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Figure 1. The SceneFun3D dataset. We introduce the first large-scale dataset with highly accurate interaction annotations in 3D real-

world indoor environments. SceneFun3D contains more than 14.8k annotations of functional interactive elements in 710 high-resolution

3D scenes accompanied by nine affordance categories. Additionally, it provides motion annotations that describe how to interact with the

functional elements and diverse natural language descriptions of tasks that involve manipulating them in the scene context.

Abstract

Existing 3D scene understanding methods are heavily fo-

cused on 3D semantic and instance segmentation. How-

ever, identifying objects and their parts only constitutes an

intermediate step towards a more fine-grained goal, which

is effectively interacting with the functional interactive ele-

ments (e.g., handles, knobs, buttons) in the scene to accom-

plish diverse tasks. To this end, we introduce SceneFun3D,

a large-scale dataset with more than 14.8k highly accu-

rate interaction annotations for 710 high-resolution real-

world 3D indoor scenes. We accompany the annotations

with motion parameter information, describing how to in-

teract with these elements, and a diverse set of natural lan-

guage descriptions of tasks that involve manipulating them

in the scene context. To showcase the value of our dataset,

we introduce three novel tasks, namely functionality seg-

mentation, task-driven affordance grounding and 3D mo-

tion estimation, and adapt existing state-of-the-art methods

to tackle them. Our experiments show that solving these

tasks in real 3D scenes remains challenging despite recent

progress in closed-set and open-set 3D scene understanding

methods.

1. Introduction

Datasets of 3D indoor environments have been extensively

used for computer vision, robotics, embodied AI and mixed

reality. To perceive 3D environments, 3D object instance

segmentation has served as a fundamental task to provide

the appropriate knowledge to agents about the objects in the

scene and subsequently enable the interaction with them.

Going a step further, some works have studied the task of

part-object segmentation focusing on the lower-level ob-

ject parts, e.g., drawers of a cabinet. However, these two

tasks serve only as a proxy since in the real-world setting,

agents need to successfully detect and interact with the func-

tional interactive elements (e.g., knobs, handles, buttons)
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of the objects in the scene. Detecting these elements is an

under-explored area, mainly due to the fact that most exist-

ing datasets, which are based on commodity RGB-D recon-

structions, often fail to accurately capture the 3D geometry

of small details in the scene.

To successfully interact with the functional elements in

the scene, agents should be capable of understanding visual

affordances. The concept of affordance was first defined by

Gibson [20], as those actions or behaviors afforded due to

the physical structure and design of an object (e.g., a button

affords pressing, a drawer knob affords pulling). To encour-

age research in this direction, prior works [10, 63] create 3D

datasets which include dense label annotations on the ob-

ject parts of 3D CAD models in the PartNet dataset. While

these datasets are very helpful for identifying affordances

on the object-level, there is no dataset providing geometri-

cally fine-grained annotations of visual affordances in real-

world 3D scenes, to the best of our knowledge.

Although the Gibsonian notion [20] of affordance might

be sufficient in object-level, it lacks to inform about the pur-

pose or the specific function of an interactive element in

the context of a scene. 3D environments are characterized

by complex inter- and intra-object functional relationships.

For instance, if an agent is instructed to turn on the ceiling

light, knowing that the buttons of the scene can be pressed

(Gibsonian affordance) does not offer enough information

about what will happen when the button is pressed. To ad-

dress this limitation, Pustejovsky [47] introduced the notion

of telic affordance which is defined as the action or behav-

ior conventionalized due to an object’s typical use or pur-

pose [24]. For example, while the Gibsonian affordance of

a light switch button is that it can be pressed, its telic af-

fordance is turning on the ceiling light. Interestingly, we

see that recent open-vocabulary models [33, 46, 54] display

promising results towards understanding telic affodances of

functionalities in 3D scenes by leveraging the knowledge of

foundation models, such as CLIP [50] and OpenSeg [19].

However, there is no benchmark to assess and compare their

visual affordance understanding capability.

In this work, we build the first large-scale dataset,

namely SceneFun3D (Fig. 1), containing more than 14.8k

high-fidelity annotations of functional interactive elements

in scenes along with nine Gibsonian-inspired affordances.

These are complemented by accurate motion parameters,

outlining how to manipulate these elements and diverse nat-

ural language descriptions of tasks that involve interacting

with them. With the introduction of this dataset we hope to

encourage future research on the following questions.

Where are the functionalities located in 3D indoor envi-

ronments and what actions they afford? We construct a

dataset of 710 scenes captured with a Faro laser scanner by

leveraging the ARKitScenes data assets [4]. This provides

us with high-resolution 3D geometry, compared to previ-

Faro Laser Data RGB-D 3D Reconstruction

Figure 2. Details in laser scans compared to commodity-level

RGB-D reconstructions. Laser scans capture a higher level of

detail, which is required for the geometrically fine-grained anno-

tation of small interactive elements. In datasets with commodity-

level RGB-D reconstructions (e.g, ScanNet, MultiScan, Matter-

port) these details are not visible.

ous datasets that comprise commodity-level RGB-D recon-

structions, which is essential to capture small interactive el-

ements in the scene (Fig. 2). We develop a lightweight web-

based interface that enables the fine-grained annotation of

high-resolution point clouds. We utilize it to collect anno-

tations of the functional interactive elements of the scenes

accompanied by a Gibsonian-inspired affordance category

(e.g., rotate, hook pull, tip push).

What purpose do the functionalities serve in the scene

context? We argue that telic affordances are crucial to un-

derstand the purpose of interactive elements in the scene

and propose a natural approach to study them. We show

functionality annotations to human annotators and ask them

to provide free-form language descriptions of tasks that in-

volve interacting with the displayed functionality (e.g., the

task description “turn on the ceiling light” involves inter-

acting with the light switch). To the best of our knowledge,

we are the first to link Gibsonian and telic affordances for

enhanced 3D scene understanding.

Which motions are involved to interact with the func-

tional elements? To further investigate how an agent can

interact with the functional elements in the scene, we col-

lect 3D motion annotations. For example, pressing a but-

ton involves a motion perpendicular to the button’s surface

to be performed, while opening a cabinet’s door involves

a rotational motion around its hinge by pulling its handle.

In contrast to previous works [36, 40] that focus on the

motion of articulated parts for a limited set of object cat-

egories, we study motions from the actor’s perspective with

an interaction-centric approach which better resembles the

real-world setting.

We introduce three challenging tasks and we leverage our

SceneFun3D dataset for systematic benchmarking. We pro-

pose techniques to adapt state-of-the-art methods on closed-

set and open-set 3D scene understanding to tackle the pro-

posed tasks and perform extensive experiments.
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2. Related Work

Semantic understanding of indoor 3D scenes. Exist-

ing 3D indoor datasets [4, 6, 9, 51, 66], largely focus on

identifying scene semantics and object instances. Earlier

datasets such as ScanNet [9] and Matterport3D [6] rely on

commodity-level RGB-D reconstruction, whereas more re-

cent datasets such as ARKitScenes[4] and ScanNet++ [66]

provide laser scans, resulting in much precise reconstruc-

tions capturing even small geometrical details, as illus-

trated in Fig. 2. Benefiting from these large-scale anno-

tated datasets, several 3D semantic segmentation methods

[1, 3, 8, 13, 14, 27–29, 35, 37, 38, 48, 49, 56, 57, 60, 64]

and 3D instance segmentation methods [12, 15, 22, 25, 32,

34, 52, 55, 58, 59, 65] have been developed. While these 3D

segmentation models trained on 3D indoor datasets work

well as a proxy for identifying objects from certain cate-

gories with which an agent can interact, they fall short on

providing information about the functional elements neces-

sary for interactions. In this work, we focus on identifying

functional elements and how to interact with them. We build

upon the 3D laser scans from the large-scale ARKitScenes

[4] dataset, which captures much higher detail, providing a

well-suited medium for us to explore functional elements.

Affordance understanding. Understanding scene affor-

dances has been a long-standing goal in vision and robotics.

Prediction of affordances has been first explored through the

lens of rule-based approaches [61]. Then, several learning-

based methods have addressed the prediction of function-

alities from images and videos [11, 17, 39, 45], and in 3D

[10, 43, 44, 62, 63]. Another line of work targets language

grounding in 3D scenes [7, 67], and 3D scene understand-

ing guided by open-vocabulary queries [33, 46, 54]. Exist-

ing methods are largely limited to point-level or object-level

predictions. Functional element annotations in our dataset

enable the extension of object-level open-vocabulary ap-

proaches such as OpenMask3D [54] to identify fine-grained

functional-elements based on complex affordance descrip-

tions. Our dataset focuses specifically on interactive func-

tional elements, and provides a benchmark consisting of a

rich set of natural language task descriptions.

3D motion estimation. A line of work [26, 31, 36, 40, 53]

explores the estimation of 3D motion and mobility of in-

teractable elements. MultiScan [40] focuses on scenes with

articulated objects, and estimates object part mobility. OPD

[31] and OPDMulti[53] address openable part detection and

motion parameter estimation. Hsu et al. [26] explore the in-

ference of articulation properties of scene objects. These

datasets focus on articulated objects and address a limited

set of interaction categories. In our work, we instead study

3D motion estimation from an interaction-centric perspec-

tive, addressing a larger variety of interaction cases.

3. Task definitions

We address three novel 3D scene understanding tasks:

Task 1: Functionality segmentation. Given an input point

cloud P = {(pi, fi)}, where pi ∈ R
3 are the point coordi-

nates and fi are the additional point features, such as RGB

color and normals, the task is to predict the instance masks

{mi}
K
i=1

of the functional interactive elements of the scene

as well as the associated affordance label {ℓi}
K
i=1

for each

instance, where K is the number of instances in the scene.

We define C Gibsonian-inspired affordance categories to

describe interactions afforded by common functionalities in

indoor scenes (e.g., “rotate”). We highlight that this task is

conceptually different from traditional 3D instance segmen-

tation. The model needs to understand visual affordances in

an object-class-agnostic manner and infer the action that a

functional element affords from the 3D geometry. We con-

sider functional interactive elements as the object compo-

nents in the scene that humans and agents interact with to

perform specific actions (e.g., turning a handle to open a

door, rotating a dial to control the temperature).

Task 2: Task-driven affordance grounding. Given an in-

put point cloud P and a free-form task description D (e.g.,

“open the door”, “turn on the ceiling light”), the goal is to

predict the instance mask m of the functional interactive el-

ement referred to by the task description as well as the asso-

ciated affordance label ℓ. To tackle this task, models need to

display understanding of the telic affordance, i.e., the pur-

pose, of the functionalities in the context of the scene.

Task 3: Motion estimation. Given an input point cloud P ,

this task complements Task 1 and aims to identify the mo-

tion parameters {ϕi}
K
i=1

, which describe the action that the

agent should perform, to interact with the predicted func-

tionality. Following the same notation as [31, 40, 53], we

represent the motion parameters as ϕi = {ti, ai, oi}, where
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ARKitScenes provides multiple laser scans per scene

(four on average) by placing a Faro Focus S70 laser scanner

in different positions in the scene. We use the provided laser

scanner’s poses for each scene and combine the laser scans

under the same coordinate system to increase the scene cov-

erage. Afterwards, we downsample the combined laser scan

with a voxel size of 5mm, which is sufficient to preserve the

details of the interactive functional elements of the scene

(e.g., small buttons, knobs, handles, etc.), while enabling

processing by machine learning models.

Next, we visually verify the output XYZRGB point

cloud. We exclude scenes where the laser scanner’s poses

are incorrect, small scenes without interaction spots as well

as scenes for which high-resolution RGB frames are not

available. After following this selection process, we con-

struct a dataset of 710 scenes. We highlight that our pipeline

is scalable, presenting the potential to expand the number of

scenes by leveraging high-resolution datasets released con-

currently with our work, such as ScanNet++ [66].

4.2. RGB images and camera poses

We accompany the scans from our dataset with posed RGB

images and video. ARKitScenes provides on average three

video sequences for each scene recorded with a 2020 iPad

Pro. These video sequences come with RGB images from

the Wide and Ultra Wide cameras, depth maps from the on-

device LiDAR scanner, ARKit camera trajectory as well as

an ARKit mesh reconstruction of the scene based on the

low-resolution frames. However, the aforementioned iPad

data and the Faro laser scans are expressed in a different co-

ordinate system and the transformations are not provided by

ARKitScenes. To enable scene understanding with multi-

ple sensor data, we register the laser scans in the coordinate

system of the RGB images as described in Sec. 4.3.

Furthermore, the camera poses in the ARKit camera tra-

jectory are not synced with the iPad’s RGB frames. To

help the registration process as well as utilization in down-

stream tasks, we extract and provide accurate camera poses

for each frame by performing rigid body motion interpola-

tion in SO(3)× R
3 [21].

4.3. Registration and alignment

We perform a series of steps to register the laser scans

in the coordinate system of the camera poses. First, we

reconstruct a high-resolution point cloud using the high-

resolution RGB-D frames and the interpolated camera

poses. This high-resolution point cloud is used as a proxy

for registering the laser scan in the coordinate system of the

camera poses. To help the registration process, we remove

extraneous points from the laser scan due to transparent sur-

faces, such as windows, by using the DBSCAN clustering

algorithm [16]. Consequently, we align the laser scan to

the proxy point cloud using Predator [30] and then refine

label description

rotate functionalities that are adjusted by a rotary

switch knob, e.g. thermostat

key press surfaces that consist of keys that can be

pressed, e.g. remote control, keyboard

tip push functionalities that can be triggered by the

tip of the finger, e.g. light switch

hook pull surfaces that can be pulled by hooking up

fingers, e.g. fridge handle

pinch pull surfaces that can be pulled through a pinch

movement, e.g. drawer knob

hook turn surfaces that can be turned by hooking up

fingers, e.g. door handle

foot push surfaces that can be pushed by foot, e.g.

foot pedal of a trash can

plug in surfaces that comprise electrical power

sources

unplug removing a plug from a socket

Table 1. Affordance label descriptions.

the alignment by performing Multi-Scale Iterative Closest

Point (ICP). As a final step, we visually inspect the align-

ment by projecting the color of the RGB frames to the laser

scan. In rare cases when the registration result is not suc-

cessful, we use manual correspondences for initialization.

4.4. Semantic annotation and data collection

For the data collection process, we have created a

lightweight web-based tool to facilitate the fine-grained an-

notation on large and dense point clouds. Our tool presents

three main advantages compared to existing open-source

tools which were used for annotating existing datasets [4, 6,

9, 40, 66]. First, previous works annotate decimated meshes

after performing over-segmentation [18] which reduces the

annotation accuracy. Instead, we directly annotate the high-

resolution point cloud and allow an annotation accuracy of

up to a single 3D point. Second, our tool enables the annota-

tion of high-resolution laser scans with minimum hardware

requirements (no GPU required). To do this, we utilize an

accelerated ray-casting algorithm based on Bounding Vol-

ume Hierarchies (BVH) [41]. More specifically, we group

the 3D points into bounding volumes in a recursive fash-

ion which speeds up the spatial queries significantly during

the annotator’s clicks. Lastly, during annotation, annotators

can see videos of the scene. This not only helps annotators

to identify the scene functionalities and affordances more

accurately and faster but also provides further information

which might not be clearly visible in the 3D point cloud.

Functionalities. We use our annotation UI to collect anno-

tations of the functional interactive elements in the scenes

which include an instance mask as well as an affordance

label. We compile a list of nine Gibsonian-inspired affor-
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Figure 3. Examples of functional interactive element annotations.

dance labels, drawing inspiration from prior research [10,

23, 39], to represent the interaction with common functional

interactable elements of in indoor environments. A short

description of each label can be found in Tab. 1. Annotators

are tasked with detecting functionalities in the scene, select-

ing the affordance label that describes the interaction with

the functionality and then annotate the instance mask. To

facilitate the annotation process, they are allowed to freely

navigate in the 3D scene using our UI’s controls as well as

watch the video sequences of the scene.

Additionally, we annotate functionalities whose geome-

try or the parent object’s geometry is not well-represented

in the laser scans. This may occur in cases where the func-

tional part (e.g. a knob, handle, etc.) or the parent object

(e.g. a fridge) is built of a reflective material. We catego-

rize these samples under the label “exclude” and we exclude

these cases from evaluation in our experiments.

Natural language task descriptions. To study the telic af-

fordance or purpose of the collected functionalities in the

scene context, we collect natural language descriptions of

tasks that involve interacting with the corresponding func-

tionalities. First, functionalities are displayed to annota-

tors in the 3D scene. We ask them to provide natural lan-

guage descriptions for tasks that uniquely involve the dis-

played functionality annotation. For example, if the dis-

played functionality is a light switch under the affordance

category “tip push”, then the associated task description is

“Turn on the ceiling light”. We omit collecting descriptions

for functionalities whose purpose is not clear in the context

of the scene (e.g. buttons on an unknown electronic device).

Inspired by [67], we augment our collected language de-

scriptions by rephrasing them to increase diversity. We uti-

lize the ChatGPT model gpt-3.5-turbo-instruct for sentence

rephrasing. During the verification phase, we ensure the

rephrased task descriptions are well-written and correctly

correspond to the functionalities in the scene context.

3D Motions. We collect the motions needed to interact

with the annotated functionalities as follows. Initially, func-

tionality annotations are displayed to annotators in the 3D

scene. By observing the high-quality 3D point cloud as well

as the associated scene videos, human annotators can eas-

ily infer the motion required to interact with the element.

For each functional interactive element, the annotators se-

lect the motion type (translational or rotational), the motion

axis origin by selecting a point in the scene as well as the

motion axis direction by setting the direction of the 3D vec-

tor using our UI’s helper tools.

5. The SceneFun3D Dataset

In this section, we describe the SceneFun3D dataset and we

present statistics concerning the scenes, functionality anno-

tations, collected language task descriptions and motion an-
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"Open the top oven door"

"Turn on the TV using the
remote on the table"

"Open the window"

"Adjust the toaster's
intensity"

hook_turn

key_pressrotate

hook_pull

Figure 4. Examples of the collected natural language task descriptions.

Figure 5. Examples of 3D motion annotations.

notations. Figures 3, 4 and 5 show examples of functional-

ity annotations, collected task descriptions and motion an-

notations in our dataset respectively.

Train/Validation/Test splits. Following the standard prac-

tice, we split our data into training, validation and test splits.

Since the test set of ARKitScenes is not publicly available,

we use the scenes in its validation set as our test set. To con-

struct the validation set, we randomly draw scenes from the

training set of ARKitScenes and use the rest as the training

split. Overall, our dataset consists of 545, 80 and 85 scenes

for training, validation and testing respectively.

Dataset statistics. Our dataset offers the total of 14,867

annotations of functional interactive elements along with

their affordance class for 710 scenes. Furthermore, we pro-

vide motion annotations for 14,279 interactive elements out

of which 8325 require translational motion and 6542 rota-

tional motion. Last, we offer natural language task descrip-

tions for 10,913 interactive elements. After the automated

rephrasing augmentation process, we receive 6,220 addi-

tional descriptions, which results in the total of 17,133. We

refer the reader to the supplementary material for additional

statistics.

6. Baselines and Experiments

We leverage the SceneFun3D dataset to introduce bench-

marks for the novel tasks of functionality segmentation,

task-driven affordance grounding and 3D motion estima-

tion. For each task, we first describe the baselines and eval-

uation metrics and then we show quantitative and qualitative

results on our test set. For further implementation details,

we refer the reader to the supplementary material.

6.1. Functionality segmentation

For this task, we adapt two state-of-the-art methods for

3D object instance segmentation, Mask3D [52] and Soft-

Group [58]. We also report results on the open-vocabulary

LERF model [33].

Mask3D-F. Since instance masks of the functional interac-

tive elements are smaller in size than the masks of object

instances, state-of-the-art methods on object instance seg-

mentation do not work well out-of-the-shelf. As a first step,

we substitute the distribution-based BCE loss in the loss

function with a region-based Dice loss which can handle

better the background/foreground class imbalance. We train

Mask3D with the overall loss Lseg = ¼diceLdice + ¼ceLce,

where Ldice is the dice loss to supervise the masks and Lce

is a multi-label cross entropy loss.

SoftGroup-F. Following [58], we first train the U-Net back-

bone on the semantic masks. Similar to Mask3D-F, we sub-

stitute the cross-entropy loss with a weighted multi-class

dice loss Lm-dice. We train the backbone using the combined

loss Lbackbone = ¼m-diceLm-dice + ¼offsetLoffset, where Loffset

is the offset loss [58] used to supervise the offset vectors.

Next, we freeze the backbone and train the top-down re-

finement module on the instance masks. For this stage, we

use the combined loss L = Lbackbone + Ltop-down. We utilize

the loss Ltop-down = ¼ceLce +¼diceLdice +¼scoreLscore, where

Lce is a multi-label cross-entropy loss, Ldice is the dice loss

and Lscore is the mask score loss [58].

LERF. LERF [33] is a method for grounding language em-

beddings from CLIP [50] into NeRF [42], enabling open-

ended language queries in 3D. We evaluate the zero-shot

capabilities of LERF on our dataset.
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Mask3D-F instance predictionGround-truth affordance masksInput Point Cloud Mask3D-F affordance prediction Ground-truth instance masks

pinch_pull pinch_pull

hook_turn hook_turn hook_turn hook_turn

Figure 6. Qualitative results on the Mask3D-F predictions for the task of functionality segmentation.

Method AP AP50 AP25

SoftGroup-F 3.6 8.4 17.2

LERF [33] 4.8 12.3 18.1

Mask3D-F 7.9 18.3 26.6

Table 2. Quantitative results on functionality segmentation.

Coarse-to-fine learning based on a curriculum. For train-

ing Mask3D-F and SoftGroup-F, we propose a curriculum

learning technique to boost the performance. Since these

methods were originally designed to work with larger in-

stance masks of objects, they may struggle with detecting

the smaller masks of interactive elements in the scene. In-

spired by the concept of curriculum learning [5], we start

training with coarse instance masks at first, which are easier

for the network to detect. Then, during training, we gradu-

ally start feeding the network with more fine-grained masks

closer to the ground-truth. To generate the coarser masks,

we expand the ground-truth instance masks by considering

all the points within a certain radius from the mask’s points.

Specifically, denoting the point cloud as P , the ground-truth

instance mask as Q, and the mask expansion radius as rn,

the expanded instance mask is calculated as follows

Qrn
expand = {p | ∥p− q∥2 < rn, p ∈ P, q ∈ Q} (1)

The mask expansion radius is gradually reduced during

training using step decay

rn = r0d
+n

α
, (2)

where rn is the mask expansion radius in epoch n, r0 is the

initial expansion radius at the beginning of training, d is the

decay rate and ³ is the decay interval. After rn becomes

smaller than a threshold rthr, we disable mask expansion

and we refine the network using the ground-truth masks.

Metrics. As our main metrics, we report the mean Average

Precision at the IoU thresholds of 0.25 and 0.50, AP25 and

AP50 respectively. We also report AP , the average over

different IoU thresholds from 0.5 to 0.95 with a step of 0.05.

Results. We report the performance on Tab. 2. We

Method AP50 AP25

OpenMask3D [54] 0.0 0.0

LERF [33] 4.9 11.3

OpenMask3D-F 8.0 17.5

Table 3. Quantitative results on task-driven affordance grounding.

observe that Mask3D-F achieves better performance than

SoftGroup-F on functionality segmentation, which is in ac-

cordance with previous findings on object instance seg-

mentation benchmarks such as ScanNet [9] and S3DIS [2].

LERF achieves better scores than SoftGroup-F but fails

to match the performance of Mask3D-F. Furthermore, all

methods are effective at segmenting distinctive elements

such as handles that are easily observable but struggle with

very small structures, such as knobs on an electrical device.

In Fig. 6, we show qualitative results on the Mask3D-F se-

mantic and instance predictions.

We also perform an ablation study on the effect of the

initial mask expansion radius (Tab. 4, left). We observe that

setting the mask expansion radius to r0 = 0.1 leads to op-

timal performance and increasing it further does not yield

any performance gains. Our results demonstrate that if we

disable coarse-to-fine training (r0 = 0) the model fails to

detect interactive elements in the scene.

r0 AP50 AP25

0.2 18.3 26.2

0.1 18.3 26.6

0.05 9.8 18.6

None 0.0 0.0

kexp AP50 AP25

0.1 4.5 11.2

0.5 8.3 16.2

1.0 8.0 17.5

2.0 8.0 16.5

Table 4. Ablation studies. Left: Initial mask expansion radius

(r0) used for coarse-to-fine learning on Mask3D-F for the task

of functionality segmentation. Right: Expansion ratio (kexp) pa-

rameter of OpenMask3D-F for the task of task-driven affordance

grounding.

6.2. Task­driven affordance grounding

For this task, we adapt OpenMask3D [54] to per-

form language-guided segmentation of functional elements,
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OpenMask3D-F predictionOpenMask3D-F prediction OpenMask3D-F prediction OpenMask3D prediction

"Open the left cabinet door under the sink""Change the room's temperature using the radiator's
thermostat located next to the terrace door"

"Unplug the electric kettle from the power supply"

Figure 7. Qualitative results on the OpenMask3D-F predictions for the task of task-driven affordance grounding. OpenMask3D-F uses func-

tional element-level masks, which enables more fine-grained segmentation compared to object-level approaches such as OpenMask3D [54].

Method AP25 +M +MA +MAO

Mask3D-FM (rgb) 26.6 23.8 9.8 7.9

Mask3D-FM (rgb + n) 26.5 24.0 10.2 8.1

Table 5. Quantitative results on motion estimation

driven by complex descriptions. We also use the LERF [33]

model as a baseline.

OpenMask3D-F. OpenMask3D [54] is an instance based

approach, which relies on object mask proposals obtained

from Mask3D [52]. This object-level representation does

not allow the segmentation of functional elements such as

buttons, handles and switches. We extend OpenMask3D to

use mask proposals from our adapted Mask3D-F which pro-

poses masks for functional elements, and we refer to this

approach as OpenMask3D-F. For this task, we compute a

CLIP-based [50] embedding for each proposed functional

element-mask. Then we encode the task-description queries

for each scene using the CLIP text encoder. We measure

the similarity between the mask-embeddings and query-

embeddings, and retrieve the mask for a given description

text, if the similarity score is above a certain threshold. As

OpenMask3D relies on multi-scale image crops, it is sensi-

tive to the crop-expansion ratio, kexp (details in [54]). We

also experiment with varying kexp values to investigate its

affect on task-driven affordance grounding. This ablation

study is presented in Tab. 4 (right).

Metrics. For this task, we use instance segmentation met-

rics, and report the AP50 and AP25.

Results. Scores are presented in Tab. 3. We observe that

OpenMask3D-F outperforms LERF by a significant mar-

gin. The results on OpenMask3D-F also highlight the im-

portance of having fine-grained functional element masks

in order to successfully identify how a certain task can take

place. Fig. 7 shows qualitative results of OpenMask3D-F.

6.3. Motion estimation

Mask3D-FM. We extend the Mask3D-F baseline to addi-

tionally predict the per-instance motion parameters along

with the segmentation mask and affordance label. To this

end, we enhance the mask module [52] of the architecture

to jointly predict the motion type, motion axis and motion

origin by adding a per-instance prediction head for each mo-

tion parameter. For training, we utilize the overall loss of

L = Lseg + Lmotion, where Lmotion is a combined loss to su-

pervise the motion parameters, inspired by [31, 53]. Specif-

ically, it is defined as Lmotion = ¼typeLtype + ¼axisLaxis +
¼originLorigin, where Lmotion is a cross-entropy loss for the

motion type, Laxis is a smooth L1 loss for the motion axis

and Lorigin is a smooth L1 loss for the motion origin.

Metrics. To evaluate the motion prediction performance,

we follow [40, 53] and extend the AP25 metric for motion

parameter accuracy. More specifically, we further constrain

mask prediction by whether the model accurately predicted

the motion type (+M), the motion type and the motion axis

direction (+MA) and the motion type, motion axis direction,

and motion origin (+MAO). We consider the motion axis

matched if the angle between the ground-truth axis direction

and the predicted axis does not exceed 15◦ and the motion

origin matched if the minimum distance between the axis is

lower than 0.25.

Results. Quantitative results can be seen on Tab. 5. We

report two variants of our baseline, one that uses only the

rgb color information of the point cloud and one that addi-

tionally uses the estimated normal information. We observe

that the normal information helps the model to predict the

motion parameters more accurately.

7. Conclusion

In this work, we present SceneFun3D, the first large-scale

dataset that leverages laser scans to provide geometrically

fine-grained masks along with affordance labels of func-

tional interactive elements in 3D real-world indoor scenes,

followed by motion parameter information and a diverse set

of natural language descriptions of tasks that require inter-

action with them. To investigate multi-task and holistic 3D

scene understanding, we introduce the three novel tasks of

functionality segmentation, task-driven affordance ground-

ing and 3D motion estimation. We adapt state-of-the-art

methods on closed-set and open-set 3D scene understand-

ing and report promising results. We believe that our dataset

will stimulate advancements in embodied AI, robotics and

realistic human-scene interaction modelling.
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[39] Timo Lüddecke and F. Wörgötter. Learning to Segment Af-

fordances. In International Conference on Computer Vision

(ICCV) Workshops, 2017. 3, 5

[40] Yongsen Mao, Yiming Zhang, Hanxiao Jiang, Angel X

Chang, and Manolis Savva. MultiScan: Scalable RGBD

scanning for 3D environments with articulated objects. In

Neural Information Processing Systems (NeurIPS), 2022. 2,

3, 4, 8

[41] Daniel Meister, Shinji Ogaki, Carsten Benthin, Michael

Doyle, Michael Guthe, and Jiri Bittner. A Survey on Bound-

ing Volume Hierarchies for Ray Tracing. Computer Graph-

ics Forum, 40:683–712, 2021. 4

[42] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,

Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:

Representing Scenes as Neural Radiance Fields for View

Synthesis. In Conference on Computer Vision and Pattern

Recognition (CVPR), 2020. 6

[43] Kaichun Mo, Yuzhe Qin, Fanbo Xiang, Hao Su, and

Leonidas Guibas. O2O-Afford: Annotation-free large-scale

object-object affordance learning. In Conference on Robot

Learning (CoRL), 2021. 3

[44] Tushar Nagarajan and Kristen Grauman. Learning Affor-

dance Landscapes for Interaction Exploration in 3D Environ-

ments. In Neural Information Processing Systems (NeurIPS),

2020. 3

[45] Tushar Nagarajan, Christoph Feichtenhofer, and Kristen

Grauman. Grounded Human-Object Interaction Hotspots

from Video. In ICCV, 2019. 3

[46] Songyou Peng, Kyle Genova, Chiyu ”Max” Jiang, An-

drea Tagliasacchi, Marc Pollefeys, and Thomas Funkhouser.

OpenScene: 3D Scene Understanding with Open Vocabular-

ies. In Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2023. 2, 3

[47] James Pustejovsky. The generative lexicon. MIT press, 1998.

2

[48] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.

PointNet: Deep Learning on Point Sets for 3D Classification

and Segmentation. In Conference on Computer Vision and

Pattern Recognition (CVPR), 2017. 3

[49] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Point-

Net++: Deep Hierarchical Feature Learning on Point Sets in

a Metric Space. In Neural Information Processing Systems

(NeurIPS), 2017. 3

[50] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya

Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,

Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen

Krueger, and Ilya Sutskever. Learning Transferable Visual

Models From Natural Language Supervision. In Interna-

tional Conference on Machine Learning (ICML), 2021. 2,

6, 8

[51] David Rozenberszki, Or Litany, and Angela Dai. Language-

Grounded Indoor 3D Semantic Segmentation in the Wild. In

European Conference on Computer Vision (ECCV), 2022. 3

[52] Jonas Schult, Francis Engelmann, Alexander Hermans, Or

Litany, Siyu Tang, and Bastian Leibe. Mask3D: Mask Trans-

former for 3D Semantic Instance Segmentation. In Inter-

national Conference on Robotics and Automation (ICRA),

2023. 3, 6, 8

[53] Xiaohao Sun, Hanxiao Jiang, Manolis Savva, and An-

gel Xuan Chang. OPDMulti: Openable Part Detection for

Multiple Objects. 3DV, 2024. 3, 8

[54] Ayça Takmaz, Elisabetta Fedele, Robert W. Sumner, Marc

Pollefeys, Federico Tombari, and Francis Engelmann. Open-

Mask3D: Open-Vocabulary 3D Instance Segmentation. In

Neural Information Processing Systems (NeurIPS), 2023. 2,

3, 7, 8

[55] Ayça Takmaz, Jonas Schult, Irem Kaftan, Mertcan Akçay,
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