
Cuttlefish: A Fair, Predictable Execution Environment
for Cloud-hosted Financial Exchanges

Liangcheng Yu¶,†, Prateesh Goyal¶, Ilias Marinos¶,‡, Vincent Liu†

¶Microsoft Research, ‡NVIDIA, †University of Pennsylvania

Abstract
Recent years have seen rising interest in expanding and equal-
izing access to low-latency algorithmic trading for a wider
group of participants, including retail traders. Cloud-hosted
financial exchanges promise a cost-effective platform more ac-
cessible to traders. Unfortunately, achieving fairness in cloud
environments is challenging due to unpredictable network
latencies as well as non-deterministic computation times.

This work presents Cuttlefish, a fair-by-design algorithmic
trading platform that can run in cloud environments. The idea
behind Cuttlefish is the efficient and robust mapping of real
operations to a novel formulation of ‘virtual time’. With it,
Cuttlefish pushes fairness to the extreme regardless of the un-
derlying network communication and computation hardware.
Our implementation and evaluation not only validates the prac-
ticality of Cuttlefish, but also shows its operational efficiency
on public cloud platforms.

1 Introduction

Low-latency algorithmic trading is responsible for much of
the efficiency of modern financial markets, promoting accu-
rate/timely pricing of securities, higher liquidity, and lower
trade costs for all investors—institutional or retail [31]. The
goal of low-latency algorithmic trading is to process incoming
market data and issue trades as quickly as possible to take
advantage of ephemeral market-making and arbitrage opportu-
nities [54]. Compared to the broader set of algorithmic trading
strategies, which can involve longer time scales and even
humans in the loop, the emphasis of low-latency approaches
is on reaction time rather than the complexity/dimensionality
of the algorithm. A sizable fraction of activity in today’s
exchanges is the result of this class of trades [4, 24].

It is, thus, worth examining, in depth, the viability of this type
of trading in the context of the recent surge of interest in cloud-
hosted financial exchanges, e.g., from major exchanges like
NASDAQ, CME, LSE, and B3, as well as cloud providers like
Microsoft, Amazon, and Google [22,41,42,46]. Exchanges are

interested in moving to the cloud for a variety of reasons, includ-
ing better scaling, fewer outages, improved cost savings, and
a potentially broader customer base as, theoretically, any user
can rent a machine in the same region as the Central Exchange
Server (CES) and participate without the logistical hurdles in-
volved in installing and maintaining on-premise hardware [17–
19,24]. Smaller and newer exchanges (e.g., for cryptocurrency)
are particularly interested as the cloud can also lower their bar-
riers to entry by eliminating the need for custom infrastructure.

The primary challenge in this migration is that the cloud
platforms are not nearly as fair/predictable as current exchange
infrastructure, where exchanges deploy layer-1 switches
and equal-length network cables to eliminate differences
in propagation delay [17, 18, 24] and where Market Partic-
ipants (MPs)1 implement custom operating systems and
network stacks on top of bare metal to control differences
and compete against other participants in compute perfor-
mance [9, 24, 33, 36, 38]. As the order in which the exchange
server processes competing trades governs the outcome of the
competition, there are considerable advantages to winning that
race, and cloud practicalities (e.g., a noisy neighbor, thermal
variations, or unscheduled cloud-provider maintenance
operations) [39, 50, 52], can significantly affect its outcome.

Our goal in this work is a fair, predictable execution environ-
ment for cloud-hosted financial exchanges, where the outcome
of races are based on the strength of the MPs’ designs rather
than (un)lucky performance fluctuations of their underlying
computation and communication infrastructure. In addition,
the system should provide low-latency and high throughput.

We note that recent work in cloud exchanges has made
large strides in taming variability in communication infrastruc-
ture [17,19,24]. However, despite their progress, they continue
to struggle to provide complete guarantees on the communi-
cation latency of market data and trade delivery. CloudEx [17],
for instance, breaks down when the clock synchronization error
gets too high [37] or when network latency spikes beyond a pre-
configured threshold. DBO [19, 24] addresses some of these

1In low-latency algorithmic trading, MPs also refer to the computer
program executing the trading algorithm, terms we use interchangeably.

1

issues with its use of logical clocks but breaks in the presence of
non-speed-race trades (i.e., those that are based on an aggrega-
tion of multiple market data points) and when there is variation
in latency between the release buffer (RB) and the MP machine.

In this paper, we present Cuttlefish2, the first cloud-hosted
exchange for low-latency algorithmic trading that ensures
fair, predictable execution in the face of compute and com-
munication variance. Not only is Cuttlefish the first to address
differences in compute performance in these environments,
its focus on both dimensions helps it to achieve more complete
guarantees of communication fairness even when compared
to prior work that specializes in communication.

Guaranteeing this level of fairness is fundamentally
challenging as, in the end, simultaneous data delivery and syn-
chronous execution is a classic (and under some assumptions
impossible) challenge in distributed systems [14, 20, 24, 53].
Further, beyond just the fairness of computation and com-
munication, the system needs to have low latency and high
throughput to be usable by MP and their trading algorithms,
where latency is defined as the minimum time between produc-
tion of market data at the CES and the execution of trade from
an MP using this data (see §7), and throughput is defined as
the amount of calculations that MPs can perform per unit time.

Cuttlefish achieves the above using an efficient and robust
mapping of real operations to ‘virtual time’ from a platform-
agnostic intermediate representation (IR). Virtual time allows
us to quantify computation and, critically, to control its
advancement deterministically through the rate-limiting of
MP operations—a level of control that is not possible with real
time. This approach enables deterministic and fair operations
in both simultaneous market data release and MP computation
processes and guarantees fairness, regardless of the varying
latencies in the communication of market data and trade
responses or variations in computation platforms.

This concept of virtual time mirrors that of other applications
such as co-simulation [5, 6, 11, 32], which coordinates virtual
time for concurrent emulation and simulation processes. Cut-
tlefish takes a step further by extending the concept to real-time
systems and developing an end-to-end trading platform. Cut-
tlefish’s architecture is, thus, a combination of (1) a platform-
agnostic IR instantiating virtual time per virtual machine in-
struction cycle count, along with its expressive programming
interface and lightweight instrumentation for virtual cycle
tracking, (2) a runtime execution environment optimized for co-
located MPs, and (3) a protocol to control inflight virtual cycles
and handle variations in the underlying network or compute.

Our prototype not only demonstrates the viability and
practicality of Cuttlefish’s design, but also the efficiency in its
exchange operations while being deployable on commercial
cloud virtual machines. To summarize, this paper makes the
following contributions:

• We propose Cuttlefish, the first cloud exchange platform
2The animal renowned for its ability to see invisible polarized light to

discern subtle changes in murky waters for navigation and communication.

to tackle compute fairness and, as a result, simultaneously
address persistent gaps in the communication fairness of
existing systems.

• We introduce a precise virtual time overlay and mapping
strategy to abstract the differences in the underlying data
communication and computation hardware while main-
taining low latency and high compute throughput to MPs.

• Finally, we evaluate Cuttlefish using an end-to-end
implementation on a real cloud platform. When serving
100 MPs, Cuttlefish not only guarantees fairness in
communication and computation, but also low end-to-end
latencies (< 150µs p99.9 tail latencies) and compute
throughput close to their limits. We will open-source the
code upon publication.

2 Background and Goals

Historically, financial exchanges were bustling places where
people would shout orders, negotiate prices, and physically
exchange papers representing ownership of stocks or other
assets. In today’s financial markets, however, the vast majority
of trades are executed by computers rather than by humans.
This shift from human-driven to computer-driven trading has
opened up the possibility of so-called algorithmic trading
techniques, now the cornerstone of modern financial markets.

Algorithmic trading refers to the process of making trade
decisions with the help of computer programs. Under this
umbrella, low-latency algorithmic trading, which focuses
on fast (e.g., <1 ms) reactions to real-time market data with
minimal human intervention, has become critical to market
efficiency, price discovery, liquidity, and low transaction
costs. These algorithms account for a significant portion of
the trading volume in financial markets [4, 24, 31, 35, 54].
Compared to the broader set of algorithmic trading strategies,
the logic of MPs who participate in low-latency algorithmic
trading is relatively simple (designed for quick reactions) and
features highly optimized data path logic [33, 36].

Exchanges that support low-latency algorithmic trading
expose a simple top-level abstraction: (1) the exchange
broadcasts market data to all MPs, delivered at time {D}, (2)
the MPs analyze the data, and (3) they send trades back to the
exchange at time {S}, processed in the order of submission.
MPs can also integrate external data into their strategies, but
the import of these data is orders of magnitude less frequent
than the data processing of the core market.

Exchanges also provide alternative trading interfaces, but
they are typically three to four orders of magnitude higher
latency and used by MPs for less latency-critical trading (e.g.,
quantitative trading). Trades made through these alternate
interfaces eventually become part of the incoming market
data [1]. The design of these alternate trading interfaces is
orthogonal to this work.

Cloud-hosted exchanges. As mentioned, there has been sig-

2

RB

RB

MPi

MPj

CES

OB

Market data release

Trade aggregation
ME… …

Figure 1: Basic structure of cloud-hosted exchanges. All systems
components are controlled by the trusted cloud provider.

nificant recent interest in cloud-hosted exchanges for reasons
including better scaling, fewer outages, improved cost savings,
and broader access to the financial markets [17, 19, 24, 35].

Figure 1 depicts the main components of these exchanges.
At the core of these systems is the Central Exchange
Server (CES), which disseminates market data to all MPs
through Release Buffers (RBs) or equivalents. Then, the
MPs—hosted by proxy cloud instances in the same cloud
region as the CES—compute their trading decisions and
forward them to the CES. There, trades are first enqueued and
sorted at the Ordering Buffer (OB) and then processed in FIFO
order by the Matching Engine (ME). The ME finally updates
the limit order book and generates a new batch of market data.

Although moving to a cloud-hosted solution requires
MPs to trust the cloud provider and trading platform to not
steal or manipulate the MP trading code and execution, such
requirements are typically enforced through contracts and
regulatory bodies such as the SEC and privacy laws (similar to
the existing restrictions on tampering in on-premise platforms).
Recent advances in hardware (e.g., Intel SGX [12]) as well as
efforts in cloud confidential computing [3, 45] could provide
additional guarantees of confidentiality and security.

Unfortunately, despite their attractive properties, in our
conversations with major cloud providers, financial exchanges,
and trading firms, there is still a fundamental distrust of
the performance properties of the underlying infrastructure.
In particular, for both computation and communication,
performance variations can quickly overwhelm MPs’ careful
optimizations, creating a world where MPs win and lose not on
the strength of their algorithms but on purely external factors
(e.g., noisy neighbors or provider monitoring/maintenance).

To illustrate, consider the simple scenario of delivering mar-
ket data x for MPi and MPj in Figure 2a. Coordinating delivery
to ensure D(i,x)=D(j,x) is difficult due to unpredictable and
unbounded path latencies. More importantly, even with simul-
taneous data delivery, the same hardware substrate (e.g., same
SKUs), and the same software stack (OS and the MP’s trading
algorithm), for the same algorithm, the computation time can
still vary significantly (e.g., due to different thermal state). This
leads to non-deterministic submission times S(i,y) ̸= S(j,y),
as shown in Figure 2b. In both cases, any disparity, even at
nanosecond time scales, can advantage/disadvantage an MP.

Performance bias and variability can occur for any number
of reasons, including everything from non-deterministic

Notation Definition

G(x) Wall-clock time when market data x is generated.
D(i,x) Wall-clock time when data x is delivered to MPi.
S(i,y) Wall-clock time when MPi submits trade y.

D̃(x) Virtual time assigned to deliver data x.
S̃(i,y) Virtual time when MPi submits trade y.

C̃ES(t) Virtual time of CES at a wall clock time t.
ÕB(t) Virtual time of OB at a wall clock time t.
M̃Pi(t) Virtual time of MPi at a wall clock time t.

C̃ES
−1

(vt) Wall clock time of CES at a virtual time vt.

ÕB
−1

(vt) Wall clock time of OB at a virtual time vt.

M̃Pi
−1

(vt) Wall clock time of MPi at a virtual time vt.

Table 1: Summary of notations.

software operations to machine-specific hardware wear and
thermal effects, with some studies citing CoVs of performance
in bare-metal infrastructure of up to 30% [39, 52]. These are
on top of noisy neighbor and hypervisor effects introduced
in cloud deployments.

While it may be possible for cloud providers to try to tame
this effect, e.g., preventing all multi-tenancy, removing all
management/telemetry infrastructure, or carefully controlling
temperature and wear, doing so would substantially cut into
the cost and scalability advantages of cloud-hosted exchanges.
In this work, we assume a traditional cloud execution model
where the provider is responsible for compute and network
infrastructure and the infrastructure is fundamentally variable;
alternative setups are out of the scope of this work.

Our goal. Our goal in this work is to create a cloud-based
trading platform that is fair and predictable—where the
outcome of competitions is based on only the properties of
MPs’ algorithms rather than luck. More specifically, we target:
R1 Communication fairness: (a) All MPs should get access

to the market data points at the same time ({D}) and (b)
in the other direction, MPa’s trade should execute before
MPb iff MPa submits a trade before MPb.

R2 Computation fairness: For any trading algorithm
permissible on the platform, A, given any execution of
the algorithm in the platform, the submission time of
the generated trades, {SA}, is completely defined by the
delivery time of the input data to the algorithm {DA}.
Consequently, given R1, for a given trading algorithm,
the computation time to generate the trades should not
vary across MPs.

In addition, MPs should experience low latency and high
compute throughput for their trades and algorithms. For the
coarse-grained external data, Cuttlefish also ensures its fair
and predictable delivery (see §6).

Recent work on fair cloud exchanges. We note that prior
work [17, 19, 24] has already begun to explore the design of
cloud exchanges but with a singular focus on communication.
Unfortunately, even for R1, their guarantees are incomplete.

3

CES

MPi

MPj

G(x)

D(i, x)

Wall-clock time

t

t

t

D(j, x)

δ

?

(a) Communication unfairness

CES

MPi

MPj

G(x) Wall-clock time

t

t

t

δ

S(j, y)

S(i, y)

?
(b) Computation unfairness

Figure 2: Simultaneous data delivery and compute fairness are
difficult, even under the same market data, MP algorithm, and
execution platform.

For example, CloudEx [17] and Octopus [18] enforce
high-resolution clock synchronization among all RBs and
the CES. The CES, upon generating market data at time t,
assigns a future release timestamp t +∆tr with a predefined
threshold ∆tr, allowing RBs to forward the data simultaneously.
Similarly, when an inbound trade arrives at an RB at time
t, the CES enqueues it to the OB until t + ∆d where the
delay ∆d allows earlier trades to arrive within this headroom.
Unfortunately, even with perfect clock synchronization—
likely a strong assumption in distributed systems [37]—the
guarantees break whenever there is a latency spike exceeding
the threshold. Such latency spikes can occur unpredictably
in cloud environments [19, 24, 34], violating R1. Configuring
conservative threshold values can help (at the cost of higher
latency penalties) but are not a complete remedy [14, 19, 24].

More recent work, DBO [19, 24], relaxes the requirement
of clock synchronization and proposes logical clocks based on
MP response time. Briefly, DBO offloads RBs to local Smart-
NICs that measure and tag each MP’s response time, while
trades are being ordered accordingly at the OB/CES. This
method corrects inaccuracies in simultaneous data delivery
post hoc and provably guarantees Limited Horizon Response
Time Fairness for (an illusion) of R1. DBO’s guarantees are tai-
lored for a specific trading pattern, namely trigger-point-based
high-speed trades. Trades that do not fit this model (e.g., slower
trades or trades triggered using two or more data points) are not
necessarily fair. DBO also has an assumption of equal latency
between MPs and their local RBs, which presents additional
challenges for practical deployments in cloud environments.

3 Virtual Time in Cuttlefish

Cuttlefish tackles both computation and communication
fairness simultaneously. We find that including compute
fairness not only serves to present a more predictable execution
platform—as cloud compute can be just as variable as cloud
networking—it also naturally addresses the fundamental
limitations of existing work on the communication side.

To guarantee both R1 and R2, our system, Cuttlefish, adopts
a ‘virtual time’ abstraction. Virtual time, as a general concept,
is not new—there are many instances where it is beneficial
to have a global and fine-grained notion of dependencies that
is independent of wall-clock time.

Communication fairness

C
o

m
p

u
ta

ti
o

n
 f
a

ir
n

e
s
s

CloudEx DBO

Cuttlefish

F
a
ir
e
r

Figure 3: Recent cloud-hosted exchange proposals [17–19, 24]
target only communication fairness.

Of particular relevance is the use of virtual time in
high-fidelity emulation of processes interacting over a net-
work [5, 6, 11, 23, 32]. In these frameworks, all processes keep
a virtual clock for use in coordinating per-process progress and
cross-process events, e.g., network communication. Unlike
real time, virtual time is controllable: a process’s virtual clock
advances only when it is scheduled. Virtual time is, thus, a
stand-in for the expected behavior of the emulated network.
The framework exploits the ability of pausing and resuming
processes to ensure that all processes are synchronized and
events are sequenced correctly according to their virtual time.

Network emulation vs. low-latency algorithmic trading.
Cuttlefish takes an analogous approach by assigning virtual
time to all communication and computation—down to an
instruction level. Like emulation, Cuttlefish benefits from
the ability to control the fine-grained progression of virtual
time for each MP (pausing and skipping forward as necessary).
Unlike emulation, however, low-latency algorithmic trading
presents a substantially different set of goals and knobs.

Soft real-time constraints on virtual time progression:
Generally, the primary concern of network emulation is
fidelity to a target emulated network. The relationship between
the emulator’s virtual time and wall-clock time is of secondary
importance, with the most important impact being its effect
on the end-to-end execution time of emulation. In contrast,
Cuttlefish is a platform for trading real-world financial
instruments, so consistent timeliness is critical, especially in
the presence of alternative trading interfaces and external data.

Control over input frequency: Emulation’s focus on fidelity
also generally assumes a ‘correct’ emulation target. In contrast,
the CES in Cuttlefish has significant control over market data
delivery times—what matters is the fairness of the delivery, not
fidelity to any particular execution. Cuttlefish uses this control
to adjust the market data delivery rate in response to the current
load and to allow lagging nodes to catch up to faster ones.

Cuttlefish virtual time, illustrated. Figure 4 depicts the
operation of virtual time in Cuttlefish. For simplicity, we will
ignore component failures but discuss how Cuttlefish can be
extended to handle them in §7.

The Cuttlefish CES operates unrestricted in wall-clock
time, while the MPs track and adhere to virtual time. The
notation used in the figure and the remainder of the paper are
summarized in Table 1.

4

CES

MPi

MPj
vt

D̃(x)

D̃(x)
vt

t

(a) Communication fairness

CES

MPi

MPj
vt

vt

S̃(j, y)

S̃(i, y)

t

(b) Computation fairness

Figure 4: Computation and communication fairness are achiev-
able in the virtual time domain through the deterministic control
of virtual time passage and the quantification of computation
using virtual time.

1. [Figure 4a] For fair market data delivery (R1a), the CES
picks a virtual time D̃(x) for the release of each data point
x. Each MP’s local execution runtime controller ensures
the release accordingly.

2. [Figure 4b] For compute fairness (R2), Cuttlefish pro-
vides a deterministic accounting of computation—spec-
ifically, the instruction cycle count executed by its plat-
form-agnostic virtual machine substrate.

3. [Figure 4b] For fair trade ordering (R1b), trades from an
MP are marked with the virtual time at which they are
generated, S̃(i,y) and S̃(j,y). Similar to DBO, Cuttlefish
features an ordering buffer that forwards these trades to
the CES based on their generation time.

Strict adherence to virtual time on all MPs ensures both
communication and computation fairness. The CES’s ability to
bridge wall-clock and virtual time ensures a strong relationship
between the two (see §7).

4 Design Overview

Building a practical, end-to-end system around the above vir-
tual time abstraction presents a range of technical challenges:
How can we instantiate virtual time and track its advancement
in a real system? How can we minimize overheads while
ensuring fairness? What should the system do when there are
spikes in network latency or a slowdown in a particular MP’s
progress? We discuss them in the remainder of this paper.

Workflow. Figure 5 depicts the high-level architecture of
Cuttlefish. On top of the classic architecture of cloud-hosted
exchanges, Cuttlefish adds three primary components to
instantiate the virtual time overlay:

1 MP algorithm representation via eBPF VM bytecode [§5]:
To account for the amount of computation deterministically,
Cuttlefish leverages a platform-agnostic IR that is based on
the eBPF Virtual Machine (VM) instruction set. Cuttlefish
advances virtual time based on the consumed number of VM
instruction cycles, allowing it to abstract out potential vari-
ances in the underlying infrastructure. Cuttlefish also adapts
eBPF user-space libraries to support a simple but expressive
programming interface. Cuttlefish verifies, instruments, and

VT-RT
VT-RT
VT-RT

CES

OB

ME

Cuttlefish platform

D̃(x)

S̃(i, y)2

1

VTC

GW

3

Figure 5: Overview of the Cuttlefish platform.

translates this code from MPs to native assembly for the under-
lying computation platform for efficient execution.

2 Virtual time execution runtime (VT-RT) [§6]: Cuttlefish
develops a runtime execution environment that can efficiently
utilize all available cores to execute the binaries for MPs al-
located to the same cloud VM. It also manages a range of
real-time operations for the responsible MPs, including track-
ing and advancing the virtual time, data delivery, and local
batching of trades and heartbeat to the central CES for ordering
based on the submitted virtual time.

3 Virtual time control (VTC) [§7]: Cuttlefish integrates a
virtual time control algorithm for the CES to assign virtual mar-
ket data release times. By controlling virtual time assignment,
the CES controls how much compute throughput is available
to each MP. This is crucial to mitigating underlying network
latency spikes or slowdown in execution behaviors.

We note that our virtual time abstraction is naturally com-
patible with external data events. In particular, we can take
external data events and deliver them to MPs at any desired
virtual time. Cuttlefish decides the delivery time of external
data events to preserve competition in bringing external data
to the trading machine faster than other MPs (see §6).

The cost of fairness. In exchange for fairness/predictability,
Cuttlefish incurs modest overheads on MP execution. Some of
this is due to the extra instrumentation to track and control vir-
tual time, which incurs a relatively small overhead of∼2–20%.

More fundamentally, guaranteeing that all MPs have an
equal opportunity to respond to market data means that
system-wide progress is gated on the slowest node. This
limitation is intrinsic to any fair system. Prior work like
DBO and CloudEx noted similar limitations when equalizing
network delay; Cuttlefish incurs the same for compute.

In the end, however, in our evaluation on a public cloud and
100 MPs, Cuttlefish was able to achieve high performance in
the presence of real-world performance variation (see §9.3). If
higher throughput is needed, better hardware or multi-threaded
execution (Appendix A) can help. Regardless, Cuttlefish still
guarantees fairness and predictability in all cases.

5 MP Algorithm Representation

This section elaborates on Cuttlefish’s abstractions and
platform-agnostic IR, taking a top-down approach.

5

1 #include <cuttlefish_user.h> /* Single include of whitelist APIs */
2 int mp_handler (subscribed_context_t* ctx):
3 if (ctx->price) > 100 then
4 trade_t trade = 1; /* Sell */
5 submit_trade(&trade); /* Just-in-time trade submission */
6 else if (ctx->price) < 10 then
7 trade_t trade = 2; /* Buy */
8 submit_trade(&trade);
9 update_map(0, &ctx->price); /* Save the history price */

10 return 0;

Figure 6: An example MP pseudocode in high-level language
using Cuttlefish service APIs, which includes a narrow interface
to a KV store for stateful invocations.

5.1 Programming Interface

Recall from §2, MP algorithms consist of processing CES data
feeds to make trading decisions that aim to optimize profit
from price disparities, bid-ask spreads, or liquidity subsidies.
To allow users to easily program MP algorithms, Cuttlefish
utilizes a simple event-driven programming interface.

MP handler abstraction. Figure 6 shows a simplified
example of how users may express trading logic with
Cuttlefish’s mp_handler interface.

An MP’s handlers are invoked serially on each subscribed
market data point. Virtual time advances on every new
invocation (in accordance with R1a) and on every execution of
an IR instruction (with a fixed virtual time cost per instruction).

More specifically, for each market data x, the virtual time of
MPi is updated according to the rule M̃Pi =max(D̃(x),M̃Pi).
This involves two scenarios: (1) If the prior invocation finishes
before D̃(x), Cuttlefish advances M̃Pi to the target virtual
time and releases the data; and (2) if the MP handler chose
to consume more cycles that ends up overshooting D̃(x), M̃Pi
remains unchanged. MPs can submit trades at any point in
this process. Each trade’s ordering is determined by the exact
virtual time of the associated submit_trade call.

The cost of each instruction is fixed and public knowledge
(for details on the map between individual IR instruction types
to its virtual time cost, see §8).

eBPF IR. Although any platform-agnostic runtime could
serve as a virtual hardware substrate, Cuttlefish chooses an
IR based on the eBPF Virtual Machine (VM) instruction set.
This IR is compelling for many reasons: it is simple (a 64-bit
RISC register machine), it has a mature ecosystem including
support for various language frontends, and it is widely sup-
ported in multiple target architectures including specialized
hardware accelerators (e.g., FPGAs, smartNICs) [7, 30]. More
importantly, the simple eBPF ISA allows us to easily enforce a
constrained memory access model and reason about safety by
verifying MPs’ eBPF bytecode accordingly before execution
through static analysis [16, 30, 51].

We note that using the eBPF IR does not mean that we are
using the kernel-based eBPF VM. While the kernel-based

Validation

Cuttlefish

Instrumentation

Memory
relocation

BPF_CALL
instantiation

VT tracking

Translator

x64
binary

r0->rax

r1->rdi

…

mp.c

Native
compiler

clang -target bpf

mp.o

eBPF frontend
+ service API

Figure 7: MP bytecode processing workflow.

VM [16] imposes restrictions that limit expressiveness, e.g.,
loop bounds, Cuttlefish does not impose such constraints.
Thus, Cuttlefish provides a Turing-complete interface [16, 51]
for MPs to implement trading strategies, and we show several
examples of these in Table 4.

Usability: Users can write their trading programs directly
in eBPF bytecode (and will likely do so for performance
reasons), or they can use more accessible toolchains (such
as llvm’s eBPF backend) to compile the MP expressed in a
high-level language like C to the bytecode and then sent (e.g.,
as an elf file) as input to Cuttlefish.

Service APIs: To enable user access to Cuttlefish’s
trading services, Cuttlefish provides a single header file that
contains main data structures and a whitelist of shared service
APIs. These include: (1) primitive service APIs for trade
submission and virtual time facilities, as well as a runtime
context object for accessing real-time market data, current
virtual time M̃Pi(t), and the release virtual time D̃(x) for
the current invocation, (2) a narrow interface for KV store
interactions (e.g., update, lookup) for stateful invocations, and
(3) extensible built-in computational helpers like FFT—which
users can optionally leverage for convenience—although users
can also write their own implementations in the MP handler.

5.2 MP Bytecode Processing Lifecycle
Once the MP provides their bytecode to Cuttlefish, Figure 7
illustrates the subsequent processing pipeline: Cuttlefish first
validates and instruments the bytecode before final JIT compi-
lation to native hardware binary for safe and efficient execution.

Validation. Cuttlefish ensures the safety of input bytecode
through a validation process similar to that of kernel space
eBPF VMs [16, 30]. It rejects programs that attempt memory
interactions beyond the allowed indirect KV store access,
such as through dynamic memory allocation. Additionally,
the use of BPF_CALL instructions is restricted to the predefined
set of service APIs in §5.1, blocking any attempts to invoke
unsupported functions through illegal opcodes. Further
security checks are described in §7.

This step, similar to previous work in cloud exchanges,
requires that MPs must trust the cloud provider and the trading
platform operator to not tamper with the ordering of trades or
MP code. This is usually enforced through contracts, auditing
bodies, and regulatory laws. As mentioned in §2, recent

6

; movabs r11, <vt mem address>
49 BB F0 DE BC 9A 78 56 34 12
; add qword ptr [r11], 8
49 81 03 08 00 00 00

0000000000000000 <mp_handler_i>:
 0: 85 00 00 00 0b 00 00 00 call 11
 1: 7b 0a f8 ff 00 00 00 00 *(u64 *)(r10 - 8) = r0
 2: bf a2 00 00 00 00 00 00 r2 = r10
 3: 07 02 00 00 f8 ff ff ff r2 += -8
 4: 18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
 6: 85 00 00 00 0a 00 00 00 call 10
 7: bf 01 00 00 00 00 00 00 r1 = r0
 8: 67 01 00 00 20 00 00 00 r1 <<= 32
 9: 77 01 00 00 20 00 00 00 r1 >>= 32
 10: b7 00 00 00 01 00 00 00 r0 = 1
 11: 55 01 01 00 00 00 00 00 if r1 != 0 goto +1 <LBB0_2>
 12: b7 00 00 00 00 00 00 00 r0 = 0

0000000000000068 <LBB0_2>:
 13: 95 00 00 00 00 00 00 00 exit

eBPF asm

M̃Pi += ∆vt

HW asm

(x64)
{M̃Pi(t)}

BB1

BB2

BB3

BB4

Figure 8: Virtual time update instrumentation.

advances in cloud confidential computing [3, 12, 26, 45] can
also benefit Cuttlefish by providing cryptographic attestation
and secure enclaves to isolate sensitive data and MP code
during both instrumentation and execution.

Memory relocation and service API instantiation. As
MP programs operate within a constrained memory access
environment, Cuttlefish performs memory relocation for those
requesting access to KV maps. In particular, it dynamically
resolves and replaces symbolic references in the KV map
API’s BPF_CALL instructions with the appropriate memory
address during eBPF bytecode loading. This indirection
process and the dynamically assigned addresses are invisible
and inaccessible to the MPs.

Virtual time tracking instrumentation. To track the virtual
time efficiently, Cuttlefish takes a passive, non-intrusive ap-
proach via binary rewriting (similar to [6], shown in Figure 8):

(1) Basic block segmentation: The bytecode is split into
basic blocks (BBs)—straight-line sequences of instructions
without branches—to facilitate batched virtual time incre-
ments ∆vt. In addition to BPF_JMP call sites, trade submission
calls also serve as instrumentation points for capturing the most
recent virtual time as the trade needs to be tagged accordingly.
For large blocks, Cuttlefish inserts dummy trade submission
calls for timely updates of virtual time progress of the MP.

(2) Virtual time increment instruction: Cuttlefish emits
native machine code (two instructions for x64) at the epilogue
of each block to update MPi’s virtual time by addressing the
memory location storing M̃Pi during JIT translation.

(3) Offset correction: The instrumentation also updates the
offsets for the JMP instructions. The absence of indirect jumps
in the eBPF assembly simplifies this step.

Finally, instead of executing bytecode with the slower eBPF
interpreter, Cuttlefish adapts the eBPF JIT translator to convert
it into native machine binaries, such as x64. This decoupled
two-tier compilation strategy allows for tracking virtual
time fairly in a platform-agnostic manner while executing
efficiently on the native hardware target without interruption.

Remark: We emphasize that, while we focus on a CPU-
based interface, this does not preclude future extensions to
alternative backends, nor are the features discussed intended to

be exhaustive. Rather, they are the most relevant to meet the de-
mand of today’s low-latency algorithmic trading on the cloud.
In fact, our approach for virtual time tracking is platform-
agnostic and the choice of eBPF IR allows operators to benefit
from a broad ecosystem, including support for offloading eBPF
program execution to accelerators such as FPGAs [7, 15].

6 Cuttlefish Execution Runtime

A critical component of Cuttlefish is a generic runtime
platform that can execute trading operations efficiently while
enforcing fairness. To ensure that the runtime architecture is
performant, practical, and efficient to implement, Cuttlefish
consolidates multiple MPs into multi-core VMs. In this section
we focus on a single VM’s execution runtime (depicted in
Figure 9); extension to multiple runtimes is straightforward.

Communication with CES. Cuttlefish’s runtime engines
interface with the CES through two interfaces: the data
dispatcher and the trade aggregator, both of which exchange
data streams using a reliable transport layer.

Data dispatcher: The dispatcher manages inbound market
data, each of which comes with an assigned virtual release time.

Trade Aggregator: The trade aggregator gathers tuples
from MPs, each comprising a trade decision y and its virtual
submission time S̃(i, y). These tuples are locally sorted by
submission time, batched, and sent to the OB for global
sorting. The aggregator is additionally responsible for sending
heartbeats to the CES to indicate the latest virtual time reached
by all local MPs. The OB uses these heartbeats to decide when
it can forward the trade with the lowest virtual submission time
in its buffer to the CES safely (i.e., there is no in-flight trades
with lower virtual time). This localized handling of sorting
and heartbeat calculations enhances the CES’s scalability.

Local execution workflow. Cuttlefish’s runtime is designed
to maximize CPU utilization (for compute-throughput) and
eliminate blocking operations along the data path (for latency).
Central to its workflow are the worker threads that execute
MPs in parallel, each affined to a dedicated CPU core and
configured to run a loaded MP binary. Interaction with the
dispatcher and aggregator is streamlined using lock-free,
cache-efficient Single-Produce-Single-Consumer (SPSC)
rings to minimize processing latency.

The worker threads operate in a busy loop with minimal
stalls (e.g., context switching) during the execution. It first
polls a batch of command items that contain market data from
the command ring. For each market data x processed by MPi,
the worker thread updates the virtual time, and invokes the
binary with the new market data immediately.

Each worker then runs hardware binaries instrumented for
uninterrupted virtual time advancement, as outlined in §5.2.
During execution, MP handlers access the KV store in a
thread-safe manner and invoke the redirected function that

7

h

t

(x, D̃(x))

Heartbeat

Data
dispatcher

thread

Trade
aggregator

thread

h

t

h

t

h

t

h

t

h

t

Command ring

Trade ring

KV store {M̃Pi(t)}

Affined worker
threads

mp_i.o
mp_i.o

mp_i.o

Execution runtime

R/W

su
bm

it_
tra

de

Update vt

(y
, S̃
(i,
y)
)

Network
communication
stack

M̃
P
i =

max(D̃(x), M̃
P
i)

M̃Pi += ∆vt

min
i
{M̃P i(t)}

{(y, S̃(i, y))}

Figure 9: Overview of Cuttlefish’s execution runtime.

enqueues trades to the ring with the virtual submission time
at the point of submit_trade calls.

External data handling. In addition to supporting internal
data feeds from the CES, Cuttlefish also accommodates MPs
that desire the ability to react to external data sources. All such
interaction is done through a single gateway (GW) node3, as
shown in Figure 5. Clearly, Cuttlefish has no control over the
computation or communication of nodes outside of the cloud
provider’s purview. Just as with current exchanges, we expect
that MPs can and will leverage heterogeneous hardware,
e.g., microwave [8, 9] and satellite [25, 28, 49] networks to
surpass wireline c limitations, and/or employ human oversight
to tweak parameters in response to changing conditions or
unexpected events. Rather, Cuttlefish’s goal with external data
is to ensure that the post-GW transmission and delivery of
the data is fair and predictable. There are two main types of
external data streams.

Public data feeds: MPs can incorporate external, symmetric
data in their algorithms, such as news or market data feeds from
other exchanges. For such public data, all MPs in Cuttlefish
have equal access to the same external events at the same
release times. Handling a symmetric data feed is straightfor-
ward: the CES simply integrates the public data stream from
the GW with the internal market data when multicasting it to
MPs, which will all deliver the data at the same virtual time.

Private event triggers: Cuttlefish also supports MPs
receiving private external messages. Handling this data
involves two steps:

1. Gateway processing: The GW sends incoming packets
to the corresponding MPs with a per-MP admission
rate limit of ρ (to prevent the network from being
overwhelmed). It also maintains a loosely synchronized
clock with CES and tags each data packet with the
admission timestamp tr, which will be used in the
subsequent decision on virtual release time.

2. Dispatcher delivery: On receiving the private data for
MPi, the data dispatcher buffers and delivers it at the
virtual time C̃ES(tr + ∆t). When there is no external

3A modern commodity switch can provide Tbps capacity [47,48], which is
sufficient to handle typical quantities of external data to exchanges. Cuttlefish
can scale beyond a single GW with a shared clock.

data to send, the GW will still periodically send to each
runtime engine a heartbeat packet with its tr. This allows
the runtime to release the CES data and advance the
virtual time safely by assuring no external private data
that might arrive by the scheduled virtual release time.
Thus, a larger ∆t decreases the chances of introducing
additional latencies to the CES data delivery4.

Together, they provide deterministic post-GW delivery of
external private data in the virtual time domain. MPs can then
access the data through the subscribed data context input to
the handler, just as they do with normal CES data.

7 Virtual Time Control

So far, we have discussed how the CES broadcasts data and
processes aggregated trades from MPs in the order of their
virtual submission times at the OB. Another key role of the
CES in Cuttlefish is to assign the virtual release time, D̃(x),
tagged to each market data x for delivery by runtime engines.
Intuitively, this virtual time assignment process resembles
congestion control but concerns regulating the rate of virtual
time progression rather than bytes on a wire.

Objectives. Cuttlefish’s virtual time control targets two goals:

1. Minimizing latency (L(vt) = ÕB
−1
(vt)− C̃ES

−1
(vt)),

defined as the time difference between the CES releasing

market data with virtual time vt (C̃ES
−1
(vt)) and when

the OB hears from all MPs until vt (ÕB
−1
(vt)). In simple

terms, latency here refers to the minimum time between
when market data is produced at the CES and when
a trade from an MP using this data can be executed.
This definition extends previous end-to-end latency
concepts [24] for trades ordered per virtual time.

2. Maximizing overlay compute-throughput θ = ∆vt/∆t.
This represents the rate of virtual time advancement at the
CES or, equivalently, the number of eBPF IR instruction
cycles available to each MP (per unit of wall-clock time)
to process the incoming market data.

Note that neither of these goals affects correctness, fairness,
or predictability. Rather, a good virtual time assignment
is important for purely performance reasons. Specifically,
virtual time assignment that is too slow can limit the compute-
throughput of the exchange, even when the underlying MPs
are capable of supporting a higher virtual-time throughput.
Conversely, virtual time assignment that is too fast can
increase worst-case L(vt) due to MPs that are lagging behind.

4Like ρ, ∆t should be also set by the exchange. Since these streams typically
traverse the Internet, the network latency is significantly higher (O(ms)) than
the main CES data stream (O(µs)) [27]. We configure ∆t=1ms proportionally
to Internet latency, conservative enough for a negligible latency impact on CES
data delivery while bounding the relative latency dilation on the external data.

8

t

vt

C̃ES(t) ÕB(t)M̃P (t)

Latency spike

L(vt2)

L(vt1)

(a) Increased network latency
t

vt

C̃ES(t) ÕB(t)M̃P (t)

Computation

slowdown

L(vt1)

L(vt2)

(b) Slower computation

Figure 10: Examples when the latency gets impacted by
environmental conditions. For the purpose of illustration, the
diagram simplifies the discrete steps on events of market data
release, invocation, and trade response receipt.

Stragglers. As Cuttlefish seeks to guarantee fairness across
all MPs, straggers (depicted in Figure 10) can influence virtual
time control. Stragglers can arise for a couple of reasons.

First, increased network latencies lead to delayed market
data delivery to MPs, slowing virtual time progression. For
example, in Figure 10a, a spike in latency from CES to an
MP results in latency growth from L(vt1) to L(vt2). In reality,
network latencies for both paths (CES-to-MP or MP-to-OB)
can affect L(vt). Virtual time assignment should try to mitigate
the effect of such spikes. Second, computation slowdowns at
an MP (e.g., due to change in processor frequency) can reduce
the rate of virtual time progression, cumulatively affecting
latencies if these slowdowns are prolonged. Figure 10b
illustrates a simplified example of this effect.

Assignment algorithm. Cuttlefish presents an easy-to-reason-
about approach by coupling its virtual time assignment
with real-time evolution. The strategy is similar to the BBR
congestion control protocol [10] with a virtual time rate
control based on the estimated bottleneck capacity and a
window cap on in-flight requests.

Virtual delivery time computation: CES updates its virtual
time C̃ES(t) when it assigns the virtual delivery time D̃(x) for
each market data to maintain a stable control loop, accounting
for fluctuations in network latency and compute capacity:

D̃(x)=min(D̃(x−1)+
min(τi)(G(x)−G(x−1))

1+ε
,ÕB(t)+Ω) (1)

where τi is the estimated computational capability of MPi (how
many virtual cycles can the executing engine of MPi process per unit
wall-clock time), ε (>0) is a slack parameter and Ω serves as a cap
on the virtual time increase per current ÕB(t), where t=G(x).

Measuring τi: Cuttlefish periodically profiles τi for the
executing environment of MPi. min(τi) represents the compute
capacity of the bottleneck MP. To minimize noise, it uses a
low-pass filter such as a moving average.

Role of ε: The idea behind ε is to keep the virtual time

assignment rate (D̃(x)−D̃(x−1)
G(x)−G(x−1)) just under the bottleneck

compute capacity (τi). Upon a network latency spike, the
slack can help MPs straggling in virtual time progression to
catch up with the CES. The rate of recovery depends on the
value of ε. Figure 11 illustrates this effect. Selecting ε involves

t

vt

C̃ES(t) ÕB(t)M̃P (t)

Latency spike

1

1 + ε

Figure 11: The rate of recovery after a network latency spike is
governed by the slack parameter ε.

a trade-off between reducing latency and maintaining high
compute-throughput. We use ε=0.05 in our experiments.

Role of Ω: This cap serves as a guardrail to prevent
excessive virtual time assignment in worst-case scenarios, e.g.,
due to potential overestimation in min(τi). To guard against
such mis-estimations, Cuttlefish enforces a cap of ÕB(t)+Ω

to bound the maximum amount of ‘in-flight’ virtual time.
The cap is similar to the congestion window cap in network
congestion control protocols.

Perception of virtual time assignment for MPs. How does
virtual time assignment correlate with MP behaviors? In
real-time trading, MPs react to varying market data arrival,
striving to minimize processing time based on the latest
available information. Similar incentives for rapid response
remain in Cuttlefish’s virtual time environment.

Unlike traditional trading setups, MPs respond based on vir-
tual time. To facilitate MPs favoring in-time response to market
data, Cuttlefish provides access to several virtual time prim-
itives. These include the current virtual time (M̃Pi(t)), the re-
lease time of the triggering market data (D̃(x)), and a sleep(vt)
primitive service API to perform NOPs for a specific number
of virtual cycles (§5.1). This allows MPs to tailor their
response strategies, for example, by comparing M̃Pi(t)−D̃(x)
to adjust their computation for the current invocation.

Failures. As described, any component failure will halt the
progress of virtual time. Cuttlefish can be extended to recover
from MP failures. Timeouts can be incorporated at the CES
to detect such events5. Because of the determinism of virtual
time, with periodic check-pointing of the MP state, the CES
can restart and/or relocate such failed components.

We further note that eBPF uses predefined key-value stores
for managing state, which makes identifying state and replicat-
ing it straightforward. Cuttlefish is also amenable to replication
of the MPs themselves. This approach can potentially mask
the impact of failures on virtual time progression (§9.4).

An alternate choice would be to remove the failed MP
from the VTC assignment and trade-forwarding logic, and
then do a clean restart. The failed MP incurs unfairness in
this case. In some abstract sense, Cuttlefish is subject to a
CAP-theorem-like limitation: here, the choice is between
fairness and progression of virtual time progress in case of

5Spurious timeouts may degrade performance, but will not affect the
fairness of Cuttlefish.

9

failures. CES fault tolerance is beyond the scope of this work;
to the best of our knowledge, existing CESes also rely on state
replication (e.g., of the order book) for fault tolerance.

Security. While MP code will run alongside other MPs
and Cuttlefish components, Cuttlefish benefits greatly from
its constrained memory model, basis in virtual time, and
validation process (§5.2). Any instructions or program
structures that could be problematic (e.g., attempts to access
system memory or cycle counters for creating side channels)
are disallowed in Cuttlefish.

The more subtle opportunity for misbehavior involves MPs
deliberately slowing their virtual time advancement speed to
potentially influence min(τi) by picking sequences of instruc-
tions that have the largest ratio of real-time cost to virtual-time
cost. Cuttlefish thwarts this manipulation by periodically
measuring the τi of each Cuttlefish execution runtime using
an independent profiling codelet. This standard reference
program is public so all MPs are on equal, predictable footing.

8 Implementation

To demonstrate Cuttlefish’s practicality, we developed a
prototype runnable on standard VMs of public clouds [44].

Processing MP handler programs. Cuttlefish supports the
end-to-end processing workflow for MP handlers described
in §5. It provides a single-header inclusion of interfaces for
services in Cuttlefish’s virtual time environment. For verified
eBPF bytecodes provided by users, Cuttlefish embeds virtual
time tracking transparently through binary writing, while
achieving high performance by leveraging the existing eBPF
JIT compiler to emit native code [30].

Virtual time cost of instructions. By default, Cuttlefish as-
signs the virtual time for eBPF instructions based on the equiv-
alent hardware instructions on standard CPU models (e.g., x64)
and leveraging previous studies that have extensively quanti-
fied their costs per machine cycles or reciprocal throughput
in modern hardware architecture [2]. For example, BPF_ADD is
assigned one virtual time unit, with other operations, including
handler invocation and BPF_CALL instructions for built-in ser-
vice APIs such as the access to the KV store, scaled accordingly.
In Cuttlefish, the relatively small eBPF instruction set [29] sim-
plifies the process. The idea behind such an assignment is to,
as much as possible, reduce the dependency of τ on the IR in-
structions used by the MP in its code. However, exchanges can
customize their cost model according to their needs—as long
as the models are transparent, the system is fair and predictable.

Supporting efficient execution in virtual time. Cuttlefish
employs a reliable, message-based transport [43] for its
dispatcher and trade aggregator thread, interfacing with
the CES/OB. Worker threads are affined to dedicated cores
and are responsible for invoking MP handlers. To facilitate
communication between workers and the data dispatcher, Cut-

 1

 10

 100

1 100 10000

F
a

ir
n

e
s
s
 r

a
ti
o

 [
%

]

N

Cuttlefish
FIFO

RT

(a) Same VM

 0.01

 0.1

 1

 10

 100

1 100
10000

N

Cuttlefish

FIFO

RT

(b) Different VM types

Figure 12: Cuttlefish guarantees 100% fairness ratio, whereas
FIFO and RT-based ordering can only approximate even when
MPb spends non-negligible number of instructions than MPa. For
instance, under N=10000 and the same VM, RT-based ordering
still incurs 0.18% unfairness rate.

tlefish uses a cache-efficient, lock-free Single Producer/Single
Consumer circular buffer implementation to instantiate the
market and trade rings respectively as detailed in §6.

9 Evaluation

Our evaluation focuses on the following questions:

• Does Cuttlefish’s fairness make a difference? (§9.1)

• What is the achievable latency and throughput, and how
do they compare to optimum? (§9.2)

• How is the instrumentation ‘tax’ associated with virtual
time tracking? (§9.3)

• How does Cuttlefish’s predictability help? (§9.4)

9.1 Unfairness in Cloud
We consider a simple experiment to show how cloud
environments can cause network and compute unfairness.

Set up. We study a basic scenario of two MPs, MPa and MPb.
MPb executes N additional primitive IR instructions (BPF_ADD)
in the handler’s epilogue compared to MPa, with all other
aspects being identical. In theory, an identical network and
compute environment must always prioritize the trades of
MPa over those of MPb triggered by the same market data. To
quantify fairness in this experiment, we define a fairness ratio,
representing what fraction of MPa trades were ordered ahead
of corresponding trades from MPb.

Ordering mechanisms. We additionally examine two
strategies: (1) Response Time (RT) based ordering, which
ranks trades based on the measured processing time for an MP.
Since CloudEx and DBO either require high-resolution clock
synchronization or SmartNIC support—hard to replicate in our
environment—we use (1) as a proxy to evaluate behaviors (po-
tential compute unfairness) of CloudEx under perfect network
communication fairness as well as that of DBO’s logical clock
based on response time. Under identical compute conditions,
RT-based ordering should have a fairness ratio of 100%. (2)

10

Latency (µs)
avg. p50 p90 p99 p99.9

MaxRTT 52.04 47.74 49.95 55.85 144.2
Cuttlefish 54.19 50.82 53.49 68.46 166.3

Table 2: L(vt) when serving 100 MPs with 11 VMs. Cuttlefish’s
θ achieves 3279M vt/s with avg. τmin 3702 M vt/s.

FIFO ordering, which processes trades based on their arrival
at the OB. In FIFO ordering, under an ideal network and
compute environment, the fairness ratio should be 100%.

We run experiments on a public cloud, with one VM
operating as CES to generate market data messages at≈100µs
intervals. We investigate two distinct scenarios: (a) where MPa
and MPb run on same types of VMs with processors Intel(R)
Xeon(R) Platinum 8272CL CPU @ 2.60GHz; (b) where MPb
using Intel(R) Xeon(R) Platinum 8272CL CPU @ 2.60GHz

while MPa running on a different processor Intel(R) Xeon(R)

CPU E5-2673 v4 @ 2.30GHz. For approach (2), we measure the
response time at fine granularity by calculating the CPU time
based on rdtsc counters and piggyback the measurement with
the market data for ordering at OB. A caveat of this experiment
is that the fairness ratio for (1) and (2) can be impacted by
the specifics of how the MP algorithm is executed. To reduce
this impact, we execute the algorithm using the Cuttlefish
runtime environment, which uses strategies like core pinning
and DPDK to minimize (but not eliminate) the impact of OS
on computation and network.

Observation. Figure 12a shows the fairness ratios of different
ordering mechanisms when two MPs operate on the same
type of VMs. In this case, FIFO ordering exhibits significant
unfairness as the VM of MPa experiences a higher RTT
compared to that of MPb. When MPb executes N = 10000
more instructions than MPa per invocation, the fairness ratio
only improves to 78.8%. On the other hand, RT-based ordering
shows resilience to network latency disparities. Nevertheless,
it incurs about 48% unfairness for N = 1, attributable to
computational time variances. Despite the mitigation effect
of increasing N, RT-based ordering doesn’t achieve a fairness
ratio of 100%, even at N=10000.

Figure 12b presents a different scenario (b) where MPa
operates on a VM with a slower processor and significantly
higher RTT from the CES. FIFO’s unfairness remains
pronounced at higher N values. RT-based ordering, in turn,
experiences a substantially reduced fairness ratio due to the
disparity in processor frequencies. For example, with N=1 or
N=100, RT-based ordering’s fairness ratio drops below 5%.
Throughout these scenarios, Cuttlefish consistently maintains
deterministic and 100% fairness ratio. Cuttlefish’s fairness
guarantee by design remains unaffected by variations in
underlying computational power and network latency.

Latency (µs)
avg. p50 p90 p99 p99.9

MaxRTT 112.0 101.0 113.7 640.3 2984
Cuttlefish 115.5 104.2 116.8 674.5 2996

Table 3: Scenario with a higher RTT and background noise. Avg.
τmin= 2488M vt/s and θ= 2373M vt/s.

9.2 Performance of Cuttlefish
To evaluate the performance costs of Cuttlefish for fairness,
particularly in how its end-to-end latency L(vt) and compute
throughput θ (as outlined in §7). We run Cuttlefish in a
standardized cloud environment using Standard_F16s_v2

instances. Our setup includes a VM running as the CES, with
a ConnectX-4 NIC featuring 25Gbps ports and a Intel(R)

Xeon(R) Platinum 8272CL CPU @ 2.60GHz. We utilize 10
VMs of the same type in the same region to host 100 MPs6 and
another one for the gateway. In this setup, the CES broadcasts
market data messages to all MPs at ≈100µs intervals.

We also compare the performance of Cuttlefish against its
limits (max network latency and minimum compute capability
across MPs). To ensure a fair comparison, we measured
both network latencies of messages and the computational
capabilities of the cores for each MP’s core under identical
environmental conditions. We record timestamps when market
data arrive at the VM (t1) and when the corresponding trade
response leaves the VM (t2), as well as when they leave (t0)
and arrive at the CES machine (t3). We then calculate the RTT
per VM based on (t3 − t0)− (t2 − t1) without needing high-
resolution clock synchronization. MaxRTT across VMs is the
highest latency across VMs corresponding to the same market
data release. Similarly, we measure τmin using the lightweight,
high-resolution rdtsc counters that leverage the common
support for constant tsc across all cores in modern processors.

Table 2 compares Cuttlefish’s end-to-end latencies against
the MaxRTT across various percentiles. The observed latency
discrepancies are attributed to the data flow operations
of Cuttlefish, including ring management, batching, and
virtual time assignment. Despite trading off some latency
for fairness, Cuttlefish shows a commendably low p99.9 tail
latency within a public cloud setting, in part due to minimal
barriers in data release and MP execution. Further, Cuttlefish
exhibits a high compute-throughput of 3279 M vt/s7. To our
knowledge, low-latency trading algorithms used by HFTs
are typically simple and optimized for speed. We believe,
that the throughput offered by Cuttlefish should be enough
to implement such algorithms.

In a separate experimental setup, shown in Table 3, we
incorporated a VM with a comparatively slower processor
at 2.3 GHz frequency and a higher RTT. Cuttlefish displayed
adaptability to this change, effectively approximating the

6Approximately the maximum scale of most existing exchanges [1, 24].
7This number should not be directly compared with native cycles/s on a

superscalar processor [2, 5].

11

 0

 0.2

 0.4

 0.6

 0.8

 1

bbs bmm ema macd
macs

mmacs
obv psar rsi sma

v
t/
s
 [
N

o
rm

a
liz

e
d
]

w/o vt instr.
w/ vt instr.

Figure 13: Overhead of virtual time instrumentation across a
range of MP handlers in Table 4.

latency bound even under stressed conditions.

9.3 Instrumentation Cost
§9.2 evaluates the performance of Cuttlefish against the latency
and throughput limits, showing the end-to-end costs associated
with online operations of the virtual time overlay. This sub-
section investigates the static overhead due to the additional
instructions for virtual time tracking. In particular, we evaluate
the impact of such instrumentation on compute capacity.

To quantify the cost, we conducted a stress test under a
worst-case scenario: invoking the handler at maximum rate
through market data in-memory. Our tests covered various
programs shown in Table 4, each with different logic and
key-value store access patterns. We found that Cuttlefish’s
handler interface is expressive enough to support a wide range
of trading algorithms, such as those for statistical arbitrage
or directional trading. Interestingly, the interface is also
sufficiently intuitive to allow GPT-4 to generate the core
algorithmic trading programs that are fully compatible.

As shown in Figure 13, the tracking instructions incur
2–20% overhead in throughput as compared to on the vanilla
executable, depending on the basic block and branch patterns
in the program. In particular, those with thinner loop blocks ex-
hibited a higher virtual time tracking cost. Note the evaluations
involve raw algorithms. Cuttlefish can also mitigate the virtual
time tracking overhead by providing common computational
blocks (often involving intensive loops) as a BPF_CALL helper,
thus reducing the number of virtual time tracking breakpoints.

9.4 Determinism for Fault Tolerance
To speed up recovery in the event of failures (§7), Cuttlefish
can replicate the execution of an MP handler across different
machines by exploiting the deterministic virtual time
progression across replicas. A physical replica gets integrated
as usual with Cuttlefish’s virtual time overlay, however, the
OB processing the trade that arrives earliest in real-time across
the replicas to advance the virtual time for the logical MP.
This helps improving the fault-tolerance of Cuttlefish. Figure
9.4 illustrates a case where Cuttlefish replicates a single MP
across 2 different VMs. When a replica MP(1) fails (by killing
the worker thread), the virtual time of the logical MP still

 0
 2x10

6
 4x10

6
 6x10

6
 8x10

6
 1x10

7
 1.2x10

7
 1.4x10

7

 0 500 1000 1500 2000 2500 3000 3500

v
t

t [µs]

MP
(1)

(t)

MP
(2)

(t)

MP(t)

Figure 14: Virtual time series upon a failed MP replicas.

proceeds as the other replicas MP(2) keeps updating its virtual
time. With Cuttlefish, the service provider may trade the cost
of replication (and the associated traffic overhead) for lower
latency and reliability. Beyond fault tolerance, such replication
can also help reduce the latency of Cuttlefish [13].

10 Related Work

Cloud-hosted exchanges. Like other works on cloud-hosted
exchanges [17,18,24], we seek to retain the liquidity incentives
of current markets and do not wish to modify the matching
engine. Unlike these approaches (as detailed in §2), Cuttlefish
takes a holistic strategy that not only bridges the gap to a com-
plete guarantee of communication fairness (without assump-
tions about the trading model or hardware support), but also
extends the fairness guarantee to the underlying computation.

Other approaches to fair exchanges. Our goals are explicitly
distinct from previous work in the financial community.
For instance, Frequent Batch Auctions (FBA) [9] proposes
to batch deliver and process market data at a substantially
lower frequency of (1 batch/100ms). LIBRA [40] employs
a stochastic (non-deterministic) notion of communication
fairness for financial exchanges. These strategies modify
the existing first-come first-served (FCFS) strategy used by
matching engines today; there is a lot of debate on the efficacy
and properties of alternative market design choices.

Improved cloud network. Traffic admission control and
prioritization [21, 55] can lower (or even bound) network
latencies benefiting Cuttlefish and other strategies. Recent
advances in cloud confidential computing [3, 12, 45] also help
provide stronger guarantees of confidentiality and security for
cloud-hosted exchanges [26].

11 Conclusion

This work presents Cuttlefish, a fair-by-design low-latency
algorithmic trading platform that can run on uncertain
cloud-like environments. By introducing its virtual time
overlay, Cuttlefish abstracts out the variances in the underlying
communication and computation hardware, while maintaining
low latency and high compute throughput.

12

References

[1] The Cost Of Exchange Services. https://finansda
nmark.dk/media/mstbpq23/iex-and-market-dat
a-cost-2019.pdf.

[2] Determining wasm gas costs. h t t p s :
//github.com/ewasm/design/blob/master/
determining_wasm_gas_costs.md, 2023.

[3] Amazon Web Services. Cryptographic attestation.
https://docs.aws.amazon.com/enclaves/lates
t/user/set-up-attestation.html, 2024.

[4] Matteo Aquilina, Eric B Budish, and Peter O’Neill.
Quantifying the high-frequency trading" arms race":
A simple new methodology and estimates. Technical
report, Working Paper, 2020.

[5] Vignesh Babu and David Nicol. Precise virtual time
advancement for network emulation. In Proceedings
of the 2020 ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation, pages 175–186, 2020.

[6] Vignesh Babu and David Nicol. Temporally synchro-
nized emulation of devices with simulation of networks.
In Proceedings of the 2022 ACM SIGSIM Conference
on Principles of Advanced Discrete Simulation, pages
1–12, 2022.

[7] Marco Spaziani Brunella, Giacomo Belocchi, Marco
Bonola, Salvatore Pontarelli, Giuseppe Siracusano,
Giuseppe Bianchi, Aniello Cammarano, Alessandro
Palumbo, Luca Petrucci, and Roberto Bifulco. hxdp:
Efficient software packet processing on fpga nics.
Communications of the ACM, 65(8):92–100, 2022.

[8] Eric Budish. High-frequency trading and the design of
financial markets, 2023.

[9] Eric Budish, Peter Cramton, and John Shim. The
high-frequency trading arms race: Frequent batch
auctions as a market design response. The Quarterly
Journal of Economics, 130(4):1547–1621, 2015.

[10] Neal Cardwell, Yuchung Cheng, C Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. Bbr:
Congestion-based congestion control. Communications
of the ACM, 60(2):58–66, 2017.

[11] Gong Chen, Zheng Hu, and Dong Jin. Integrating I/O
time to virtual time system for high fidelity container-
based network emulation. In Kalyan Perumalla,Margaret
Loper, Dong (Kevin) Jin, and Christopher D. Carothers,
editors, SIGSIM-PADS ’22: SIGSIM Conference on
Principles of Advanced Discrete Simulation, Atlanta,
GA, USA, June 8 - 10, 2022, pages 37–48. ACM, 2022.

[12] Victor Costan and Srinivas Devadas. Intel SGX
explained. IACR Cryptol. ePrint Arch., page 86, 2016.

[13] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communications of the ACM, 56(2):74–80, 2013.

[14] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
Consensus in the presence of partial synchrony. Journal
of the ACM (JACM), 35(2):288–323, 1988.

[15] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. Azure accelerated networking:smartnics
in the public cloud. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
18), pages 51–66, 2018.

[16] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina
Narodytska, Jorge A Navas, Noam Rinetzky, Leonid
Ryzhyk, and Mooly Sagiv. Simple and precise static
analysis of untrusted linux kernel extensions. In
Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 1069–1084, 2019.

[17] Ahmad Ghalayini, Jinkun Geng, Vighnesh Sachi-
dananda, Vinay Sriram, Yilong Geng, Balaji Prabhakar,
Mendel Rosenblum, and Anirudh Sivaraman. Cloudex:
A fair-access financial exchange in the cloud. In
Proceedings of the Workshop on Hot Topics in Operating
Systems, pages 96–103, 2021.

[18] Junzhi Gong, Yuliang Li, Devdeep Ray, KK Yap, and
Nandita Dukkipati. Octopus: A fair packet delivery
service. arXiv preprint arXiv:2401.08126, 2024.

[19] Prateesh Goyal, Ilias Marinos, Eashan Gupta, Chaitanya
Bandi, Alan Ross, and Ranveer Chandra. Rethinking
cloud-hosted financial exchanges for response time
fairness. In Proceedings of the 21st ACM Workshop on
Hot Topics in Networks, pages 108–114, 2022.

[20] James N Gray. Notes on data base operating systems.
Operating systems: An advanced course, pages 393–481,
2005.

[21] Matthew P Grosvenor, Malte Schwarzkopf, Ionel Gog,
Robert NM Watson, Andrew W Moore, Steven Hand,
and Jon Crowcroft. Queues {don’t} matter when you
can {JUMP} them! In 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
15), pages 1–14, 2015.

[22] CME Group. Cme group signs 10-year partnership with
google cloud to transform global derivatives markets
through cloud adoption, 2019.

13

https://finansdanmark.dk/media/mstbpq23/iex-and-market-data-cost-2019.pdf
https://finansdanmark.dk/media/mstbpq23/iex-and-market-data-cost-2019.pdf
https://finansdanmark.dk/media/mstbpq23/iex-and-market-data-cost-2019.pdf
https://github.com/ewasm/design/blob/master/determining_wasm_gas_costs.md
https://github.com/ewasm/design/blob/master/determining_wasm_gas_costs.md
https://github.com/ewasm/design/blob/master/determining_wasm_gas_costs.md
https://docs.aws.amazon.com/enclaves/latest/user/set-up-attestation.html
https://docs.aws.amazon.com/enclaves/latest/user/set-up-attestation.html

[23] Diwaker Gupta, Ken Yocum, Marvin McNett, Alex C.
Snoeren, Amin Vahdat, and Geoffrey M. Voelker. To
infinity and beyond: Time-warped network emulation.
In Larry L. Peterson and Timothy Roscoe, editors,
3rd Symposium on Networked Systems Design and
Implementation (NSDI 2006), May 8-10, 2007, San Jose,
California, USA, Proceedings. USENIX, 2006.

[24] Eashan Gupta, Prateesh Goyal, Ilias Marinos, Chenx-
ingyu Zhao, Radhika Mittal, and Ranveer Chandra.
Dbo: Fairness for cloud-hosted financial exchanges. In
Proceedings of the ACM SIGCOMM 2023 Conference,
pages 550–563, 2023.

[25] Mark Handley. Delay is not an option: Low latency
routing in space. In Proceedings of the 17th ACM
Workshop on Hot Topics in Networks, HotNets ’18, page
85–91, New York, NY, USA, 2018. Association for
Computing Machinery.

[26] Muhammad Haseeb, Jinkun Geng, Ulysses Butler, Xiyu
Hao, Daniel Duclos-Cavalcanti, and Anirudh Sivaraman.
Poster: Jasper, a scalable and fair multicast for financial
exchanges in the cloud. In Proceedings of the ACM
SIGCOMM 2024 Conference: Posters and Demos, pages
36–38, 2024.

[27] IEX. Updating the iex exchange architecture for 2021.
https://www.iex.io/article/updating-the-i
ex-exchange-architecture-for-2021, 2021.

[28] CFA Institute. Spacex is opening up the next frontier
for hft, 2019.

[29] Internet Engineering Task Force (IETF). BPF Instruction
Set Specification, v1.0. https://datatracker.ietf
.org/doc/draft-ietf-bpf-isa/, 2023.

[30] iovisor. ubpf: User space ebpf vm. https:
//github.com/iovisor/ubpf, 2023.

[31] Andrei A. Kirilenko and Andrew W. Lo. Moore’s
law versus murphy’s law: Algorithmic trading and its
discontents. The Journal of Economic Perspectives,
27(2):51–72, 2013.

[32] Jereme Lamps, David M Nicol, and Matthew Caesar.
Timekeeper: A lightweight virtual time system for linux.
In Proceedings of the 2nd ACM SIGSIM Conference
on Principles of Advanced Discrete Simulation, pages
179–186, 2014.

[33] Christian Leber, Benjamin Geib, and Heiner Litz. High
frequency trading acceleration using fpgas. In 2011 21st
International Conference on Field Programmable Logic
and Applications, pages 317–322. IEEE, 2011.

[34] Yiran Lei, Liangcheng Yu, Vincent Liu, and Mingwei
Xu. Printqueue: performance diagnosis via queue mea-
surement in the data plane. In Proceedings of the ACM
SIGCOMM 2022 Conference, pages 516–529, 2022.

[35] Jaime Lizárraga. Increasing competition and improving
transparency in u.s. equity markets, 2022.

[36] John W Lockwood, Adwait Gupte, Nishit Mehta,
Michaela Blott, Tom English, and Kees Vissers. A low-
latency library in fpga hardware for high-frequency trad-
ing (hft). In 2012 IEEE 20th annual symposium on high-
performance interconnects, pages 9–16. IEEE, 2012.

[37] Jennifer Lundelius and Nancy A. Lynch. An upper and
lower bound for clock synchronization. Inf. Control.,
62(2/3):190–204, 1984.

[38] Donald MacKenzie. How fragile is competition in
high-frequency trading. Tabbforum, March, 26, 2019.

[39] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez,
Carlos Maltzahn, Ryan Stutsman, and Robert Ricci.
Taming performance variability. In Proceedings of the
13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), October 2018.

[40] Vasilios Mavroudis and Hayden Melton. Libra: Fair
order-matching for electronic financial exchanges. In
Proceedings of the 1st ACM Conference on Advances
in Financial Technologies, pages 156–168, 2019.

[41] Microsoft. B3 partners with microsoft and oracle for
systems migration to the cloud, 2022.

[42] Microsoft. Empowering the future of financial markets
with london stock exchange group, 2022.

[43] Microsoft. Machnet. https://github.com/microso
ft/machnet/tree/main, 2023.

[44] Microsoft. Microsoft azure: Cloud computing services.
https://azure.microsoft.com/en-us/, 2023.

[45] Microsoft Azure. Confidential computing, 2024.

[46] NASDAQ. Nasdaq and aws partner to transform capital
markets, 2021.

[47] Arista Networks. Arista 7132lb datasheet.
https://www.arista.com/assets/data/pdf
/Datasheets/7132LB-Datasheet.pdf.

[48] Arista Networks. Arista 7135lb datasheet.
https://www.arista.com/assets/data/pdf
/Datasheets/7135LB-Datasheet.pdf.

[49] John Osborne. High-frequency trading over leo, 2022.

14

https://www.iex.io/article/updating-the-iex-exchange-architecture-for-2021
https://www.iex.io/article/updating-the-iex-exchange-architecture-for-2021
https://datatracker.ietf.org/doc/draft-ietf-bpf-isa/
https://datatracker.ietf.org/doc/draft-ietf-bpf-isa/
https://github.com/iovisor/ubpf
https://github.com/iovisor/ubpf
https://github.com/microsoft/machnet/tree/main
https://github.com/microsoft/machnet/tree/main
https://azure.microsoft.com/en-us/
https://www.arista.com/assets/data/pdf/Datasheets/7132LB-Datasheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7132LB-Datasheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7135LB-Datasheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7135LB-Datasheet.pdf

[50] Reinhard Schwarz and Friedemann Mattern. Detecting
causal relationships in distributed computations: In
search of the holy grail. Distributed computing,
7(3):149–174, 1994.

[51] SeaHorn Project. Seahorn: Extending ebpf verification
with static analysis. https://seahorn.github.io/
seahorn/crab/static%20analysis/linux%20ext
ensions/ebpf/2019/07/04/seahorn-ebpf.html,
2019.

[52] Alexandru Uta, Alexandru Custura, Dmitry Duplyakin,
Ivo Jimenez, Jan Rellermeyer, Carlos Maltzahn, Robert
Ricci, and Alexandru Iosup. Is big data performance re-
producible in modern cloud networks? In Proceedings of
the Seventeenth USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI), February 2020.

[53] Maarten van Steen and Andrew S. Tanenbaum. Dis-
tributed Systems. distributed-systems.net, 3 edition,
2017.

[54] Wikipedia. Algorithmic trading. https://en.wikip
edia.org/wiki/Algorithmic_trading, 2024.

[55] Yiwen Zhang, Gautam Kumar, Nandita Dukkipati, Xian
Wu, Priyaranjan Jha, Mosharaf Chowdhury, and Amin
Vahdat. Aequitas: admission control for performance-
critical rpcs in datacenters. In Fernando Kuipers and
Ariel Orda, editors, SIGCOMM ’22: ACM SIGCOMM
2022 Conference, Amsterdam, The Netherlands, August
22 - 26, 2022, pages 1–18. ACM, 2022.

15

https://seahorn.github.io/seahorn/crab/static%20analysis/linux%20extensions/ebpf/2019/07/04/seahorn-ebpf.html
https://seahorn.github.io/seahorn/crab/static%20analysis/linux%20extensions/ebpf/2019/07/04/seahorn-ebpf.html
https://seahorn.github.io/seahorn/crab/static%20analysis/linux%20extensions/ebpf/2019/07/04/seahorn-ebpf.html
https://en.wikipedia.org/wiki/Algorithmic_trading
https://en.wikipedia.org/wiki/Algorithmic_trading

Abbreviation Algorithm

bbs Bollinger Bands Strategy
bmm Basic Market Making
ema EMA Mean Reversion
macd Moving Average Convergence Divergence
macs Moving Average Crossover Strategy
mmacs Multiple Moving Average Crossover Strategy
obv On Balance Volume (OBV) + EMA
psar Parabolic SAR
rsi Relative Strength Index
sma SMA Mean Reversion

Table 4: Varying algorithmic trading technical analysis indicators
expressed with Cuttlefish’s MP handlers.

A Multi-threaded execution in virtual time

If a service provider wishes to increase overall virtual time
throughput of the platform, in addition to using faster proces-
sors or hardware accelerators, Cuttlefish also supports scaling
up the computation capacity for each MP through a multi-
threaded variant. Each user provides an MP program with mul-
tiple handler functions to execute in parallel. The runtime work-

flow remains the same as described in §6, where the dispatcher
releases the market data at the same virtual time, preserving
the requirements of R1. At any virtual time point, a handler
function can invoke the built-in service API, specifying a target
thread ID and the data bytes for inter-thread communication.

Deterministic multi-threaded execution is naturally compat-
ible with Cuttlefish’s virtual time abstraction. In this variant,
Cuttlefish operates in discrete epochs, each spanning V T
virtual time cycles. Data scheduled for inter-thread communi-
cation during epoch k are batched and released at the start of the
epoch k+2. Thus, before advancing epoch k+2, each thread
must wait for the others to complete epoch k. This one-epoch
offset is to minimize potential latency caused by the loose syn-
chronization barrier among threads. Increasing V T will also
reduce the chances of synchronization stalls for faster threads.

While this inter-thread communication introduces a virtual
time delay in data forwarding (which mirrors real-time delays
in any such communication), it ensures computation fairness
as outlined in R2. As a result, for a given MP, trade submission
times remain deterministic in the virtual time domain, regard-
less of variations in the runtime execution of individual threads.

16

	Introduction
	Background and Goals
	Virtual Time in Cuttlefish
	Design Overview
	MP Algorithm Representation
	Programming Interface
	MP Bytecode Processing Lifecycle

	Cuttlefish Execution Runtime
	Virtual Time Control
	Implementation
	Evaluation
	Unfairness in Cloud
	Performance of Cuttlefish
	Instrumentation Cost
	Determinism for Fault Tolerance

	Related Work
	Conclusion
	Multi-threaded execution in virtual time

