
Intelligent Overclocking for Improved Cloud Efficiency
Aditya Soni
Microsoft
India

t-asoni@microsoft.com

Mayukh Das
Microsoft
India

mayukhdas@microsoft.com

Pulkit Misra
Microsoft

USA
pumisra@microsoft.com

Chetan Bansal
Microsoft

USA
chetanb@microsoft.com

ABSTRACT
Overclocking computing nodes in datacenters is emerging as an
area of great interest since it presents an opportunity to temporar-
ily boost performance and handle transient demand surges more
cost-effectively for cloud providers. However, indiscriminate over-
clocking increases risks like power capping events that negate
performance gains, accelerated component wear, and power con-
sumption spikes. This work proposes an intelligent overclocking
orchestration framework that employs a holistic system continu-
ously monitoring workload characteristics, resource utilization, and
power telemetry across the infrastructure. It leverages advanced
modeling techniques to anticipate demand and optimize overclock-
ing decisions based on performance benefits and mitigation of asso-
ciated risks through adaptive policies. Preliminary evaluations on
production cloud workload traces demonstrate the efficacy of the in-
telligent overclocking system in reducing power capping incidents
by up to 100 times compared to naive approaches. Furthermore,
the work outlines ongoing research directions, including the ap-
plication of reinforcement learning techniques to derive globally
optimal overclocking policies while incorporating fairness and relia-
bility objectives, and seamless extensibility to emerging accelerator
technologies.

KEYWORDS
Resource scheduling and optimization, predictive capacity manage-
ment, resource allocation and packing

ACM Reference Format:
Aditya Soni, Mayukh Das, Pulkit Misra, and Chetan Bansal. 2024. Intelligent
Overclocking for Improved Cloud Efficiency. In Proceedings of 5th Interna-
tional Workshop on Cloud Intelligence / AIOps (AIOps ’24). Co-located with
ASPLOS ’24 (AIOps ’24 workshop @ ASPLOS). ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AIOps ’24 workshop @ ASPLOS, April 27, 2024, San Diego, CA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Cloud services allocate sufficient resources to meet their peak per-
formance demands [8, 11, 24], such as maintaining tail latency
within predetermined Service-Level Objectives (SLOs) [7]. Although
this approach provides the best performance, it incurs high operat-
ing costs as resources are always provisioned for peak, even during
periods of low activity. While dynamic resource allocation tech-
niques like autoscaling [3, 19] and serverless computing [2, 18] can
reduce costs, they may increase application latency (e.g., due to long
VM creation times [1]) or are unsuitable for stateful services [13].

On the other hand, technological advancements have enabled
overclocking i.e., operating components (e.g., CPU) beyond typical
voltage and power limits [14]. Overclocking boosts workload per-
formance and allows cost-effective handling of transient demand
surges. Prior work shows that overclocking can significantly re-
duce (e.g., by 54%) tail latency for cloud workloads compared to
conventional autoscaling, while also lowering operating costs [14].

However, overclocking has several challenges that cloud providers
need to carefully manage. First, indiscriminate use of overclocking
can increase power draw and trigger frequent power capping events
that require reducing component frequency (e.g., via Intel RAPL [6])
for controlling power, thereby negating any performance gains. Sec-
ond, overclocking can reduce component lifetime by accelerating
wearout and, thus, cannot be performed indefinitely. The limited
amount of overclocking needs to be used carefully. For example,
overclocking the CPU of a memory-bound workload or during
non-peak periods does not provide much benefit. Finally, workload
SLOs need to be protected when overclocking is unavailable. For
example, a workload might have under-provisioned due to reliance
on overclocking, but it would miss its SLOs under peak load if its
VMs cannot be overclocked due to lack of power. Fairness is also
an important criterion in constrained scenarios and policies that
determine which workload can overclock need to avoid starvation.
Therefore, overclocking introduces complexity in the management
and orchestration of cloud infrastructure, necessitating specialized
monitoring, control, and failover mechanisms.

We approach the problem of intelligent overclocking in the cloud
by designing a holistic system that continuously monitors workload
characteristics, resource utilization, power/thermal profiles, and
performancemetrics across the infrastructure.We employ advanced
modeling and prediction techniques to estimate potential perfor-
mance gains from overclocking diverse workloads. Our approach
incorporates multi-objective optimization algorithms to judiciously

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


AIOps ’24 workshop @ ASPLOS, April 27, 2024, San Diego, CA Aditya Soni, Mayukh Das, Pulkit Misra, and Chetan Bansal

allow overclocking by balancing the performance benefits against
specified constraints like power draw, component reliability, and
fairness. Our system makes dynamic overclocking decisions in real-
time based on the current cluster state, anticipated demand, and
specified policies for performance targets and overclocking limits.
Under constraints (e.g., power), it creates an overclocking schedule
that maximizes a pre-defined cluster-level utility, which can be de-
fined as a function of workload characteristics, such as how much a
workload benefits from overclocking and its deployment size (# of
cores). This utility is used to create a schedule for which workloads
can be overclocked in any time period. For any workload(s) that
cannot be overclocked, the system protects the workload’s SLOs
through predictive autoscaling or resource reallocation.

This paper presents our ongoing work on designing such an
intelligent overclocking framework that can adapt to a spectrum
of constraints while optimizing for performance objectives. At this
stage, we focus on managing power while overclocking, where
workloads specify time periods for when they need overclocking.
We investigate methods that take decisions with local optimization
objectives by defining utility functions for workloads, enabling
a greedy decision maker to prioritize overclocking requests judi-
ciously. Extensive evaluations on real-world cluster traces demon-
strate the efficacy of the intelligent overclocking system in reducing
power capping incidents by up to 100 times compared to naive ap-
proaches. The results also highlight the trade-offs between different
overclocking protocols and their impact on autoscaling strategies.
We are currently exploring approaches that employ a longer deci-
sion horizon to learn global optimization policies. One such tech-
nique involves offline reinforcement learning (RL), which has the
advantage of learning a policy for the cluster from the trajectory
of any arbitrary overclocking policy acting on it. Deep RL takes
away the complexity of defining fine-grained utility functions and
can learn to estimate the utility from a set of features. Thus, RL
provides an end-to-end solution for learning policies, and we aim
to explore this in our future work.

2 RELATEDWORK
Extensive prior research has explored computational sprinting tech-
niques like turbo-boosting CPU frequencies for short periods of
time [9, 20–22], while using ideas from game theory [9], formal con-
trol [21], and performance modeling [20] to manage sprinting. How-
ever, these works primarily focus on single-server setups, assume
transparent knowledge of applications, or overlook multi-tenancy
considerations on servers or racks and, thus, do not holistically
address the overclocking challenges in cloud environments.

Another line of research has focused on datacenter power man-
agement [10, 17, 23, 26], proposing oversubscription techniques that
leverage statistical properties of concurrent power usage across
servers to improve datacenter power utilization and reduce costs.
While complementary, these works influence the non-overclocked
baseline and factor in power demand from turbo-boosting to meet
performance Service-Level Agreements (SLAs). However, naively
adding overclocking to the existing power utilization increases
the probability of power capping events, necessitating a more in-
telligent approach to leverage unutilized power while ensuring
workload SLOs when overclocking is unavailable.

Figure 1: Complex overclock scheduling problem

Furthermore, researchers have explored workload intelligence
to optimize performance, energy consumption, and cost [4, 5, 15,
27, 28]. Techniques like machine learning models [27], application-
specific feature analysis [4, 15, 28], and resource telemetry gather-
ing [5] have been employed to allocate resources efficiently, predict
optimal frequencies, and provide insights for resource management.
While valuable, these approaches do not directly address the unique
challenges introduced by overclocking in cloud environments, such
as managing reliability impacts, power constraints, and workload
SLO protection when overclocking is unavailable.

3 SYSTEM OVERVIEW
Overclocking can lead to high capacity efficiency while ensuring
minimum power capping only with intelligent orchestration and
scheduling policies. As highlighted in prior work [14], cores cannot
be overclocked beyond a vendor recommended duration owing to
hardware degradation. More importantly, aggressive overclocking
at any arbitrary point in time is not feasible since extra power draw
due to the overclocked cores may cross the power budget (power
capping) of a server or server rack. This will trigger corrective
actions by the data center leading to performance impact to critical
workloads. Conservative overclocking policy on the other hand
will possibly prevent such power capping incidents, but will also
prevent us from getting maximum possible benefit.

3.1 Problem Setting
Intelligent overclocking policy design is a complex multi-objective
scheduling/optimization problem with various constraints. The
complexity of the problem comes from 3 dimensions - (1) It is a
stochastic dynamic process, and the load and power usage patterns
change over time dependent on both the workload’s demand pat-
terns as well as VM allocation on various servers and racks. So
overclocking policy of whether to overclock at some time point is
subject to uncertain estimates of available power in future, (2) Since
it is practically impossible to overclock for all possible resources
and services it is paramount that the policy optimized some ben-
efit or value. (3) As illustrated in Figure 1, services have different
overclocking requirements, wherein these requests differ based on
the start time and duration of overclocking, and how their VMs
are distributed across different physical resources such as servers
and racks which have their own power budgets, thus requiring the



Intelligent Overclocking for Improved Cloud Efficiency AIOps ’24 workshop @ ASPLOS, April 27, 2024, San Diego, CA

policy to anticipate future requests - how they would be distributed
across time and physical resources - and take them into considera-
tion when making a decision. Orthogonally, we need to factor in the
value of the workload to determine the most valuable action among
the set of possible actions that does not violate the constraints.
Thus, this is akin to a complex combinatorial scheduling problem.

We define a utility/benefit of overclocking as the potential sav-
ings when increased demand is handled without overclocking. Con-
sider a particular vCore of a VM is overclocked. The optimization
problem is defined as

argmax
O

𝑈

s.t.
∑︁
𝑟 ∈R

𝑃𝑜𝑤𝑒𝑟𝐶𝑎𝑝𝑝𝑖𝑛𝑔𝑟 = 0 (1)

where𝑈 is the utility gained from overclocking, O stands for the
set of possible overclocking actions, 𝑃𝑜𝑤𝑒𝑟𝐶𝑎𝑝𝑝𝑖𝑛𝑔𝑟 represents a
power capping event on a rack 𝑟 and R is the set of all racks.

Utility can be formulated as a composite function comprising
multiple service characteristics and metrics. For instance, quanti-
fying the number of cores utilized by a workload can serve as an
indicator of its dominance or resource footprint. Additionally, the
utility function may encapsulate a measure of priority based on the
client or workload type, such as attributing higher utility to high-
availability user-facing services. The selection and combination of
relevant metrics to construct the utility function itself presents an
area for further investigation and optimization.

This equation takes into consideration the constraint of being
within the power availability limit. Assessing the power availabil-
ity for the optimization process requires computing a stochastic
estimate of the power consumption in the future. This involves pre-
dicting changes in power consumption with time due to workloads’
power draw patterns and also accounting for the excess power
usage due to overclocking requests granted earlier.

In the event that overclocking fails, there needs to be an alternate
strategy for workload owners to protect their SLOs. One possible
solution is to perform a lookahead while making decisions to an-
ticipate the future state of the cluster, which would give workload
owners a heads-up if they need to provision more resources.

This makes this a complex optimization problem which does not
have a closed form solution. Hence, we propose a multi-component
overclocking orchestration system.

3.2 Solution Architecture Overview
An intelligent overclocking system should be designed as a holis-
tic platform that continuously monitors workload characteristics,
resource utilization, power/thermal profiles, and performance met-
rics across the infrastructure. Leveraging this telemetry, it should
employ advanced modeling and prediction techniques to accurately
anticipate demand and estimate potential performance gains from
overclocking diverse workloads. The system must then incorporate
optimization algorithms to maximize the long-term benefit gained
from overclocking over an infinite horizon, by maximizing said
utility under any constraints present at multiple granularities in
the environment. Figure 2 shows the architecture of such a system.

The power estimation module feeds on the racks’ telemetry his-
tory, such as their power consumption patterns, the workloads they

Figure 2: Overclocking orchestration system architecture

are hosting, and the workload usage telemetry. It can then estimate
the power using a time-series forecasting or sequential decision
making-based approach. The utility function operates on the ser-
vices’ telemetry, that can include the workloads’ own telemetry
from the clients, or meta-telemetry which indicates the CPU usage,
the number of cores, VMs and other service characteristics. The
policy for request scheduling is chosen from a library of policies,
which then suggests actions for the incoming overclocking request
queue based on the specified constraints and utilities.

4 METHODOLOGY
Building upon the high-level design principles outlined in the sys-
tem overview, our methodology focuses on the key components and
algorithms that underpin the intelligent overclocking framework.
Central to our approach is a dynamic request handling mechanism
that continuously processes incoming overclocking requests in-
stead of assuming a priori knowledge of services’ peak load periods.
The system computes the utility for each request as a function
of the workload’s dominance, quantified by the number of cores
hosting the workload across all racks in the infrastructure.

Power Estimation: Power estimation can be done through
various techniques. For our environment, we employ a regression-
based forecasting algorithm that is based on the linear regression
model of the Darts library [12]. However, our system is flexible
to incorporate alternative forecasters, such as Facebook’s Prophet
model, which can handle non-stationary environments. Further-
more, we are exploring sequential decision-making based methods
that can provide power estimates by considering the environment
holistically.

Partial Overclocking: Besides implementing different power
estimating methods, we also implement different overclocking pro-
tocols. Initially, we make the assumption that workload owners
would autoscale the entire service if even one rack lacks the power
headroom to overclock some of its VMs. Subsequently, we explore
partial overclocking, wherein we assume workload owners would
modify their autoscaling policies to only scale up/out VMs on racks
where overclocking is not possible, and would overclock their VMs
on racks where it is feasible.



AIOps ’24 workshop @ ASPLOS, April 27, 2024, San Diego, CA Aditya Soni, Mayukh Das, Pulkit Misra, and Chetan Bansal

Overclocking Policy Library: Our system incorporates a li-
brary of overclocking policies to cater to the diverse requirements
and constraints that cloud providers may encounter. Our current
policy set aims to approximate the globally optimal solution through
locally optimal solutions obtained via greedy strategies that prior-
itize granting requests with the highest utility, subject to power
constraints.

Baseline Power Estimator: As a baseline, we implement a
power estimator that does not forecast future power consumption
when making overclocking decisions. When evaluating a request,
it calculates the potential power increase in the involved racks
and grants the request if sufficient power headroom is available
in all the racks at that instant. This estimator does not account
for the overclocking duration or potential changes in rack power
consumption during this period.

Forecasting-based Power Estimators: In contrast, forecasting-
based estimators provide more conservative estimates of the power
headroom by predicting the respective rack’s power consumption
for a certain duration from the intended overclocking start time.
The power headroom of a rack is taken as the minimum power
headroom in the forecast duration on that rack. We further adapt
these estimator-based policies for scenarios where overclocking
decisions must be made before the request’s intended start time,
allowing workloads additional time to scale up/out and protect their
Service-Level Objectives (SLOs) when overclocking is unavailable.

The forecast length is judiciously chosen as a high percentile
value of the observed intervals between the start times of ongoing
overclocking requests and occurrences of power capping events.
This approach maximizes the likelihood of identifying requests that
may lead to power capping events while minimizing forecasting
errors and overhead.

Reinforcement Learning for Global Optimization:We are
currently exploring reinforcement learning (RL) based methods to
learn globally optimal policies for the overclocking environment.
Implicit Q-Learning [16], an offline RL algorithm, can learn a pol-
icy from trajectories collected by arbitrary policies. This presents
an end-to-end optimal policy learning approach wherein we run
arbitrary overclocking policies on a cluster and use the collected
trajectories to learn a globally optimal solution.

5 EVALUATION
To comprehensively evaluate the proposed intelligent overclocking
orchestration system, we developed a discrete event simulator that
interacts with real-world cluster traces. The simulator incorporates
a power model that, given the CPU utilization and core frequency,
estimates the power impact of overclocking on nodes equipped
with Intel or AMD processors. Overclocking requests from various
services are marked in the trace files at their observed peak load
hours, representing realistic scenarios.

5.1 Experimental Setup
We use production traces from multiple datacenters exhibiting low,
medium, and high power consumption patterns for evaluation.
These datacenters are composed of hundreds of racks and a few
thousand servers with either Intel or AMD CPUs. Workloads run-
ning in these datacenters are composed of multiple VMs that can

be located on the same or different servers and racks. The traces
include rack and server power, and VM-level CPU utilization. All
data is collected for 6 weeks (April 10th - May 12th, 2023), at a 5-
minute granularity. Stojkovic et al. [25] provides a more extensive
outline and analysis of such traces and their characterizations.

In brief however, while clusters with moderate power consump-
tion are our major focus, since they are expected to fully leverage
the overclocking capabilities, we also analyze extreme cases (high
and low power consumption) to ensure a comprehensive assess-
ment across different operating regimes.

As a baseline, we implement a naive policy that grants all over-
clocking requests without estimating future power consumption.
This approach serves as a worst-case reference, highlighting the
potential consequences of overclocking without intelligent orches-
tration, such as an increased number of power capping events.

Our analysis showed that the 90th percentile interval between an
overclocking request start and a subsequent power capping event
was approximately 60 minutes. Consequently, we set the forecast
time horizon to 60 minutes for the power estimation component.
The power forecaster had an average RMSE of 97 kW across the
traces, where the rack power to be forecasted was around 10,000 -
13,000 kW.

As a follow up, to account for the time required byworkload own-
ers to scale out their services in case of overclocking unavailability,
we also set a lookahead time of 30 minutes for the corresponding
evaluations. This essentially means that overclocking decisions are
taken while keeping a lookahead buffer time, instead of looking at
requests right when they are supposed to begin.

5.2 Evaluation Metrics
Policies are primarily compared against each other based on the
following metrics:

• Requests Granted. The number of overclocking requests suc-
cessfully approved by the policy, further categorized into
full and partial grants.

• Cumulative Cores Granted. The total number of CPU cores
approved for overclocking.

• Cumulative Cores Overclocked. The number of CPU cores
that were effectively overclocked disruption due to power
capping events.

• Unique Cores Granted.The count of distinct CPU cores granted
overclocking across all requests, indicating the policy’s fair-
ness in resource allocation.

• Number of Power Capping Events. The instances where total
power consumption exceeded the available budget, necessi-
tating corrective actions.

5.3 Partial Overclocking
Our evaluation explores the impact of partial overclocking, a proto-
col that allows services to overclock their virtual machines (VMs)
on racks with sufficient power headroom while scaling out on other
racks. This approach significantly outperforms previous policies in
terms of the number of cores overclocked, as services are no longer
bottlenecked by a marginal number of VMs running on high-power
racks. However, partial overclocking requires workload owners to



Intelligent Overclocking for Improved Cloud Efficiency AIOps ’24 workshop @ ASPLOS, April 27, 2024, San Diego, CA

Overclocking Policy Full Requests Granted Partial Requests Granted Cum. Cores Granted Cum. Cores Overclocked Power Cap Events

𝐿𝑜𝑤 𝑀𝑒𝑑 𝐻𝑖𝑔ℎ 𝐿𝑜𝑤 𝑀𝑒𝑑 𝐻𝑖𝑔ℎ 𝐿𝑜𝑤 𝑀𝑒𝑑 𝐻𝑖𝑔ℎ 𝐿𝑜𝑤 𝑀𝑒𝑑 𝐻𝑖𝑔ℎ 𝐿𝑜𝑤 𝑀𝑒𝑑 𝐻𝑖𝑔ℎ

Grant All 100.0 100.0 100.0 - - - 100.0 100.0 100.0 100.0 66.7 29.8 0.0 37.0x 105.2x
No Forecast 100.0 93.2 70.0 - - - 100.0 32.9 31.5 100.0 32.8 31.3 0.0 1.0x 1.0x
Forecast 100.0 94.2 69.7 - - - 100.0 32.4 28.1 100.0 32.3 28.0 0.0 0.0x 1.0x
Lookahead 100.0 95.2 59.5 - - - 100.0 38.2 25.9 100.0 37.9 25.6 0.0 2.0x 1.2x
Partial 100.0 91.3 55.3 0.0 8.7 34.2 100.0 72.9 63.0 100.0 71.0 59.1 0.0 9.0x 6.5x
IQL 98.0 11.1 8.6 2.0 33.9 57.8 99.9 42.5 27.0 99.9 30.2 21.6 0.0 14.0x 11.0x

Table 1: System evaluation results with different overclocking policies on clusters with low, medium and high power consump-
tion. Grant All is a naive baseline. Lookahead evaluations have a forecast of the same duration as in the Forecast method.
Partial also builds upon Forecast for its underlying power estimation. IQL is the implicit Q-learning implementation. Number
of power capping events are normalized within the cluster.

adapt their autoscaling policies accordingly, as traditional strategies
relying solely on overall service metrics may not be effective.

The results for the medium power cluster in Table 1 highlight
a scenario where a large service makes substantial overclocking
requests that cannot be concurrently granted across all the racks it is
deployed on. The partial overclocking protocol effectively addresses
this issue. Nevertheless, partial overclocking also leads to a slight
increase in the number of power capping events. This is because
the errors in the power forecaster become more pronounced when
overclocking decisions are made based on individual rack forecasts,
as opposed to the previous method that considered forecasts across
all racks simultaneously.

5.4 Reinforcement Learning Approach
To further improve the overclocking decision-making process, we
explore reinforcement learning (RL) techniques to derive policies
that can model the environment’s dynamics without relying on a
forecasting algorithm. Specifically, we employ Implicit Q-Learning
(IQL) [16], an offline RL algorithm, for our initial experiments. IQL
learns a sequential decision-making model from cluster trajectories
collected by arbitrary overclocking policies.

Our implementation extends the partial overclocking approach
by not prioritizing complete request grants before partial grants, as
greedy partial overclocking does. We do not define a utility function
here since we implement a deep RL approach that has the potential
to learn a refined utility function from the cluster state based off
the high-level feedback it receives during training.

While IQL shows results comparable to other approaches on low-
power clusters, it struggles to learn that there is sufficient power
headroom to grant all requests, indicating the need for improved
power estimation. Furthermore, IQL performs worse on medium
and high-power clusters compared to other policies, possibly due to
the more complex environment dynamics present in these clusters
and the naive feedback it receives during training, which requires
further refinement.

Regardless, the reported results indicate that even a naive RL-
based implementation, without any modifications made to the ob-
servations to handle the heterogeneous duration of the requests,
and that is learning on sparse feedback from the environment that
could be augmented with more information, performs reasonably
well. Making these adjustments to allow the agent to better observe

the environment would lead to much better performing policies.
More importantly, such an approach would be the more principled
formulation for a stochastic, possibly non-stationary, time-sensitive
overclocking request scheduling problem such as ours.

5.5 Fairness Analysis
Fairness of an intelligent decision-making system can be viewed
in various ways, such as analysing the starvation rates of work-
load requests and their importance. To measure the fairness of our
policies, we track the number of unique cores granted overclock-
ing, identifying if any workloads are being starved. Table 2 shows
the percentage of unique cores requesting overclocking that were
granted a request. Even with a partial overclocking approach, we
observe that some cores are being starved, indicating the need to
accommodate fairness as an additional constraint in our policies.
As an immediate next step, we will work on incorporating other
fairness metrics in our evaluation.

Overclocking Policy Unique Cores Granted (%)

𝐿𝑜𝑤 𝑀𝑒𝑑 𝐻𝑖𝑔ℎ

Grant All 100 100 100
No Forecast 100 32.3 31.5
Forecast 100 33.9 28.1
Lookahead 100 36.8 25.9
Partial 100 77.5 63.0
IQL 99.95 49.4 27.0

Table 2: Evaluation of policy fairness, as a measure of the unique
cores granted overclocking. Grant All is a naive baseline. Lookahead
evaluations have a forecast of the same duration as in the Forecast
method. Partial also builds upon Forecast for its underlying power
estimation. IQL is the implicit Q-learning implementation.

5.6 Summary
Our evaluation demonstrates the efficacy of the proposed intelligent
overclocking orchestration system in maximizing the benefits of
overclocking while adhering to power constraints. The exploration
of different policies and protocols lays the foundation for further
optimizations and enhancements, as discussed in the future work
section.



AIOps ’24 workshop @ ASPLOS, April 27, 2024, San Diego, CA Aditya Soni, Mayukh Das, Pulkit Misra, and Chetan Bansal

6 FUTUREWORK
For future work, we plan to explore reinforcement learning tech-
niques for deriving overclocking policies. Reinforcement learning
methods have the capability to learn globally optimal policies by
maximizing utility over an infinite horizon. They offer the advan-
tage of an end-to-end approach, learning from trajectories collected
under arbitrary overclocking policies, and deep RL methods can
circumvent the complexity of explicitly defining utility functions
by estimating utility directly from workload telemetry data.

A key focus will be incorporating fairness and reliability as essen-
tial objectives in the overclocking decision-making process. Fairness
constraints are crucial to prevent scenarios where smaller work-
loads are starved of overclocking opportunities due to prioritization
based solely on resource dominance. Reliability considerations, on
the other hand, will enable the system to handle scenarios where
overclocking fails or is unavailable. In such cases, the system should
incorporate alternative strategies, such as predictive autoscaling, to
protect workload Service-Level Objectives (SLOs). Robust failover
mechanisms are imperative for ensuring performance guarantees
under all circumstances.

Furthermore, we intend to design our overclocking framework
generic and extensible, capable of adapting to other overclockable
components beyond CPUs, such as GPUs.

REFERENCES
[1] Samiha Islam Abrita, Moumita Sarker, Faheem Abrar, and Muhammad Abdullah

Adnan. 2019. Benchmarking VM Startup Time in the Cloud. In Benchmarking,
Measuring, and Optimizing, Chen Zheng and Jianfeng Zhan (Eds.).

[2] Amazon AWS. [n. d.]. AWS Lambda. https://aws.amazon.com/lambda/.
[3] Amazon AWS. 2023. AWS Auto Scaling. https://aws.amazon.com/autoscaling/.
[4] Shuang Chen, Angela Jin, Christina Delimitrou, and José F. Martínez. 2022. ReTail:

Opting for Learning Simplicity to Enable QoS-Aware Power Management in the
Cloud. In HPCA.

[5] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Platforms. In
SOSP.

[6] Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna, and Christian
Le. 2010. RAPL: Memory power estimation and capping. In ISLPED.

[7] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun. ACM 56
(2013), 74–80.

[8] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-Efficient
and QoS-Aware Cluster Management. In ASPLOS.

[9] Songchun Fan, Seyed Majid Zahedi, and Benjamin C. Lee. 2016. The Computa-
tional Sprinting Game. In ASPLOS.

[10] SriramGovindan, Jeonghwan Choi, Bhuvan Urgaonkar, Anand Sivasubramaniam,
and Andrea Baldini. 2009. Statistical profiling-based techniques for effective
power provisioning in data centers. Proc. EuroSys Conference (EuroSys ’09).

[11] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang Mao, and
Yungang Bao. 2019. Who Limits the Resource Efficiency of My Datacenter: An
Analysis of Alibaba Datacenter Traces. In IWQoS.

[12] Julien Herzen, Francesco LÃ¤ssig, Samuele Giuliano Piazzetta, Thomas Neuer,
LÃ©o Tafti, Guillaume Raille, Tomas Van Pottelbergh, Marek Pasieka, Andrzej
Skrodzki, Nicolas Huguenin, Maxime Dumonal, Jan KoÅ›cisz, Dennis Bader,
FrÃ©dÃ©rick Gusset, Mounir Benheddi, Camila Williamson, Michal Kosinski,
Matej Petrik, and GaÃ«l Grosch. 2022. Darts: User-Friendly Modern Machine
Learning for Time Series. Journal of Machine Learning Research 23, 124 (2022),
1–6. http://jmlr.org/papers/v23/21-1177.html

[13] IBM Cloud. [n. d.]. "Scaling stateful and stateless services". https:
//www.ibm.com/docs/en/cloud-app-management/2019.3.0?topic=sizing-
scaling-stateless-stateful-services.

[14] Majid Jalili, Ioannis Manousakis, Inigo Goiri, Pulkit A. Misra, Ashish Raniwala,
Husam Alissa, Bharath Ramakrishnan, Phillip Tuma, Christian Belady, Marcus
Fontoura, and Ricardo Bianchini. 2021. Cost-Efficient Overclocking in Immersion-
Cooled Datacenters. In ISCA.

[15] Harshad Kasture, Davide B. Bartolini, Nathan Beckmann, and Daniel Sanchez.
2015. Rubik: Fast analytical power management for latency-critical systems. In
MICRO.

[16] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. 2021. Offline Reinforcement
Learning with Implicit Q-Learning. arXiv:2110.06169 [cs.LG]

[17] Alok Gautam Kumbhare, Reza Azimi, Ioannis Manousakis, Anand Bonde, Felipe
Frujeri, Nithish Mahalingam, Pulkit A. Misra, Seyyed Ahmad Javadi, Bianca
Schroeder, Marcus Fontoura, and Ricardo Bianchini. 2021. Prediction-Based
Power Oversubscription in Cloud Platforms. In USENIX ATC.

[18] Microsoft Azure. [n. d.]. Microsoft Azure Functions. https://azure.microsoft.com/
en-gb/services/functions/.

[19] Microsoft Azure. 2023. Overview of autoscale in Azure. https://learn.microsoft.
com/en-us/azure/azure-monitor/autoscale/autoscale-overview.

[20] Nathaniel Morris, Christopher Stewart, Lydia Chen, Robert Birke, and Jaimie
Kelley. 2018. Model-Driven Computational Sprinting. In EuroSys.

[21] Raghavendra Pradyumna Pothukuchi, Joseph L. Greathouse, Karthik Rao, Christo-
pher Erb, Leonardo Piga, Petros G. Voulgaris, and Josep Torrellas. 2019. Tangram:
Integrated Control of Heterogeneous Computers. In MICRO.

[22] Arun Raghavan, Yixin Luo, Anuj Chandawalla, Marios Papaefthymiou, Kevin P.
Pipe, Thomas F. Wenisch, and Milo M. K. Martin. 2012. Computational Sprinting.
In HPCA.

[23] P. Ranganathan, P. Leech, D. Irwin, and J. Chase. 2006. Ensemble-level Power
Management for Dense Blade Servers. In ISCA.

[24] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, RandyH. Katz, andMichael A.
Kozuch. 2012. Heterogeneity and Dynamicity of Clouds at Scale: Google Trace
Analysis. In SoCC.

[25] Jovan Stojkovic, Pulkit Misra, Íñigo Goiri, SamWhitlock, Esha Choukse, Mayukh
Das, Chetan Bansal, Jason Lee, Zoey Sun, Haoran Qiu, Reed Zimmermann,
Savyasachi Samal, Brijesh Warrier, Ashish Raniwala, and Ricardo Bianchini.
2024. SmartOClock: Workload- and Risk-Aware Overclocking in the Cloud.
In ISCA. https://www.microsoft.com/en-us/research/publication/smartoclock-
workload-and-risk-aware-overclocking-in-the-cloud/

[26] Qiang Wu, Qingyuan Deng, Lakshmi Ganesh, Chang-Hong Hsu, Yun Jin, Sanjeev
Kumar, Bin Li, Justin Meza, and Yee Jiun Song. 2016. Dynamo: Facebook’s Data
Center-Wide Power Management System. In ISCA.

[27] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Edward Suh, and Christina
Delimitrou. 2021. Sinan: ML-Based and QoS-Aware Resource Management for
Cloud Microservices. In ASPLOS.

[28] Liang Zhou, Laxmi N. Bhuyan, and K. K. Ramakrishnan. 2020. Gemini: Learning
to Manage CPU Power for Latency-Critical Search Engines. In MICRO.

https://aws.amazon.com/lambda/
https://aws.amazon.com/autoscaling/
http://jmlr.org/papers/v23/21-1177.html
https://www.ibm.com/docs/en/cloud-app-management/2019.3.0?topic=sizing-scaling-stateless-stateful-services
https://www.ibm.com/docs/en/cloud-app-management/2019.3.0?topic=sizing-scaling-stateless-stateful-services
https://www.ibm.com/docs/en/cloud-app-management/2019.3.0?topic=sizing-scaling-stateless-stateful-services
https://arxiv.org/abs/2110.06169
https://azure.microsoft.com/en-gb/services/functions/
https://azure.microsoft.com/en-gb/services/functions/
https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-overview
https://www.microsoft.com/en-us/research/publication/smartoclock-workload-and-risk-aware-overclocking-in-the-cloud/
https://www.microsoft.com/en-us/research/publication/smartoclock-workload-and-risk-aware-overclocking-in-the-cloud/

	Abstract
	1 Introduction
	2 Related Work
	3 System overview
	3.1 Problem Setting
	3.2 Solution Architecture Overview

	4 Methodology
	5 Evaluation
	5.1 Experimental Setup
	5.2 Evaluation Metrics
	5.3 Partial Overclocking
	5.4 Reinforcement Learning Approach
	5.5 Fairness Analysis
	5.6 Summary

	6 Future Work
	References

