
Proactive Resume and Pause of Resources for
Microsoft Azure SQL Database Serverless

Olga Poppe

Microsoft Corporation

Redmond, WA, USA

olpoppe@microsoft.com

Pankaj Arora

Microsoft Corporation

Redmond, WA, USA

paarora@microsoft.com

Sakshi Sharma

Microsoft Corporation

Bengaluru, India

sakssharma@microsoft.com

Jie Chen

Microsoft Corporation

Sunnyvale, CA, USA

jiechen2@microsoft.com

Sachin Pandit

Microsoft Corporation

Sunnyvale, CA, USA

sapandi@microsoft.com

Rahul Sawhney

Microsoft Corporation

Bengaluru, India

rahulsawhney@microsoft.com

Vaishali Jhalani

Microsoft Corporation

Bengaluru, India

vjhalani@microsoft.com

Willis Lang

Microsoft Corporation

Edina, MN, USA

wilang@microsoft.com

Qun Guo

Microsoft Corporation

Redmond, WA, USA

qunguo@microsoft.com

Anupriya Inumella

Microsoft Corporation

Sunnyvale, CA, USA

aninumel@microsoft.com

Sanjana Dulipeta Sridhar

Microsoft Corporation

Bengaluru, India

sanjanadu@microsoft.com

Dheren Gala

Microsoft Corporation

Bengaluru, India

dherengala@microsoft.com

Nilesh Rathi

Microsoft Corporation

Bengaluru, India

nileshrathi@microsoft.com

Morgan Oslake

Microsoft Corporation

Redmond, WA, USA

moslake@microsoft.com

Alexandru Chirica

Microsoft Corporation

Atlanta, GA, USA

achirica@microsoft.com

Sarika Iyer

Microsoft Corporation

Sunnyvale, CA, USA

saiyer@microsoft.com

Prateek Goel

Microsoft Corporation

Bengaluru, India

prateekgoel@microsoft.com

Ajay Kalhan

Microsoft Corporation

Redmond, WA, USA

ajayk@microsoft.com

ABSTRACT
Demand-driven resource allocation for cloud databases has become

a popular research direction. Recent approaches have evolved from

reactive policies to proactive decision making. These approaches

leverage not only the current resource demand but also the pre-

dicted demand to make more informed resource allocation deci-

sions for each database and thus improve the quality of service

and reduce the operational costs. We present an infrastructure that

enables proactive resource allocation capabilities for millions of

serverless Azure SQL databases. Our solution finds near-optimal

middle ground between high availability of resources, low oper-

ational costs, and low computational overhead of the proactive

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD-Companion’24, June 9–15, 2024, Santiago, Chile
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0422-2/24/06. . . $15.00

https://doi.org/10.1145/3626246.3653371

policy. We describe the design principles we followed and the ar-

chitectural decisions we made during this cross-team, multi-year

journey. Given the size and scope of our solution, we believe that

the relational cloud databases in other companies could benefit

from the proactive resource allocation capabilities.

CCS CONCEPTS
• Computer systems organization → Self-organizing auto-
nomic computing.

KEYWORDS
autonomous database, proactive auto-scale of resources

ACM Reference Format:
Olga Poppe, Pankaj Arora, Sakshi Sharma, Jie Chen, Sachin Pandit, Rahul

Sawhney, Vaishali Jhalani, Willis Lang, Qun Guo, Anupriya Inumella, San-

jana Dulipeta Sridhar, Dheren Gala, Nilesh Rathi, Morgan Oslake, Alexandru

Chirica, Sarika Iyer, Prateek Goel, and Ajay Kalhan. 2024. Proactive Resume

and Pause of Resources for Microsoft Azure SQL Database Serverless. In

Companion of the 2024 International Conference on Management of Data
(SIGMOD-Companion’24), June 9–15, 2024, Santiago, Chile. ACM, New York,

NY, USA, 14 pages. https://doi.org/10.1145/3626246.3653371

https://doi.org/10.1145/3626246.3653371
https://doi.org/10.1145/3626246.3653371

SIGMOD-Companion’24, June 9–15, 2024, Santiago, Chile Olga Poppe et al.

1 INTRODUCTION
Microsoft Azure SQL Database operates and manages millions of

databases in tens of Azure regions [5, 50]. Resource utilization of

these databases has been rigorously studied for over a decade to op-

timize resource allocation including CPU, memory, and disk. This

analysis reveals that resources are largely under-utilized, while

there are workload spikes that are throttled by fixed resource ca-

pacity limits [29, 45, 49, 56, 57, 59, 66]. These observations gave rise

to serverless computing that continuously adjusts the amount of

resources to meet the current resource demand of each database [7].

Resources of idle databases are reclaimed and reused to handle the

current workload of active databases. In this way, the number of

physical machines is reduced and thus operational costs are saved

compared to fixed size resource provisioning per database. Cus-

tomers are billed per second for the amount of compute resources

they used. Billing stops once the workload completes.

Limitations of The Reactive Policy. Current demand-driven

resource allocation is quite shortsighted due its reactive nature.

Indeed, the reactive policy is based on the current demand and does

not leverage the insights from unique historical workload traces for

each database. Thus, this policy suffers from two severe limitations.

(1) Delayed Resource Availability. Resource allocation mecha-

nisms are not instantaneous. Thus, if resources are reclaimed dur-

ing prolonged idle intervals, then delays in resource availability

are possible when the customer resumes activity. In the worst case,

there is not enough resource capacity on the node to resume the

resources for a database. Such database must be moved to another

node with higher available amount of resources [42]. These delays

make the reactive policy less suitable for latency sensitive cloud

service than the fixed size provisioned policy. In this work, we aim

to overcome the reactive nature of serverless compute and enable

proactive resource allocation decisions for each database [59].

(2) Computational Overhead. Vast majority of idle intervals are

within one hour (Figure 3(a)). Short idle intervals make resource

availability time too fragmented for effective reuse of resources

by active databases. Worst yet, if the resources are reclaimed im-

mediately once the workload stops, then concurrent execution of

resource allocation and reclamation workflows at high density can

introduce significant computational overhead that consumes re-

sources instead of saving them. In this work, we aim to reduce the

provider infrastructure load by minimizing the number of concur-

rent workflows that can cause performance and reliability issues.

Challenges. Proactive resource allocation for database systems

is a non-trivial endeavour for the following reasons.

(1) Varying Resource Usage Patterns per Database. Rigorous re-
source utilization analysis reveals that the resource usage patterns

vary per database [29, 45, 49, 56, 57, 59, 66]. There are databases

with stable usage, databases that follow a weekly or a daily pat-

tern, and databases that have short unpredictable spikes of activity.

Furthermore, resource utilization may change over time for each

database. Therefore, proactive resource allocation decisions must

be based on the recent resource usage history for each database.

(2) High Quality of Service Requirement. Azure SQL Database

guarantees 99.99% or higher availability [2, 17]. Resources must

be available upon customer login even if resources are reclaimed

during prolonged idle intervals to save opertional costs. Thus, we

Figure 1: ProRP Infrastructure

design an infrastructure that enables proactive resource allocation

decisions per database, has no dependency on external components,

and no single point of failure [41]. Furthermore, the database history

must be durable. In particular, if a databasemoves from one compute

node to another to balance the load, its history must move with it

to enable proactive resource allocation after the move.

(3) Continuous Resource Allocation for Millions of Databases. The
mechanisms implementing the proactive resource allocation de-

cisions must be scaled to millions of serverless databases in tens

of regions. They must handle tens of thousands of resource allo-

cation and reclamation workflows per region per day (Figures 11

and 12). Such automated continuous resource allocation alleviates

the burden of manual tuning which is labor-intensive, error-prone,

costly, neither scalable to millions of databases, nor durable due to

changing resource demand per database.

ProRP Infrastructure. To tackle these challenges, we designed

and implemented an infrastructure for Proactive Resume and Pause

of resources for Azure SQL Database Serverless, ProRP for short

(Figure 1). For each database, the online components of the infras-

tructure track customer activity, compactly store the recent history,

detect the customer login patterns to predict the next activity, and

make proactive resource allocation decisions based on database

lifespan, current and predicted customer activity. In particular, idle

resources are paused if no customer activity is predicted in near

future to save operational costs. Resources are resumed ahead of

predicted customer login to guarantee high quality of service.

Customer activity and resource allocation decisions are persisted

long-term for offline evaluation of KPI metrics. These metrics in-

clude quality of service, operational cost efficiency, and computa-

tional overhead. Given that customer activity changes over time,

the training pipeline tunes the configuration knobs of the activity

tracking and prediction based on long-term telemetry.

State-of-the-Art Techniques. Autonomous database manage-

ment systems have become popular in academia [53] and indus-

try [14] recently. Several existing approaches propose generally ap-

plicable infrastructures for machine learning [10, 18, 25, 26, 38, 48].

Unfortunately, they rely on products and services that are external

to Azure SQL Database. Consequently, commercial license, compli-

ance with Microsoft security and privacy requirements, compatibil-

ity with Azure SQL components, scalability to all Azure regions,

and high availability guarantee have to be addressed prior to pro-

ductization. Moreover, numerous previous studies to predict the

load of Azure SQL databases reveal that the accuracy of simple

Proactive Resume and Pause of Resources SIGMOD-Companion’24, June 9–15, 2024, Santiago, Chile

statistical and probabilistic load prediction techniques is sufficient

in practice [21, 27, 42, 45, 49, 56, 57, 59, 66]. We experimentally con-

firmed that this conclusion holds in our case (Section 9). Therefore,

the cost and the engineering effort to maintain an external machine

learning infrastructure long term in production worldwide is not

justified by the slightly higher accuracy of more advanced machine

learning models. Due to these practical considerations, we have

decided to build the online components of the ProRP infrastruc-

ture within the code base of Azure SQL Database. Nevertheless, we

learn from the state-of-the-art generic infrastructures and adapt

their design principles when possible (Section 3). Furthermore, we

leverage Azure ML [3, 57] to automate and distribute the offline

training of next activity prediction (Section 8).

The system tuning solutions in academia propose sophisticated

machine learning models without solving the practical challenges

of an industrial product described above [32, 53, 54, 65, 68]. Other re-

lated approaches either auto-tune a specific system component (e.g.,

memory [28, 62], data structures [33, 37], indexes [22, 23, 43], query

optimizer [35, 40, 46, 47], compiler [19, 24, 34]) or consider an or-

thogonal use case (e.g., overbooking [45, 66], tenant placement [42],

backup scheduling [57], benchmarking [49]). Doppler [21] rec-

ommends only the initial amount of resources for provisioned

databases and does not tackle the challenges of continuous proac-

tive resource allocation for serverless databases. We leverage the

insights from our prior research on the proactive resource allocation

policy [59] and focus on design and implementation of the ProRP

infrastructure in this publication. To the best of our knowledge,

ProRP is the first infrastructure that is deployed for millions of

serverless databases worldwide and enriches them with continuous

proactive resource allocation capabilities.

Contributions. Our key contributions are the following.

(1) Guided by the system requirements of Azure SQL Database,

we describe the design principles we followed, while enriching it

with continuous proactive resource allocation capabilities.

(2) We implement the ProRP infrastructure in Figure 1 to auto-

mate the whole life cycle of the proactive resource allocation from

telemetry emission, storage, and analytics to resource allocation

mechanisms, KPI metrics evaluation, and parameter tuning.

(3) We propose the algorithms for the proactive resource allo-

cation policy, the database history maintenance, the prediction of

next activity, and the proactive resume of resources per database.

We study the time and space complexity of these algorithms.

(4) We define the KPI metrics and experimentally evaluate the

effectiveness of the ProRP infrastructure in production. It achieves

near optimal balance between quality of service and operational

cost efficiency. At the same time, ProRP is light-weight since the

latency of proactive decisions stays within one second, while the

size of history store is within a few kilobytes per database.

(5) We deploy and battle-test the ProRP infrastructure in pro-

duction in all Azure regions and share our experience during this

cross-team, multi-year journey. We also discuss the current limita-

tions and sketch several future work directions.

Outline. We start with preliminaries in Section 2. We describe

our design principles in Section 3. We propose the algorithms for

all key components of the ProRP infrastructure in Sections 4–8. We

experimentally evaluate our solution in Section 9. We review the

related work in Section 10 and conclude the paper in Section 11.

Table 1: Notations

Parameter Meaning

D Set of serverless databases, 𝑑 ∈ D
T Set of time points, 𝑡 ∈ T

𝐷 (𝑑, 𝑡) Resource demand of 𝑑 at 𝑡

𝐴(𝑑, 𝑡) Resource allocation for 𝑑 at 𝑡

𝑛 Number of tuples in database history, 𝑛 ∈ N

𝑚
Number of tuples returned by a range query,

𝑚 ∈ N,𝑚 ≤ 𝑛

𝑙 Duration of logical pause (default: 7 hours)

ℎ History length (default: 28 days)

𝑝 Prediction horizon (default: 1 day)

𝑐 Confidence threshold (default: 0.1)

𝑤 Window size (default: 7 hours)

𝑠 Window slide (default: 5 minutes)

𝑘 Pre-warm time interval (default: 5 minutes)

2 PRELIMINARIES
2.1 Basic Notions and Assumptions
Time is represented by a linearly ordered set of time points (T, ≤),
where T ⊆ R+ is the set of non-negative real numbers. Let D be the

set of databases. Other notations are summarized in Table 1.

In this paper, we focus on the binary problem, i.e., the resources

are either allocated or reclaimed for each database at each point of

time. Our solution is a stepping stone towards proactive auto-scale

of resources in small increments of capacity (Section 11).

Definition 2.1. (Resource Demand and Allocation) Resource
demand 𝐷 : D × T → {0, 1} is a function that maps a database

𝑑 ∈ D and a time point 𝑡 ∈ T to a binary value indicating whether

the resources of 𝑑 are needed by the customer at 𝑡 . ∀𝑑 ∈ D ∀𝑡 ∈ T if
the resources of 𝑑 are needed at 𝑡 then 𝐷 (𝑑, 𝑡) = 1, else 𝐷 (𝑑, 𝑡) = 0.

Analogously, resource allocation𝐴 : D×T→ {0, 1} is a function
that maps 𝑑 ∈ D and 𝑡 ∈ T to a binary value indicating whether

the resources are allocated or reclaimed for 𝑑 at 𝑡 .

Definition 2.2. (Correctness of Resource Allocation) For a
database 𝑑 ∈ D and a time point 𝑡 ∈ T, the resources are:
• Correctly allocated (used) if 𝐷 (𝑑, 𝑡) = 𝐴(𝑑, 𝑡) = 1,

• Correctly reclaimed (saved) if 𝐷 (𝑑, 𝑡) = 𝐴(𝑑, 𝑡) = 0,

•Wrongly allocated (idle) if 𝐷 (𝑑, 𝑡) = 0 and 𝐴(𝑑, 𝑡) = 1,

•Wrongly reclaimed (unavailable) if 𝐷 (𝑑, 𝑡) = 1 and 𝐴(𝑑, 𝑡) = 0.

2.2 Limitations of the Current Reactive Policy
Resources of Azure SQL Database Serverless are automatically

scaled based on demand [7]. While the workload is running, re-

sources are resumed for the database. While the database is idle,

resources are paused for the database and possibly assigned to other

active databases. Customers are billed per second for compute re-

sources only while they use these resources. In this way, serverless

compute improves both the resource utilization and the costs for

the customers [6]. Unfortunately, the current resource allocation

policy is merely reactive to the current resource demand.

Figure 2 illustrates the resource demand and allocation under

the reactive, proactive, and optimal policies. Resource demand is

SIGMOD-Companion’24, June 9–15, 2024, Santiago, Chile Olga Poppe et al.

Figure 2: Resource allocation policies [58]

shown as black area. Resource allocation is shown as horizontal

line. In ideal case, resource allocation is the minimal bounding box

of resource demand (Figure 2(c)). The current reactive policy often

fails to meet the resource demand for the following reasons.

Idle Resources due to Logical Pauses. We analyzed twomonth

of production telemetry from a large Azure region where hundreds

of thousands of serverless databases are currently deployed. We

concluded that 72% of idle intervals are within one hour (Figure 3(a)).

However, these short idle intervals contribute only 5% to the total

idle time duration (Figure 3(b)). Short idle intervals make resource

availability time too fragmented for effective reuse and thus do not

save operational costs. On the contrary, frequent resource allocation

and reclamation workflows can introduce significant computational

overhead and thus waste operational costs.

To avoid reclaiming resources for short idle intervals, we logically
pause the resources of a database that became idle and wait if the

customer resumes activity (Time 5 and 7 in Figure 2(a)). During

logical pause, the resources are still available but customers are

not billed. If there is no activity during logical pause, resources are

physically paused, i.e., reclaimed (Time 8 in Figure 2(a)).

On the upside, resources are available when the workload returns

at Time 6 in Figure 2(a) and the overhead of resource reclamation

followed by reactive allocation is avoided at Time 5 and 6 in Fig-

ure 2(a). On the downside, resources stay idle from Time 5 to 6 and

from Time 7 to 8 in Figure 2(a) and operational costs are wasted. We

reduce resource idleness by physically pausing idle databases if no

customer activity is predicted in near future (Time 7 in Figure 2(b)).

Unavailable Resources due to Physical Pauses. Given that

resources are physically paused during prolonged idle intervals

(Time 8 in Figure 2(a)), delays are possible on resume due to the re-

action time between demand signal and effective change in resource

allocation (from Time 2 to 3 in Figure 2(a)). We reduce these delays

by proactively resuming resources at Time 1 ahead of predicted

customer activity at Time 2 in Figure 2(b) [59].

2.3 Opposing Optimization Objectives
The ultimate goal of a resource allocation policy is to find the

middle ground between quality of service (QoS) and operational

(a) Number of idle intervals (b) Duration of idle intervals

Figure 3: Fragmentation of idle time

cost efficiency [58, 59, 66]. QoS is the highest if resources are always

available when the customer needs them. QoS is lower if resources

are throttled or even unavailable. Operational cost efficiency is

the highest if resources are only allocated when they are needed.

Efficiency is lower if resources are underutilized.

The optimal balance between these opposing objectives is achiev-

ed when resources are allocated if and only if they are needed, i.e.,

∀𝑑 ∈ D ∀𝑡 ∈ T𝐷 (𝑑, 𝑡) = 𝐴(𝑑, 𝑡) (Figure 2(c)). Such optimal resource

allocation requires a perfect resource demand prediction which is

hard to achieve in practice due to continuously changing customer

activity. Nevertheless, the effectiveness of any resource allocation

policy is measured as the difference from this optimum [58, 59, 66].

Hence, we aim to minimize the time intervals when resources are

unavailable (shown as striped area in Figure 2(a)), while maximizing

the time intervals when resources are saved (shown as gray area).

Lastly, we aim to minimize the overhead of the proactive policy to

ensure scalability of our solution.

3 PRORP DESIGN PRINCIPLES
We align our design principles with the system requirements of

Azure SQL Database, while enriching it with proactive resource allo-

cation capabilities. In particular, our solution must be self-sufficient
to guarantee up to 99.99% or higher availability [2, 17, 41], scal-
able to millions of serverless databases worldwide, supportable long
term in production, and effective in finding the middle ground be-

tween quality of service and operational cost efficiency. Our design

principles cover the infrastructure, analytics, and storage.

3.1 Infrastructure-Related Design Principles
No Single Point of Failure. To ensure reliability, scalability, and

low latency of ProRP, we follow the best principles of distributed

architecture and tightly couple both the storage of historical data

and its analysis with each database.

NoHuman in the Loop. There aremultiple configuration knobs

of ProRP that influence its effectiveness. They include history reten-

tion interval, prediction horizon, seasonality, confidence threshold,

etc. These knobs must be exposed and automatically tuned to adapt

to continuously changing workload per database.

Seamless Integration into Azure SQL Ecosystem. To reduce

the engineering effort to build the ProRP infrastructure and facil-

itate its long-term maintenance in production, our solution must

be seamlessly integrated into the Azure SQL ecosystem and reuse

its established components. In particular, we leverage the big data

platform Cosmos [61], Azure ML pipelines [3], PowerBI monitoring

Proactive Resume and Pause of Resources SIGMOD-Companion’24, June 9–15, 2024, Santiago, Chile

tools [15], configuration, testing, and deployment infrastructure,

diagnostics and mitigation runners, incident management, backup

and restore mechanisms of Azure SQL Database.

3.2 Analytics-Related Design Principles
Proactive Database-Scoped Decisions. Given that resource uti-

lization history varies per database [29, 45, 49, 56, 57, 59, 66], there is

no single policy that fits all databases. Thus, we tailor the resource

allocation decisions for each database to optimize the trade-off

between quality of service and operational cost efficiency. In addi-

tion, these decisions are proactive, i.e., based on both current and

predicted resource demand per database.

Simple Forecast Techniques. We have evaluated time series

forecast models, decision tree-based models, Neural Networks, and

Bayesian Optimization to predict the load and/or tune various

configuration knobs [27, 39, 56, 57, 59, 66]. Some of these mod-

els (e.g., ARIMA [1] and Prophet [16]) do not scale to millions of

databases. While there are machine learning tools that are highly

optimized (e.g., NimbusML [13], GluonTS [9], and ML.NET binary

trainer [11]), they rely on libraries that are external to Azure SQL

Database which contradicts to the self-sufficiency requirement.

Furthermore, statistical and probabilistic forecast techniques are

easy to understand, explain, implement, debug, and maintain long-

term in production worldwide. Their accuracy is sufficient in prac-

tice [21, 27, 42, 45, 49, 56, 57, 59, 66]. Due to these practical consid-

erations, we deploy the probabilistic forecast techniques to predict

the next activity per database (Section 6).

Database-State-Aware Processing. A serverless database is

either resumed, or logically paused, or physically paused (Figure 4).

Different proactive capabilities are relevant in different states of

the database. At each point of time, we focus all efforts on handling

the current situation by activating only those capabilities which

are relevant in the current database state (Section 4). All other

capabilities are suspended to save resources [60].

Default to Reactive Database-Scoped Decisions. If any com-

ponent of ProRP goes down, the system must default to the reactive

policy until the failed component comes up. Even though the reac-

tive policy is less effective than the proactive policy [59], reactive

database-scoped decisions are the only way to guarantee high qual-

ity of service, while proactive capabilities are unavailable.

3.3 Storage-Related Design Principles
Precise Timestamps of Customer Activity. The choice of the
right resource utilization signal is crucial for the effectiveness of

the proactive policy. We store and analyze the start and end of

customer activity, rather than the resume and pause timestamps

because certain system maintenance operations also trigger re-

sume of resources. System maintenance operations are ignored by

the proactive policy to save operational costs since the customer

performance and availability experience is unaffected.

Given that customers are billed per second, even one second of

delayed resource availability after an idle interval is undesirable.

Therefore, the timestamps of customer activity must be precise to

ensure accurate resource demand prediction.

Compact Database History Store. Given that resource usage

patterns vary per database [29, 45, 49, 56, 57, 59, 66], there must be

Figure 4: Proactive resume and pause lifecycle of a database

no limit on the size of database history. To enable real-time complex

analytics, the history must be compact, i.e., contain only recent

customer activity. The history store must expose the familiar SQL

interface to efficiently update, retrieve, and aggregate the data.

Durable Database History Store. Given that databases may

move from one node to another to balance the load on the clus-

ter, database history must be available after the move to enable

proactive resource allocation decisions without interruption.

4 PROACTIVE POLICY
Figure 4 represents the proactive resume and pause lifecycle of a

serverless database as a Finite State Automaton. The bold Tran-

sitions ❷–❺ and conditions enable proactive resource allocation

capabilities in addition to the reactive policy (Transition ❻). The

proactive policy is defined in Algorithm 1. These functions imple-

ment the functionality within the respective states of a serverless

database in Figure 4. Table 1 summarizes the configuration param-

eters of Algorithm 1 and their default values.

Resumed Resources. We track start and end of customer activ-

ity in Lines 3 and 6. As long as the database is active, its resources

are resumed to serve the current workload in Lines 4–5. Once the

database becomes idle, we delete its old history to keep the recent

history compact in Line 8 and predict the start and end of next

activity in Line 9. We skip deletion of old history and prediction

of next activity if the previous predicted activity is not over yet in

Line 7. While deleting old history, we determine if the database is

old, i.e., existed at least the history retention time interval ℎ time

units and has enough history to make a reliable activity prediction.

If a database is new, then the resource allocation policy defaults to

reactive (Section 2.2).

If no customer activity is expected within the duration of logical

pause of 𝑙 time units, then the resources are physically paused to

save operational costs in Lines 10–11 (Transition ❸). Otherwise, the

resources are logically paused to relieve the backend from frequent

resource allocation operations in Line 12 (Transition ❷). Addition-

ally, by delaying or gradually tapering resource reclamation while

logically paused, the impact to database performance is reduced. In

particular, resources are logically paused for a new database that

did not accumulate enough resource utilization history yet and

therefore the next activity cannot be predicted.

Logically Paused Resources. Resources stay logically paused

until either the database becomes active (Transition ❻) or 𝑙 time

units of logical pause are over for a new database or next predicted

activity is not over yet or is expected to start within the next 𝑙

SIGMOD-Companion’24, June 9–15, 2024, Santiago, Chile Olga Poppe et al.

Algorithm 1 Proactive resource allocation policy

1: function Resume()

2: AllocateResources()

3: InsertHistory(now,1)

4: while active do
5: ProcessWorkload()

6: InsertHistory(now,0)

7: if nextActivity.end < now then
8: old← DeleteOldHistory(h,now)

9: nextActivity← PredictNextActivity(h,c,w,s,now)

10: if idle & (now+l ≤ nextActivity.start ∥
(old & nextActivity.start = 0)) then

11: PhysicalPause()

12: else LogicalPause()
13: function LogicalPause()

14: AllocateResources()

15: pauseStart← now

16: pauseEnd← 0

17: resume← false

18: while pauseEnd = 0 do
19: while idle & ((!old & now < pauseStart+l) ∥

now < nextActivity.end ∥
now < nextActivity.start < now+l) do

20: Sleep()

21: if active then
22: pauseEnd← now

23: resume← true

24: else old← DeleteOldHistory(h,now)

25: nextActivity←
PredictNextActivity(h,p,c,w,s,now)

26: if idle & ((!old & pauseStart+l < now) ∥
now+l ≤ nextActivity.start ∥
(old & nextActivity.start = 0)) then

27: pauseEnd← now

28: if resume then Resume()

29: else PhysicalPause()
30: function PhysicalPause()

31: InsertMetadata(nextActivity.start)

32: ReclaimResources()

time units for an old database in Lines 19–20 (Transition ❺). If

the database is still idle after the logical pause is over, then the

next activity is predicted to physically pause an old database if no

activity is expected in the next 𝑙 time units in Lines 24–29. A new

database is also physically paused after 𝑙 time units of idleness even

though the next activity is unknown for it in Lines 26–29.

Physically Paused Resources. The start of next predicted activ-
ity is stored in the metadata store and the resources are reclaimed

in Lines 31–32 (Transition ❹). Lastly, the periodic management

operation accesses the next predicted activity of physically paused

databases in the metadata store and resumes resources 𝑘 time units

ahead of predicted customer activity per database (Section 7).

Algorithm 2 Insertion of database history

1: CREATE PROCEDURE sys.InsertHistory (

2: @time BIGINT, @type INT) AS
3: IF NOT EXISTS
4: (SELECT ∗
5: FROM sys.pause_resume_history

6: WHERE time_snapshot = @time)

7: INSERT INTO sys.pause_resume_history

8: (time_snapshot, event_type)

9: VALUES (@time, @type)

5 CUSTOMER ACTIVITY TRACKING
Database History Store. To ensure durability of database his-

tory (Section 3.1), we persist it in the dedicated internal table

sys.pause_resume_history of the database itself. In this way,

we avoid creating an additional storage component that has to be

moved across nodes when the database moves to balance the load.

Furthermore, a SQL database can store its variable-length history,

update and analyze it via SQL interface. In fact, the algorithms for

the database history maintenance and the prediction of next activ-

ity are implemented as SQL stored procedures in Algorithms 2–4.

Lastly, we leverage the established backup and restore mechanisms

of Azure SQL Database to tackle data loss.

The schema of this table consists of the following two columns:

(1) time_snapshot is an integer that represents the epoch time
1

of the start or end of customer activity. To facilitate history mainte-

nance and analytics in Algorithms 2–4, we have chosen themachine-

readable integer format to represent timestamps. In addition, we

require that the values in this column are unique, while inserting a

new tuple in Lines 3–6 in Algorithm 2. Lastly, we create a clustered

B-tree-based index on the values in this column [8].

(2) event_type is a binary integer where 1 indicates a start of

customer activity, while 0 indicates an end of activity.

We will publish a materialized view over this history to the

customers. To this end, we convert both columns to human-readable

format, i.e., epoch time is converted to date time, while event type

is converted to string. The customers will have read access to this

table but no write access to prevent modification of the history.

Precision of Login Timestamps. The activity prediction al-

gorithm analyzes the login timestamps to detect recurring activity

patterns (Section 6). Therefore, the accuracy of prediction depends

on the precision of login timestamps. To ensure that these times-

tamps are precise, they are set on the critical login path, while the

tuple insertion runs off the critical path on a timer.

Deletion of Old History. While database history does not ex-

ceed five hundred tuples per week on average, it can grow up to

several thousands of tuples per week in the worst case (Figure 10(a)).

To keep the database history compact, only ℎ days of recent cus-

tomer activity are kept by Algorithm 3, where ℎ is a configurable

parameter. We compute the start of recent history in Line 3.

To determine whether the database has enough history to make

a reliable activity prediction in Lines 10, 19, and 26 in Algorithm 1,

Algorithm 3 returns a boolean value indicating whether the data-

base is old, i.e., existed before the start of recent history in Lines 6,

1
Epoch time corresponds to the number of seconds passed since January 1, 1970.

Proactive Resume and Pause of Resources SIGMOD-Companion’24, June 9–15, 2024, Santiago, Chile

Algorithm 3 Deletion of old history

1: CREATE PROCEDURE sys.DeleteOldHistoy (

2: @h INT, @now BIGINT, @old INT OUTPUT) AS
3: DECLARE @historyStart BIGINT = @now - @h*24*60*60

4: SELECT @minTimestamp =MIN(time_snapshot)

5: FROM sys.pause_resume_history

6: IF @minTimestamp < @historyStart

7: SET@old = 1

8: DELETE FROM sys.pause_resume_history

9: WHERE @minTimestamp < time_snapshot AND
10: time_snapshot < @historyStart

11: ELSE SET@old = 0

7, and 11 in Algorithm 3. To determine the lifespan of the database,

we keep the oldest tuple in the history. The oldest tuple has the

minimal timestamp in the history which is determined in Lines 4–5.

All tuples between the minimal timestamp and the start of recent

history are permanently deleted in Lines 8–10.

Complexity Analysis. Let 𝑛 be the number of tuples in the ta-

ble and𝑚 be the number of tuples in a range of timestamps,𝑚 ≤ 𝑛.

Given the B-tree index on the time_snapshot column, the search

of one tuple in Lines 4–6 in Algorithm 2 and in Lines 4–5 in Algo-

rithm 3 and the insertion of one tuple in Lines 7–9 in Algorithm 2

have logarithmic time complexity𝑂 (log𝑛). The deletion of𝑚 tuples

in Lines 8–10 in Algorithm 3 corresponds to a range query that also

has logarithmic time complexity 𝑂 (log𝑚). The space complexity

of the database history store is linear 𝑂 (𝑛).

6 PREDICTION OF NEXT ACTIVITY
Due to the practical considerations described in Sections 1 and 3,

we follow the probabilistic approach to predict the next activity

per database. Below, we first explain the algorithm by example and

then define it as a SQL stored procedure.

Example. To predict customer activity within the next 24 hours,

we detect a daily pattern in history of lengthℎ time units. Prediction

horizon is set to 24 hours because the algorithm detects the daily

pattern, i.e., after 24 hours the pattern will repeat. Assume we

predict activity on Day 6 based on 5 previous days in Figure 5.

To detect the daily activity pattern, we slide a window of length

𝑤 time units every 𝑠 time units, retrieve the timestamps of customer

activity during this window and compute the probability of activity

as the number of windows with activity divided by the duration of

history of ℎ days. If the probability of activity per window exceeds

the confidence threshold 𝑐 , then we consider the earliest and the

latest hour and minute of activity during this window as start and

end of predicted activity on the following day.

Let the confidence threshold be 0.8 in Figure 5. Then, there are

several windows that satisfy this threshold, e.g., Window 1 with

confidence 4/5 = 0.8 and Window 2 with confidence 5/5 = 1. In

such cases, we select the predicted activity with the earliest start and

the highest confidence, i.e., the predicted activity during Window 2.

If the window 𝑤 is wide, then there can be several first logins

after idle intervals during the window 𝑤 on the same day, e.g.,

during Window 2 on Day 3 in Figure 5. Therefore, we count the

number of windows with activity on ℎ previous days, rather than

Figure 5: Prediction of next activity

the number of first logins during windows on ℎ previous days. In

this way, we ensure that the customer activity pattern consistently

repeats during the window𝑤 on several previous days.

We activate the resources 𝑘 time units before the predicted cus-

tomer activity rather than at the beginning of the window for the

sake of efficiency because resources will stay idle until the customer

uses them (Section 7). Given that customer activity may continue

beyond the end of predicted activity within the window (e.g., in Fig-

ure 5), we verify that no activity is predicted in the next 𝑙 time units

before reclaiming resources in Lines 7–11 and 25–29 in Algorithm 1.

Probabilistic Algorithm 4 consumes the history length ℎ, the

prediction horizon 𝑝 , the confidence threshold 𝑐 , the window size𝑤 ,

and the window slide 𝑠 as parameters and returns the start and end

of the next predicted activity on the next day. All local variables are

set to 0 at the beginning. These variable declarations are skipped

to keep Algorithm 4 compact.

The algorithm consists of two nested while-loops. The outer

while-loop in Lines 9–47 slides the time window [@winStart,@win-

End] of length𝑤 minutes every 𝑠 minutes and computes the prob-

ability of customer activity during this window as the number of

past windows in history that contain activity divided by the size of

history of ℎ days in Line 36. If the probability of activity exceeds

the confidence threshold 𝑐 , then the earliest predicted activity with

highest confidence is returned in Lines 37–46.

The innerwhile-loop in Lines 15–35 accesses the database history

during the time windows [@winStartPrevDay, @winEndPrevDay]

on ℎ previous days, computes the timestamps of the first and last

logins during these windows in Lines 19–33, and counts the number

of windows with activity in Line 34.

Complexity Analysis. The number of iterations of the outer

while-loop corresponds to the number of windows which is com-

puted as the prediction horizon 𝑝 in minutes divided by the window

slide of 𝑠 minutes. The number of iterations of the inner while-loop

equals the history length of ℎ days. Given the B-tree index on the

time_snapshot column, the range query in Lines 19–24 has loga-

rithmic time complexity𝑂 (log𝑚) where𝑚 is the number of tuples

in the range of timestamps. All other operations have constant time

complexity 𝑂 (1). Therefore, the time complexity of Algorithm 4 is

𝑝/𝑠 × ℎ × 𝑂 (log𝑚). Given that 𝑝, 𝑠, and ℎ are constants and𝑚 is

bound by the size of database history 𝑛, the latency of next activity

prediction is within one second (Section 9). The space complexity is

linear𝑂 (𝑛) in the size of database history 𝑛 which does not exceed

a few kilobytes on average (Section 9).

SIGMOD-Companion’24, June 9–15, 2024, Santiago, Chile Olga Poppe et al.

Algorithm 4 Prediction of next activity

1: CREATE PROCEDURE sys.PredictNextActivity (

2: @h INT, @p INT, @c FLOAT, @w INT, @s INT,
3: @now BIGINT,
4: @startOfPredActivity BIGINT OUTPUT,
5: @endOfPredActivity BIGINT OUTPUT) AS
6: DECLARE @historyStart BIGINT = @now - @h*24*60*60

7: DECLARE @winStart BIGINT = @now

8: DECLARE @predEnd BIGINT = @now + @p*60*60

9: WHILE@winStart + @w ≤ @predEnd

10: SET@winWithActivity = 0

11: SET@earliestLoginPerWin = @w

12: SET@lastLoginPerWin = 0

13: SET@winEnd = @winStart + @w

14: SET@prevDay = 1

15: WHILE@prevDay ≤ @h

16: SET@winStartPrevDay = @winStart -

17: @prevDay*24*60*60

18: SET@winEndPrevDay = @winStartPrevDay + @w

19: SELECT @firstLogin=MIN(time_snapshot),

20: @lastLogin = MAX(time_snapshot)

21: FROM sys.pause_resume_history

22: WHERE event_type = 1 AND
23: @winStartPrevDay ≤ time_snapshot AND
24: time_snapshot ≤ @winEndPrevDay

25: IF @firstLogin is NOT NULL
26: IF @firstLoginPerWin > @firstLogin -

27: @winStartPrevDay

28: SET@firstLoginPerWin = @firstLogin -

29: @winStartPrevDay

30: IF @lastLoginPerWin < @lastLogin -

31: @winStartPrevDay

32: SET@lastLoginPerWin = @lastLogin -

33: @winStartPrevDay

34: SET @winWithActivity = @winWithActivity + 1

35: SET@prevDay = @prevDay + 1

36: SET@prob = @winWithActivity / @h

37: IF @c ≤ @prob AND@prevProb < @prob

38: IF @prevStart = 0 OR
39: @prevStart = @startOfPredActivity

40: SET @startOfPredActivity = @winStart +

41: @firstLoginPerWindow

42: SET @prevStart = @startOfPredActivity

43: SET @endOfPredActivity = @winStart +

44: @lastLoginPerWindow

45: SET @prevProb = @prob

46: ELSE BREAK
47: SET@winStart = @winStart + @s

7 PROACTIVE RESUME OPERATION
Proactive Resume Algorithm. Given that the resources of physi-

cally paused databases are reclaimed, the proactive resume opera-

tion is executed as part of the Management Service in the Control

Plane of Azure SQL Database. The proactive resume operation is

Algorithm 5 Proactive resume operation

1: function ProactiveResume()

2: SELECT@dbs = database_id

3: FROM sys.databases

4: WHERE state = ‘physical_pause’ AND
5: @now + @k ≤ start_of_pred_activity AND
6: start_of_pred_activity ≤ @now + @k + 1

7: for all 𝑑 ∈ @dbs do
8: 𝑑.LogicalPause()

implemented as a periodic activity which runs on a timer for all

physically paused databases in one Azure region.

Before a database is physically paused, the start of next pre-

dicted activity is stored in the metadata store in Line 31 in Algo-

rithm 1. The proactive resume operation accesses this metadata

table sys.databases and extracts all physically paused databases

for which customer activity is predicted to start during 𝑘𝑡ℎ minute

from now in Lines 2–6 in Algorithm 5. The pre-warm time interval

of 𝑘 minutes makes sure that the resources are available before the

customer activity returns. Lastly, Algorithm 5 proactively allocates

resources for the selected databases in Lines 7–8 by calling the

LogicalPause() function defined in Lines 13–29 in Algorithm 1.

Diagnostics and Mitigation. The diagnostics and mitigation

runner monitors the number of databases in the proactive resume

and physical pause queues and the resource allocation and reclama-

tion progress. The runner makes sure that these queues drain and

mitigates databases that get stuck during resume or pause. In rare

cases, this automatic mitigation process times out or fails, incidents

are triggered and resolved by an on-call engineer.

8 KPI METRICS AND TRAINING
KPI Metrics. We measure quality of service (QoS) in terms of the

percentage of first logins after idle intervals that occurred while the

resources were available (aka proactive resume of resources) versus

the percentage of first logins after idle intervals that occurred while

the resources were unavailable (aka reactive resume of resources).

We quantify the operational costs (COGS) in terms of the percent-

age of time during which resources are idle due to logical pause and

proactive resume of resources (Definition 2.2). We classify proactive

resumes into correct and wrong. If the customer used the proac-

tively allocated resources, then we consider the proactive resume

as correct. Otherwise, the proactive resume is wrong. Even correct

proactive resume contributes to idle time since the resources are

not used immediately as they become available.

We evaluate the overhead of the online components of the ProRP

infrastructure. We measure the storage overhead in terms of the

size of database history in kilobytes, the computational overhead

in terms of the latency of activity prediction in milliseconds and

the frequency of resource allocation and reclamation workflows.

Training Pipeline. As demonstrated by experiments in Sec-

tion 9.2, the accuracy of customer activity prediction depends on

several tunable parameters, including the window size, the confi-

dence threshold, the history length, and the seasonality. To account

for potential data drifts over time and prevent accuracy drops, we

reset the values of these parameters if better configuration can be

Proactive Resume and Pause of Resources SIGMOD-Companion’24, June 9–15, 2024, Santiago, Chile

(a) QoS (b) Operational costs

Figure 6: Validation across different Azure regions

(a) QoS (b) Operational costs

Figure 7: Validation across different training and test intervals

found. To automate and distribute the offline training, we leverage

Azure ML that allows us to automatically schedule one run of the

training pipeline per Azure region per month [3, 57] (Figure 1).

The pipeline accesses several months of customer activity for hun-

dreds of thousands of serverless databases worldwide. The size

of the training data is in tens of terabytes. The training data has

the same schema as the inference data described in Section 5. The

training data is available in the big data platform Cosmos [61]. The

pipeline varies the parameters of activity prediction, computes the

KPI metrics, and selects the configuration that finds the best middle

ground between quality of service and operational cost efficiency.

We leverage the existing deployment infrastructure of Azure SQL

Database to re-configure the customer activity prediction.

9 EXPERIMENTAL EVALUATION
9.1 Experimental Setup
Implementation. We implemented the ProRP infrastructure in

Figure 1 in C++ within the code base of Azure SQL Database.

Production Telemetry. We analyzed several months of produc-

tion telemetry from the top two largest European Azure regions

referred to as EU1 and EU2 and the top two largest US Azure regions

referred to as US1 and US2. Hundreds of thousands of Azure SQL

databases are currently deployed in these four regions. This teleme-

try is emitted by the customer activity tracking, the prediction of

next activity, and the proactive resume operation per Sections 5–7.

Each event carries timestamp in seconds, database identifier, and re-

sults of each component of the ProRP infrastructure. Unless stated

otherwise, the default experimental Azure region is EU1.

Methodology. We compare our proposed proactive policy to

the current reactive policy per Sections 2.2 and 4.

Default Configuration. Unless stated otherwise, next activity

is predicted one day ahead based on 4 weeks of history per database.

Seasonality is set to daily. The confidence threshold is 0.1. The win-

dow size is 7 hours. The window slides every 5 minutes. Resources

are proactively resumed 5 minutes ahead of predicted activity. We

experimentally configure these knobs in Section 9.2. Duration of

logical pause is set to 7 hours per our prior analysis [59].

Metrics. We measure the trade-off between quality of service,

operational costs, and the overhead of ProRP per Section 8.

9.2 Quality of Service versus Operational Costs
In Figures 6–9, we experimentally compare the current reactive re-

source allocation policy to our proposed proactive policy (Figure 2).

We validate these results across four largest Azure regions EU1, EU2,

US1, and US2 in Figure 6. We also validate the results across four

evaluation days on September 1–4, 2023 in Figure 7. We tune the

parameters of the proactive policy in Figures 8 and 9.

Reactive Policy. The reactive policy always logically pauses

resources once the customer activity stops to relieve the backend

from frequent scaling operations and improve quality of service.

On the upside, 60–68% of first logins after idle intervals occur

during the time intervals when resources are logically paused and

customers experience no delay in resource availability (Figures 6(a)

and 7(a)). Remaining 32–40% of first logins trigger reactive resume

of resources and customers may experience a brief time interval

during which resources are unavailable.

SIGMOD-Companion’24, June 9–15, 2024, Santiago, Chile Olga Poppe et al.

(a) QoS (b) Operational costs

Figure 8: Varying window size (hours)

(a) QoS (b) Operational costs

Figure 9: Varying confidence of prediction

On the downside, 5–12% of the time resources stay idle and

operational costs are wasted during logical pauses (Figures 6(b) and

7(b)). This percentage corresponds to tens of thousands of hours of

idle resources for all databases per Azure region and day.

Proactive Policy. To improve both the quality of service and the

operational cost efficiency, our proactive policy detects daily activ-

ity pattern per database and leverages these patterns to proactively

resume resources ahead of predicted activity.

On the upside, thanks to proactive resume of resources, 80–90%

of first logins after idle interval occur during time intervals when

resources are available (Figures 6(a) and 7(a)). This percentage

corresponds to tens of hours of improved customer experience

across all databases per Azure region and day.

Moreover, the proactive policy physically pauses the resources

of idle databases for which no activity is predicted in the next 7

hours. In this way, the proactive policy reduces resource idleness

due to logical pauses to 3–7% of the time (Figures 6(b)–7(b)).

On the downside, wrong proactive resumes contribute 1–4% of

the time when resources are proactively resumed but not used by

the customers, i.e., resources stay idle. Even correct proactive re-

sume contributes 1–5% of the time when resource stay idle because

proactively resumed resources are not used immediately when they

become available but only after the customer logs in and uses them.

In summary, the improved quality of service is enabled at the cost of

slightly higher percentage of time when resources stay idle (7–14%

of the time), compared to the reactive policy.

Training. The trade-off between quality of service and opera-

tional costs is controlled by the configuration parameters of the

proactive policy. For example, as the window size grows from 1 to

8 hours, higher number of historical logins fall into the window,

the probability of activity per window increases, and resources

are proactively resumed more frequently. Thus, the percentage of

first logins that happen during the time intervals when resources

are available increases from 67 to 87% in Figure 8(a). However, the

percentage of idle time also grows from 3 to 8% in Figure 8(b).

We observe the opposite trends in Figure 9. Namely, as the confi-

dence threshold increases from 0.1 to 0.8, fewer windows satisfy this

constraint, and resources are proactively resumed less frequently.

Therefore, the percentage of first logins that do not trigger reactive

resume of resources decreases from 86 to 50%, while the percentage

of idle time reduces from 6 to 2%. In Figures 8 and 9, we prioritize

quality of service over operational costs and set the window size to

7 hours and the confidence threshold to 0.1.

In contrast to Figures 8 and 9, the trade-off between quality of

service and operational costs is relatively independent from history

length. We set the history length to 4 weeks as a compromise

between prioritizing recent history and ensuring periodicity of

activity pattern across several weeks. Weekly seasonality achieves

similar results to daily seasonality (Algorithm 4). We skip similar

charts in this publication due to tight space constraints.

9.3 Overhead of the Online Components
Size of Database History. Figure 10 shows the CDFs that measure

the overhead of ProRP. Per Section 5, the start and end of customer

activity are stored in an internal table of the database. Given that

the lifespan and activity patterns vary per database, the number

Proactive Resume and Pause of Resources SIGMOD-Companion’24, June 9–15, 2024, Santiago, Chile

(a) Number of tuples in database history (b) Size of database history (c) Latency of activity prediction

Figure 10: Overhead of the proactive policy

Figure 11: Frequency of resource allocation workflows

of tuples stored in the database history varies as well. While the

average number of tuples stays within 500, the maximal number of

tuples can grow over 4K in rare cases in Figure 10(a). Each tuple

consists of two integer values of size 64 bits (Section 5). Therefore,

the size of database history stays within 7 KB on average and does

not exceed 74 KB in the worst case in Figure 10(b).

Latency of Activity Prediction. Given that different size of

database history is analyzed in each case and activity patterns

vary per database, the latency of activity prediction also varies in

Figure 10(c). This latency is within 90 milliseconds on average and

does not exceed 700 milliseconds in the worst case.

Based on the experimental results in Figure 10, we conclude that

the computational and storage overhead of ProRP is negligible. We

are confident that this overhead will have no noticeable negative

impact on the performance of customer workloads nor billing.

Frequency of Resource Allocation Workflows. In Figure 11,

we measure the number of proactively resumed databases in one

iteration of the proactive resume operation in a large Azure region

per day on the y-axis. We vary the frequency of the proactive

resume operation on the x-axis. The gray box plots illustrate that

the maximal number of proactively resumed databases increases

from 29 to 406 as the frequency of the proactive resume operation

reduces from 1 to 15 minutes. Our goal is to experimentally tune

the frequency of the proactive resume operation such that the

number of proactively resumed databases does not exceed one

hundred in one iteration of the proactive resume operation to keep

the overhead of resource scaling mechanisms manageable by the

current infrastructure of Azure SQL Database [4]. Therefore, we

set the frequency of the proactive resume operation to one minute.

Figure 12: Frequency of resource reclamation workflows

Frequency of Resource Reclamation Workflows. Figure 12
measures the number of physically paused databases per time in-

terval in a large Azure region. The gray box plots illustrate that

the maximal number of physically paused databases increases from

31 to 458 as the time interval increases from 1 to 15 minutes. The

number of physically paused databases is slightly higher than the

number of proactively resumed databases for the same time interval

because some of the databases are new and did not accumulate his-

tory to predict activity yet. Therefore, proactive resource allocation

is not possible for them. Instead, they are resumed reactively and

physically paused based on their idle time (Section 4).

The frequency of scaling operations under the current reactive

policy is illustrated by the white boxes in Figures 11 and 12. The

number of proactive resumes and physical pauses per time interval

is doubled by the proactive policy, compared to the reactive policy.

This is explained by the fact that the proactive policy skips logi-

cal pauses and goes directly into physical pause if no activity is

predicted in near future. Higher number of physical pauses causes

higher number of proactive resumes. Our stress tests confirmed

that the ProRP infrastructure handles this increased workload well.

10 RELATEDWORK
The approaches to autonomous database management can be clas-

sified by their optimization objectives into physical design improve-

ments, knob tuning, and resource allocation and by their methodol-

ogy into rule-based, cost-model-based, and machine-learning-based

approaches. We briefly summarize each class below.

Optimization Objective. Several approaches focus on the phys-

ical design, choice, and tuning of data structures [33, 37] and in-

dexes [22, 23, 43]. Others auto-tune a specific system component

SIGMOD-Companion’24, June 9–15, 2024, Santiago, Chile Olga Poppe et al.

such as query optimizer [35, 40, 46, 47] and compiler [19, 24, 34].

Some approaches define database partitioning [36, 52, 55]. Several

approaches automate the selection and tuning of the most impactful

knobs in database management systems [32, 65, 68]. These knobs

include the configuration parameters of the cost model for query op-

timizer, frequency and granularity of logging, degree of parallelism,

etc. These approaches tackle challenges that are orthogonal to the

focus of this paper. We consider reusing some of them (Section 11).

There are approaches that automate demand-driven resource al-

location for cloud databases. Some of them are merely reactive, i.e.,

based on the current resource demand [29, 30], others are proactive,

i.e., based on both current and predicted demand [12, 21, 45, 49, 51,

56–59, 63, 66]. Predictive provisioning approaches [12, 45, 58, 59, 66]

forecast the workload pattern per database, proactively resume

resources to guarantee high quality of service, and reclaim idle

resources to save operational costs. Resource Advisor [51] predicts

resource demand and the effect of resource upgrades. PStore [63]

adjusts the number of machines based on predicted load. Toto [49]

models disk utilization, database creation and deletion over time to

benchmark the efficiency of cloud databases. Picado et al. [56] pre-

dict the database survivability to guide the resource provisioning

policy. Seagull [57] predicts the customer activity and schedules

backups of their databases during expected lowest resource uti-

lization. Doppler [21] analyzes resource utilization to recommend

the initial amount of resources to customers who migrate their

provisioned databases to the cloud. To the best of our knowledge,

ProRP is the first deployed infrastructure that enables continuous

proactive resource allocation capabilities for an industrial product

running millions of serverless databases worldwide.

Methodology. Rule-based approaches are widely used in indus-

try. They often deploy simple yet accurate statistical or probabilistic

workload forecast techniques to analyze historical traces and make

decisions based on predefined rules. IBM DB2 [36, 44, 62, 64] uses

rules to determine how much memory to allocate to components

of database management. Oracle 10g [28, 31] provides a rule-based

tool to identify bottlenecks due to mis-configuration. Azure SQL

Database [29, 45, 49, 51, 56, 57, 59, 66] observes the load per data-

base for the last few weeks, computes statistics, and defines rules

for automated resource allocation.

Cost-model-based approaches explore the search space of pos-

sible choices and evaluate their quality using a cost model to se-

lect a “good” configuration. A variety of algorithms were applied

to explore the search space such as approximation [20, 22], local

search [67], greedy search [23], and branch-and-bound [52, 55].

Machine-learning-based approaches are gaining popularity es-

pecially in academia in the last decade. iTuned [32] uses a Gaussian

Process model to explore the solution space, runs experiments when

the database is not fully utilized until the result converges to a near-

optimal configuration. BestConfig [68] partitions the parameter

search space, randomly selects one point from each partition, and

explores the space near the point with the best performance in a

sample set. OtterTune [65] uses a combination of supervised and

unsupervised methods to select the most impactful knobs, map

previously unseen database workloads to known workloads, and

recommend knob settings. NoisePage [54] implements machine-

learning-based tuning agents to predict the expected benefit of

actions that improve database physical design, knob configuration,

and hardware resources.

While machine learning models are more accurate than simpler

forecast techniques [27, 39, 56–59, 66], we currently deploy the

probabilistic forecast algorithm to production due to several practi-

cal considerations described in Sections 1 and 3. However, we plan

to improve the accuracy of workload prediction in the future.

11 CONCLUSIONS AND FUTUREWORK
In this publication, we have presented the infrastructure for proac-

tive resume and pause of resources shown in Figure 1. The ProRP

infrastructure is deployed in all Azure regions to optimize the trade-

off between quality of service and operational cost efficiency for

millions of Azure SQL Databases. Given the size and scope of our

solution, we believe that our design principles and lessons learned

generalize to the cloud databases in any company.

Even after several years of work, we are by no means at the end

of this journey. Below, we briefly sketch several ideas to further

develop the proactive resource allocation capabilities.

(1) The proactive resource allocation policy makes binary deci-

sions so far, i.e., the resources are either allocated or reclaimed for

each database (Definitions 2.1 and 2.2). Going forward, we plan to

auto-scale the resources in small increments of capacity to better

accommodate the current resource demand for each database.

(2) ProRP has multiple configuration knobs (Table 1). So far, we

have manually selected the most impactful knobs to tune based on

our domain knowledge. However, knob selection can be automated,

as defined by the state-of-the-art approaches in academia [32, 65].

(3) The proactive resource allocation policy improves operational

cost efficiency if and only if the reclaimed resources are indeed

reused. If other databases on the same node are idle or have enough

resources to serve their workloads, then the released resources

will not be reused, the number of physical machines will not be

reduced, and the operational costs will not be saved. Worst yet,

the computational overhead of physically pausing the resources

and then resuming them again will consume resources and waste

operational costs. Therefore, the proactive resource allocation pol-

icy must align with the data-driven tenant placement and load

balancing algorithms to amplify the business impact.

(4) So far, the proactive policy ignores the system maintenance

operations such as backups, software updates, version upgrades,

and stats refresh (Section 3.3). In the future, we will schedule these

operations when the database is predicted to be online to minimize

impact of increased backend load of resuming just for the purpose of

running these operations. Furthermore, the prediction will identify

time windows when usage from customer workload is low or idle

(but still online) and run the system operations then to minimize

their performance impact on customer workload [57].

ACKNOWLEDGMENTS
The authors are deeply gratefull to Youyuan Wu, Emilio Chavez

Madero, Chenxi Dai, Dhruv Kothari, Dhrub Kumar, and Patrick Pas-

tore for their hard work implementing and optimizing the resource

allocation mechanisms. The authors sincerely thank Hanuma Ko-

davalla and the anonymous SIGMOD reviewers for their insightful

and encouraging comments to this publication.

Proactive Resume and Pause of Resources SIGMOD-Companion’24, June 9–15, 2024, Santiago, Chile

REFERENCES
[1] 2024. ARIMA. https://pypi.org/project/pmdarima/

[2] 2024. Availability Capabilities of Azure SQL Database. https:

//learn.microsoft.com/en-us/azure/azure-sql/database/sql-database-paas-

overview?view=azuresql#availability-capabilities

[3] 2024. Azure ML. https://azure.microsoft.com/en-us/services/machine-learning/

[4] 2024. Azure Service Fabric. https://azure.microsoft.com/en-us/services/service-

fabric/

[5] 2024. Azure SQL Database. https://azure.microsoft.com/en-us/products/azure-

sql/database

[6] 2024. Azure SQL Database Pricing. https://azure.microsoft.com/en-us/pricing/

details/azure-sql-database

[7] 2024. Azure SQL Database Serverless. https://docs.microsoft.com/en-us/azure/

azure-sql/database/serverless-tier-overview

[8] 2024. Clustered and Nonclustered Indexes of SQL Server. https:

//learn.microsoft.com/en-us/sql/relational-databases/indexes/clustered-

and-nonclustered-indexes-described?view=sql-server-ver16

[9] 2024. GluonTS. https://gluon-ts.mxnet.io/

[10] 2024. MLflow. https://mlflow.org/

[11] 2024. ML.NET Binary Trainer. https://docs.microsoft.com/en-us/dotnet/api/

microsoft.ml.trainers.fasttree.fastforestbinarytrainer

[12] 2024. MySQL Autopilot Shape Advisor. https://dev.mysql.com/doc/heatwave-

aws/en/heatwave-aws-autopilot-shape-advisor.html

[13] 2024. NimbusML. https://docs.microsoft.com/en-us/python/api/nimbusml/

nimbusml.timeseries.ssaforecaster

[14] 2024. Oracle Autonomous Database. https://www.oracle.com/autonomous-

database/

[15] 2024. Power BI. https://powerbi.microsoft.com/

[16] 2024. Prophet. https://facebook.github.io/prophet/

[17] 2024. SLA for Azure SQL Database. https://azure.microsoft.com/en-us/support/

legal/sla/azure-sql-database/v1_8/

[18] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-

junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,

Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan

Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine

Learning. In OSDI. 265–283.
[19] Amir H. Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina

Silvano. 2019. A Survey on Compiler Autotuning using Machine Learning. ACM
Computing Surveys (CSUR) 51 (2019), 1 – 42.

[20] Nico Bruno and Surajit Chaudhuri. 2005. Automatic Physical Database Tuning:

A Relaxation-based Approach. In SIGMOD. 227–238.
[21] Joyce Cahoon, Wenjing Wang, Yiwen Zhu, Katherine Lin, Sean Liu, Ray-

mond Truong, Neetu Singh, Chengcheng Wan, Alexandra Ciortea, Sreraman

Narasimhan, and Subru Krishnan. 2022. Doppler: Automated SKU Recommenda-

tion in Migrating SQL Workloads to the Cloud. Proc. VLDB Endow. 15, 12 (2022),
3509–3521.

[22] Surajit Chaudhuri and Vivek Narasayya. 1998. AutoAdmin "What-If" Index

Analysis Utility. In SIGMOD. 367–378.
[23] Surajit Chaudhuri and Vivek R. Narasayya. 1997. An Efficient Cost-Driven Index

Selection Tool for Microsoft SQL Server. In VLDB. 146–155.
[24] Dehao Chen, David Xinliang Li, and Tipp Moseley. 2016. AutoFDO: Automatic

Feedback-Directed Optimization for Warehouse-Scale Applications. In Proc. of
Int. Symposium on Code Generation and Optimization. 12–23.

[25] Daniel Crankshaw, Peter Bailis, Joseph E. Gonzalez, Haoyuan Li, Zhao Zhang,

Michael J. Franklin, Ali Ghodsi, and Michael I. Jordan. 2015. The Missing Piece

in Complex Analytics: Low Latency, Scalable Model Management and Serving

with Velox. In CIDR.
[26] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gon-

zalez, and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving

System. In NSDI. 613–627.
[27] Carlo Curino, Neha Godwal, Brian Kroth, Sergiy Kuryata, Greg Lapinski, Siqi

Liu, Slava Oks, Olga Poppe, Adam Smiechowski, Ed Thayer, Markus Weimer, and

Yiwen Zhu. 2020. MLOS: An Infrastructure for Automated Software Performance

Engineering. In DEEM@SIGMOD. 1–5.
[28] Benoît Dageville andMohamed Zait. 2002. SQLMemoryManagement in Oracle9i.

In VLDB. 962–973.
[29] Sudipto Das, Feng Li, Vivek R. Narasayya, and Arnd Christian König. 2016.

Automated Demand-driven Resource Scaling in Relational Database-as-a-Service.

In SIGMOD. 1923–1924.
[30] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-Efficient

and QoS-Aware Cluster Management. SIGPLAN Not. 49, 4 (2014), 127–144.
[31] Karl Dias, Mark Ramacher, Uri Shaft, Venkateshwaran Venkataramani, and Gra-

ham Wood. 2005. Automatic Performance Diagnosis and Tuning in Oracle. In

CIDR. 84–94.
[32] SongyunDuan, Vamsidhar Thummala, and Shivnath Babu. 2009. TuningDatabase

Configuration Parameters with ITuned. Proc. VLDB Endow. 2, 1 (August 2009),
1246–1257.

[33] Jonathan Eastep, David Wingate, and Anant Agarwal. 2011. Smart Data Struc-

tures: An Online Machine Learning Approach to Multicore Data Structures. In

Proc. of Int. Conf. on Autonomic Computing. 11–20.
[34] Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski,

Olivier Temam, Mircea Namolaru, Bilha Mendelson, Ayal Zaks, Eric Courtois,

François Bodin, Phil Barnard, Elton Ashton, Edwin Bonilla, John Thomson,

Christopher Williams, and Michael O’Boyle. 2011. Milepost GCC: Machine

Learning Enabled Self-tuning Compiler. Int. Journal of Parallel Programming 39

(06 2011), 296–327.

[35] Sunny Gakhar, Joyce Cahoon, Wangchao Le, Xiangnan Li, Kaushik Ravichandran,

Hiren Patel, Marc Friedman, Brandon Haynes, Shi Qiao, Alekh Jindal, and Jyoti

Leeka. 2022. Pipemizer: An Optimizer for Analytics Data Pipelines. Proc. VLDB
Endow. 15, 12 (September 2022), 3710–3713.

[36] Michael Hammer and Bahram Niamir. 1979. A Heuristic Approach to Attribute

Partitioning. In SIGMOD. 93–101.
[37] Stratos Idreos, Kostas Zoumpatianos, Brian Hentschel, Michael S. Kester, and

Demi Guo. 2018. The Data Calculator: Data Structure Design and Cost Synthesis

from First Principles and Learned Cost Models. In SIGMOD. 535–550.
[38] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,

Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional

Architecture for Fast Feature Embedding. In MM. Association for Computing

Machinery, 675–678.

[39] Alekh Jindal, K. Venkatesh Emani, Maureen Daum, Olga Poppe, Brandon Haynes,

Anna Pavlenko, Ayushi Gupta, Karthik Ramachandra, Carlo Curino, Andreas C.

Müller, Wentao Wu, and Hiren Patel. 2021. Magpie: Python at Speed and Scale

using Cloud Backends. In CIDR.
[40] Alekh Jindal and Jyoti Leeka. 2022. Query Optimizer as a Service: An Idea Whose

Time Has Come. SIGMOD Record 51, 3 (2022), 49–55.

[41] Gopal Kakivaya, Lu Xun, Richard Hasha, Shegufta Bakht Ahsan, Todd Pfleiger,

Rishi Sinha, Anurag Gupta, Mihail Tarta, Mark Fussell, Vipul Modi, Mansoor

Mohsin, Ray Kong, Anmol Ahuja, Oana Platon, Alex Wun, Matthew Snider,

Chacko Daniel, Dan Mastrian, Yang Li, Aprameya Rao, Vaishnav Kidambi,

Randy Wang, Abhishek Ram, Sumukh Shivaprakash, Rajeet Nair, Alan War-

wick, Bharat S. Narasimman, Meng Lin, Jeffrey Chen, Abhay Balkrishna Mhatre,

Preetha Subbarayalu, Mert Coskun, and Indranil Gupta. 2018. Service Fabric: A

Distributed Platform for Building Microservices in the Cloud. In EuroSys. 1–15.
[42] Arnd Christian König, Yi Shan, Tobias Ziegler, Aarati Kakaraparthy, Willis Lang,

Justin Moeller, Ajay Kalhan, and Vivek Narasayya. 2022. Tenant Placement in

Over-subscribed Database-as-a-Service Clusters. Proc. VLDB Endow. 15, 11 (2022),
2559–2571.

[43] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.

The Case for Learned Index Structures. In SIGMOD. 489–504.
[44] Eva Kwan, Sam Lightstone, K. Bernhard Schiefer, Adam J. Storm, and Leanne Wu.

2003. Automatic Database Configuration for DB2 Universal Database: Compress-

ing Years of Performance Expertise into Seconds of Execution. In BTW, Vol. 26.

620–629.

[45] Willis Lang, Karthik Ramachandra, David J. DeWitt, Shize Xu, Qun Guo, Ajay

Kalhan, and Peter Carlin. 2016. Not for the Timid: On the Impact of Aggressive

over-Booking in the Cloud. Proc. VLDB Endow. 9, 13 (2016), 1245–1256.
[46] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-

izadeh, and Tim Kraska. 2021. Bao: Learning to Steer Query Optimizers. In

SIGMOD. 1275–1288.
[47] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,

Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned

Query Optimizer. Proc. VLDB Endow. 12, 11 (July 2019), 1705–1718.

[48] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-

man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris

Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, and Ameet

Talwalkar. 2016. MLlib: Machine Learning in Apache Spark. Journal of Machine
Learning Research 17, 34 (2016), 1–7.

[49] Justin Moeller, Zi Ye, Katherine Lin, and Willis Lang. 2021. Toto - Benchmarking

the Efficiency of a Cloud Service. In SIGMOD. 2543–2556.
[50] Kunal Mukerjee, Tomas Talius, Ajay Kalhan, Nigel Ellis, and Conor Cunningham.

2011. SQL Azure as a Self-Managing Database Service: Lessons Learned and

Challenges Ahead. IEEE Data Eng. Bull. 34, 4 (2011), 61–70.
[51] Dushyanth Narayanan, Eno Thereska, and Anastassia Ailamaki. 2005. Con-

tinuous Resource Monitoring for Self-predicting DBMS. In IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems. 239–248.

[52] Rimma Nehme and Nicolas Bruno. 2011. Automated Partitioning Design in

Parallel Database Systems. In SIGMOD. 1137–1148.
[53] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,

Prashanth Menon, Todd C. Mowry, Matthew Perron, Ian Quah, Siddharth San-

turkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun Wu,

Ran Xian, and Tieying Zhang. 2017. Self-Driving Database Management Systems.

In CIDR.
[54] Andrew Pavlo, Matthew Butrovich, Ananya Joshi, Lin Ma, Prashanth Menon,

Dana Van Aken, Lisa Lee, and Ruslan Salakhutdinov. 2019. External vs. Internal:

https://pypi.org/project/pmdarima/
https://learn.microsoft.com/en-us/azure/azure-sql/database/sql-database-paas-overview?view=azuresql#availability-capabilities
https://learn.microsoft.com/en-us/azure/azure-sql/database/sql-database-paas-overview?view=azuresql#availability-capabilities
https://learn.microsoft.com/en-us/azure/azure-sql/database/sql-database-paas-overview?view=azuresql#availability-capabilities
https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-us/services/service-fabric/
https://azure.microsoft.com/en-us/services/service-fabric/
https://azure.microsoft.com/en-us/products/azure-sql/database
https://azure.microsoft.com/en-us/products/azure-sql/database
https://azure.microsoft.com/en-us/pricing/details/azure-sql-database
https://azure.microsoft.com/en-us/pricing/details/azure-sql-database
https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview
https://learn.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-ver16
https://gluon-ts.mxnet.io/
https://mlflow.org/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.ml.trainers.fasttree.fastforestbinarytrainer
https://docs.microsoft.com/en-us/dotnet/api/microsoft.ml.trainers.fasttree.fastforestbinarytrainer
https://dev.mysql.com/doc/heatwave-aws/en/heatwave-aws-autopilot-shape-advisor.html
https://dev.mysql.com/doc/heatwave-aws/en/heatwave-aws-autopilot-shape-advisor.html
https://docs.microsoft.com/en-us/python/api/nimbusml/nimbusml.timeseries.ssaforecaster
https://docs.microsoft.com/en-us/python/api/nimbusml/nimbusml.timeseries.ssaforecaster
https://www.oracle.com/autonomous-database/
https://www.oracle.com/autonomous-database/
https://powerbi.microsoft.com/
https://facebook.github.io/prophet/
https://azure.microsoft.com/en-us/support/legal/sla/azure-sql-database/v1_8/
https://azure.microsoft.com/en-us/support/legal/sla/azure-sql-database/v1_8/

SIGMOD-Companion’24, June 9–15, 2024, Santiago, Chile Olga Poppe et al.

An Essay on Machine Learning Agents for Autonomous Database Management

Systems. IEEE Data Eng. Bull. 42, 2 (2019), 32–46.
[55] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. 2012. Skew-Aware Automatic

Database Partitioning in Shared-Nothing, Parallel OLTP Systems. In SIGMOD.
61–72.

[56] Jose Picado, Willis Lang, and Edward C. Thayer. 2018. Survivability of Cloud

Databases - Factors and Prediction. In SIGMOD. 811–823.
[57] Olga Poppe, Tayo Amuneke, Dalitso Banda, Aritra De, Ari Green, Manon Kno-

ertzer, Ehi Nosakhare, Karthik Rajendran, Deepak Shankargouda, Meina Wang,

Alan Au, Carlo Curino, Qun Guo, Alekh Jindal, Ajay Kalhan, Morgan Oslake, So-

nia Parchani, Vijay Ramani, Raj Sellappan, Saikat Sen, Sheetal Shrotri, Soundarara-

jan Srinivasan, Ping Xia, Shize Xu, Alicia Yang, and Yiwen Zhu. 2020. Seagull:

An Infrastructure for Load Prediction and Optimized Resource Allocation. Proc.
VLDB Endow. 14, 2 (2020), 154–162.

[58] Olga Poppe, Pablo Castro, Willis Lang, and Jyoti Leeka. 2023. Proactive Resource

Allocation Policy for Microsoft Azure Cognitive Search. SIGMOD Record 52, 3

(2023), 41–48.

[59] Olga Poppe, Qun Guo, Willis Lang, Pankaj Arora, Morgan Oslake, Shize Xu, and

Ajay Kalhan. 2022. Moneyball: Proactive Auto-Scaling in Microsoft Azure SQL

Database Serverless. Proc. VLDB Endow. 15, 6 (2022), 1279–1287.
[60] Olga Poppe, Chuan Lei, Elke A. Rundensteiner, andDanDougherty. 2016. Context-

aware Event Stream Analytics. In EDBT. 413–424.
[61] Conor Power, Hiren Patel, Alekh Jindal, Jyoti Leeka, Bob Jenkins, Michael Rys,

Ed Triou, Dexin Zhu, Lucky Katahanas, Chakrapani Bhat Talapady, Josh Rowe,

Fan Zhang, Rich Draves, Ivan Santa, and Amrish Kumar. 2021. The Cosmos Big

Data Platform at Microsoft: Over a Decade of Progress and a Decade to Look

Forward. Proc. VLDB Endow. 14, 12 (2021), 3148–3161.
[62] Adam J. Storm, Christian Garcia-Arellano, Sam S. Lightstone, Yixin Diao, and M.

Surendra. 2006. Adaptive Self-Tuning Memory in DB2. In VLDB. 1081–1092.
[63] Rebecca Taft, Nosayba El-Sayed, Marco Serafini, Yu Lu, Ashraf Aboulnaga,

Michael Stonebraker, Ricardo Mayerhofer, and Francisco Andrade. 2018. P-Store:

An Elastic Database System with Predictive Provisioning. In SIGMOD. 205–219.
[64] Wenhu Tian, Pat Martin, and Wendy Powley. 2003. Techniques for Automatically

Sizing Multiple Buffer Pools in DB2. In CASCON. 294–302.
[65] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.

Automatic Database Management System Tuning Through Large-Scale Machine

Learning. In SIGMOD. 1009–1024.
[66] Lalitha Viswanathan, Bikash Chandra, Willis Lang, Karthik Ramachandra, Jig-

nesh M. Patel, Ajay Kalhan, David J. DeWitt, and Alan Halverson. 2017. Predictive

Provisioning: Efficiently Anticipating Usage in Azure SQL Database. In ICDE.
1111–1116.

[67] Bowei Xi, Zhen Liu, Mukund Raghavachari, Cathy H. Xia, and Li Zhang. 2004. A

Smart Hill-Climbing Algorithm for Application Server Configuration. In WWW.

287–296.

[68] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue

Liu, Kunpeng Song, and Yingchun Yang. 2017. BestConfig: Tapping the Per-

formance Potential of Systems via Automatic Configuration Tuning. In Proc. of
Symposium on Cloud Computing. 338–350.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basic Notions and Assumptions
	2.2 Limitations of the Current Reactive Policy
	2.3 Opposing Optimization Objectives

	3 ProRP Design Principles
	3.1 Infrastructure-Related Design Principles
	3.2 Analytics-Related Design Principles
	3.3 Storage-Related Design Principles

	4 Proactive Policy
	5 Customer Activity Tracking
	6 Prediction of Next Activity
	7 Proactive Resume Operation
	8 KPI Metrics and Training
	9 Experimental Evaluation
	9.1 Experimental Setup
	9.2 Quality of Service versus Operational Costs
	9.3 Overhead of the Online Components

	10 Related Work
	11 Conclusions and Future Work
	Acknowledgments
	References

