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Abstract
Recent innovation in large language models (LLMs), and
their myriad use cases have rapidly driven up the compute
demand for datacenter GPUs. Several cloud providers and
other enterprises plan to substantially grow their datacenter
capacity to support these new workloads. A key bottleneck
resource in datacenters is power, which LLMs are quickly
saturating due to their rapidly increasing model sizes.
We extensively characterize the power consumption pat-

terns of a variety of LLMs and their configurations. We iden-
tify the differences between the training and inference power
consumption patterns. Based on our analysis, we claim that
the average and peak power utilization in LLM inference clus-
ters should not be very high. Our deductions align with data
from production LLM clusters, revealing that inference work-
loads offer substantial headroom for power oversubscription.
However, the stringent set of telemetry and controls that
GPUs offer in a virtualized environment make it challenging
to build a reliable and robust power management framework.

We leverage the insights from our characterization to iden-
tify opportunities for better power management. As a de-
tailed use case, we propose a new framework called POLCA,
which enables power oversubscription in LLM inference
clouds. POLCA is robust, reliable, and readily deployable.
Using open-source models to replicate the power patterns ob-
served in production, we simulate POLCA and demonstrate
that we can deploy 30% more servers in existing clusters
with minimal performance loss.
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1 Introduction
Motivation.Cloud providers and datacenter operators today
face a massive GPU capacity crunch due to the explosion in
demand for large language models (LLMs) [8]. For example,
OpenAI scaled up their clusters to 7,500 GPU servers to
train LLMs like GPT-3 [48]; Meta deployed an AI training
supercluster with over 6,000 A100 GPUs [38]. This demand is
growing for training newer and larger models like Bard and
GPT-4 [16]. The demand for inference is even larger and may
constitute over 90% of the overall LLM compute cycles [53,
59, 61]. To keep up, several enterprises are investing heavily
into building new GPU clusters to run LLM workloads [38,
48]. However, building new datacenters is expensive; and
crucially, it takes a long time which does not address the
immediate demand [7]. Adding more servers to existing and
upcoming datacenters could help alleviate this demand.

Power, space, and cooling are the major bottlenecks in dat-
acenter provisioning. However, for GPU-heavy workloads
like LLMs, power is the main bottleneck. Datacenters are
typically built with a fixed power budget, based on contracts
with utility companies [15, 17, 23, 73]. Therefore, without
proper power usage analysis and management, adding more
GPU servers to an existing datacenter could push them be-
yond the available power budget.
Our work. We extensively analyze the power usage of LLM
training and inference serving at the server level and cluster
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Figure 1. An example of the prompt and token phases
in a GPT (decoder) model.
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Figure 2. Hierarchy of the power
distribution in a datacenter.

Figure 3. Provisioned power
(8×A100-80GB server).

level. Specifically, we characterize the power usage patterns
for several popular, open-source LLMs across various con-
figurations representative of common use cases. We also
gauge how amenable both workloads are to power manage-
ment knobs such as frequency locking and power capping.
Subsequently, we validate whether our server-level char-
acterization insights hold at scale by profiling production
LLM clusters. Our characterization reveals that LLM training
clusters incur massive and coordinated power peaks due to
large-scale synchronous training jobs. Hence, they signifi-
cantly strain the datacenter power delivery infrastructure
and offer a very small headroom (about 3%) to oversubscribe
power. In contrast, despite high peak power utilization at the
server level, LLM inference clusters offer substantial power
headroom (about 21%) at the cluster level, which makes them
excellent candidates for power oversubscription.
Based on our characterization, we identify opportunities

to improve the power management for LLMs in the cloud.
As a concrete example, we present POLCA, a robust power
oversubscription framework for LLM inference clusters. Us-
ing open-source models, we replicate power patterns from
production LLM inference clusters for its evaluation. POLCA
integrates with the existing cluster-level power manager
in datacenters and boosts the provisioned server capacity
by 30% while incurring minimal power throttling events. It
improves power efficiency, reduces costs through fewer data-
centers, and helps to promptly meet the demand for running
additional LLM workloads.

Summary. We make the following contributions:
• A practical methodology to monitor, control, and analyze
the power usage of cloud LLM workloads.

• A characterization of the power usage patterns of LLM
training and inference, with a deep dive into the power
consumption phases in inference.

• A characterization of the efficacy of existing GPU power
management knobs, namely frequency locking and power
capping, at reclaiming power for LLM workloads.

• An overview of the available power headroom and power
usage patterns in production LLM clusters today.

• A discussion on the design implications of our characteri-
zation for LLM clusters and frameworks.

• A case study on developing a practical power oversubscrip-
tion framework for cloud-based LLM inference clusters,
supplemented with its evaluation on production traces.

2 LLMs in the Cloud
We provide background on LLMs and describe their deploy-
ments at scale in cloud datacenters.

Transformer models. Our work focuses on transformer-
based generative LLMs. Beyond the tokenizer and embedding
layers common in language models, transformers generally
consist of attention and multi-layer-perceptron layers to
contextualize inputs and generate outputs [67]. Encoder-only
models like BERT [14] and RoBERTa [37] use bi-directional
self-attention, allowing them to contextualize the input to-
kens all together for language understanding tasks like senti-
ment analysis.Decoder-only transformermodels like GPT [57]
and BLOOM [70] consist of masked or uni-directional self-
attention for generating language sequences. Encoder-decoder
models like FLAN-T5 [12] use an encoder for understanding
the input and the decoder for generating text.

Training vs. inference. Training and inference workloads
have different compute, network, and power requirements.
LLM training is much more resource intensive since the
model is fed a lot of data in parallel for many iterations. Each
training iteration involves a forward and a backward pass
through the model with computation- and communication-
heavy phases [25]. LLM training is thus run on large physical
clusters with high-bandwidth Infiniband or optical networks
for fast communication. For example, OpenAI scaled up clus-
ters to 7500 GPU servers to train LLMs like GPT-3 [48]. In
contrast, inference only performs forward passes through
the model, operates on one or a few data samples per re-
quest, and consequently requires fewer compute resources
and interconnects. For instance, a BLOOM-176B [70] infer-
ence (similar model size to GPT-3 [10]) can be served using
eight GPUs on a single server.
Due to their differing requirements, several existing de-

ployments separate training and inference clusters. For ex-
ample, OpenAI and Meta recently announced their training-
only clusters [38, 48], Microsoft Philly was a training-only
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cluster [29], Meta uses separate infrastructure for ML train-
ing and inference [21], and Amazon deploys separate train-
ing and inference chips (Trainium [62] and Inferentia [61]).
In this work, we mainly focus on inference since it accounts
for a majority of the compute demand for LLMs [53, 59, 61].

Configuration knobs.
• Batch size defines the number of requests processed to-
gether. A larger batch size can yield higher throughput.

• Input size defines the length of the prompt sequence.
• Output size defines the maximum number of tokens gen-
erated per request.

Prompt processing vs. token sampling. Figure 1 shows
the two main phases in an LLM inference: prompt processing
and token sampling. Prompt processing is done in parallel
on the entire input, making it compute intensive. The as-
sociated state is saved in the KV-cache for token sampling
iterations [57]. In contrast, token sampling is sequential and
uses cached data from previously processed tokens, making
it computationally light but memory bandwidth intensive.

Cloud offerings.Cloud providers can host LLMs in different
ways in their datacenters. The first approach lets customers
bring their own models which they host using cloud virtual
machine offerings. Doing so makes the model opaque to the
cloud provider and offers limited powermanagement capabil-
ities. Alternatively, cloud providers could use platforms like
Singularity [64], Azure OpenAI [6], Google Vertex AI [56],
Amazon SageMaker [1], or Azure ML [2] to offer LLMs as
a service. Although such platforms are also virtualized, this
method gives the cloud provider visibility into the models.

Power provisioning. A datacenter floor plan is generally
built around the power distribution hierarchy. Figure 2 shows
an example power distribution hierarchy in an LLM clus-
ter, where power distribution units (PDUs) power rows of
racks [73]. GPU servers are deployed within each rack, and
several racks make a row. By rule of thumb, GPU servers are
provisioned for peak power draw because: (1) GPUs are de-
signed to maximize FLOPS, so hitting peak power draw is a
likely scenario, and (2) cloud servers may run any workload,
so provisioning for the worst case ensures safety. Conse-
quently, provisioning power for GPU servers is expensive.
Most large-scale CPU clusters today use some form of

power management and power oversubscription to reduce
cost [17, 31]. For example, they might derate servers, use
workload-aware power capping [31], or implement throttle-
aware power management [34]. In contrast, effective power
management is challenging in LLM clusters due to slow and
unreliable GPU power management interfaces [51].

3 Characterization Methodology
We describe the existing landscape for power monitoring
and control in LLM clusters, cloud-specific challenges, and
our methodology to address them.

3.1 Power Monitoring
The power usage of a GPU cluster running LLMs can be
monitored at various levels, which present different trade-
offs as shown in Table 1. The coarsest option is to monitor
power out of band at the row level, wherein the row man-
ager aggregates the power draw across all servers in the
row. Server power can be monitored via IPMI [26], which
queries the server baseboard management controller (BMC)
to obtain power readings. GPU power can be monitored
out of band (OOB) via utility interfaces [42], or in band (IB)
via vendor-provided software tools [3, 43, 47]. For example,
NVIDIA provides SMBPBI for OOB power monitoring per
GPU [42]; unfortunately, it is quite slow in practice. NVIDIA
also provides two IB tools: nvidia-smi [47] and DCGM [43].
nvidia-smi can monitor basic GPU runtime statistics, such as
instantaneous/average power draw, utilization, and memory
usage. DCGM provides additional support to monitor GPU
performance counters like Streaming Multiprocessor (SM)
activity, memory activity, and PCIe TX/RX usage. Other GPU
vendors also provide similar tools for GPU monitoring [3].

3.2 Power Controls

CPU knobs. CPUs provide interfaces like IPMI [26] (OOB)
and RAPL [55] (IB), which serve as a fast and reliable mecha-
nisms to control server power [31]. These mechanisms throt-
tle CPU (and optionally DRAM) power when it exceeds a
preset threshold. Alternatively, CPUs can also throttle mem-
ory bandwidth to implement QoS-aware power capping [34].

GPU knobs. GPUs provide IB and OOB interfaces for power
control; however, these are independent of the CPU.

In-band knobs. GPU power can be controlled in-band via
vendor-provided tools to implement frequency locking and
power capping [3, 47]. GPUs expose two clock domains (i.e.,
SM and memory), which impact power draw. Clock frequen-
cies can be manually configured to a desired value via fre-
quency locking. Power capping limits GPU power consump-
tion to a software-specified value by reactively throttling fre-
quencies. This mechanism is similar to RAPL for CPUs [31],
but offers less precise control and flexibility [51]. By default,
GPU power caps are set to the device TDP but they can be
configured to a lower range. IB configuration changes can
typically be done within a few milliseconds.

Out-of-band knobs. NVIDIA GPUs support OOB frequency
capping, power capping, and power breaks via SMBPBI [42].
Unlike IB management, OOB frequency caps can configure
the frequency only for SMs. In addition, as shown in Table 2,
OOB control is much slower and may take up to 40 seconds
to execute in today’s clusters. Power brake is a faster OOB
lever that brings all GPUs down to almost a halt within 5
seconds, while reclaiming substantial power.
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Mechanism Granularity Path Interval

RAPL [30] CPU & DRAM IB 1–10ms
DCGM [43] GPU IB 100ms+
SMBPBI [42] GPU OOB 5s+
IPMI [26] Server OOB 1–5s

Row manager Row of racks OOB 2s

Table 1. Power monitoring interfaces
in an LLM cluster.

Parameter Value

Number of servers 40
Server type DGX-A100

Power telemetry delay 2s
Power brake latency 5s
OOB control latency 40s

Table 2. Row-level parameters
in our study.

Category Model #Params #Inference GPUs

Encoder RoBERTa 355M 1
Decoder Llama2* 13B, 70B 1, 2, 4

GPT-NeoX 20B 2
OPT* 30B 4
BLOOM* 176B 8

Encoder-Decoder Flan-T5 XXL 11B 1

Table 3. LLM workloads that we characterize
(*inference only).

3.3 Challenges in Cloud LLM Deployments

Lack of server-level control knobs. On CPU servers, fea-
tures like IPMI [26] and RAPL [55] provide a fast and reliable
way to control full server power by setting a single cap on
the CPU. However, there are no unified power controls avail-
able for GPU servers. Cloud operators must separately tweak
CPU and GPU knobs to implement power management.

Limited workload visibility. LLMs deployed in customer-
operated virtual machines prevent provider visibility into
workloads. Even when services are offered by the cloud
provider, the teams responsible for infrastructure manage-
ment tend to view virtual machines as black boxes [31],
which limits power monitoring and control capabilities.

Lack of IB support under virtualization. GPUs virtual-
ized by hypervisors typically use fixed passthrough, which re-
linquishes GPU visibility and control to VMs [68]. Although
GPUs have faster IB support for monitoring and manage-
ment, it requires access to GPU drivers. Thus, any power
monitoring and control tools need to be accessible OOB to
be useful for cloud management or characterization. Note
that VM customers can still make use of IB GPU interfaces.

Slow and unreliable GPU OOB interfaces. As Table 2
shows, today’s OOB GPU management interfaces extremely
slow and take up to 40s to implement on a single server.
By contrast, the power capping deadline required by the
UPS is within 10s [73]. Further, OOB management interfaces
are unreliable and may sometimes fail without signaling
completion or errors. These issues make them impractical to
deploy in production without sufficient guardrails.

3.4 Profiling Approach
Given numerous challenges in profiling cloud workloads, we
adopt a different strategy. First, we select a diverse set of
LLMs to benchmark on a representative cloud server. We
then monitor the GPU-level and server-level power usage
of these workloads using DCGM and IPMI respectively. We
also use nvidia-smi to configure GPU frequency locking and
power capping. From our profiling results, we draw insights
about the power consumption patterns of different LLMs at
the server level. Finally, we validate whether our findings
hold at the cluster level by profiling aggregate power usage
trends of cloud-based LLM training and inference.

Our approach addresses the aforementioned challenges
as follows. First, rather than relying on server-level knobs,
we only characterize GPU power since they account for a
majority of the server power usage as shown in Section 4.3.
Second, we side step theworkload visibility issue by selecting
a representative set of training and inference benchmarks.
Third, by profiling VMs as a cloud user, we retain access to
IB interfaces for GPU characterization.
Hardware.We run workloads on two NVIDIA DGX A100
virtualmachineswith 8×A100-40GB and 8×A100-80GBGPUs
respectively [44, 46]. Bothmachines have a dual-socket AMD
Rome CPU. GPUs communicate with the host CPU using
PCIe 4.0 and they are interconnected via NVLink 3.0 for fast
inter-GPU communication. Figure 3 shows a breakdown of
the provisioned power per server component; around 50%
of the power is provisioned for GPUs. Due to GPU avail-
ability crunch, we use the former machine to run training
workloads and the latter to run inference workloads.
Models. Table 3 shows the LLMs that we characterize. Our
selection represents some of the latest and largest publicly
available LLMs. We consider all three kinds of transformer
architectures [67]: Encoder (RoBERTa [37]), Decoder (GPT-
NeoX [5], OPT [74], Llama2 [66], BLOOM [70]), and En-
coder+Decoder (Flan-T5 [12]). We focus especially on de-
coder models (i.e., generative LLMs) due to their growing
popularity. Within these, we evaluate both older (e.g., GPT-
NeoX) and newer (e.g., BLOOM, Llama2) LLMs. Our model
sizes fully span the available GPU memory on our machine.
LLM frameworks. Since LLM frameworks are rapidly evolv-
ing and each supports different models and features, we use
a combination frameworks for this characterization. Specif-
ically, for LLM training we use Huggingface Transformers
with Accelerate [20, 69], GPT-NeoX library [5], and Deep-
Speed [60] to cover different kinds of parallelisms. For LLM
inference, we use DeepSpeed Inference [4, 39] and vLLM [32],
which support our target models. Finally, to evaluate LLM in-
ference with different datatypes, we use Huggingface Trans-
formers [69] with the bitsandbytes library [13].
Monitoring and control configuration.We run DCGM
at a 100ms interval to capture the power draw, utilization,
compute / memory activity, and other performance counters
on each GPU [43]. IPMI is run infrequently and is used to val-
idate DCGM power measurements. For GPU power control,
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we use nvidia-smi to configure frequency locking and power
capping within a subset of the support GPU SM frequencies
(1.1–1.4GHz) and power caps (300–400W). Finally, for cluster
profiling, we use the row manager to obtain aggregate row
power draw every 2 seconds.

Minimizing overheads. Since DCGM repeatedly queries
GPU counters, it can introduce power and performance over-
heads. We find that that enabling DCGM consistently in-
creases the IPMI server power usage by about 5–10W. Since
this is relatively tiny, we directly report DCGM power num-
bers in our results. For performance, DCGM may cause sig-
nificant degradation and variability under certain configu-
rations. We mitigate this by getting accurate performance
measurements in a separate run without DCGM profiling.

Training. Our LLM training setup uses a combination of dis-
tributed data, tensor, and/or pipeline parallelism [25, 35, 63].
Because we have limited GPU resources to train LLMs, we
actually profile LLM fine-tuning at the server level instead of
full-scale LLM training. We train each model on a dedicated
server for at least 5 minutes (100+ iterations) across all 8
GPUs, and configure the training batch sizes to use at least
85% of the GPU memory. To ensure that our takeaways from
LLM fine-tuning are consistent with LLM training at scale,
we validate our server-level profiling results with cluster-
level production data in Section 4.3.

Inference. We profile LLM inference using tensor paral-
lelism and emulate the worst-case scenario for power utiliza-
tion by running a constant stream of inference requests.

Warm-up. LLM inference frameworks (e.g., FasterTransformer
andDeepSpeed-Inference) typically allocateworkspacemem-
orywhen serving the first inference request (after loading the
model). This memory region is then reused for subsequent
requests. Thus, the first inference executes much slower than
in the steady state, which also impacts power usage patterns.
To avoid this, we warm-up the LLM serving framework with
at least three requests before taking measurements.

Identifying prompt and token phases.We modify LLM infer-
ence frameworks to output performance information for
prompt and token phases by adding appropriate timestamps
and GPU synchronization. In cases where synchronization
overhead is unacceptable, we profile prompt phases by gen-
erating only a single output token, and token phases by
generating multiple output tokens with a medium-sized in-
put prompt. When monitoring GPU performance counters
for the prompt and token phases, we observe that certain
counters are instantaneous (e.g., power), whereas others are
updated on an interval basis (e.g., SM activity, tensor core
utilization, etc.). Hence, the timeseries data of these perfor-
mance counters typically has a lag. We use counter value
peaks to identify such lag and align them appropriately.
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Figure 5. Peak power vs. performance reduction for training.

4 LLM Power Characterization
Using our methodology, we extensively characterize LLM
power usage patterns at the server and cluster levels, fo-
cusing on the intrinsic differences between training and
inference workloads, between prompt and token phases, and
their behaviors under GPU power management techniques.

4.1 LLM Training Characterization

Peak power. Figure 4 (blue) shows the GPU power usage
time series updated every 100ms for 5 iterations of training
per model. The peak power during the training iterations
goes up to the TDP of the GPUs, and beyond for GPT-NeoX
and Flan-T5. On the other hand, RoBERTa, a smaller encoder-
only model does not reach the TDP. Note that different types
of data sharding, batching, and parallelism techniques could
slightly change this behavior.
Insight 1: The peak power draw across GPUs in LLM train-
ing iterations often reaches or exceeds their TDP. For cluster
power design, this means that LLM training clusters need to
overprovision GPU power to ensure power safety.
Power swings. Figure 4 (blue) also shows that there are
big swings in power draw across GPUs each iteration. For
example, in RoBERTa, an iteration lasts for ∼1 second. Each
iteration has a small dip in power around the 0.5 second
mark, and a big dip in power at the end. The smaller dip
is caused between the forward and backward phases, since
threads working on the same data synchronize and the GPU
utilization decreases. On the other hand, the larger dip is
caused at the end of the iteration when all the GPUs synchro-
nize before the next iteration starts. Thus, the power swings
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are caused by the inherent workload behavior of switching
between computation- and communication-intensive phases.

The power consumption in the communication-intensive
phase is different across the three models. While RoBERTa is
still at 75% of the TDP at the iteration boundary, GPT-NeoX
drops down to 50%, and Flan-T5 goes down all the way to
20%, which corresponds to the idle power of the GPUs.

In larger-scale training, such power swings are correlated
across thousands of GPUs running the training job, which
could cause challenges in the power delivery infrastructure.

Insight 2: Large power swings are common in LLM training
due to alternating computation- and communication-intensive
phases across many GPUs. Since current power delivery infras-
tructure cannot always safely support large-scale power swings,
LLM training clusters need specialized power infrastructure
and management.

Impact of capping. Next, we investigate the impact of GPU
frequency locking and power capping on training work-
loads in Figure 4. We observe that the peak power is reduced
by up to 20% under both frequency locking and power cap-
ping. However, power capping is more effective at alleviating
power swings since it brings down the peak power while
keeping the power troughs high. For example, GPT-NeoX
and Flan-T5 substantially drop power usage at the iteration
boundary, thereby not being impacted by power capping in
those durations. On the other hand, since RoBERTa draws
considerable power at the iteration boundary, power capping
could also bring down the trough in the power consumption.

Figure 5 shows the impact of frequency locking and power
capping on the throughput of the training. Frequency lock-
ing is constantly active and thereby more effective in reduc-
ing peak power draw, whereas power capping introduces
more performance and power variability due to its reactive
implementation [9]. For Flan-T5 and GPT-NeoX, frequency
capping reduces the peak server power by 22% while only im-
pacting the performance by 10%. Thus, for large cluster-level
training jobs, both frequency locking and power capping can
help reduce peak power and mitigate power swings, or, in
case of multiple smaller concurrent jobs, they could be used
to enable power oversubscription.

Insight 3: Power capping reduces peak power draw without
affecting troughs, making it effective at reducing themagnitude
of training power swings. Frequency locking lowers the overall
power consumption, making it effective at reclaiming power
on demand. Thus, both are useful in improving the power
management in LLM training clusters.

4.2 LLM Inference Characterization

Phases in power consumption. Figure 6 shows the power
consumption time series for various inference models, each

with three inferences of the same prompt. Across all infer-
ence models, during every iteration, the power usage pat-
terns exhibit two distinct phases: power spikes in the begin-
ning, and a stable, lower power consumption later. Power
spikes consistently occur at the start of every inference re-
quest, often going beyond GPU TDP. These spikes corre-
spond to the compute-intensive prompt phases of LLMs,
which processes all input tokens in parallel. Following the
spike, the stable, lower power consumption phase corre-
sponds to the sequential, auto-regressive token sampling.
The token sampling phase sequentially generates new to-
kens by reusing activations stored in the KV-cache. It incurs
lower computation, so the power draw during this phase is
relatively stable and low. Prompt phases tend to be shorter,
since a large number of output tokens may be generated
sequentially in each request.

To validate the above, we profile various GPU performance
counters during the prompt and token phases of BLOOM
inference. Figure 7 shows the pairwise Pearson correlations
between these counters. We observe that the prompt phase
is highly correlated with the SM and tensor activity and
inversely correlated with memory activity on the GPU. In
contrast, the token phase counters are generally uncorrelated
with each other, and it has lower power draw.
Insight 4: LLM inference has distinct power consumption
phases corresponding to prompt computation and token gener-
ation: prompt phases are brief and typically reach or exceed
GPU TDP, whereas token phases are longer and draw less power.
For cluster power design, this means that peak power in LLM
inference clusters must be provisioned for the prompt phases,
but doing so leads to underutilization during token phases; this
mismatch must be addressed to improve power efficiency.

Power patterns with different configurations. Figure 8
shows the power consumption patterns and latency impli-
cations for a variety of LLM inference configurations. To
separately characterize the peak and mean power, we depict
GPU power normalized to TDP for each configuration in
stacked bars of two components: the lower (opaque bars,
indicating mean power during iterations) and the higher
(regular bars, indicating peak power). We first observe that
under the same configuration, larger models (e.g., BLOOM-
176B) incur a much higher amount of computation during
both prompt and token phases, and show significantly larger
peak and mean power consumption.
Input sizes. Figure 8a shows the mean and peak power to
TDP ratio varying input sizes from 256 to 8192 tokens. As
input size increases, peak power drastically increases across
all models, reflecting the increase in prompt phase com-
putations. The mean power, dominated by token sampling
computation, remains stable and low, further emphasizing
power usage differences between prompt and token phases.
Figure 8b shows the corresponding latency results. As the
sequential token sampling phase contributes to most of the
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Figure 6. GPU power usage timeseries for multiple inference models. It shows distinct power usage patterns in prompt (spiky)
vs. token phase (longer, more stable, and lower). The phases in each model take different amount of times.
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Figure 7. Pairwise correlations of GPU counters for prompt
and token phases when running BLOOM inference.
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Figure 8. Power (mean, peak) and latency sensitivity to the
input, batch, and output sizes for multiple inference models
running on A100-80GB GPUs.

query latency, increasing input sizes shows little impact on
latency until >4096 input tokens.
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Figure 9. GPU power capping and frequency locking on
BLOOM inference (input=8192, output=128, and batch=1).

Batch sizes. Figure 8c shows the power impact of varying
batch sizes from 1 to 16. Larger batch sizes effectively in-
crease the input sizes for prompt computation, resulting
in similar increase in peak power draws. Mean power also
exhibits a gradual increase, since the effective number of
tokens processed concurrently during the token phase is
higher. Figure 8d shows a slight latency increase because the
amount of computation increases in both the prompt and
token phases with larger batch sizes.
Output sizes. Figure 8e and Figure 8f show that increasing out-
put size does not affect the peak and mean power drawn, but
simply increases the duration of request execution linearly.
Because token sampling is sequential and auto-regressive,
similar computation and power consumption patterns repeat
for each generated token.
Insight 5: The peak and mean power draw for LLM inference
depend primarily on the input prompt size and batch size, while
latency depends primarily on the output size. Thus, batching
could be used as a power management knob in addition to
frequency locking and power capping.
Impact of datatypes. Next, we study the impact of different
quantization modes. We run Llama2-70B and Llama2-13B
with FP32, FP16, and INT8 model weights using the bitsand-
bytes library [13]. A Llama2-70B model with FP32 weights
requires at least four A100-80GB GPUs, whereas FP16 or
INT8 weights only need two1. All Llama2-13B datatype vari-
ants can fit within a single GPU.
We find that quantization significantly impacts overall

power usage since fewer GPUs tend to draw lesser power. For
1Note that beyond model weights, extra state is needed for activations, KV
cache, etc., which could preclude using fewer GPUs for smaller datatypes.
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Figure 10. Peak power reduction (based on TDP) vs. performance reduction varying
GPU SM frequencies. The dashed black line shows linear scaling.
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power normalized to TDP.

Llama2-70B, FP16 is faster and has a higher peak power draw
than other datatypes since it uses tensor cores with highly
optimized kernels [46]. FP32 and INT8 perform slower due
to their larger footprint and less optimized CUDA kernels,
respectively [18]. For Llama2-13B, FP16 has a slightly higher
peak power draw and much faster performance than FP32,
also due to its optimized kernel. Custom hardware support
for datatypes in newer GPUs, like the FP8 engine in NVIDIA
H100 [45], could further impact these trade-offs.

Insight 6: Model quantization reduces model sizes and power
usage, thereby enabling more workloads to be deployed under
a power budget. However, it does not impact the fundamental
power usage differences between prompt and token phases.

Impact of capping. Figure 9 shows the impact of power
capping and frequency locking on BLOOM inference. Since
power capping is reactive, power peaks in the prompt phase
sometimes exceed the power cap. On the other hand, fre-
quency locking incurs performance impact throughout the
execution, and not just when the power utilization is high.
When oversubscribing power, frequency locking is a more
reliable control to reclaim power from desired servers.
We quantify the performance and peak power impact of

frequency locking. Figure 10a shows the relative peak power
and performance reduction compared to no capping by vary-
ing GPU clock frequencies across all models. We observe
that the relationship between power reduction and perfor-
mance is superlinear—significant power (up to 20%) can be
reclaimed for minimal performance loss (up to 7%). Notably,
the sensitivity to peak power reduction mechanisms varies
across different models. Larger models tend to have higher
performance impact; for example, GPT-NeoX incurs no per-
formance loss while BLOOM exhibits 5% at a similar peak
power reduction level of 13%. Figure 10b further shows the
sensitivity results of varying prompt computation (input and
batch size) for BLOOM. Smaller batches show lower perfor-
mance loss under the same amount of peak power reduc-
tion. Finally, Figure 10c shows the performance reduction
changing the GPU SM frequencies. Different configurations
have similar performance drop at higher frequencies, mak-
ing them lucrative as common operating points for a power

Training Inference

Peak power utilization 97% 79%

Power usage pattern
Coordinated swings
every few seconds

Diurnal with
short-term variations

Max. power spike in 2s 37.5% 9%
Max. power spike in 40s
(OOB capping latency) – 11.8%

Table 4. LLM cluster power usage in production.

saving mode. In particular, we see less than a 2% drop in per-
formance at ∼100MHz (7%) below the maximum frequency.
Overall, across models and configurations, the peak power
reduction from locked frequency execution is substantially
higher than the relative performance drop.
Insight 7: Power capping is reactive and triggers when power
exceeds a set threshold, making it more likely to only impact
prompt phase power draw. Frequency locking reduces overall
power on demand with minimal performance loss. Thus, fre-
quency locking may be more effective at enabling safer power
oversubscription in LLM inference clusters.

4.3 Power Usage Patterns at Scale
Next, we profile the power usage patterns at scale from pro-
duction training and inference clusters. We only show sub-
sets of the data and normalize numbers for confidentiality.
Server-level power. Figure 11 shows the peak server and
GPU power in a production cluster, relative to their TDP. We
observe that: (1) GPU power constitutes on average 60% of
server-level power consumption, (2) peak GPU power far ex-
ceeds the overall server GPU TDP (by up to 500W), aligning
with our previous observations (Insights 1 and 4), (3) peak
server power is highly correlated with peak GPU power,
(4) peak GPU power has a much smaller range than peak
server power, and (5) peak power remains largely unchanged
over time since servers are heavily utilized.
Insight 8: GPUs represent the majority of the variable por-
tion of the power draw for LLM workloads at a server-level.
Thus, managing GPU power is critical to improving the power
management of LLM clusters.
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Row-level power. Table 4 shows the normalized aggregate
power consumption patterns of LLM training and inference
clusters at a large cloud provider. Note that we consider a
cluster running interactive inference service. We observe
that: (1) training has higher peak and average power draw
compared to inference, (2) training incurs large swings in
power consumption within short durations, up to 37.5% of
the provisioned power capacity within 2 seconds, whereas
inference only incurs a change of up to 9%, and (3) inference
power consumption shows a diurnal pattern since it is an in-
teractive workload; yet, over the course of a few seconds, its
power usage remains relatively stable compared to training.
These differences imply that training tends to put much

higher strain on the cluster power delivery infrastructure
compared to inference. In particular, power swings at scale
are a key challenge, as we also observe in Section 4.1 (In-
sight 2). In contrast, although power consumption does spike
across the GPUs serving the same inference during the prompt
phase (Insights 4 and 5), these spikes are not correlated across
endpoints serving other inferences. This lack of correlation
is due to the variation in arrival times and scheduling at
cluster scale. Hence, power peaks often do not align. Instead,
a statistical multiplexing of the prompt and token processing
phases across servers yields lower peak power consumption
at the cluster level.

Insight 9: Despite similar peak power at the server level, LLM
inference clusters offer far more power headroom than training
clusters due to better statistical multiplexing of workloads.
Hence, LLM inference clusters are more amenable to power
oversubscription than training clusters.

5 Design Implications for LLM Clusters
We start by discussing general optimizations, then delve into
specific implications for training and inference clusters.

Derating GPU servers. Power tends to be overprovisioned
for GPU servers. For example, the rated power for the DGX-
A100 machine is 6500W [44]. Yet, across all our workloads,
the peak power on our machine never exceeded 5700W. Thus,
we could derate the power provisoned per server by up
to 800W. Reducing power provisioned per server enables
providers to deploy additional servers under the same infras-
tructure. Crucially, servers can be derated in existing GPU
clusters, thereby partly addressing the GPU capacity crunch
without waiting on new datacenter construction timelines.
To ensure power safety when derating servers, it is important
to deploy it with an effective power capping mechanism.

Better and standardized OOB support. The OOB power
management interfaces in GPUs today are not only slow, but
completely non-standardized. Hence, building a power man-
agement stack that works across vendors is quite challenging.
With faster, standardized OOB management interfaces, we
can deploy several power and performance optimizations at

scale. In their absence, there is still scope for large application
owners to use in-band power management interfaces.
Coordinated server power management. Only CPUs and
GPUs offer flexible server-level knobs for power manage-
ment today. This limits how much power we can reclaim.
For example, although server fans constitute nearly 25% of
the server power (Figure 3), servers do not expose a software
control knob tomanage their power-speed trade-offs. Adding
knobs to other server components could help develop a coor-
dinated power management system to reduce unnecessary
power draw and enable adding more server capacity.

5.1 LLM Training Clusters

Power oversubscription. LLM training clusters have very
little power headroom during peaks (Table 4). Consequently,
deploying power oversubscription would lead all servers
to repeatedly operate part of the training in power-capped
mode, switching off some servers to support more power-
intensive workloads, or a combination of both. These so-
lutions are undesirable since they may not effectively uti-
lize the provisioned compute capacity. Alternatively, the
training framework could be modified to become power
capping aware. For example, the framework could select a
power-efficient batch size and make appropriate capping
choices [71]. Such solutions require workload information to
better decide which frequencies would be best for running
each model. Therefore, they are best deployed in clusters
where the provider has insight into workload to make power
management decisions [1, 2, 56, 64].
Mitigating power swings. Even if sufficient power is pro-
visioned, the power grid must repeatedly ramp the power
supply up/down to support large training power swings.
Due to the massive scale of training workloads, doing so
could be untenable. GPU frequency locking could help some-
what alleviate the magnitude of the power swings at the cost
of performance loss. Another alternative is to smooth out
the power swings by reducing synchronization requirements
and overlapping the computation and communication phases.
Lazy weight updates and asynchronous training techniques
could help in this regard.

5.2 LLM Inference Clusters

Power oversubscription. Since inference power usage pat-
terns are distinct from training, power oversubscription op-
portunities are also different. In particular, inference clusters
have substantial headroom to oversubscribe power due to
uncorrelated power peaks across different requests. We could
potentially increase the provisioned server capacity in such
a cluster without hitting power peaks. However, to ensure
safety in corner cases and as workloads evolve, it is impor-
tant to adopt a power throttling strategy. We build upon this
insight in Section 6 and design a safe and practical power
oversubscription framework for LLM inference clusters.
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Phase-aware powermanagement.Adapting GPU capping
based on the inference phase could yield additional bene-
fits. For example, using lower frequencies during the token
phase could help reduce power consumption without sub-
stantially impacting performance. Alternatively, it would be
interesting to separate prompt computation and token pro-
cessing on different GPUs, which enables us to only power
cap GPUs that run the token phases [49]. Such separation
would require transferring intermediate state between the
prompt and token GPUs, which is promising given the high-
bandwidth Infiniband interconnects in LLM clusters [44].

6 Case Study: POLCA
Based on our characterization insights, we present a case
study on designing a deployable power oversubscription
framework for LLM inference clusters: POLCA [50] The
main goal for POLCA is to maximize the number of addi-
tional servers deployed using power oversubscription, while
meeting workload Service Level Objectives (SLOs).

6.1 Limitations of Existing Approaches
Many prior efforts seek to deploy additional server capacity
in datacenters through better powermanagement techniques.
These works typically focus on CPU power control knobs [15,
36, 55, 58] and workload-aware placement [23, 73] to enable
power oversubscription [17, 19, 31].
LLM inference differs from other user-facing workloads

in two key ways. First, LLM inference workloads consume
high peak (prompt phase) and low average (token phase)
power within each request. When diverse user requests are
multiplexed in the cluster, it results in power underutiliza-
tion even if all servers are busy. In contrast, many existing
user-facing workloads incur large power usage variations
primarily as a property of the varying request load (e.g.,
diurnal utilization [31]).

Second, LLM inferenceworkloads are GPU-intensive, while
traditional approaches target CPU workloads. Beyond the
unique challenges with OOB GPU power management in-
terfaces described in Section 3.3, GPU servers have much
higher power draw than CPU servers (e.g., 5kW vs. 500W).
Hence, any power throttling decisions can potentially cause
large swings in power usage. If not handled correctly, the
cluster could easily devolve into a state of hysteresis—going
back and forth between capping and uncapping.

6.2 Design Goals

Simplicity and configurability. Power oversubscription
impacts critical large-scale datacenter infrastructure, making
simplicity highly valuable for a production deployment. Fur-
thermore, the potential for rapid evolution of LLMs over a 5+
year server lifetime requires adaptability. POLCA must use
a simple and reliable power management policy to enable

easier debugging, faster power capping response, and recon-
figurability to meet the demands of evolving LLM workloads.

Workload priorities support. LLM workloads have dif-
ferent priorities, as guided by application requirements. For
example, LLM search is latency sensitive since users are wait-
ing for results, whereas code generation and large-document
summarization have less strict requirements. In addition,
LLM inference pricing tiers naturally bucket workloads into
priorities. For example, ChatGPT, Azure OpenAI, and other
similar services offer free and paid tiers for different SLOs.
POLCA should reclaim power in a way that minimizes per-
formance impact on critical workloads.

Latency-bounded design. Since POLCA targets virtualized
cloud platforms, it must use OOB power management in-
terfaces (Section 3.2). Unfortunately, GPU OOB interfaces
are quite slow (Table 2), which make it challenging to meet
the strict 10s deadline that UPSes set on the power capping
response time [73]. As a safety net, POLCA could rely on
OOB power brake, which throttles all GPUs within the UPS
deadline; unfortunately, power brakes hurt workload perfor-
mance significantly since they drastically reduce the GPU
frequency. On the other hand, the less aggressive frequency
and power capping can take as long as 40s to take effect.
Hence, the POLCA policy should meet power capping re-
sponse deadlines while including scaffolding to avoid power
brakes as much as possible.

6.3 POLCA Design

Overview. POLCA enables power oversubscription by ex-
ploiting the power headroom available in LLM inference
clusters (Insight 9). As needed, it uses simple, priority-based
capping thresholds to reclaim power from workloads of dif-
ferent priorities. Each threshold is associated with three pa-
rameters: (1) the target workload priority level, (2) the power
value at which it triggers, and (3) the capping action. POLCA
proactively caps lower-priority workloads and avoids cap-
ping higher-priority workloads until absolutely necessary
to decrease the likelihood of needing power brakes.
Since LLM inference clusters benefit from the statistical

multiplexing of the prompt and token phases, POLCA uses
a higher power aggregation level, namely the PDU breaker,
to make capping decisions. This corresponds to a row of
racks as shown in Figure 2. The cloud allocator deployed
with POLCA is aware of workload priorities, and it can make
power-oversubsciption aware allocation to ensure a good
mix of high and low-priority jobs in every row [31].
Our design can be retrofitted into existing datacenters,

without new hardware, meters, or structures. As workloads
evolve, POLCA infrequently updates the policy parameters
using power traces and capping history.

Example two-threshold policy and workflow. POLCA
considers a cluster with two workload priority levels for
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simplicity, as shown in Table 6. This can be easily extended
to support more priorities by adding thresholds accordingly.
Selecting thresholds. POLCA selects the power value for the
thresholds by analyzing historical power usage traces. Fur-
ther, it selects an uncapping power value sufficiently below
the capping threshold to avoid hysteresis. Doing so helps
avoid constant capping and uncapping, which could over-
whelm the power management system. In our evaluations,
we choose the uncap thresholds to be 5% below the corre-
sponding capping threshold based on our parameter sweeps.

Table 5 shows the thresholds and their capping actions for
our cluster. The lower threshold (T1) applies to low-priority
workloads and has two objectives: (1) sufficiently avoid cap-
ping high-priority workloads, and (2) maintain the SLOs
for the low-priority workloads. Based on Insights 4 and 7,
we choose frequency capping at T1 to maximize the power
reclaimed by capping low-priority workloads. Upon reach-
ing T1, we set all the low-priority workloads to the base
frequency (e.g., 1275 MHz for A100 GPUs).

The upper threshold (T2) is chosen to avoid power brakes.
POLCA sets the threshold based on the observed value of
maximum power spike in 40s (the OOB capping delay) over
the available trace. When T2 is breached, POLCA starts by
frequency capping all the low-priority workloads further
down to 1110 MHz. If the power is still above the threshold,
it also caps the high-priority workloads down to 1305MHz
frequency, so that they incur negligible performance impact
while still some reclaiming power (Insight 7).
Applying thresholds. Figure 12 shows the hierarchy of teleme-
try and control in the power management in POLCA. The
powermanager running at rack-level receives frequent teleme-
try from the PDU about row-level telemetry. We assume a
homogeneous distribution of power and caps for fast control.
Based on its knowledge of workload priorities, the power
manager implements the threshold and caps based on Ta-
ble 5. Once the BMC at the server gets the per-GPU caps
from the power manager, it configures the GPUs accordingly
using an interface like the SMBPBI [42].

6.4 Evaluation Methodology
We implement a discrete event simulator to evaluate the de-
gree of oversubscription that we can support in a production
LLM inference cluster, described by Table 2. Our simulator
is built for a high-traffic scenario and assumes that all the
servers are serving inference with models loaded. We first
show a sweep of parameters in the POLCA policy and then
demonstrate POLCA’s efficacy at oversubscribing power.
Workloads. We evaluate the workloads as listed in Table 6.
We configure the BLOOM-176B model for different tasks
(summarization, search, and chat) based on their input/out-
put token and priorities. Note that based on Section 4.2,
BLOOM-176B has the highest performance impact from cap-
ping, making it our worst-case workload.

Replicating production traces. We use a six-week power
consumption trace between June 21𝑠𝑡 to August 2𝑛𝑑 2023
from the production inference cluster described in Table 4.
Based on this trace and model characteristics (i.e., power
and time per token), we generate a synthetic trace. This syn-
thetic trace contains the arrivals for each inference request
along with their input and output sizes. The Mean Absolute
Percentage Error (MAPE) between the synthetic and origi-
nal power timeseries is within 3%. Figure 16 shows example
traces. Note that we only show subsets of the data and nor-
malize the numbers in the figures for confidentiality reasons.
We use the first week to train the parameters of our power
capping policy and evaluate on the subsequent five weeks.

6.5 Evaluation on policy sweeps for 1-week trace

Thresholds.We search for thresholds that maximize addi-
tional servers while meeting SLOs. Our sweep incrementally
adds servers, monitoring workload latency and power brakes.
Figure 13 shows our results. We evaluate three combinations
for T1-T2, namely 75-85%, 89-89%, and 85-95%. In particular,
we select the 80-89% configuration to allow for the maximum
power spike within the OOB capping duration from Table 4.
The 75-85% and 80-89% T1-T2 combinations allow 35%

more servers without power brake (dashed gray line), while
85-95% permits only 32.5% more. 75-85% misses the SLOs
for low-priority workloads by a huge margin, since it starts
capping themmuch earlier. On the other hand, 85-95% incurs
a lower performance impact on the LP and HP workloads,
but is in a much higher danger of leading to power brakes,
especially since T2 is not sufficiently below the provisioned
power to avoid large power spikes (up to 11% in Table 4). To
balance power brake avoidance and performance based on
SLOs, we select 𝑇1 = 80% and 𝑇2 = 89% for POLCA. With
these thresholds, we add 30% more servers (dashed red line
in Figure 13) to stay strictly within the workload SLOs.

Capping frequency. Figure 15a shows the performance
impact of varying the frequency locking for low-priority
workloads at T1. Below 1275 MHz, the LP workloads can no
longer meet their SLO. Thus, we choose 1275 MHz, the base
frequency of A100, as the capping frequency at T1.

6.6 Evaluation on 6-week traces

Power impact. Figure 16 shows the impact on daily power
utilization as we add 30% more servers using POLCA. The
main insights are: (1) the power utilization average over 5
minutes follows the same pattern with a higher power offset,
and (2) the power spikes increase, since the absolute number
of workloads that can be triggered together increases.

Throughput impact. Our simulator assumes a one-request
buffer per server to simulate queueing delays. This is based
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Mode Low Priority High Priority

Uncapped Uncapped Uncapped
Threshold T1 Frequency capped Uncapped

(1275 MHz)
Threshold T2 Frequency capped Frequency capped

(1110 MHz) (1305 MHz)
Power brake Frequency capped Frequency capped

(288MHz) (288MHz)

Table 5. Power modes for low and high
priority workloads.

Row-level PDU
Power meter

Server

...

Telemetry

SMBPBI

GPU0 GPU7

BMC

Rack Manager
Power Manager

Figure 12. Flow of the
power management.

Workload Prompt size Output size Ratio Priority

Summarize 2048-8192 256–512 25% Low
Search 512–2048 1024–2048 25% High
Chat 2048–4096 128–2048 50% 50:50

Metric High priority Low priority

P50 latency impact < 1% < 5%
P99 latency impact < 5% < 50%

Number of power brakes 0 0

Table 6. Workload distribution and SLOs.
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Figure 13. Threshold space search. The dashed gray line shows the max servers without power
brake events. The dashed red line indicates adding 30% more servers.
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Figure 14. Server through-
put for POLCA.
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Figure 15. Parameters sweeps for POLCA.

on the typical load balanced setup, reducing the chance of si-
multaneous capping. Figure 14 shows that for the chosen con-
figuration, the high-priority workload remains unaffected,
while the low-priority throughput sees a minor < 2% decline.

Impact of low-priorityworkloads. Sincewe prioritize cap-
ping low-priority workloads to avoid capping high-priority
workloads, the fraction of low-priority workloads impacts
performance. Figure 15 shows the impact on workload per-
formance as the low- to high-priority ratio in the cluster
changes. Decreasing low-priority workloads can cause P99
SLO violations in high-priority workloads.

Comparison with other techniques. We compare our
dual-threshold power capping policy against three base-
lines: (1) single threshold at 89% for low-priority workloads

(1-Thresh-Low-Pri), (2) single threshold at 89% for all work-
loads (1-Thresh-All), and (3) no capping (No-cap). All base-
lines include a power brake as fallback for power failure
safety. The first four bars in Figure 17 show the performance
of various baselines normalized against POLCA.

1-Thresh-Low-Pri does notmeet low-priority SLOs since
it does not gradually reduce their frequency. 1-Thresh-All
breaches the P99 SLOs for both low- and high-priority work-
loads, since it caps them aggressively at the 89% thresh-
old. POLCA’s dual-threshold policy prioritizes high-priority
workload performance at the expense of low priority work-
loads, while still meeting SLOs for both. No-cap lacks power
brake protection, which impacts P99 and P100 latency. No-cap
is comparable to POLCA under standard conditions, but vul-
nerable to model power changes.
Impact of short-term changes inworkloads.We simulate
the impact of workloads becoming more power-intensive
than profiled, which could happen if LLMs are updated to be
more efficient. We uniformly increase the power per work-
load by 5% and reevaluate each policy. The last four bars
in Figure 17 show this performance impact. POLCA is the
most robust maintaining SLOs despite the inevitable work-
load changes. As the changes become more prominent, and
newer models take over, we reconfigure POLCA.
Number of power brake events.Although Figure 17 shows
the performance impact of various policies, it is also impor-
tant to track the number of power brake events. POLCA tar-
gets an SLO of zero power brake events to avoid the alarms
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Figure 16. Row-level power utilization based on production
data using BLOOM. Y-axis hidden for confidentiality.
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Figure 17. Performance impact of the dual-threshold POLCA
with other thresholding policies at 30% oversubscription.

Configuration

101

102

103

104

Nu
m

be
r o

f p
ow

er
 b

ra
ke

s POLCA
1-Thresh-Low-Pri
1-Thresh-All
No-cap
POLCA+5%
1-Thresh-Low-Pri+5%
1-Thresh-All+5%
No-cap+5%

Figure 18. Number of power brake events under each con-
figuration running default and power-intensive workloads.

this can cause at the cluster level for the cloud provider.
Figure 18 shows the number of power brake events per pol-
icy, for the regular, and scaled-up power usage workloads.
POLCA incurs no power brakes in the standard scenario, and
the least when workloads become more power intensive.

6.7 Discussion
We summarize additional considerations to improve POLCA.
Workload-aware policy. Given the rise of inference-as-a-
service platforms [1, 6, 56], POLCA could be extended to use
workload-specific power profiles to reduce the impact on
performance, while getting the most power savings.
Other provisioning constraints. In practice, we observe
that power is the key bottleneck for LLM cluster provisioning.
Space is typically not an issue since both GPU servers and
racks are power dense. For example, modern GPU servers
like NVIDIA DGX-A100 (6U, 6.5kW TDP) and DGX-H100

(8U, 10.2kW TDP) are much more power dense than typical
CPU servers (1U, 600 W TDP).
Cooling could become a bottleneck if we significantly

oversubscribe power. However, we do not hit this bottleneck
in practice for POLCA’s oversubscription ranges. Beyond
traditional air-cooling for GPU servers, recent efforts also
consider deploying cold plate and immersion cooling in dat-
acenters which would further minimize this concern [28].
Beyond LLMs. In general, our power capping analysis ap-
plies to other user-facing GPU workloads like deep-learning
inference. However, the degree of oversubscription enabled
may be different depending on target workload characteris-
tics. Unlike generative LLMs, vision and multi-modal deep
learning inference workloads exhibit relatively stable power
consumption patterns. However, they can still reclaim power
from frequency scaling for small performance loss.

7 Related Work
Our paper is the first to characterize power management
opportunities for modern LLMs and to propose a deployable
framework for power oversubscription. In Section 2 and Sec-
tion 6.1, we discussed related work on power management
in CPU clusters. We discuss other related efforts below.
DL energy efficiency. Some works attempt to improve en-
ergy efficiency for both training and inference workloads
through customized frameworks [11, 40, 41, 71] and sys-
tem parameters [22]. Reducing average power or energy
consumption is different from our target of reducing peak
power, which is essential for server provisioning decisions.
GPU and DL workload characterization. Many works
have characterized and analyzed DL workloads in GPU clus-
ters [24, 29, 33] to understand utilization and performance.
Others have studied power behaviors [27, 72] and the implica-
tions of performance under power management techniques
of GPUs [52, 52, 54, 65]. We are the first to study the power
characteristics of generative LLMs and peak power.

8 Conclusion
We characterized the distinct power usage patterns for LLM
training and inference workloads in a production cloud en-
vironment. We also analyzed the effectiveness and limita-
tions of existing power management knobs, namely GPU
frequency locking and power capping. Based on our insights,
we discussed power implications when building clusters to
run LLMs. Finally, as a concrete use case, we presented and
evaluated a framework to enable safe and efficient power
oversubscription in LLM inference clusters.
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