
Cloud-LoRa: Enabling Cloud Radio Access LoRa Networks Using
Reinforcement Learning Based Bandwidth-Adaptive Compression

Muhammad Osama Shahid*1 Daniel Koch*1 Jayaram Raghuram1

Bhuvana Krishnaswamy1 Krishna Chintalapudi2 Suman Banerjee1

1University of Wisconsin-Madison 2Microsoft Research *Co-Primary authors

Abstract
The Cloud Radio Access Network (CRAN) architecture has
been proposed as a way of addressing the network through-
put and scalability challenges of large-scale LoRa networks.
CRANs can improve network throughput by coherently com-
bining signals, and scale to multiple channels by implement-
ing the receivers in the cloud. However, in remote LoRa de-
ployments, a CRAN’s demand for high-backhaul bandwidths
can be challenging to meet. Therefore, bandwidth-aware com-
pression of LoRa samples is needed to reap the benefits of
CRANs. We introduce Cloud-LoRa, the first practical CRAN
for LoRa, that can detect sub-noise LoRa signals and per-
form bandwidth-adaptive compression. To the best of our
knowledge, this is the first demonstration of CRAN for LoRa
operating in real-time. We deploy Cloud-LoRa in an agri-
cultural field over multiple days with USRP as the gateway.
A cellular backhaul hotspot is then used to stream the com-
pressed samples to a Microsoft Azure server. We demonstrate
SNR gains of over 6 dB using joint multi-gateway decoding
and over 2x throughput improvement using state-of-the-art
receivers, enabled by CRAN in real-world deployments.

1 Introduction

LoRa [1] is one of the most popular long-range, low-power
wide area network (LPWAN) technology for IoT applications
such as smart city [2, 3], smart agriculture [4, 5]. Operating in
the license-free ISM band, anyone can independently deploy
a LoRa LPWAN, where IoT devices make use of off-the-
shelf LoRa radios to transmit messages to a gateway. Like
most common wireless systems, a LoRa gateway performs
all physical layer processing such as receiving and decoding
transmissions. Often, gateways relay these decoded packets
to the cloud to enable cloud-based IoT applications.

The last decade has seen the emergence of a new wireless
architecture – a Cloud Radio Access Network (CRAN), where
the gateway continuously streams the raw received digitized
radio signals (I/Q samples) to a virtual gateway in the cloud

over a back-haul link for physical-layer processing (Fig. 1).
CRANs, applied to LoRa, offer three disruptive advantages.
• Joint Multi-Gateway Packet Decoding: Economic viability

of a LoRa deployment is often dictated by its range – a
long range necessitates fewer base-stations thereby reduc-
ing capital and operating costs. Weak signals from multiple
gateways, when combined constructively, boost the signal-
to-noise ratio (SNR) [6, 7], and in turn, extend the range.
These approaches require centralization to jointly process
the raw radio signals from multiple base-stations.

• Rapid Physical-Layer Innovation to Boost Capacity: A
major challenge in dense areas is capacity scaling, as
mushrooming uncoordinated LoRa deployments lead to
increased collisions [8]. Recently, several promising PHY-
layer demodulation techniques [9–16] have shown an order
of magnitude improvement in capacity. CRAN enables their
rapid deployment and A/B testing in the field, as virtual
software receivers can be deployed in the cloud.

• Elastic Scaling to Multiple Channels: As capacity needs
increase, traditional LoRa gateways need to be physically
upgraded to high-end gateways with parallel receiver chains
baked into their ASIC. CRAN gateways capture a wide
spectrum and allow for the potential to dynamically scale
the number of channels in the cloud depending on demand.

While researchers have demonstrated the potential of CRANs
to enable the deployment of new physical layer techniques [6,
17–19], to the best of our knowledge, there is no end-to-end
implementation of a LoRa CRAN till date where gateways
continuously stream radio samples to virtual receivers in the
cloud to be decoded in real-time. The key contribution of
this paper is Cloud-LoRa, the first end-to-end practically-
deployable LoRa CRAN for urban and rural deployments.
We demonstrate that Cloud-LoRa allows for the practical
deployment of real-time joint multi-gateway packet decoding
in the cloud with techniques such as Charm [6] and achieves
an SNR gain of over 6 dB. This gain could translate to a
doubling of the range. We also show that rapid deployment
of novel decoding techniques such as [9, 10, 12] offer a 2X
improvement in throughput as well as scaling to multiple

Fig. 1: An Illustration of CRAN and Cloud-LoRa

channels using per-channel virtual receivers in the cloud.
Cloud-LoRa comprises three key components: i) a CRAN

gateway that can be deployed on software-defined radios
(e.g., USRP and a NUC), ii) ACCIO, an online reinforce-
ment learning-based adaptive compression algorithm, and
iii) a cloud gateway with user-defined receivers. Cloud-LoRa
allows researchers to deploy their own physical layer demod-
ulators as containers at the cloud gateway (Figure 1).
Extreme Back-Haul Bandwidth Gap in a LoRa CRAN
A common challenge to every CRAN is the need to stream
a high volume of raw signals (I/Q samples) to the cloud.
Each 1 MHz of radio spectrum generates a continuous data
stream at 64 Mbps1 to the cloud. However, LoRa LPWANs
are intended for low-cost deployments and often, the only
backhaul available in several rural and remote deployments is
a cellular link offering as low as 500 kbps [20–22]. Therefore,
a viable LoRa CRAN must be capable of streaming samples
even on such low-bandwidth links to the cloud.
Detecting Sub-Noise LoRa signals buried in noise. At such
low backhaul bandwidths, channel activity detection to avoid
streaming noise signals to a cloud server is an integral compo-
nent of a CRAN gateway. A majority of the existing activity
detection methods rely on observing signal strength above a
fixed threshold [23]. Due to its spread-spectrum technology,
LoRa signals are received at sub-zero dB SNR, i.e., they are
buried in noise and hence signal strength-based thresholding
fails. Even recent works, such as SparSDR [24] that uses time-
frequency analysis for activity detection cannot distinguish
sub-noise LoRa from noise in real-time. SparSDR can detect
sub-noise signals at the cost of significantly higher false posi-
tives, a tradeoff that defeats the purpose of activity detection.
In this work, we develop an activity detection approach that
detects sub-noise LoRa signals in real-time across multiple
channels with relatively low false positives.
Adaptive Lossy Compression and Streaming. A key com-
ponent for any CRAN is compressing real-time streaming of
radio samples to the cloud. CRANs typically employ lossless
compression techniques since lossy compression degrades
the quality of the signal and adversely affects its decodability.
Further, it is hard to predict in advance at the gateway how

1Two 32-bits for each complex-valued sample at 1 Msamples/s

much “lossiness” will allow a specific part of the signal to be
decoded, since decodability of the signal depends on several
dynamic factors such as SNR of the received wireless signal,
the specific demodulation being used in the cloud etc.

As we evaluate in Section 5, state-of-the-art lossless com-
pression techniques provide up to 70% compression for LoRa
signals, depending on the SNR. At this compression, a single
500 kHz wide LoRa channel with 10% channel activity will
generate a 960 kbps stream – about twice greater than the
capacity of a rural cellular backhaul link of 500 kbps.

To address this challenge, we propose ACCIO, an online re-
inforcement learning (RL)-based wavelet compression that is
lossy and adaptive, to compress sub-noise LoRa transmissions.
ACCIO receives rewards (feedback) from a cloud receiver for
decoding successfully, and learns to employ the right level
of compression based on the available backhaul bandwidth
and SNR at the gateway. ACCIO uses TCP BBR [25] to reli-
ably deliver the lossy-compressed radio signals to the cloud.
The bandwidth estimates from BBR, signal SNR estimates,
and application buffer levels are then used by ACCIO’s RL
agent to dynamically set the appropriate level of compression.
The motivation behind using RL for adaptive compression is
discussed in detail in Section 3.2.
Open Source, Deployable Implementation. Our implemen-
tation of the Cloud-LoRa gateway performs channelization,
activity detection, and runs ACCIO in real-time. Its cloud
gateway runs on Azure and implements several recent LoRa
demodulators including CIC [12] and Charm [6]. To demon-
strate its practical viability, we deploy and test Cloud-LoRa
in an 8-channel CRAN in two scenarios: 1) a rural outdoor
setting with cellular backhaul, and 2) an urban outdoor set-
ting. We have open-sourced our framework2 with well-defined
APIs to plug-in new physical-layer demodulators, and allow
scalability with the number of channels. We hope that Cloud-
LoRa will encourage and enable future researchers to deploy
and compare novel physical-layer demodulators. The major
contributions of this paper are:
• We present Cloud-LoRa, the first practically-deployable end-

to-end LoRa CRAN solution. Our current implementation
streams and processes signals from up to 8 LoRa channels
in real-time to the cloud. We hope that researchers will be

2 https://github.com/UW-CONNECT/cloud-lora.git

https://github.com/UW-CONNECT/cloud-lora.git

Fig. 2: Components of Cloud-LoRa : CRAN gateway (USRP) performs channelization, followed by activity detection at the
NUC. ACCIO then compresses active periods using the RL agent and streams to the cloud server. The cloud server decodes the
received packets and provides reward feedback to the ACCIO RL agent.

able to use Cloud-LoRa to deploy, test, and compare new
physical layer demodulators in the field.

• We propose a novel LoRa activity detection approach that
detects even sub-noise LoRa signals across multiple chan-
nels in real-time, without demodulating them.

• We propose ACCIO, a reinforcement learning-based adap-
tive compression technique that aims to maximize packet
decodability in the cloud CRAN receiver. ACCIO also com-
presses the active LoRa signals to meet the available back-
haul bandwidth and desired latency requirements.

• We provide an open-sourced implementation of Cloud-
LoRa including CRAN gateway (on USRP), ACCIO, and
several LoRa receivers as Dockerized containers.

• We demonstrate Cloud-LoRa through rural field deploy-
ments and by testing other recently published techniques [6,
12]. We show an SNR gain of over 6dB when signals from
multiple gateways were jointly decoded in the cloud. We
see a 2X boost in network throughput using novel physical-
layer innovations deployed in the cloud. We process up to 8
LoRa channels in real-time, further improving throughput.

We attest that this work complies with the applicable ethical
standards of our home institution.

2 Background and Motivation

LoRa Modulation-DeModulation: LoRa uses Chirp Spread
Spectrum (CSS) modulation, a spread-spectrum technology
that enables LoRa to operate at sub-zero dB SNR due to
its resilience to noise and interference. The spreading factor
(SF), which defines the number of bits per symbol, along with
the RF bandwidth of a LoRa channel (BW) determine the
symbol duration, datarate, energy consumption, and range
of communication. As the SF increases, the range will also
increase, but at the cost of reduced datarate. As SF and BW
are predetermined for a transmitter, a LoRa receiver searches
for preambles of a single SF and BW to detect the start of a
packet. LoRa demodulates by dechirping the received signal,
which enables it to receive sub-noise signals [26].
Variable Backhaul Bandwidths: While access to broadband
connectivity has been expanding, available bandwidths still

vary vastly across the country [22, 27]. FCC 2020 reports on
broadband access determined that potentially over 50% of
rural Americans lack broadband access [20, 28] of 25 Mbps
download/3 Mbps upload speeds. Broadband speeds lower
than 1 Mbps have been identified as a bottleneck for the adop-
tion of precision agriculture [21, 29, 30]. Additionally, signif-
icant variability in data-rates can be expected over wireless
links even in urban areas due to changes in load, environment,
service providers, among other factors [31, 32].
Recent works on CRAN-based LoRa: The benefits of
CRAN-based LoRa have been identified in recent works such
as Charm [6], Nephalai [19], and OPR [7]. Charm and OPR
demonstrate that the range of communication can be improved
by coherently combining signals using CRANs. Nephalai
proposes a static compression technique using compressed
sensing [33] to stream multiple LoRa channels to the cloud
to improve the network throughput. More generally, physical-
layer-agnostic CRAN for IoT has been proposed in works
such as SparSDR [24] and CharIoT [34]. While these existing
works have identified and demonstrated the benefits of CRAN,
dynamic compression that adapts to the signal characteristics
and meets the variable backhaul bandwidths of LoRa gate-
ways remains an open challenge. We propose an RL-based
adaptive compression to address this challenge.

3 Proposed System - Cloud LoRa

Towards a practical, real-time LoRa CRAN, our Cloud-LoRa
framework consists of three components, illustrated in Fig. 2:

1. CRAN gateway : a software defined radio (SDR) gateway
that continuously streams samples from a wideband spec-
trum. The gateway performs channelization to filter LoRa
channels and detects activity in each individual channel.
The activity detection module at the gateway is designed
to detect even sub-noise LoRa signals, and stream only
those signals corresponding to active LoRa transmissions.

2. ACCIO (green blocks in Figure 2) : the active LoRa trans-
missions need further compression. We propose ACCIO,
an online RL-based compression algorithm that adaptively

predicts the compression threshold for each active period.
ACCIO’s goal is to maximize the total packets decoded in
the cloud gateway, while meeting the backhaul-bandwidth
and latency constraints.

3. Cloud Server : we implement standard LoRa as well as
user-defined LoRa receivers in a Microsoft Azure cloud
server as Docker containers. The cloud server reconstructs
the compressed samples, which are then demodulated and
decoded. The number of packets decoded per active period
is sent as reward feedback to ACCIO’s RL agent.

3.1 CRAN Gateway
LoRa transmitters typically have a low duty-cycle to conserve
their battery. As a result, a majority of the samples captured
at a CRAN gateway are noise. Since it is wasteful to transport
noise to the cloud, activity detection is critical in CRAN.
Multi-Channel Filter. The gateway performs channelization
to filter an individual channel from the wideband spectrum
before detecting activity. We first convert each channel to
baseband and then apply a 4th-order IIR Elliptical filter (Fig-
ure. 2) [35]. This light-weight filter both suppresses other
channels by 100 dB and offers a small transition band, ensur-
ing minimal cross-channel leakage and real-time operation.
Sub-Noise LoRa Activity Detection. Activity detection is
typically performed using energy-based approaches such as
carrier sensing, which fail to distinguish low-SNR LoRa sig-
nals from noise [24]. At received SNRs below 0dB, the energy
of LoRa samples becomes comparable to that of noise.

A standard LoRa receiver performs dechirping followed
by Fast Fourier Transform (FFT) to accumulate energy in
a single frequency, in-turn distinguishing noise from LoRa
samples [26, 36]. However, dechirping is specific to a spread-
ing factor (SF). Current multi-channel LoRa gateways have a
dedicated RF front-end for each SF. A naive sub-noise LoRa
activity detection is to dechirp the received samples with each
possible SF (7 through 12), and then perform energy-based
detection. This is computationally intensive and requires 6×
more multiplications than a single demodulator. Therefore, an
SF-agnostic activity detection is desirable for LoRa CRAN.

We propose an SF-agnostic LoRa activity detection algo-
rithm to detect sub-noise LoRa signals at the CRAN gateway.
Our activity detection leverages two properties of LoRa: 1).
Two LoRa signals of different SFs are Pseudo-orthogonal
(more in Appendix.A.1). e.g., dechirping an SF7 signal with
SF8 downchirp would result in pseudo-random noise. 2) For
a given bandwidth, the downchirp of one SF is a time-scaled
function of the downchirp of another SF. Based on these prop-
erties, we design superDC, a custom downchirp, that can
dechirp and hence detect the activity of more than one SF by
superimposing downchirps of multiple SFs.

The CRAN gateway continuously dechirps an array of
samples with the superDC, followed by an FFT. An active
LoRa transmission results in a sharp peak above the noise

Fig. 3: FFT of signal dechirped with superDC

floor in the FFT, triggering activity detection at the gateway.
For instance, a superDC that superimposes SF7, SF8, and SF9
downchirps detects an activity only if the active signals are in
SF7 through SF9. Since an SF9 downchirp is 4× as long as
that of SF7, and 2× as that of SF8, we construct the superDC
by superposing one SF9 downchirp with two consecutive SF8
and four consecutive SF7 downchirps (more in Appendix.A).

Figure 3 shows the FFT of a signal containing SF7 and SF9
chirps, each with 10 dB SNR, dechirped with this superDC.
We observe four SF7 peaks and one SF9 peak since the su-
perDC includes four SF7 and one SF9 downchirps.

The active LoRa signals that can be detected by the
superDC are determined by the superposed downchirps,
which in turn determine the length of the superDC. A su-
perDC to detect all SFs (7 to 12) must accommodate at least
one SF12, two SF11, four SF10, eight SF9, sixteen SF8, and
thirty-two SF7 downchirps. In this case, the FFT peak-gain
(ratio of the maximum peak in an FFT window to its noise
floor 3) of an SF7 symbol is 32 times lesser than that of an
SF12 symbol. Hence, low-SNR SF7 symbols could go un-
detected. On the other hand, using narrower windows would
lead to missing higher SF symbols. To combat this challenge,
we design two superDCs: superDClow to detect symbols with
SF 7 through 9 and superDChigh to detect symbols with SF
10 through 12. The former can be defined in time domain as

superDClow(t) =
3

∑
m=0

C(t −mTSF7, 7)

+
1

∑
m=0

C(t −mTSF8, 8) + C(t, 9), 0 ≤ t ≤ TSF9, (1)

where TSF =
2SF

BW
and C(t, i) is the downchirp of SFi. We can

similarly define superDChigh. By choosing two groups of SF,
we minimize the impact of excessive window sizes, while still
maintaining SF-agnostic detection. The received samples are
dechirped using both superDClow and superDChigh to detect
activity. As we demonstrate in our evaluation, the two groups
of superDC signals can detect all LoRa activity in real-time.

As the SNR of the received samples decreases, the peak-
gain of the received signal dechirped with a superDC signal

3We maintain a running estimate of the noise floor to confer resilience
against temporal variations.

also decreases. This could result in spurious samples trig-
gering activity detection. To reduce such false positives, the
gateway signals activity in the channel whenever a minimum
of 3 consecutive peak-gains, which correspond to 12 symbols
of the smallest SF (i.e., SF7 or SF10), are observed to be
higher than a threshold (average peak gain for noise signal).
We push such an active period’s I/Q samples to the Packet
Queue for compression and transport to the cloud server.

In summary, dechirping received samples using our custom-
designed superDCs (superDClow and superDChigh) provides
the processing gain needed to detect LoRa activity even when
the received signals are much below zero dB SNR. The pro-
posed activity detection is agnostic to the SF of the transmitter,
making it a general-purpose front-end, with only 2× multi-
plications of a single LoRa demodulator, as opposed to the
state-of-the-art gateways that incur 6× multiplications.

3.2 ACCIO : Reinforcement Learning-based
Adaptive Compression

While activity detection reduces the volume of noise samples
streamed, when the network traffic increases, even active pe-
riod samples can be too high for some backhaul bandwidths
to support. Even with perfect activity detection, the required
bandwidths for 64 channels with ≈ 10% channel occupancy
is over 200 Mbps. Nephalai [19], a recent work on LoRa
CRAN, utilizes downsampling and compressive sensing for
compression. But, novel demodulators leverage oversampling
to resolve packet collisions [9, 11–13], and hence compres-
sion without downsampling is necessary. Moreover, LoRa’s
chirp spread-spectrum (CSS) modulation renders dictionary-
based lossless compression methods ineffective. We propose
ACCIO , a light-weight RL-based adaptive compression al-
gorithm that works on top of a Discrete Wavelet Transform
(DWT)-based lossy compression scheme in order to maximize
the number of packets decoded at the cloud server, without
exceeding the backhaul bandwidth and latency constraints.
Lossy Active-Period Compression. We propose to utilize
the Discrete Wavelet Transform (DWT) [37] as our lossy com-
pression scheme for oversampled active LoRa signals. DWT,
being a multi-resolution time-frequency analysis, is a suit-
able compression tool for CSS modulation which uses both
time and frequency for modulation. Each DWT coefficient
represents the energy of the received signal corresponding to
a particular frequency (level) and time (shift). Also, DWT’s
linear complexity (O(N), where N is the length of the signal)
makes it light-weight, allowing it to compress in real-time.
More background on DWT is presented in Appendix B.

We compress active LoRa signals by first applying DWT
to the signals, and then retaining only those DWT coeffi-
cients with magnitude greater than a threshold Cthresh. The
compressed signals can be reconstructed if sufficient energy
is retained in the DWT coefficients. As we increase Cthresh,
we retain fewer coefficients and compress more; but the en-

Policy Network

Network and

Signal
characteristics

(State)

Reward
(feedback from Server)

Sample
action
from

policy

DWT
threshold

Fig. 4: Overview of the RL algorithm of ACCIO

ergy of the signal (coefficients) retained will decrease, leading
to lossy compression. Determining the optimum threshold
that ensures reliable reconstruction of signals at the receiver
(cloud server), while maintaining a compression to match the
network bandwidth is a challenging problem.
Bandwidth-Adaptive Compression. The optimal compres-
sion threshold of DWT coefficients has a non-linear depen-
dence on three factors: i) the SNR of samples at the gateway,
ii) the backhaul network conditions, and iii) the LoRa de-
modulator at the cloud. Current compression approaches are
static [19, 24] and do not adapt to these factors. Therefore,
an adaptive compression that can learn this dependence is
required. While DWT provides an effective way to compress
based on the time-frequency characteristics of the signals,
we still need a method to determine the appropriate amount
of compression based on the backhaul network conditions
(which are usually non-stationary). To address this, we pro-
pose an RL-based (DWT) threshold prediction algorithm that
adaptively selects the level of compression for any given ac-
tive period, with the goal of maximizing the cumulative num-
ber of packets decoded at the cloud server.
Choice of RL.

While supervised learning methods (particularly DNNs)
are effective at modeling non-linear dependencies between the
input and the target, they are designed for an offline scenario
where the data distribution is not changing over time [38].
This makes them less effective when the network traffic and
conditions (e.g., duty cycle, SNR, and the number of channels)
are non-stationary, and also when there is lack of visibility into
demodulator design used at the cloud receiver. Reinforcement
learning is particularly well suited for this scenario since by
design it learns an agent or policy in an unknown, dynamic
environment such that the agent can perform a sequence of
actions with the goal of maximizing its cumulative reward
feedback [39]. In our setting, the agent performs the task of
adaptively selecting the DWT threshold for each active period
(based on various signal and network characteristics), with
the goal of maximizing the total number of packets decoded
at the cloud receiver over a transmission interval. Moreover,
our choice of an online policy gradient-based RL algorithm
does not require pretraining on a large collection of offline
data from the target (or a similar) environment. It can start
learning the compression policy from scratch based on data

(a) Reward for packet decoding (b) Penalty for bandwidth ratio (c) Penalty for latency

Scaled by inverse
true positive rate

Fig. 5: Components of the reward function : (a) udec(s,a), (b) uband(s,a), (c) ulat(s,a).

from the target environment, and still learn a good stable
policy (see § 5.6). Hence, it can be applied to a wide variety
of applications and deployments.

An RL agent at the gateway learns to take sequential ac-
tions based on the current state of the environment such that
its cumulative-discounted rewards received from the environ-
ment over multiple time-episodes is maximized (more back-
ground in Appen. D). Crucial to the success of an RL agent
are the design of the state variables and the reward function.
Based on a careful study and evaluation, we propose suitable
state variables and a reward function that enable the agent
to adaptively predict the (DWT) threshold in order to achieve
high decodability under varying signal and backhaul condi-
tions. A unique challenge to the design of the reward function
in this setting is the lack of perfect ground truth for providing
the reward signal. In a typical RL system, the environment
would have ground truth for providing the reward. This occurs
because some of the transmitted active periods could be false
positives (without actual packets), and it is unknown to the
server whether a received active period is a false positive or
not. We address this in the design of our reward function.

We focus on the Policy Gradient class of RL methods [40,
41], whose goal is to directly learn an optimal policy function
that is parameterized by a neural network. Specifically, we
use the Proximal Policy Optimization (PPO) method with
clipped objective [42] for online training of the RL agent.
PPO is widely adopted as a state-of-the-art online policy-
gradient method due to its better computational and sample
efficiency, and stable policy function updates. We next discuss
the components of our RL algorithm.
Action. The action of the RL agent a corresponds to select-
ing the DWT threshold Cthresh. In principle, the threshold
is continuous-valued. However, we simplify the design by
choosing a discrete set of eight threshold levels. Specifically,
if a ∈ {0,1, · · · ,7} is the action taken, then Cthresh = 5davg a ,
where davg is the average DWT coefficient value over the
current active period. (The factor 5 is chosen to cover a wider
range of thresholds.). Our action space is discrete and the pol-
icy function πθθθ(a |s) will be a conditional probability mass
function that sums to 1 over all the actions.
States. We provide the RL agent with a state vector s that
broadly consists of the network (pipeline) characteristics and
the signal characteristics from the recent active periods. The
state variables based on the network are functions of the

State variable Description

norm_pkt_len (AP size in samples) / (sampling rate); AP - Active period
mag_time (AP magnitude in the time domain) / (noise magnitude)
dcmp_avg Average value of the first-level decomposition DWT coefficients
PG_hist A 4-bin histogram of the peak gain values
BW_obs log(BW_btl / 50,000,000); BW_btl - estimated bottleneck bandwidth
BW_ratio (#bits sent to cloud in the last 10s) /

∫
BW_btl over the last 10s

BW_ratio_5 (#bits sent to cloud over last 5 AP) /
∫

BW_btl over last 5 AP
BW_ratio_10 (#bits sent to cloud over last 10 AP) /

∫
BW_btl over last 5 AP

buffer_size Fraction of the packet queue filled with AP

Table 1: State variables used by ACCIO . The first four states
capture LoRa characteristics and the rest capture the network.∫

BW_btl is computed as a Riemann sum over time period.

estimated bandwidth and the current fraction of the packet
buffer that is filled. The state variables based on the signal
characteristics include the normalized packet length, the ratio
of signal-to-noise magnitude in the time domain, and a his-
togram of the peak-gain values of the active period. The full
list of states with a description is given in Table 1.
Reward Function. A well-designed reward function is a cru-
cial part of the RL design. As discussed earlier, the goal of
ACCIO is to compress the LoRa signals in the active peri-
ods such that it maximizes the number of packets correctly
decoded, while also meeting the bandwidth and latency con-
straints. We design the reward function as a sum of four terms:
i) a positive reward term udec(s,a) that is a weighted count
of the number of packets decoded correctly (Fig. 5 a); ii) a
negative penalty term uband(s,a) that strongly discourages the
bandwidth utilized from getting very close to the available
bandwidth (Fig. 5 b); iii) a negative penalty term ulat(s,a)
that strongly discourages the overall latency (from client-side
processing and network delays) from getting very close to
a preset limit (e.g., 2 seconds) (Fig. 5 c); and iv) a strong
negative penalty uover(s,a) (equal to −10) that prevents the
packet queue from filling up close to its limit (dictated by the
hardware). The last penalty term uover(s,a) is applied preemp-
tively at the client side whenever an action of the RL agent
could potentially lead to a transmission that will cause buffer
overflow and/or exceed the acceptable transmission time. The
overall reward function is given by,

r(s,a) = udec(s,a) − uband(s,a) − ulat(s,a) − uover(s,a),

The reward terms are discussed formally in Appen. C. De-
tails of our PPO implementation is given in Sec. 4, and more
background on the PPO algorithm is given in Appen. D.
False Positives & Reward Feedback. The cloud server does

not know the ground truth about LoRa packets, i.e., a trans-
mitted active period could just be noise (false positive). More-
over, in a low-duty-cycle network, the cloud receiver may
decode only a small number of packets relative to the total
number of active periods. Therefore, the RL agent could learn
to compress more since there is a higher chance of incurring
penalties from overshooting BW and/or latency limits, while
the positive rewards for decoding the occasional packets are
small. This could drastically increase the overall learning time
necessary for the RL to reach an optimal policy. To address
this, in the reward term udec(s,a), we weight the number of
packets decoded by the inverse of the true positive rate, which
is estimated as the fraction of LoRa packets decoded correctly
over the last 100 detected active periods.

3.3 CRAN Cloud Server
The active LoRa signals compressed using ACCIO are
streamed to the cloud server using a reliable TCP connec-
tion. Each compressed active period is packetized with meta-
data such as gateway ID, time-stamp at the gateway, length
of the active period, sampling rate, channel number, number
of DWT levels, among others. The cloud server in our archi-
tecture receives the packet, reads the metadata, and performs
inverse DWT to reconstruct the signal. It is then input to user-
defined LoRa receivers, implemented as Docker containers in
the cloud. We separate the LoRa demodulator and decoder so
that a custom LoRa demodulator can be deployed by simply
updating the demodulator, while retaining the rest of the cloud
implementation. The number of decoded packets is sent back
to the CRAN gateway as a reward (component) to ACCIO ,
which then uses the reward to update its RL policy.

Two key objectives of our cloud-server design are i) scal-
ability and ii) ease of deployment of user-defined LoRa re-
ceivers. To address scalability, we deploy parallel Docker
containers per consumer. As the network scales, the cloud
server increases the number of consumers to keep up. To
facilitate user-defined LoRa receivers, we include a multi-
plexer that receives compressed signals and routes them to
consumer containers based on their metadata. The link be-
tween the multiplexer and the consumers is simply a set of
sockets, where each consumer listens on a unique port. The
consumer is unaware of the compression and reconstruction.
A configuration file maintains the global mappings of the
(base-station, channel) pairs to ports. Note that users can map
multiple base stations to the same ports to easily apply coher-
ent combining such as Charm [6] atop our implementation.
Each Cloud-LoRa packet contains time-stamps for coarse
time synchronization between the base stations.

4 Implementation

We describe in detail our end-to-end implementation of the
three components of Cloud-LoRa : 1) SDR as CRAN gateway

2) ACCIO , the RL-based compression, 3) the cloud server.
CRAN Gateway - Activity Detection. We use a USRP
B200 [43] as the CRAN gateway to capture a 2 MHz spec-
trum that includes 8 LoRa channels (125 kHz bandwidth and
75 kHz guard band, as per LoRaWAN specs). Channelization
is performed using eight parallel 4th-order elliptical low-pass
filters. Each filtered channel is input to the activity detection
module implemented using Python. We use superDClow and
superDChigh to detect active periods of SF7 to SF9 and SF10
to SF12 respectively. We advance the superDC windows ev-
ery 1/3-rd of the lengths of respective window samples, to
ensure alignment with higher SFs.
CRAN Gateway - ACCIO The adaptive compression of
ACCIO is implemented on a client laptop. On detecting ac-
tive periods in each channel, the corresponding I/Q samples
are pushed to the Application Packet Queue. The RL agent
pops the oldest active period and extracts the state variables
from the current network and the active period’s coefficients.
Table 1 lists the state variables used by the RL agent.

The RL agent was trained using the PPO algorithm [42],
whose implementation is provided in the Keras and Tensor-
Flow libraries [44]. Both the policy function and the value (or
advantage) function in our PPO-based agent are realized using
a fully-connected neural network with two hidden layers of
sizes 48 and 32 respectively. This small network enables light-
weight training and action determination, while maintaining
sufficient complexity for complex approximations. The out-
put layer of the policy network uses the Softmax activation
to return probabilities over the set of actions. We set the dis-
count factor of the cumulative rewards to γ = 0.9. We use
the variant of PPO with a clipped objective, and set the clip
ratio ε to 0.2. Optimization is based on the stochastic gradient
descent method Adam [45], whose learning rate for the policy
network and value-estimation network are set respectively
to 0.00025 and 0.009. The episode length was defined as 50
active periods, i.e., the agent performs online training, and
after every 50 active periods, rewards are returned from the
server. To maintain strict reward ordering, each active period
(once popped from the application packet queue) is given an
ID counter. The active period statistics are then cached and
re-ordered after the decoding information is returned. As our
implementation is run online, this re-ordering and training
process runs in a background daemon.

The RL agent chooses an action that determines the com-
pression threshold Cthresh, and DWT coefficients with mag-
nitude < Cthresh are set to zero. We further compress the
DWT coefficients using Lz4 (preferred over Gzip due to its
faster compression). The compressed coefficients are packe-
tized with metadata and sent through TCP to the cloud server.
Packet metadata includes the SDR gateway’s ID, the active
period’s ID, the channel it was received on, sampling rate,
time the active period was received at the client, as well as
other useful information such as the data-section size and its

(a) (b)
Fig. 6: (a) RURAL : Outdoor rural deployment where LoRa Tx (yellow circles) transmit to a USRP B200 (red triangle), which is

then connected to a client running ACCIO that streams to Azure server through cellular hotspot in real-time.
(b) URBAN : LoRa Tx transmit to a USRP which stores the received samples in a local file.

DWT level sizes (needed for Inverse DWT).
We utilize BBR as the TCP variant; it provides the esti-

mated network bandwidth to the client. We use the socket
statistics tool to obtain the bottleneck bandwidth, delivery
rate estimated by BBR, and the link’s average round-trip time.
The bottleneck bandwidth is a key state used by the RL agent
to determine a compression threshold.
LoRa receiver at the Cloud Server. The cloud server is im-
plemented in Microsoft Azure as Docker Containers [46],
demodulating packets and sending rewards back in real-
time(Cloud-LoRa is amenable to deployment on other cloud
providers as well.) Our server utilized 8 Docker containers,
each reading on unique ports corresponding to each LoRa
channel. The Docker containers were booted using Docker
Compose [47] and each container was running on an Azure
VM. The first module of the cloud server is a multiplexer that
decompresses the received samples: it first performs the in-
verse of Lz4, reads the metadata, and then decompresses using
Inverse DWT. Using the metadata, the multiplexer routes the
decompressed DWT coefficients to the corresponding user-
defined consumer (demodulator). In other words, the multi-
plexer is responsible for reconstructing the active periods and
placing them in the queue of the appropriate consumer based
on the metadata of the received TCP packets. The consumers
are Docker containers that take the reconstructed active period
samples as input, and run the user-defined LoRa demodulator
algorithm that outputs symbols, followed by the LoRa de-
coder that outputs bits. The number of packets decoded per
active period, weighted by the inverse-true-positive-rate is
used by the RL agent as a reward component in the feedback
channel back to the corresponding CRAN gateway.

5 Evaluation

We have deployed the first LoRa CRAN operating in real-
time, in two practical outdoor deployments/scenarios. In RU-
RAL(Fig 6(a)), we deployed eight LoRa transmitters in an
agricultural farm. Here, we use a cellular backhaul, whose
bandwidth varies with time; the backhaul bandwidth is the
bottleneck in the network. We show the real-time operation
of Cloud-LoRa in this scenario averaged across multiple days.

URBAN(Fig 6(b)) shows an urban deployment where the
backhaul does not pose a limitation in bandwidth. We leverage
this scenario to perform controlled experiments, evaluate the
micro-benchmarks and perform an ablation study. Towards
evaluating Cloud-LoRa , we answer the following questions.

1. How well does Cloud-LoRa perform in rural settings with
impoverished cellular backhaul?

2. Can Cloud-LoRa enable real-time joint decoding of LoRa
packets from multiple gateways in the cloud to improve
coverage or capacity?

3. Can Cloud-LoRa enable rapid deployment of recently de-
veloped state-of-the-art LoRa demodulators?

4. Can Cloud-LoRa scale elastically to provision for network
capacity by increasing the number of channels?

5. How does ACCIO adapt in real-time to changing backhaul
bandwidth, network latency, and channel quality?

6. How does ACCIO’s adaptive compression respond to vary-
ing backhaul network latency, and how well does it adapt
to bandwidth variations?

5.1 Real-world Deployment Settings
We describe our rural and urban deployments in detail below.
RURAL : Rural deployment scenario. As shown in
Fig. 6(a), our deployment includes 8 LoRa transmitters (yel-
low circles) that broadcast data from humidity sensors to
a CRAN gateway (red triangle). Each transmitter operates
in a dedicated 125 kHz BW LoRa channel and chooses a
random SF and packet length to emulate rate adaptation in
LoRaWAN networks while actively transmits 10% of the time.
Our CRAN gateway receives over 902.2 MHz to 904.2 MHz
and receives samples over 8 different LoRa channels one for
each transmitter. It uses a Netgear cellular mobile hotspot
as backhaul to a CRAN cloud server in Microsoft Azure
(Fig. 6(a)). The backhaul bandwidths achieved by the cellu-
lar hotspot varied over a wide range: 1 Mbps to 15 Mbps at
different locations and times. As shown in Fig. 6(a), Cloud-
LoRa streams samples to the cloud server in real-time, using
ACCIO to learn and adapt to the varying available bandwidth.
The transmitters were left in the field over 2 days with a total
of ≈470000 packets transmitted. The CRAN gateway did not

Fig. 7: (a) : Cloud-LoRa throughput performance across 8 parallel LoRa channels, averaged over multiple days in RURAL
scenario. (b) Corresponding compression performance. (c) Ablation study on Compression.

have any pre-trained model for ACCIO to use; instead, the
RL agent learned from scratch and adapted in real-time.
URBAN: Urban deployment used for Ablation Study. We
deploy 9 off-the-shelf LoRa transmitters, each operating in a
different channel in an urban, outdoor setting (Figure 6(b)).
The transmitters were deployed over an area of 2.5 km x 1 km.
The CRAN gateway receives the samples from all the trans-
mitter over a wide bandwidth and stores them locally with
time stamps to enable replay. The stored samples are then
replayed in real-time to the cloud server to emulate real-time
streaming. We connect the USRP to the cloud server via a
router. This activity is to ensure consistency across multiple
microbenchmark experiments that run with different param-
eters. This setup allows us to simulate different backhaul
bandwidths and latencies to the cloud by using Linux Traffic
Control (TC) [48] at the router, a tool for shaping traffic. We
perform controlled, comparative, and ablation studies using
this deployment by varying various factors such as backhaul
bandwidths(Sec. 5.6), LoRa channel quality(Sec. 5.7), net-
work load(Sec. 5.5), backhaul latency(Sec. 5.7), and others.
Backhaul Compression Baselines compared. We imple-
ment and compare the compression and throughput perfor-
mance of Cloud-LoRa against five baselines: 1) Standard
LoRa – a LoRa gateway that demodulates each packet at the
gateway i.e., without CRAN; 2) CRAN with No compres-
sion; 3) Nephalai [19], which proposes a compressed-sensing-
based static compression; 4) SparSDR [24] – a sparsity-aware
compression which is agnostic to the PHY-layer technology;
and 5) Rate-limiting Oracle. This oracle provides a theoreti-
cal upper bound on the throughput and compression perfor-
mance. We assume that the oracle has a global view of the
incoming traffic and bottleneck bandwidth, is not limited by
computational resources, performs perfect activity detection
with zero false positives and, is able to compress the active
periods exactly to meet the available bandwidth.

5.2 Performance in a Rural, Bandwidth-
Constrained Deployment

In RURAL we repeated the deployment over three separate
8hr sessions. In each session, the cellular hotspot was placed at

roughly the same location (within a 2m radius). Despite using
roughly the same location for the hotspot, we found signifi-
cant variation in the backhaul bandwidth ranges in these three
sessions. Arranging the sessions in increasing average back-
haul bandwidth, the ranges were 1.7-2.7Mbps, 5-6Mbps and
10-16Mbps. The distribution of the received SNR collected
over all 24hrs from all the transmitters (≈470000 packets)
are shown in Fig. 8. As seen from Fig. 8, there is a wide vari-
ation in received SNRs at the gateway from -15dB to 30dB.
ACCIO continuously learns and adapts its compression to
meet the available cellular backhaul bandwidths (Fig. 6(a))
and simultaneously streams 8 channels. We plot the average
LoRa throughput over all 8 channels (bits/second) achieved
by Cloud-LoRa in Fig. 7(a) for the three different sessions.
We also compare the achieved average network throughput of
Cloud-LoRa with Nephalai, SparSDR, and Rate-limiting Ora-
cle. The maximum achievable throughput with compression
is upper bounded by the rate-limiting oracle. We observe that
the throughput of Cloud-LoRa approaches that of the oracle
at higher backhaul bandwidths of 10-16 Mbps, while achiev-
ing ≈ 96% of that of the Oracle even at 2Mbps backhaul
badwidths. Further, Cloud-LoRa is able to use its adaptive
compression effectively and significantly outperforms other
LoRa compression solutions such as Nephalai by 7x and 6.2x,
and SparSDR by 2.3x and 1.9x (on average).

In Fig. 7(b), we plot the compression score, defined as (#
samples streamed to the cloud) / (# samples captured by
the CRAN gateway), for the same backhaul bandwidths. We
observe that Cloud-LoRa has a higher compression score of
98.4% at 1.7 to 2.7 Mbps, while a lower compression of 94%
at 10 to 16 Mbps, i.e., it compresses more at low backhaul
bandwidths. On the other hand, Nephalai and SparSDR adopt
static compression and hence face packet losses when the
compression does not meet the backhaul bandwidth. The
most appropriate compression necessary using CRAN is that
of the Oracle, as it has a global view; Cloud-LoRa is within
98.5% of the oracle’s comrpession score on average.

Two key reasons for the improved throughput performance
of Cloud-LoRa over existing approaches are i) sub-noise activ-
ity detection and ii) adaptive compression. The contribution
of each of these modules to the overall compression is shown
in Fig. 7(c). On average, the activity detection achieves a

Fig. 8: Distribution of the received SNR
at the Gateway in RURAL

Fig. 9: SNR Gains from Joint
Multi-Gateway Packet Decoding

Fig. 10: Throughput Improvements due
to Rapid Deployment of state-of-the-art

compression score of 63% in our setting by distinguishing
active LoRa transmission from noise samples. The remaining
compression is achieved by ACCIO , which varies the com-
pression threshold of the active period to meet the backhaul
bandwidth. While the compression score achieved by the ac-
tivity detection block does not change with backhaul or LoRa
signal characteristics, that of ACCIO changes with backhaul
bandwidth, as evident in Fig. 7(c).

5.3 Joint Multi-Gateway Packet Decoding
Cloud-LoRa offers centralization, which is key to jointly pro-
cess raw radio signals across multiple gateways such that the
SNR of weak LoRa links could be enhanced through coherent
combining with relatively stronger links. In this section, we
deploy Charm [6] using Cloud-LoRa using 3 Cloud-LoRa
gateways deployed on the floor of a large building spanning
over 100m × 50m along with a LoRa transmitter transmitting
packets. On detecting activity, the gateways would attach a
time stamp, gateway ID and relay the samples to the cloud.
In the cloud, we deploy Charm which coherently combines
samples from the 3 gateways based on time stamps and pack-
et/gateway IDs and decodes 100% packets. In Fig. 9, we plot
the CDF of packet SNR received across 3 USRP gateways
streaming samples. Jointly decoded packets achieve a mean
SNR of 16dB, a 6dB improvement from even the stronger
links, i.e. Gateways 1 and 3. This SNR boost almost doubles
the coverage area. At each gateway, ACCIO achieves 93%
compression. We also plot the network throughput achieved
by joint decoding when each gateway faces varying backhaul
bandwidths. These results are in Appendix E.

5.4 Rapid Deployment of state-of-the-art
Another key advantage of LoRa CRAN is the rapid deploy-
ment of novel PHY techniques to practice. In this section, we
evaluate a state-of-the-art LoRa receiver in the cloud server,
i.e. Concurrent Interference Cancellation (CIC) [12] pub-
lished as recently as 2021 using Cloud-LoRa . CIC improves
LoRa network throughput by decoding multi-packet colli-
sions. In Fig. 10, we plot the network throughput with CIC
as the demodulator in the cloud and compare it against Std.

LoRa in the cloud. We increase the number of concurrent
nodes (same SF and BW) in a single channel in the x-axis
and stream the samples to the cloud, where CIC is used as
the demodulator. Cloud-LoRa was capable of transporting the
samples in real-time for CIC to demodulate. Hence, the net-
work throughput shows an improvement of 1.9x over standard
LoRa when 7 nodes are colliding. The throughput begins to
drop beyond 7, the maximum collisions CIC can resolve.

5.5 Elastic Scaling to Multiple Channels
Cloud-LoRa allows for scaling to provision for higher ca-

pacity by increasing the number of channels from single to
multiple channels without any hardware change. However, as
the number of channels increases, the volume of samples in-
creases. With limited backhaul bandwidths, such an increase
in samples demands higher compression. In this section, we
answer the question of how well ACCIO adapts to an increas-
ing number of channels for a given bottleneck bandwidth. We
plot the number of packets decoded in the cloud at 10 Mbps
bottleneck bandwidth for increasing number of channels in
Fig. 11. When only one channel has active LoRa signals,
a 10Mbps backhaul can support low compression. As the
number of active channels increases, the load and hence the
number of samples increases. At 10 Mbps bandwidth, a static
compression of 50% for Nephalai is best suited for up to 2
channels since packet losses due to compression would be the
bottleneck in this case. With 4 or more channels, Nephalai-75
is better suited since packet losses due to network congestion
would dominate. ACCIO on the other hand adapts its com-
pression to meet the bandwidth, despite the increase in traffic
load. Cloud-LoRa ’s network throughput increases linearly
by an order of magnitude as the number of channels increases
from 1 to 8. Cloud-LoRa decodes about 2X and 4X more
packets than Nephalai-75 and Nephalai-50 respectively for 4
channels, and 12X and 20X for 8 channels.

5.6 Varying Backhaul Conditions
Bandwidth-Aware ACCIO In the practical deployment, we
have witnessed the adaptation of Cloud-LoRa ’s compression
performance to different backhaul conditions. However, due

Fig. 11: Elastic Scaling to Multiple
Channels - Throughput Vs # of channels

Fig. 12: ACCIO Adaption to Varying
Backhaul Bandwidths

Fig. 13: ACCIO Adaption to Varying
Backhaul Latency

(a) (b) (c)
Fig. 14: ACCIO adaptation to varying LoRa Channel Quality

(a) Low SNR (-20 to -5 dB) (b) Medium SNR (-5 to 10 dB) (c) High SNR (10 to 25 dB) LoRa signals.

to the uncontrolled cellular backhaul, it is challenging to ob-
serve its time to learn and adapt. In this section, we study the
adaptation of Cloud-LoRa to varying backhaul bandwidths
in a controlled setting. Using the I/Q samples collected and
stored at the CRAN gateway in the outdoor RURAL, we re-
play the real-time streaming of samples to a cloud server
i.e., the gateway streams samples stored in a file to the cloud
server, where the samples are decoded, which are then used
as rewards by ACCIO at the gateway. During this replay, we
control the backhaul bandwidths using Linux-TC. We vary
the backhaul bandwidths every 0.5 hours, as shown by the
dotted orange line in Fig. 12, from 5 Mbps down to 1 Mbps,
and back to 5 Mbps, and then 1 Mbps in steps of 2 Mbps
every 0.5 hours. During the first ramp down, LoRa through-
put drops and then ramps up every time backhaul bandwidth
changes. This is because, in the first 1.5 hours, the ACCIO
module at the gateway is untrained i.e., it has not faced the
new backhaul conditions before, and hence takes time to learn
a new policy at the gateway. Once it learns the policy, the
throughput flattens. This is evident from the dip in throughput
(blue curve) at 0, 0.5, and 1 hour mark in Fig. 12. The RL
agent takes approximately 10 minutes to learn a new policy
when it faces a new backhaul bandwidth. After the 1.5 hour
mark, when the backhaul bandwidth ramps up to 5 Mbps,
LoRa throughput approaches the steady state quickly at 1.5,
2, 2.3, and 3 hour marks as the RL agent has learned a policy
for these backhaul bandwidths in the first 1.5 hours. The adap-
tation time of Cloud-LoRa to varying backhaul conditions
therefore depends on the historical data.

Latency-Aware ACCIO Figure 13 plots the queueing delay
at the SDR gateway for three networks with different network
latencies. In each of these networks, the application latency
requirement is designed to be 2 seconds. Therefore, the RL
agent learns to drop packets at the client and/or compress
more when the network latency is high such that the overall
latency is below 2 seconds. In the case of networks with low
latency, the RL agent tolerates more queueing delay at the
client, allowing it to send more packets.

5.7 Varying LoRa Channel Quality
Compression depends on the SNR of the LoRa samples at

CRAN gateway. We evaluate the throughput and compres-
sion performance of ACCIO as a function of SNR at different
backhaul bandwidths in Figure 14. The corresponding com-
pression performance are presented in Appen. E. Figure 14
(a), (b), (c) correspond to SNR : low (-20 to -5 dB), medium
(-5 to 10 dB), and high (10 to 25 dB) respectively. At SNR <
0 dB, Nephalai decodes less than 5% of the packets even at
50% compression (Nephalai-50). This is due to its inability
to differentiate between noise and active LoRa signal. Cloud-
LoRa improves network throughput by over 20X compared to
Nephalai at low backhaul bandwidths. Cloud-LoRa’s through-
put performance is limited by the false positive rate of the
activity detection, which results in a higher volume of active
LoRa samples to be transported. At a backhaul bandwidth of 1
Mbps, the RL agent chooses compression scores of over 99%
to meet the backhaul constraints (see Fig. 19 in Appendix),

Fig. 15: Activity detection performance

resulting in poor reconstruction in the cloud. As the backhaul
bandwidth increases, the achievable throughput improves to
over 70% of that of a standard gateway. The network through-
put of Cloud-LoRa for Medium SNR signals (green bars in
Fig. 14(b)) is about 90% at 1 Mbps backhaul with a compres-
sion score of approximately 91%. Nephalai fails to decode
more than 10% at 1 Mbps; this can be attributed to the lack
of activity detection in Nephalai which leads to redundant
samples taking up available bandwidth.

Lossless compression such as Lz4-0 and Gzip9 offers bet-
ter decodability than ACCIO at bandwidths >= 5Mbps. As
the bandwidth decreases, Lz4-0 faces over 50% packet loss
due to network losses, similar to Nephalai-50. While Gzip9
achieves 75% compression and has lower packet loss even at
low bandwidths, it is too slow to use for real time compression.
Even at a backhaul bandwidth of over 5 Mbps, Nephalai-50%
compression decodes only about 50% of the packets, while
Cloud-LoRa decodes more than 95% of the packets with an
impressive compression of over 91%. For high SNRs ACCIO
transports over 95% of packets (Fig. 14(c)) to the cloud with
an average compression score of 98%.

5.8 Activity Detection of Cloud-LoRa
We evaluate the tradeoff between the sensitivity to low SNR
and false positive rate in detecting active LoRa packets of our
proposed activity detection algorithm. The proposed multi-
channel, sub-noise LoRa activity detection is agnostic to the
transmitters’ SF. Therefore, the sensitivity of the module de-
termines the minimum SNR that can be detected. We plot the
percentage of true active periods and false positives as a func-
tion of SNR in Figure 15. The two y-axes presented are true
positives, the percentage of active periods correctly detected,
normalized to that of a standard LoRa gateway (blue bars),
and the percentage of active periods that were detected but did
not contain a packet (false positives), normalized to the total
samples received (red bars). Each bar represents a different
sensitivity used by the activity detection module. A higher
sensitivity results in detecting more packets even at lower
SNRs at the cost of higher false positives. As SNR increases,
the true positive does not vary with the threshold, as the sig-
nal energy is high. However, false positives increase with

increased sensitivity, even at high SNR. Therefore, the right
choice of the threshold is particularly critical in detecting the
most active period at low SNRs, without trading off too many
false positives. Cloud-LoRa settings that detect over 80% of
the packets (Cloud-LoRa -2.25x) only result in 40% false pos-
itives, which is further compressed by RL. We observe that,
combined with the RL compression, the volume of non-active
samples transported to the cloud by Cloud-LoRa is minimal.
In contrast, SparSDR incurs more than 90% overheads to
accommodate near-zero dB SNR.

6 Discussions and Future Work

To the best of our knowledge, Cloud-LoRa is the first end-
to-end practically deployable LoRa CRAN. There are plenty
of promising future research directions emerging from this
framework. In Cloud-LoRa , we spawn a new process for
each channel and stream upto 9 channels in real-time. We can
scale to the maximum 64 channels using a NUC with more
cores, and a more efficient software implementation. Beyond
standard LoRa, recent research such as CurvingLoRa [49] and
Falcon [16] that changes the transmitter requires further study
to understand the impact of compression on packet decod-
ability. Further research is needed to incorporate performance
guarantees such as throughput fairness across channels.

7 Conclusions

We proposed, designed, and implemented Cloud-LoRa , the
first practical CRAN for LoRa networks. Cloud-LoRa streams
LoRa signals to a cloud server that performs baseband signal
processing, in turn providing opportunities for dynamic net-
work scaling and rapid deployment of novel LoRa receivers in
the cloud. Towards realizing this end-to-end framework, we
developed an activity detection algorithm that can detect sub-
noise active LoRa signals and reduce signals being streamed
to the cloud. We also developed ACCIO, an RL-based adap-
tive compression technique, whose compression threshold
adapts to variations in backhaul bandwidth, latency require-
ments, and input-signal characteristics at the gateway in real-
time. We implement and deploy Cloud-LoRa as a Docker
container in an Azure server, and experimentally show the
feasibility of CRAN for real-world LoRa deployments.

8 Acknowledgements

We would like to thank our shepherd Kate Lin and the anony-
mous reviewers for the valuable comments and for helping
us improve the paper. The authors are partially supported
through the following NSF grants : CCSS-2034415, CNS-
2142978, 2213688, 1838733, 2112562, 1719336, 1647152,
1629833, 2107060, 2212688, and 2003129 and the US De-
partment of Commerce award 70NANB21H043.

References

[1] LoRa. https://www.semtech.com/lora.

[2] E. Asimakopoulou and N. Bessis. Buildings and crowds:
Forming smart cities for more effective disaster man-
agement. In 2011 Fifth International Conference on
Innovative Mobile and Internet Services in Ubiquitous
Computing, pages 229–234, 2011.

[3] María V Moreno, Miguel A Zamora, and Antonio F
Skarmeta. User-centric smart buildings for energy sus-
tainable smart cities. Transactions on emerging telecom-
munications technologies, 25(1):41–55, 2014.

[4] Achim Walter, Robert Finger, Robert Huber, and Nina
Buchmann. Opinion: Smart farming is key to developing
sustainable agriculture. Proceedings of the National
Academy of Sciences, 114(24):6148–6150, 2017.

[5] Climate Smart Agriculture. https://www.worldbank.
org/en/topic/climate-smart-agriculture.

[6] Adwait Dongare, Revathy Narayanan, Akshay Gadre,
Anh Luong, Artur Balanuta, Swarun Kumar, Bob Ian-
nucci, and Anthony Rowe. Charm: exploiting geograph-
ical diversity through coherent combining in low-power
wide-area networks. In 2018 17th ACM/IEEE Interna-
tional Conference on Information Processing in Sensor
Networks (IPSN), pages 60–71. IEEE, 2018.

[7] Artur Balanuta, Nuno Pereira, Swarun Kumar, and An-
thony Rowe. A cloud-optimized link layer for low-
power wide-area networks. In Proceedings of the 18th
International Conference on Mobile Systems, Applica-
tions, and Services, pages 247–259, 2020.

[8] Branden Ghena, Joshua Adkins, Longfei Shangguan,
Kyle Jamieson, Philip Levis, and Prabal Dutta. Chal-
lenge: Unlicensed lpwans are not yet the path to ubiqui-
tous connectivity. In The 25th Annual International Con-
ference on Mobile Computing and Networking, pages
1–12, 2019.

[9] Xianjin Xia, Yuanqing Zheng, and Tao Gu. Ftrack: Par-
allel decoding for lora transmissions. In Proceedings of
the 17th Conference on Embedded Networked Sensor
Systems, pages 192–204, 2019.

[10] Shuai Tong, Jiliang Wang, and Yunhao Liu. Combating
packet collisions using non-stationary signal scaling in
lpwans. In Proceedings of the 18th International Con-
ference on Mobile Systems, Applications, and Services,
pages 234–246, 2020.

[11] Rashad Eletreby, Diana Zhang, Swarun Kumar, and Os-
man Yağan. Empowering low-power wide area networks
in urban settings. In Proceedings of the Conference of

the ACM Special Interest Group on Data Communica-
tion, pages 309–321, 2017.

[12] Muhammad Osama Shahid, Millan Philipose, Krishna
Chintalapudi, Suman Banerjee, and Bhuvana Krish-
naswamy. Concurrent interference cancellation: decod-
ing multi-packet collisions in lora. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference, pages 503–
515, 2021.

[13] Chenning Li, Hanqing Guo, Shuai Tong, Xiao Zeng,
Zhichao Cao, Mi Zhang, Qiben Yan, Li Xiao, Jiliang
Wang, and Yunhao Liu. Nelora: Towards ultra-low snr
lora communication with neural-enhanced demodula-
tion. In Proceedings of the 19th ACM Conference on Em-
bedded Networked Sensor Systems, pages 56–68, 2021.

[14] Qian Chen and Jiliang Wang. Aligntrack: Push the
limit of lora collision decoding. In 2021 IEEE 29th
International Conference on Network Protocols (ICNP),
pages 1–11. IEEE, 2021.

[15] Zhenqiang Xu, Pengjin Xie, and Jiliang Wang. Pyramid:
Real-time lora collision decoding with peak tracking. In
IEEE INFOCOM 2021-IEEE Conference on Computer
Communications, pages 1–9. IEEE, 2021.

[16] Shuai Tong, Zilin Shen, Yunhao Liu, and Jiliang Wang.
Combating link dynamics for reliable lora connection
in urban settings. In Proceedings of the 27th Annual
International Conference on Mobile Computing and
Networking, pages 642–655, 2021.

[17] Christophe Delacourt, Patrick Savelli, and Vincent
Savaux. A cloud ran architecture for lora. In Radio
Science Letters, 2020.

[18] Eryk Schiller, Silas Weber, and Burkhard Stiller. De-
sign and evaluation of an sdr-based lora cloud radio
access network. In 2020 16th International Conference
on Wireless and Mobile Computing, Networking and
Communications (WiMob), pages 1–7. IEEE, 2020.

[19] Jun Liu, Weitao Xu, Sanjay Jha, and Wen Hu. Nephalai:
towards lpwan c-ran with physical layer compression.
In Proceedings of the 26th Annual International Con-
ference on Mobile Computing and Networking, pages
1–12, 2020.

[20] FCC Report on Broadband Aceess. https:
//www.fcc.gov/reports-research/
reports/broadband-progress-reports/
2020-broadband-deployment-report.

[21] Tyler B Mark, Terry W Griffin, and Brian E Whitacre.
The role of wireless broadband connectivity on ‘big
data’and the agricultural industry in the united states
and australia. International Food and Agribusiness Man-
agement Review, 19(1030-2016-83150):43–56, 2016.

https://www.semtech.com/lora
https://www.worldbank.org/en/topic/climate-smart-agriculture
https://www.worldbank.org/en/topic/climate-smart-agriculture
https://www.fcc.gov/reports-research/reports/broadband-progress-reports/2020-broadband-deployment-report
https://www.fcc.gov/reports-research/reports/broadband-progress-reports/2020-broadband-deployment-report
https://www.fcc.gov/reports-research/reports/broadband-progress-reports/2020-broadband-deployment-report
https://www.fcc.gov/reports-research/reports/broadband-progress-reports/2020-broadband-deployment-report

[22] FCC Working Paper on Digital Divide . https://www.
fcc.gov/reports-research/working-papers/
digital-divide-us-mobile-technology-and-speeds.

[23] Amalinda Gamage, Jansen Christian Liando, Chaojie
Gu, Rui Tan, and Mo Li. Lmac: Efficient carrier-sense
multiple access for lora. In Proceedings of the 26th
Annual International Conference on Mobile Computing
and Networking, pages 1–13, 2020.

[24] Moein Khazraee, Yeswanth Guddeti, Sam Crow, Alex C
Snoeren, Kirill Levchenko, Dinesh Bharadia, and Aaron
Schulman. Sparsdr: Sparsity-proportional backhaul and
compute for sdrs. In Proceedings of the 17th Annual In-
ternational Conference on Mobile Systems, Applications,
and Services, pages 391–403, 2019.

[25] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. BBR:
Congestion-based congestion control. ACM Queue, 14,
September-October:20 – 53, 2016.

[26] LoRa and LoRaWAN. https://
lora-developers.semtech.com/documentation/
tech-papers-and-guides/lora-and-lorawan//.

[27] James E Prieger. The broadband digital divide and the
economic benefits of mobile broadband for rural areas.
Telecommunications Policy, 37(6-7):483–502, 2013.

[28] Christopher Ali. The politics of good enough: Rural
broadband and policy failure in the united states. Inter-
national Journal of Communication, 14:23, 2020.

[29] John Lai and Nicole O Widmar. Revisiting the digital di-
vide in the covid-19 era. Applied economic perspectives
and policy, 43(1):458–464, 2021.

[30] FCC Task Force. www.fcc.gov/
task-force-reviewing-connectivity-and-technology-needs-precision-agriculture-united-states.

[31] Muhammad Iqbal Rochman, Vanlin Sathya, Norlen
Nunez, Damian Fernandez, Monisha Ghosh, Ahmed S
Ibrahim, and William Payne. A comparison study of cel-
lular deployments in chicago and miami using apps on
smartphones. In Proceedings of the 15th ACM Workshop
on Wireless Network Testbeds, Experimental evaluation
& CHaracterization, pages 61–68, 2022.

[32] Yuanjie Li, Chunyi Peng, Zhehui Zhang, Zhaowei Tan,
Haotian Deng, Jinghao Zhao, Qianru Li, Yunqi Guo, Kai
Ling, Boyan Ding, et al. Experience: a five-year retro-
spective of mobileinsight. In Proceedings of the 27th
Annual International Conference on Mobile Computing
and Networking, pages 28–41, 2021.

[33] David L Donoho. Compressed sensing. IEEE Transac-
tions on Information Theory, 52(4):1289–1306, 2006.

[34] Revathy Narayanan, Swarun Kumar, and Siva Ram
Murthy. Cross technology distributed mimo for low
power iot. IEEE Transactions on Mobile Computing,
2020.

[35] Alan V. Oppenheim and Ronald W. Schafer. Discrete-
Time Signal Processing. Prentice Hall Press, USA, 3rd
edition, 2009.

[36] LoRa Modulation Basics. https://www.
frugalprototype.com/wp-content/uploads/
2016/08/an1200.22.pdf.

[37] Stéphane Mallat. A wavelet tour of signal processing.
Elsevier, 1999.

[38] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. MIT Press, 2016.

[39] Richard S Sutton and Andrew G Barto. Reinforcement
Learning: An Introduction. MIT Press, 2018.

[40] Richard S. Sutton, David A. McAllester, Satinder P.
Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation.
In Advances in Neural Information Processing Systems,
pages 1057–1063. The MIT Press, 1999.

[41] John Schulman, Sergey Levine, Pieter Abbeel, Michael
Jordan, and Philipp Moritz. Trust region policy optimiza-
tion. In International Conference on Machine Learning,
pages 1889–1897. PMLR, 2015.

[42] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. CoRR, abs/1707.06347, 2017.

[43] USRP B200. https://www.ettus.com/
all-products/ub200-kit/.

[44] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irv-
ing, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan-
delion Mané, Rajat Monga, Sherry Moore, Derek Mur-
ray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

[45] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

 https://www.fcc.gov/reports-research/working-papers/digital-divide-us-mobile-technology-and-speeds
 https://www.fcc.gov/reports-research/working-papers/digital-divide-us-mobile-technology-and-speeds
 https://www.fcc.gov/reports-research/working-papers/digital-divide-us-mobile-technology-and-speeds
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan//
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan//
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan//
www.fcc.gov/task-force-reviewing-connectivity-and-technology-needs-precision-agriculture-united-states
www.fcc.gov/task-force-reviewing-connectivity-and-technology-needs-precision-agriculture-united-states
https://www.frugalprototype.com/wp-content/uploads/2016/08/an1200.22.pdf
https://www.frugalprototype.com/wp-content/uploads/2016/08/an1200.22.pdf
https://www.frugalprototype.com/wp-content/uploads/2016/08/an1200.22.pdf
https://www.ettus.com/all-products/ub200-kit/
https://www.ettus.com/all-products/ub200-kit/

[46] Docker containers on Azure. https://docs.docker.
com/cloud/aci-integration/.

[47] Docker Compose. https://docs.docker.com/
compose/.

[48] Linux Traffic Control. https://man7.org/linux/
man-pages/man8/tc.8.html.

[49] Chenning Li, Xiuzhen Guo, Longfei Shangguan,
Zhichao Cao, and Kyle Jamieson. {CurvingLoRa} to
boost {LoRa} network throughput via concurrent trans-
mission. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages
879–895, 2022.

[50] Richard S. Sutton and Andrew G. Barto. Reinforcement
learning: An introduction. IEEE Transactions on Neural
Networks, 9(5):1054–1054, 1998.

[51] Kai Arulkumaran, Marc Peter Deisenroth, Miles
Brundage, and Anil Anthony Bharath. Deep reinforce-
ment learning: A brief survey. IEEE Signal Processing
Magazine, 34(6):26–38, 2017.

https://docs.docker.com/cloud/aci-integration/
https://docs.docker.com/cloud/aci-integration/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html

Appendix

A LoRa Modulation and Demodulation

LoRa uses Chirp Spread Spectrum (CSS) as its PHY layer
modulation. In CSS, the instantaneous frequency of the signal
increases linearly with time within a predefined Bandwidth
BW over a symbol duration of Ts as shown by chirp equa-
tion 2. The start frequency fsym of the data chirp S(t, fsym)
encodes the data to be transmitted. The slope of the datachirp
in frequency-time plot as shown in Fig.16 denotes the Spread-
ing Factor SF which in turn determines the symbol duration
Ts =

2SF

BW , Data Rate and range of operation. Higher SF offers
longer range at the cost of reduced data rate. SF can take
values ∈ {7,8,9,10,11,12} and for increasing SF , symbol
duration doubles. That means an SF8 chirp is twice the length
of an SF7 chirp and an SF12 chirp is 32 times the length of
an SF7 chirp.

C(t) = e
j2π(BW2

2×2SF t− BW
2)t

, 0 ≤ t ≤ Ts (2)

S(t, fsym) =C(t) · e j2π fsymt (3)

Fig. 16: LoRa Demodulation

At the receiver, LoRa demodulation starts by correlating
the received buffer with a preamble (8 base upchirps C(t)) to
determine the start of LoRa packet. The receiver correlates
the buffer with preambles of all possible SFs to reveal the
spreading factor SFx of received packet. It then demodulates
the data by multiplying the data symbols with downchirp of
same SFx as shown in Fig.16. Downchirp is a conjugate of
base upchirp whose frequency decreases linearly with time.
This multiplication is called dechirping and it concentrates
the signal energy into a single frequency which is equal to the
start frequency of the data symbol. Index of the peak in the
FFT of the dechirped signal gives us the demodulated data.

A.1 Chirps of different SF are Pseudo-
orthogonal.

As discussed above, to detect the presence and thus start of
a LoRa packet, receiver correlates the incoming I/Q sam-
ples with base upchirps of all SFs. Once a packet of specific
SF = x is detected, datachirps are then demodulated using
a downchirp of SF = y : x = y. Two chirps (a datachirp and
a downchirp) for which x ̸= y cannot concentrate energy of
the datachirp through dechirping since chirps of unequal SFs

Fig. 17: Pseudo-Orthogonal LoRa chirps

are pseudo-orthogonal. For such cases, dechirping only re-
moves the linear increase in frequency-time trend of the chirps
when the magnitude of frequency-time slope of both chirps
is equal as shown in top plot of Fig.17. It therefore results
in clear peak in the FFT of the dechirped signal. In contrast,
if the two chirps have unequal SF, and therefore different
magnitude of slopes as shown in the middle plot of Fig.17,
dechirping followed by FFT will not concentrate signal en-
ergy into a single peak. Instead, the energy is spread over
multiple frequencies (hence the term pseudo) depending upon
the difference in x and y. Therefore, pseuso-orthogonality of
SF means that chirps of similar SF can only dechirp signals
to a single frequency whereas chirps of unequal SF do not
show this behaviour.

Based on this observation, if we design a downchirp which
is superposition of two downcirps of SF = x & y respectively
and use it to dechirp a datachirp of SF = x, we will obtain
energy concentration due to downchirp of SF = x and will
obtain an increased noise floor due to downchirp of SF = y
as shown in bottom plot of Fig.17.

B Primer on the Discrete Wavelet Transform

Fig. 18: Filter Bank Implementation of DWT

DWT is a multi-resolution time-frequency analysis tool that

is widely used in image signal processing. It decomposes the
input signal into a set of mutually orthogonal wavelet basis
functions, that are shifted and scaled versions of a mother
wavelet. With the appropriate choice of the mother wavelet,
DWT provides high time and frequency resolution. Hence,
it is an efficient tool to de-noise and compress signals with
varying frequency content, such as chirp spread spectrum used
by LoRa.

Figure 18(top) shows a k-stage DWT that uses a series of
high-pass (h[n]) and low-pass (g[n]) filter banks to decompose
the signal into coefficients at multiple levels. This filter-bank
implementation of DWT of an input signal of length N has a
complexity of O(N), making it computationally a minimally
intensive operation, and hence enabling compression in real-
time. The DWT coefficients from higher levels of decomposi-
tion provide detailed time information. The coefficients from
lower levels of the DWT provide the more detailed frequency
information. Each DWT coefficient represents the energy of
the received signal corresponding to the frequency (level) and
time (shift).

C Reward Function Shaping

We discuss the specific choice of the reward function used in
our RL algorithm. Recall that the reward function is designed
as follows:

r(s,a) = udec(s,a) − uband(s,a) − ulat(s,a) − uover(s,a).
(4)

The first reward term encourages the RL algorithm to max-
imize the total number of LoRa packets decoded correctly
over an episode of compression, consisting of (potentially)
multiple APs. As discussed in Section 3.2, we would like to
weight the number of packets decoded by the estimated true
positive rate (TPR) in order to account for the false positives
included in the count. Since, the TPR cannot be estimated
exactly due to absence of ground truth about when an ac-
tual LoRa transmission occurs, we estimate the TPR as the
fraction of LoRa packets decoded correctly over the last 100
detected active periods. Suppose Ndec is the number of packets
decoded correctly and P̂t pr is the estimated TPR, then

udec(s,a) =
Ndec

P̂t pr
. (5)

The second term in the reward function uband(s,a) penal-
izes the bandwidth utilized B from getting very close to the
available bandwidth Bmax and is defined as follows:

uband(s,a) =

0, if B

Bmax
∈ [0,α]

0.5α

1−α2 (
B

Bmax
− α), if B

Bmax
∈ [α, 1

α
]

0.5, if B
Bmax

> 1
α
.

(6)

Here α ∈ (0,1) is a constant that determines how close to
the maximum bandwidth we want to start penalizing the RL

algorithm. We set α = 0.9 in our experiments. As shown in
Fig. 5, the graph of uband(s,a) as a function of the bandwidth
ratio (BWR) B/Bmax would be a constant 0 for BWR values
less than α; a straight line ranging from 0 to 0.5 for BWR
values in the interval [α,1/α]; and a constant value of 0.5 for
BWR values larger than 1/α. The idea is that we start giving
as negative reward (penalty) as the BWR approaches 1 and
the penalty increases until the BWR exceeds a value slightly
larger than 1.

The third term in the reward function ulat(s,a) is very sim-
ilar to the second term. We simply replace the BWR with the
ratio of the overall latency Tlat to the maximum latency Tmax,
and it is given below for completeness

ulat(s,a) =

0, if Tlat ∈ [0,α]
0.5α

1−α2 (
Tlat
Tmax

− α), if Tlat
Tmax

∈ [α, 1
α
]

0.5, if Tlat
Tmax

> 1
α
.

(7)

We set Tmax = 0.2 in our experiments. The factor 0.5 is in-
cluded in both the penalty terms in order to balance out the
rewards due to correct packet decoding and the two penalty
terms. We want to avoid giving a higher overall weight to the
penalty terms in order to encourage the RL to focus on its
main goal of accurate packet decoding.

As discussed in Section 3.2, the final penalty term
uover(s,a) is included to preemptively avoid packet buffer
overflow, which could result in dropped packets. It is set to a
constant −10 whenever an action of the RL agent could result
in a packet buffer overflow.

D Background on Reinforcement Learning

Reinforcement learning (RL) is a machine learning paradigm
of sequential decision making where an agent acting in an un-
certain (stochastic) environment learns to perform actions by
interacting with the environment using trial and error (rather
than direct supervision) in a way that it maximizes its cumu-
lative reward [39, 50]. This is a popular setting for learning
when it is hard to obtain supervised data (e.g., labeled inputs)
and the data distribution is non-stationary.

The main component of RL is an agent (e.g., a self-driving
car), which is the decision-making center that acts in an uncer-
tain environment (e.g., a street). At any time step t, the agent
senses the environment and obtains a signal or reading known
as the state st ∈ S ⊆ Rds (e.g., processed sensor inputs from
cameras, Radar, LIDAR etc), which is typically a vector de-
noted in bold. Given the state st , the agent performs an action
at ∈ A (e.g., the steering angle, brake position etc.) that has an
effect on the environment. Here S and A are the state space
and action space respectively. The environment transitions
to a new state st+1 according to its (usually unknown) state-
transition function P(st+1 |st ,at) that governs its dynamics.
This is a conditional probability distribution of the state at
time t+1 given the state and action at time t. The environment

(a) (b) (c)
Fig. 19: (a-c): Compression performance of Cloud-LoRa in a single channel (a) Low SNR (-20 to -5 dB) (b) Medium SNR (-5

to 10 dB) and (c) High SNR (10 to 25 dB) LoRa signals.

Fig. 20: Throughput performance of Charm with and w/o
Cloud-LoRa

provides feedback to the agent in the form of a reward signal
rt := r(st ,at) ∈ R that informs the agent of how good or bad
its action at was in the state st . Starting from an initial state s0,
this sequence of state observation, action, reward, and state
transition is repeated for a number of time steps, known as an
epsiode or trajectory τ := (s0,a0,r0,s1,a1,r1, · · · ,sT ,aT ,rT).

The agent learns a strategy or policy to perform actions in
different states by repeatedly interacting with the environment
over several episodes, with the goal of maximizing its total
rewards. Formally, the policy π : S ×A 7→ [0,1] of the agent
is a conditional probability distribution over the set of actions
given the state, i.e., π(a |s) := P(At = a |St = s). We define
the discounted return Ut at time t as the discounted cumu-
lative future reward, with a discount factor γ ∈ [0,1], given
by Ut = Rt + γRt+1 + · · · + γT−t RT

4. The discount factor
γ determines the relative importance of the current reward
over future rewards. For a given policy π, the state-value func-
tion Vπ(st) and action-value function Qπ(st ,at) are important
quantities that define the value of a given state or a state-action
pair in terms of the (discounted) cumulative future rewards.
The action-value function captures how good an action at is
while being in state st , and is defined as

Qπ(st ,at) = E[Ut |St = st ,At = at],

where the expectation is over all the future states and actions,
and defined by the policy and the state transition function.
The state-value function (or simply value function) captures

4The state, action, and reward random variables are denoted in uppercase,
taking on specific values denoted in lowercase.

how good a given state is under the policy π, and defined as

Vπ(st) = E[Ut |St = st] = EA∼π(· |st)[Qπ(st ,A)].

The goal of an RL agent is to find an optimal policy that max-
imizes the expected value function ES[Vπ(S)]. It is common
to use the advantage function Aπ(st ,at) = Qπ(st ,at)−Vπ(st),
which captures the excess return (in a state st) obtained by per-
forming action at , compared to the expected return obtained
over all possible actions.

There are many classes of RL methods, and recently deep
learning methods have been adopted to solve the tradition-
ally challenging setting of large and continuous state/action
spaces [51]. We focus on a particular type of on-policy RL
known as Policy Gradient methods [40, 41], whose goal is to
directly learn an optimal policy function that is parameterized
by a neural network. Specifically, we use the Proximal Pol-
icy Optimization (PPO) method with clipped objective [42]
for online training of the RL agent. PPO is widely adopted
as a state-of-the-art online policy-gradient method due to its
better computational and sample efficiency, and stable policy
function updates.

E Supplementary Results

The amount of compression by ACCIO depends on the SNR
of the LoRa samples at CRAN gateway. The compression
performance of ACCIO for varying LoRa channel quality are
presented in Figure 19. Figure 19 (a), (b), (c) correspond to
low SNR (-20 to -5 dB), medium SNR (-5 to 10 dB), and high
SNR (10 to 25 dB) respectively.

In Fig. 20, we plot the network throughput of Charm with
3 USRP gateways streaming samples to the cloud. Charm
coherently combines samples from the 3 gateways and de-
codes the packets. We compare Charm with Cloud-LoRa ,
against Charm on a local machine without any compression
(i.e., Charm without a bottleneck backhaul). It can be noted
that the throughput is unaffected by Cloud-LoRa even at band-
widths as low as 500 kbps, indicating that the compression
did not affect the quality of the LoRa signals, and still allows
Charm to coherently combine signals in the cloud.

	Introduction
	Background and Motivation
	Proposed System - Cloud LoRa
	CRAN Gateway
	ACCIO : Reinforcement Learning-based Adaptive Compression
	CRAN Cloud Server

	Implementation
	Evaluation
	Real-world Deployment Settings
	Performance in a Rural, Bandwidth-Constrained Deployment
	Joint Multi-Gateway Packet Decoding
	Rapid Deployment of state-of-the-art
	Elastic Scaling to Multiple Channels
	Varying Backhaul Conditions
	Varying LoRa Channel Quality
	Activity Detection of Cloud-LoRa

	Discussions and Future Work
	Conclusions
	Acknowledgements
	LoRa Modulation and Demodulation
	Chirps of different SF are Pseudo-orthogonal.

	Primer on the Discrete Wavelet Transform
	Reward Function Shaping
	Background on Reinforcement Learning
	Supplementary Results

