multiple ablation experiments to eval-
uate the impact of key Magentic-One (GPT-4o) agents and components. First, to understand
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Table 1: Performance of Magentic-One compared to relevant baselines on the test sets of GAIA,
WebArena and AssistantBench. For each method we note in parenthesis the LLM used to
obtain the result. The numbers reported denote exact task completion rate as a percentage.
All results for baselines are obtained from the corresponding benchmark leaderboard. We do
not report results for Magentic-One (GPT-4o, o1) on WebArena since the o1 model refused to
complete 26% of WebArena Gitlab tasks, and 12% of Shopping Administration tasks, making a
fair comparison impossible. An example task refused by o1 is “create a new group ”webagent”
with members pandey2000, sayakpaul, sayakpaul“. We include 95% error bars as ± using the
Wald interval method. We underline results that are statistically comparable to Magentic-One
(GPT-4o, o1) according to a z-test with α = 0.05, and bold results that statistically exceed our
performance (Appendix A).

Method GAIA AssistantBench
(EM)

AssistantBench
(accuracy)

WebArena

omne v0.1 (GPT-4o, o1) 40.53±5.6 – – –
Trase Agent v0.2 (GPT-4o, o1,
Gemini)

39.53±5.5 – – –

Multi Agent (NA) 38.87±5.5 – – –
das agent v0.4 (GPT-4o) 38.21±5.5 – – –
Sibyl (GPT-4o) [56] 34.55±5.4 – – –
HF Agents (GPT-4o) 33.33±5.3 – – –
FRIDAY (GPT-4T) [61] 24.25±4.8 – – –
GPT-4 + plugins [29] 14.60±4.0 – – –
SPA → CB (Claude) [71] – 13.8±5.0 26.4±6.4 –
SPA → CB (GPT-4T) [71] – 9.9±4.3 25.2±6.3 –
Infogent (GPT-4o) – 5.5±3.3 14.5±5.1 –
Jace.AI (NA) – – – 57.1±3.4
WebPilot (GPT-4o) [75] – – – 37.2±3.3
AWM (GPT-4) [57] – – – 35.5±3.3
SteP (GPT-4) [49] – – – 33.5±3.2
BrowserGym (GPT-4o) [10] – – – 23.5±2.9
GPT-4 6.67±2.8[29] 6.1 ±3.5[71] 16.5 ±5.4[71] 14.9±2.4[79]

Human 92.00±3.1 – – 78.2±2.8

Magentic-One (GPT-4o) 32.33±5.3 11.0 ±4.6 25.3 ±6.3 32.8±3.2
Magentic-One (GPT-4o, o1) 38.00±5.5 13.3 ±4.9 27.7 ±6.5 *

the impact of Magentic-One’s Orchestrator, we replace it with a simple baseline patterned on the
AutoGen[60] library’s GroupChat mechanism. This baseline orchestrator simply decides which
agent should speak next during task execution, eliminating both ledgers, planning, progress
tracking, loop detection, and explicit instructions to other agents. The second set of ablations
we perform is to remove individual agents from the Magentic-One team to measure the impact
of those agents on overall task performance.

For all ablations, we report on results broken down by difficulty level and capabilities re-
quired. For the capabilities analysis, we mapped the tools needed to complete tasks, as reported
by human annotators of the GAIA dataset [29], to four categories: web browsing, coding, file
handling, and none. These categories roughly correspond to the categories defined in [29],
with minor adjustments to better align to the core functional-responsibilities of Magentic-One’s
agents. For example, the original categories in [29] included a multi-modality category since
multi-modal task handling was accomplished via a tool. However, because Magentic-One lever-
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Table 2: Performance comparison between Magentic-One (GPT-4o), Magentic-One (GPT-4o,
o1) and the best baseline for each benchmark’s test set. Analysis is split across the different
categories of each benchmark. Since there is no available baseline that evaluates on all three
benchmarks, we picked the best baseline with available results per benchmark. The best baseline
for GAIA is omne v0.1. The best baseline for WebArena with available category wise results is
WebPilot [75]. The best baseline for AssistantBench is SPA→ CB (Claude) [71]. For WebArena,
top leaderboard methods [49, 75] consider the cross site tasks in WebArena as belonging to one
of the 5 sites, and so the comparison with Magentic-One may differ.

Dataset Category Magentic-One
(GPT-4o)

Magentic-One
(GPT-4o, o1)

Best Baseline [75,
71]

GAIA [29]

Level 1 46.24 54.84 53.76
Level 2 28.3 32.7 37.11
Level 3 18.75 22.92 26.53

AssistantBench [71]

Easy 69.9 73.4 81
Medium 35.6 47.1 44.6
Hard 16.9 14.8 13.3

WebArena [79]

Reddit 53.77 – 65.1
Shopping 33.16 – 36.9
CMS 29.1 – 24.7
Gitlab 27.78 – 39.4
Maps 34.86 – 33.9
Cross Site 14.6 – –

ages multi-modal models, multi-modality is handled inherently by all agents rather than through
use of a specific tool. In such cases, we noted the task as requiring no tools (i.e., ’none’) to
complete. Our capability mapping is described further in Appendix B.

Results. In Figure 3a, we show the performance of different ablations of Magentic-One on the
GAIA validation set broken down by difficulty level. We find that the Orchestrator’s ledgers
are important to Magentic-One’s performance: without the full ledgers, performance drops by
31%. Likewise, we find that all four worker agents are important: removing any single agent
reduces performance by between 21% (Coder, Executor) to 39% (FileSurfer). For instance, the
FileSurfer is essential for the largest GAIA category, level 2, where many questions include file
attachments. On the other hand, the WebSurfer is most essential for level 1 tasks.

Figure 3b shows ablation results broken down by required capabilities. In most cases,
removing an agent from Magentic-One results in a decrease in team performance on tasks
requiring corresponding capabilities. For example, Magentic-One with the FileSurfer removed
shows the worst performance on tasks requiring file handling. Similarly, Magentic-One without
the WebSurfer performs worst on tasks requiring web browsing.

Interestingly, through qualitative analysis of the ablation logs, we found several cases where
the Magentic-One agents compensated for missing capabilities in creative ways. For example,
when the Coder and ComputerTerminal agents were not available for a task that was expected
to require running code, the remaining agents solved the task by having the FileSurfer read
and reason over the code to predict the answer. In another example, when the FileSurfer was
unavailable for a task requiring reading contents of a pdf file, the remaining agents instead
attempted to find an online pdf viewer to solve the task.
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Figure 3: Performance of different ablations of Magentic-One (GPT-4o) on the GAIA develop-
ment set measuring the number of correct tasks. In the first ablation we replace the Orches-
trator with a simple Orchestrator. In the following ablations we remove individual agents from
Magentic-One denoted by “-agent”. The ablations show that all agents are essential to achieve
the best performance.

5.4 Error Analysis

As a final element of evaluation, we conducted an analysis to better understand Magentic-One’s
current failure modes.
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Approach. As Magentic-One works to solve tasks, it produces extremely rich and detailed
logs. Manual inspection of these logs often reveals mistakes, missed opportunities, dead-ends,
and run-time errors encountered by the agents. Many of these issues are systematic, suggesting
opportunities where the team could be improved. These opportunities could exist even when
the agents successfully complete a task e.g., because of suboptimal behavior. However, manual
inspection of these lengthy logs is slow and laborious, and scaling this manual labor to a large
number of logs can become cost-prohibitive.

To address this, we opted to automate log analysis using LLMs. The general problem here
is to automate the process of qualitative coding, i.e., automatically discovering major themes in
errors and inefficiencies observed in the logs. We implemented a multi-phase approach to ac-
complish this. For each task, we use GPT-4o to distill the team logs into a detailed postmortem
document, which seeks to identify the root cause of failure, along with any contributing factors.
These will serve as the basis for analysis.

Each root-cause document is then automatically assigned a few descriptive codes (aka labels)
using GPT-4o. With no pre-defined code book, there is initially a high diversity of codes across
documents. After generating these initial codes, the next step is to group them into batches, with
each batch being sent to GPT-4o for clustering. This step merges similar codes into a more
consolidated set. The process of consolidating and refining the codes is repeated iteratively,
either until the codes stabilize or a maximum number of iterations is reached.

We used 200 random samples of logs to bootstrap these codes and then once the final set of
codes is determined, it is applied to the entire set of documents.

Results. Figure 4a shows the distribution of error codes that were automatically discovered
by this approach for both versions of Magentic-One on the combined validation sets of all
benchmarks. The codes are sorted by occurrence. Here we describe the top three codes. The
details of all the codes, their definitions, and examples are available in Appendix C.

The most common code, persistent-inefficient-actions, refers to scenarios where agents re-
peatedly engage in unproductive behaviors without adapting their strategies, despite encounter-
ing failures. This persistence in ineffective actions leads to delays and suboptimal task outcomes.
For instance, agents might continuously attempt the same unsuccessful web searches without
modifying their queries or repeatedly access incorrect data sets without making necessary ad-
justments, resulting in wasted effort and time.

The second-most common code, insufficient-verification-steps, highlights situations where
tasks are marked as complete without thorough validation of the data involved, leading to
unreliable or erroneous results. Essential checks are bypassed, causing assumptions about data
integrity that may not hold true. An example of this would be accepting final outputs without
verifying their correctness, which can introduce errors into downstream analysis or decision-
making processes due to unchecked inaccuracies.

The third-most common code, inefficient-navigation-attempts is related to errors arising
from incorrect or inefficient navigation, which result in missed targets or prolonged task comple-
tion times. Agents often misinterpret interface layouts, leading to unnecessary cycling through
tabs or menus. For example, an agent might repeatedly click through multiple tabs to locate
the ’Settings’ page, causing delays. Similarly, incorrect clicks on navigation bars can prevent
access to the correct configuration settings. Confusion over user interface design can lead agents
back to the main menu instead of the required subsection, further delaying task completion.
Additionally, agents might persistently access incorrect page links, resulting in significant delays
in retrieving important data. This code underscores the need for better navigation strategies
and interface design to enhance task efficiency.

Figure 4b shows a heat map of the codes broken down by specific benchmarks and ver-
sion of Magentic-One. The heatmap again shows the presence of two most common codes
– persistent-inefficient-actions and insufficient-verification-steps – across all benchmarks. The
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code underutilized-resource-options, which refers to scenarios where agents fail to utilize avail-
able data, tools, or resources effectively, is also prevalent in the logs. This code indicates that
agents may not be taking full advantage of the resources at their disposal, leading to inefficient
task execution and unnecessary manual actions. Another code, inefficient-navigation-attempts,
is especially prevalent in the logs from the WebArena benchmark, where agents may struggle
with interpreting interface layouts and taking inefficient paths to complete tasks.

6 Discussion

In this section, we discuss open questions regarding the design of multi-agent systems for
complex-tasks (Sec. 6.1), current limitations (Sec. 6.2), and risks and risk mitigation for agents
that autonomously operate computers (Sec. 6.3).

6.1 The Multi-Agent Paradigm

At the core of Magentic-One is its multi-agent design. We believe that this design is a principal
contributing factor to Magentic-One’s performance. Indeed, we observe that most other top-
performing systems also follow a multi-agent design (Sec. 5.2).

We argue that, beyond performance, the multi-agent setup offers numerous other advan-
tages over the single-agent setup, in terms of ease-of-development, cost, and raw performance.
For example, organizing skills into distinct agents can simplify development, much like with
object-oriented programming. The separation of concerns across agents allows developers to
focus model choices, prompting strategies, and other parameters to align to specific tasks (e.g.,
the web surfer agent benefits from multi-modality and structured output, but need not worry
about writing code). Similarly, agent modularity can increase agent re-usability and ease of ex-
tensibility, particularly when teams are carefully designed to enable a plug-and-play approach.
For example, Magentic-One’s design facilitates adapting the team’s functional scope by simply
adding or removing agents, without requiring modifications to other agents’s prompts or the
overall flows and orchestration strategy. In contrast, monolithic single-agent systems often rely
on constrained workflows that can be difficult to adapt or extend.

As a consequence of such modularity, each agent can be implemented in a fashion best suited
for its purpose. In this paper, we leveraged this diversity to incorporate the o1-preview model
into some roles (e.g., the Coder, and the outer loop of the Orchestrator), while relying on a
general purpose multi-modal model (GPT-4o) for web and file surfing. Looking ahead, we see
this approach being used to reduce reliance on large models – whereas some subtasks might
require the largest language models available, others (e.g., grounding actions in WebSurfer, or
summarizing large files in FileSurfer) might be amenable to much smaller – and thus cheaper –
models. Different subtasks may also require different modalities, and some subtasks might be
offloaded to traditional, non-AI, tools (e.g., code execution, for which a standard code execution
environment is both sufficient and necessary). By embracing this diversity, multi-agent systems
can become more performant at lower costs.

Understanding and quantifying the empirical advantages of multi- vs. single-agent setups
constitutes a key question for future research. Moreover, many variants of the multi-agent setup
are possible. Here we opted for a single, centralized control flow pattern, where the Orchestrator
agent plans for, and invokes, specialized worker agents. Many other patterns are conceivable.
For instance, we might consider less centralized control flows, such as a peer-to-peer setting
where each agent decides on its own which other agent should take control next. At the other
end of the spectrum, we might consider an even more rigid control flow where the orchestrator
follows its own plan strictly (e.g., by encoding it as an executable program), rather than simply
maintaining the plan it its prompt for chain-of-thought prompting. Determining which control
flow works best for which tasks is of considerable theoretical and practical importance.
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(b) Heatmap of the error codes obtained by the automated analysis of Magentic-One’s behavior as
observed in the logs of the validation examples across all benchmarks studied.

Figure 4: Error analysis of Magentic-One’s behavior.

In addition to the above-mentioned control-flow considerations, an alternate design dimen-
sion relates to the axes along which work is divided. Magentic-One’s design diverges from other
recent examples of multi-agent systems in that agents take on functional or tool-based responsi-
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bilities (web browser, computer terminal, etc.), rather than role-based responsibilities analogous
to human teams (planner, researcher, data analyst, critic, etc.). In our experience, tool-centric
agents can provide a cleaner separation of concerns compared to role-based agents, and a cleaner
path to re-usability and compositionality – if a web browser is a generic, multi-purpose tool,
then a capable WebSurfer agent may hope to be generic and multi-purpose as well. Conversely,
role-based patterns may require multiple agents to have redundant capabilities, while each agent
fills only highly-specialized niche roles. For example, both a researcher and data analyst agent
may need to operate a web browser or write code to complete their assigned tasks. Future work
should empirically compare the performance of teams built with function- and role-based agents
and examine the impact of each approach on the ease of development and debugging.

6.2 Limitations

Our work necessarily comes with certain limitations, some of which affect today’s state of the
field in general, and some of which are specific to our solution:

• Accuracy-focused evaluation: Similar to other state-of-the-art systems, Magentic-
One was evaluated on benchmarks that consider only the accuracy or correctness of final
results. While considerably easier and more convenient to measure, such evaluations
overlook important considerations such as cost, latency, user preference and user value
[18]. For example, even a partially correct trajectory may be valuable [9], whereas a
perfectly accurate answer, delivered too late or at too high cost, may have no, or even
negative, value. Designing evaluation protocols that incorporate these considerations,
and that include subjective or open-ended tasks where correctness is less clear, remains
an ongoing open-challenge in this the field.

• High cost and latency: Although it was not part of the formal evaluation of Magentic-
One, we would be remiss to skip mention of cost and latency in any discussion of limitations
[18]. Magentic-One requires dozens of iterations and LLM calls to solve most problems.
The latency and cost of those calls can be prohibitive, incurring perhaps several US
dollars, and tens of minutes per task. We believe we can reduce these costs through
targeted application of smaller local models, for example to support tool use in FileSurfer
and WebSurfer, or set-of-mark action grounding in WebSurfer. Adding human oversight
and humans-in-the-loop, may also save costs by reducing the number of iterations incurred
when agents are stuck and problem-solving. This remains an active and ongoing area of
future research.

• Limited modalities: Magentic-One cannot currently process or navigate all modalities.
For example, WebSurfer cannot watch online videos – though it often compensates by con-
sulting transcripts or captions. Likewise, FileSurfer operates by converting all documents
to Markdown, making it impossible to answer questions about a document’s figures, visual
presentation style, or layout. Audio files are similarly processed through a speech tran-
scription model, so no agents can answer questions about music, or non-speech content.
Benchmarks like GAIA exercise each of these skills. We would expect both benchmark
and general task performance to improve with expanded support of multi-modal content.
Future options include expanding Magentic-One’s WebSurfer and FileSurfer agents’ multi-
modal capabilities or adding Audio and VideoSurfer agents specialized in handling audio
and video processing tasks to the Magentic-One team. The latter approach is most inline
with the value proposition of the multi-agent paradigm around easing development and
reuse.

• Limited action space: While agents in Magentic-One are afforded tools for the most
common actions, tooling is not comprehensive. This simplifies the task of action ground-
ing, but can lead to paths that are impossible to execute. For instance, the WebSurfer
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agent cannot hover over items on a webpage, or drag and resize elements. This can be
limiting when interacting with maps, for example. Likewise, FileSurfer cannot handle
all document types, and the Coder and Computer Terminal agents cannot execute code
that requires API keys, or access to external databased or computational resources. We
expect this limitation to close, over time, from two directions: first, we expect tool use
to standardize across the industry, greatly enriching the set of tools available to agents.
Second, similar to WebSurfer, agents will become better able to use operating systems
and applications, affording them access to a broad range of tools developed for people.

• Limited coding capabilities: The Magentic-One Coder agent is particularly simple:
it writes a new standalone Python program in respose to each coding request. In cases,
where a prior coding attempt requires debugging, the Coder must correct the code by
outputting an entirely new code listing. This is clearly not ideal. Two important limita-
tions arise from this design choice: first, the Coder is ill-suited to operate over existing
complex, or multi-file, code bases. Overcoming this limitation will be necessary to be
competitive on benchmarks like SWE-bench [17]. Second, the Coder sometimes fails be-
cause it expects functions that it previously defined to be available later in the workflow.
Migrating to a Jupyter Notebook-like design, where later invocations simply add cells to a
notebook, might mitigate this particular issue. This capability is presently supported by
the AutoGen library upon which Magentic-One is built, and should be explored further.

• Fixed team membership: Additionally, Magentic-One’s composition is fixed to a com-
mon set of five agents: Orchestrator, WebSurfer, FileSurfer, Coder, and ComputerTermi-
nal. When agents are not needed, they simply serve as a distraction to the Orchestrator,
and this may lower performance. Conversely, when extra expertise might be needed, it
is simply unavailable. We can easily imagine an alternative approach where agents are
added or removed dynamically, based on the task need.

• Limited learning: Finally, although Magentic-One can adapt its strategy based on trial
and error within a single task attempt, such insights are discarded between tasks. We
observe the direct consequences of this design in WebArena, where many problems share
a common set of core sub-tasks (e.g., finding a particular thread or user profile). When
competing on this benchmark, Magentic-One’s agents need to discover and rediscover
solutions to these sub-tasks over and over. This is exhausting and frustrating to watch,
is highly prone to error, and can incur significant additional costs. Overcoming this
limitation through long-term memory is a key direction for future research.

6.3 Risks and Mitigations

The agents described in this paper interact with a digital world designed for, and inhabited
by, humans. This carries inherent and undeniable risks. In our work we mitigate such risks
by running all tasks in containers, leveraging synthetic environments like WebArena, choosing
models with strong alignment and pre- and post-generation filtering, and by closely monitoring
logs during and after execution. Nevertheless, we observed the agents attempt steps that would
otherwise be risky. For example, during development, a mis-configuration prevented agents
from successfully logging in to a particular WebArena website. The agents attempted to log in
to that website until the repeated attempts caused the account to be temporarily suspended.
The agents then attempted to reset the account’s password. In other cases, agents recognized
that the WebArena Postmill website was not Reddit, then directed agents to the real website
to commence work – this was ultimately blocked by network-layer restrictions we had put in
place. Likewise, we observed cases where agents quickly accepted cookie agreements and website
terms and conditions without any human involvement (though captchas were correctly refused).
More worryingly, in a handful of cases – and until prompted otherwise – the agents occasionally
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attempted to recruit other humans for help (e.g., by posting to social media, emailing textbook
authors, or, in one case, drafting a freedom of information request to a government entity). In
each of these cases, the agents failed because they did not have access to the requisite tools or
accounts, and/or were stopped by human observers. To this end, it is imperative that agents
operate under a strict principle of least privilege, and maximum oversight.

In addition to these observed and mitigated risks, we can anticipate new risks from such
agentic systems on the horizon. As an example, as agents operate on the public internet, it
is possible that they are subject to the same phishing, social engineering, and misinformation
attacks that target human web surfers. The fact that the WebSurfer only occasionally recognized
that Postmill was not Reddit, in WebArena, lends credence to the concern that agents can be
fooled. If agents are equipped with a user’s personal information – for example, to complete
tasks on their behalf – then this could potentially put that information at risk. Moreover, we can
imagine that such attacks may be made more reliable and effective if attackers anticipate agentic
use, and seed external material with specially crafted instructions or prompt-injections. To
address these challenges, we can imagine several mitigations such as increasing human oversight,
equipping agents with tools to validate external information (e.g., checking for typo-squatting
in URLs, and ensuring TLS certificates, etc.), and including phishing rejection examples and
other web-savvy skills in a model’s post-training and instruction tuning.

Another cross-cutting mitigation we anticipate becoming important is equipping agents with
an understanding of which actions are easily reversible, which are reversible with some effort,
and which cannot be undone. As an example, deleting files, sending emails, and filing forms, are
unlikely to be easily reversed. This concept is explored in some detail in [78], which provides a
compelling framework for considering agent safety. When faced with a high-cost or irreversible
action, systems should be designed to pause, and to seek human input.

Recent research has also investigated how interactions between multiple agents, such as
iterative requests, long contexts, or cascading errors, may impact the effectiveness of the existing
model alignment and guardrails upon which we rely. For example, the crescendo multi-turn
attack [44], operates by prompting the model with a benign request, the slowly escalates the
requests, building a pattern of agent compliance, until finally asking for a response that would
otherwise be refused. In a multi-agent system, it is possible that a malicious agent, or an
unfortunate accident, could result in a similar pattern of escalation. Fortunately, strong pre-
and post-filtering, on the prompts and responses, remain a reasonable mitigation to such risks
for the short-term. Moving forward, we strongly encourage model alignment work to focus on
multi-turn scenarios. We also believe that red-team exercises are imperative to identify and
mitigate such risks.

Finally, there are potential long-term societal impacts of agentic systems, such as the po-
tential to deskill or replace workers, leading to potential economic disruption. We believe it is
therefore critical to work towards designing systems that facilitate effective collaboration be-
tween people and agents, such that humans and agents working together can achieve more than
agents working alone.

7 Conclusions

In this work we introduced Magentic-One, a generalist multi-agent system for ad-hoc, open-
ended, file- and web-based tasks. Magentic-One uses a multi-agent architecture with a lead
Orchestrator agent that directs four other agents. The Orchestrator agent is able to plan, track
progress, and recover from errors with a ledger-based orchestration. The remaining agents each
specializes in the operation of generally-useful tools such as web browsers, file browsers, and
computer console terminals. We show that Magentic-One is statistically competitive with other
state-of-the-art (SOTA) systems on three challenging benchmarks, demonstrating both strong
performance and generalization. Additionally, we have open-sourced the implementation of
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Magentic-One, which includes a reference framework for event-driven agents using the AutoGen
framework. Finally, we discussed the limitations of Magentic-One, and the risks introduced by
generalist AI agents, together with possible mitigation. To this end, Magentic-One represents
a significant development in agentic systems capable of solving open-ended tasks.
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Appendix

A Statistical Methodology

In Table 1, we report the mean and an error bar for each reported method on the three bench-
marks. To obtain the error bar we used a simple Wald 95% confidence interval for the proportion.
The Wald confidence interval assumes a normal approximation for the sample mean which is
only valid for larger sample sizes and is only accurate for proportions not near 0 or 1. Our
application meets these criteria: the smallest evaluated test set consists of 181 samples, and all
reported results hover around 30% with the exception of GPT-4. We also computed confidence
intervals using the Wilson interval and found similar results (though Wilson intervals are not
symmetric). For simplicity, we report only Wald intervals here.

We also report the results of a statistical test comparing Magentic-One (GPT-4o, o1) to each
reported method. We used the z-test to compare the accuracy of Magentic-One to each baseline
in Tabe 1. The z-test for proportions is the only feasible test in our setting because we only have
the mean accuracy and not results on each example (the task-level test set results are hidden
by the benchamrks). Therefore, we cannot apply McNemar’s Test or a pairwise t-test. The
limitation of the z-test is that it ignores pairing of the data and is generally conservative. We
hope future benchmark leaderboards can release confidence intervals in addition to the reported
mean.

B Capability to Category Mapping

Figure 3 (right) shows task performance results broken down by capabilities required. These
capabilities are based on the capabilities human annotators reported as needed to solve tasks
in the GAIA benchmark dataset [29]. We organized and re-coded these annotations into the
following categories to better reflect the roles of Magentic-One’s agents:

• Web browsing: capabilities related to searching and browsing the web. Examples: web
browser, search engine, maps, access to internet archives

• Coding: capabilities related to coding and execution. Examples: Coding, Python,
calculator, audio/video processing, text processing, natural language processing

• File handling: capabilities related to handling diverse file types. Examples: Pdf viewer,
Word, Excel, Powerpoint file access, CSV file access, XML file access

• No tools: capabilities that can be performed inherently by agents, without tool-use, us-
ing multi-modal models. Examples: Image recognition, OCR, Computer vision, color
recognition, extracting text from images
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C Error Analysis Code Book

In this section, we provide the final codes from the automated analysis of Magentic-One’s
behavior in the validation logs across all benchmarks. The codes are sorted by how often they
appeared in the samples they were taken from. For each code, we include a definition and
summaries of examples from the logs that were assigned that code.

Name Definition Examples
persistent-
inefficient-actions

Agents engaged in unproduc-
tive patterns without adapting
despite facing failures. Ineffec-
tive strategies persisted, lead-
ing to delays and insufficient
task outcomes.

• Agents clicked the same web-
page sections multiple times,
achieving no advancement in in-
formation retrieval.

• Agents unnecessarily engaged in
general web searches instead of
focusing on specified database
tools.

• WebSurfer continued failing
searches with no query modi-
fication, ignoring unsuccessful
outcomes.

• The orchestrator commanded
agents to use a flawed path re-
peatedly, indicating ongoing cy-
cles without modification.

• Unaltered processes accessed in-
correct data sets, consuming re-
sources without advancing task
goals.

insufficient-
verification-steps

Tasks were marked complete
without thorough data valida-
tion, leading to unreliable out-
comes. Essential checks were
skipped, resulting in erroneous
assumptions about data in-
tegrity.

• Final outputs were accepted
without validating data correct-
ness, leading to potential errors.

• An orchestrator concluded a
task although necessary criteria
were unverified, risking incom-
plete achievement.

• A dataset’s verification steps
were skipped, causing unad-
dressed errors in downstream
analysis.

• Document scans lacked quality
checks before storing, leading
to unreliable information in re-
ports.

• Data interpretation lacked cross-
verification assurances, uncover-
ing gaps in computation assur-
ances.
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underutilized-
resource-options

Agents consistently did not uti-
lize available data, tools, or re-
sources effectively. This re-
sulted in inefficient task execu-
tion and repeated manual ac-
tions, even when automation
was an option.

• Agents failed to integrate acces-
sible descriptions, opting for re-
dundant manual inputs despite
metadata availability.

• Manual downloads persisted
when FileSurfer was available
for rapid document retrieval,
unnecessarily extending the
task.

• Available APIs were bypassed in
favor of manual approaches, ex-
tending the task duration unnec-
essarily.

• Advanced search functions were
overlooked, leading to reliance
on broad manual explorations,
slowing down the process.

• Complex data visualization was
attempted with basic charting
tools instead of comprehensive
graphing tools.

inefficient-
navigation-attempts

Errors occurred because of in-
correct or inefficient naviga-
tion, leading to missed tar-
gets or prolonged task comple-
tion. Agents misinterpreted in-
terface layouts and took ineffi-
cient paths.

• The agent mistakenly cycled
through multiple tabs to find the
’Settings’ page, resulting in de-
layed task progress.

• Incorrectly clicked navigation
bars led to a user failing to
access the proper configuration
settings.

• Confusion over the UI design led
an agent back to the main menu
instead of the subsection needed
for task completion.

• Cycling through history tabs re-
sulted in missed current transac-
tion logs.

• The agent persistently accessed
the wrong page links, causing
delays in retrieving important
data.
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ineffective-team-
communication

Agents did not communicate
information or direction effec-
tively, causing task overlap and
confusion. Miscommunications
led to redundant work and un-
coordinated actions.

• Two agents simultaneously ac-
cessed order histories due to un-
clear task division, resulting in
duplicated efforts.

• Agents struggled to understand
task requirements due to incom-
plete directive descriptions.

• The WebSurfer and FileSurfer
failed to communicate their find-
ings, leaving the Orchestrator to
make decisions based on incom-
plete information.

• Repeated task restarts occurred
because instructions were too
vague, leading to incorrect inter-
pretations.

• Agents observed unclear role de-
marcations that caused them
to erroneously overwrite each
other’s progress.

neglected-error-
notifications

Agents ignored known errors
or warnings, allowing issues to
persist and recur. This resulted
in repeated inefficiencies and
bottlenecks in task execution.

• Repeated ’ValueError’ messages
were ignored, allowing the un-
derlying issue to continue unad-
dressed.

• Agents accessed ’hotel booking’
pages multiple times despite ’No
results found’ errors repeatedly
visible.

• System errors were logged with-
out corrective attempts, leading
to prolonged delays in task com-
pletion.

• Unresolved input errors led to
repeated submissions of the
same query form without varia-
tions.

• Despite validation warnings,
agents continued with depre-
cated approaches, leading to
unresolved problems.
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flawed-technical-
implementations

Tasks faced issues due to in-
correct application of technical
logic or processes. Misapplied
techniques led to errors and in-
efficiencies.

• Agents encountered syntax er-
rors in scripts due to incor-
rect indentation, halting task
progress.

• Repeated runtime errors oc-
curred as agents submitted mis-
formatted queries without cross-
verifying syntax.

• In accessing web modules,
agents misapplied parame-
ter mappings, causing non-
responsive functions.

• Misinterpretation of calculation
steps led to varying billing in-
consistencies within an ecom-
merce task.

• Agents faced challenges in align-
ing sales data, resulting in
flawed revenue projections.

access-and-security-
barriers

Tasks were hindered due to se-
curity or access restrictions, af-
fecting data integrity. Agents
struggled with authentication,
allowing unauthorized access or
limiting task completion.

• Visible password fields were
used, risking data exposure to
unauthorized parties.

• Repeated attempts to submit
forms were met with unresolved
errors blocking access to data
queries.

• Token visibility in the logs
suggested possible unauthorized
data access due to weak creden-
tial management.

• Insufficient password policies al-
lowed repeated login attempts
without user notifications, risk-
ing security.

• Repeated security filter alerts
appeared as agents attempted to
access restricted areas.
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delayed-feedback-
updates

There was a delay in communi-
cating task progress or results,
causing confusion and hinder-
ing coordination. Timeliness
in updates was lacking, leaving
tasks in ambiguity.

• After WebSurfer confirmed a
task, the orchestrator delayed
updating the user, leading to
confusion.

• Notification of successful strat-
egy analysis reached the user
well after execution, causing
temporary uncertainty.

• Despite quick report genera-
tion, notifications lagged be-
hind, leading users to question
task progression.

• Task completions were assumed
due to lagged updates in user no-
tifications post-webpage comple-
tions.

• Feedback on document comple-
tions took significantly longer to
communicate to concerned tasks
than average.

successful-task-
completions

Tasks were completed smoothly
with no errors, meeting all
objectives efficiently. Agents
achieved success through coor-
dinated efforts, correct usage of
resources, and thorough verifi-
cation.

• During the data migration task,
all user details were accurately
uploaded and verified without is-
sues.

• Correct transaction processing
led to flawless financial reconcil-
iation, with all figures matching
expectations.

• Backend updates improved pro-
cessing speeds, which perfor-
mance tests later verified as pos-
itive and expected.

• Users experienced smooth ac-
count creations, following flaw-
less processes without discrepan-
cies or errors.

• Revisions in manuscript drafts
met all editorial instructions
perfectly, with edits applied and
aligned as needed.
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