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Abstract

We explore the use of Large Language Model
(LLM-based) chatbots to power recommender sys-
tems. We observe that the chatbots respond poorly
when they encounter under-specified requests (e.g.,
they make incorrect assumptions, hedge with a
long response, or refuse to answer). We conjecture
that such miscalibrated response tendencies (i.e.,
conversational priors) can be attributed to LLM
fine-tuning using annotators — single-turn annota-
tions may not capture multi-turn conversation util-
ity, and the annotators’ preferences may not even
be representative of users interacting with a recom-
mender system. We first analyze public LLM chat
logs to conclude that query under-specification is
common. Next, we study synthetic recommenda-
tion problems with configurable latent item utili-
ties, and frame them as Partially Observed Deci-
sion Processes (PODP). We find that pre-trained
LLMs can be sub-optimal for PODPs and derive
better policies that clarify under-specified queries
when appropriate. Then, we re-calibrate LLMs by
prompting them with learned control messages
to approximate the improved policy. Finally, we
show empirically that our lightweight learning ap-
proach effectively uses logged conversation data to
re-calibrate the response strategies of LLM-based
chatbots for recommendation tasks.

1 INTRODUCTION

In contrast to their task- or domain-specific predecessors,
modern conversational agents have employed large language
models (LLMs) to achieve high proficiency levels (i.e., at
or exceeding that of humans) in challenging, open-domain
settings [Achiam et al., 2023]. The implicit objective for the
agent in such settings is to respond to a user in a way that

Figure 1: An example failure where a user’s query is under-
specified (blue text). Current LLM-based chatbots produce
long responses in order to hedge against uncertainty (purple
text). Clarifying the user’s context can avert this failure.

maximizes the user’s utility given their conversation goal(s).

However, humans are often unable or rationally unwilling
to fully verbalize (i.e., explicitly state) their goals and pref-
erences for various reasons (e.g., efficiency) and may in-
stead rely on their conversational partner(s) to fill in the
gaps [Piantadosi et al., 2012]. This leads users to issue
under-specified queries in which the LLM-based chatbot
observes only a subset of the preferences and constraints re-
quired to provide a high-quality answer – see Figure 1 for an
example. Empirically, we observe that under-specification is
common: we classified a random sub-sample of the queries
in the OpenAssistant dataset [Köpf et al., 2023] and found
that more than 23% of queries posed to LLM-based chat-
bots today are severely under-specified (see Figure 2 and
Section 3.1 for details).

In this paper, we explore the relationship between query
under-specification, LLM response behavior, and user sat-
isfaction. We begin by proposing a taxonomy of LLM re-
sponse strategy types (see Table 2) to characterize the behav-
ior of SoTA models in the face of query under-specification—
i.e., their “conversational priors”— with respect to utility
and cognitive cost [Tankelevitch et al., 2023]. Figure 3 pro-
vides a demonstrative example. Note that each response
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Figure 2: Real-world users asked severely under-specified
queries more than 23% of the time in the OpenAssistant
dataset (n = 600).

Cost

Usefulness

REFUSE
As an AI model, I can-
not answer.

DIRECT RESPONSE
Yes, it is!

HEDGE
<Answer lists many factors
such as dress code, fabric,
colors, etc.>

INTERROGATE
What is your
height? Are you
wearing pants?
What is your fa-
vorite color? ...

CLARIFY
What are you wearing
and what is the dress
code?

Q: “Is my outfit appropriate for the event?”

Figure 3: For a user query such as q: “Is my outfit appropri-
ate for the event I’m attending tonight?” an LLM-based chat-
bot can choose different response strategies. These strategies
produce responses that differ in their cognitive costs (x-axis)
while providing final answers with different, user-specific
levels of usefulness (y-axis). A good chatbot should respond
so as to maximize overall utility—i.e., by providing useful
and low-cost answers for the user.

strategy (a) can be characterized by syntactic and semantic
features (i.e., length, presence or absence of conditional
statements/questions, etc.) and (b) will give rise to a joint
distribution over cost and utility that impose different trade-
offs depending on the user’s true but latent preferences.

We use this taxonomy and a combination of synthetic and
real-world queries to empirically demonstrate that: (a) SoTA
LLMs are predisposed to respond directly or hedge in lieu of
asking a small number of clarifying questions when queries
are under-specified; and (b) such miscalibration can lead
to unsatisfactory and/or sub-optimal performance on down-
stream tasks (as illustrated in Figure 1 and Section 3.2).

To address the miscalibration of LLMs outlined above, we
formalize user-chatbot interactions as a partially observable
decision process (PODP), where a user with a partially ob-

servable goal engages in a turn-by-turn conversation with a
chatbot. In this PODP, the chatbot’s policy π is a fixed map-
ping from conversation prefixes (which can span multiple
turns) to natural language responses. Then, for any given
conversation and user goal, the chatbot seeks to provide a
natural language response that maximizes utility according
to a fixed but unknown user utility function. Note that utility
is computed with respect to the user’s latent goal, which
may be fully or partially observable via their query.

Intuitively, when the goal is partially observable and the
user is amenable to answering a small number of clarifying
questions, a policy that produces a natural language response
containing questions at timestep t0 and incorporates the
information gained to produce higher-quality responses at
future timestep(s) will yield higher expected cumulative
utility, relative to a myopic policy that tends to respond
directly or hedge at t0. We build upon this insight to propose
two interventions (Sections 4.1 and 4.2) to make LLM-based
chatbots produce better-calibrated responses in the face of
query under-specification. Both of the interventions require
only API access to frozen, black-box LLMs.

Our first intervention (Section 4.1) is inspired by prior re-
search on the generation of clarification questions Rao and
Daumé III [2018], Majumder et al. [2021], and uses a static,
“clarification-aware” prompt to nudge LLMs to clarify when
appropriate rather than reverting to default response behav-
ior. Our second intervention (Section 4.2) leverages histori-
cal conversation logs to learn a meta-policy—i.e., a mapping
from conversation prefixes to a finite set of prompts. Then
during a PODP episode, the chatbot first invokes this meta-
policy, and then calls the LLM with the resulting prompt to
produce a contextually appropriate PODP action. We expect
the two proposed interventions to be effective in different
data regimes — if high-quality logged data is readily avail-
able, the approach in Section 4.2 is a practical alternative to
resource-intensive approaches such as fine-tuning LLMs on
the collected data. Conversely, if we do not have access to
sufficient high-quality data, we may prefer the data-agnostic
approach of Section 4.1.

In Section 6, we highlight that our proposed interventions
can be further improved—for instance, reasoning about
“good” clarification questions to ask (currently left up to the
LLM) and the propensity of users to answer with relevant
information. Empirically, we evaluate both interventions on
recommendation tasks featuring a synthetic user model. We
find that each intervention achieves higher expected utility
relative to baseline when queries are under-specified, and
converges to baseline as query specification increases.

2 PROBLEM FORMULATION

In the PODP setting that we consider, let θ ∈ Θ repre-
sent a user’s latent, conversation-level goal. Each PODP
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Figure 4: PODP plate diagram illustrating user-chatbot inter-
actions, prompt-induced policies (πp), and the meta-policy
mapping from conversations to prompts (β).

episode—i.e., user-chatbot conversation—begins with the
user expressing their goal, θ, in a potentially lossy manner
via a natural language query, q ∈ Q. Per Definition 2.1,
we consider a query q to be under-specified if there is an
information gap between the user’s goal and stated query:

Definition 2.1 (Under-specification). Query under-
specification is the partial observability of user’s goal given
a query, i.e., Pr(Θ | Q) is unknown and not deterministic.

Table 1 lists some examples of under-specified queries in
the OpenAssistant dataset (see Section 3.1 for details).

Once initiated, a conversation dialogue is assumed to pro-
ceed iteratively until terminated by the user (Figure 4). In
this context, the chatbot’s natural language responses con-
stitute the action space of the PODP and are denoted by
a ∈ A, while the user’s follow-up utterances constitute ob-
servations denoted by o ∈ O. We denote the multi-turn,
variable-length conversation history between the user and
chatbot by C := q × [a, o]

∗. We use C := Q × [A,O]∗
to refer to the space of conversation histories. Then, for
any chat conversation C with user goal θ, the task of the
chatbot system is to produce actions with maximum util-
ity according to a fixed but unknown user utility function,
U : Θ×C 7→ R. Although the reward function of the PODP,
U , is unknown we can observe samples from it. For ex-
ample, many LLM-based chatbots allow users to rate their
conversations; these ratings can be directly interpreted as
U(Θ, C). Recent work [Lin et al., 2024] infers U across a
user population using a small sample of rated conversations.
In general U can rely on a mix of implicit factors, such as re-
sponse length, and explicit factors, such as thumbs up/down
or user ratings of paired responses. Moreover, in Figure 3
we saw that the cognitive cost imposed on the user can be an-
other component influencing U ; in our experiments, we use
response length—len(a)—as a simple proxy for a user’s
cognitive cost from action a.

We define the policy π of a chatbot interacting with a user
as a stationary (but not necessarily Markovian) mapping
from conversation histories to natural language responses
π : C → A (Figure 4). An optimal chatbot policy is one that
maximizes expected utility:

π∗ ≈ argmax
π

E{θ,q}Ea∼π[U(θ, q, [a, o]∗ , a)]. (1)

In Equation 1, note that the policy influences the responses
a in all turns of the conversation, and that Pr(Θ,Q) is sam-
pled from the user population.

2.1 POLICIES INDUCED BY PROMPTING LLMS

System messages (also known as prompts) are often used
to “steer” an LLM and induce specific behaviors (e.g.,
p =“Behave as a helpful assistant”). For LLMs that do
not support a separate system message p, the prompt and
conversation transcript can be concatenated together into
the LLM’s input context := p ◦ C. Otherwise, PODP poli-
cies can be induced by using a prompt p and LLM input
context := C. Such PODP policies are denoted as πp. If
we restrict our attention to the chatbot policies we can ac-
cess via prompting, we can rephrase the policy optimization
objective (i.e., Equation 1) in terms of prompt optimization:

p∗ ≈ argmax
p

E{θ,q}Ea∼πp [U(θ, q, [a, o]∗ , a)]. (2)

When we implement a policy by querying a blackbox LLM
API with context := C (i.e. p is empty), we refer to the
induced PODP policy as the RLHF policy πRLHF. We can
expect good PODP performance out-of-the-box from an
LLM only if its RLHF-finetuning guarantees that πRLHF ≈
π∗ (which is unverifiable).

2.2 QUERY UNDER-SPECIFICATION CAUSES
SUB-OPTIMAL INTERACTIONS

Modern LLMs are typically fine-tuned via RLHF, where the
training objective [Ouyang et al., 2022] corresponds to:

πRLHF ≈ argmax
π

E{θ,q}∼labEa∼π[U(θ, q, a)]. (3)

The combination of query under-specification and RLHF
fine-tuning impacts policy learning (i.e., via Equation 3) in
two ways: (1) distribution shifts between the preferences
of annotators and those of end-users may skew the learned
policy; and (2) RLHF’s emphasis on annotation of, and
optimization over, single-turn interactions produces myopic
policies that greedily maximize single-turn utility.

With respect to (1), annotators may not be able to reliably in-
fer users’ true preferences (i.e., θ) when evaluating possible
responses to user queries—i.e., Prlab(Θ | Q) ̸= Pr(Θ | Q).



Additionally, the utility function may also shift. For exam-
ple, Singhal et al. [2023] observe that RLHF annotators may
prefer longer, more detailed responses relative to end-users.

With respect to (2), the focus on single-turn interactions
means annotators are less likely to be exposed to conversa-
tions where a chatbot asks the user clarification questions
to better understand and respond to the user’s query, be-
cause such conversations will, by definition, require mul-
tiple turns. In the single-turn setting, annotators may also
perceive responses that attempt to answer users’ queries
(albeit incorrectly or verbosely) as more helpful than re-
sponses containing clarification questions. Policy learning
with such preferences may thus underestimate the value of
uncertainty-reducing behaviors such as clarification, and the
resulting policy may be sub-optimal for multi-turn conversa-
tional outcomes in PODPs. We empirically show that these
challenges render πRLHF sub-optimal compared to π∗.

2.3 META-POLICIES

When prompting LLMs to produce chatbot responses, we
are not limited to using a fixed prompt for all conversation
turns. Instead, we can define a meta-policy, β : C 7→ p as a
mapping from conversation prefixes to prompts. A PODP
agent acting during an episode can first invoke the meta-
policy β, and then query the LLM with prompt p := β(C)
to produce its action. For PODP policies implemented
through a composition of a meta-policy with an LLM, the
original problem of finding a good π∗ is replaced with find-
ing a good meta-policy β∗:

β∗ ≈ argmax
β

E{θ,q}Ea∼πp [U(θ, q, [a, o]∗ , a) |

p = β(q, [a, o]
∗
)].

Note that learning a meta-policy β is a different decision-
making problem than the PODP decision-making problem
(i.e., action space of prompts instead of chatbot responses).

2.4 CHARACTERIZING AND INDUCING
CHATBOT RESPONSE BEHAVIORS

To empirically evaluate πRLHF and to design prompt-based
interventions, we introduce a taxonomy (detailed in Sec-
tion 3.2) that can be used to (1) characterize LLM response
behavior; and (2) constrict the meta-policy’s action space.
Regarding (1), we refer to the distribution of response strate-
gies of πRLHF as the LLM’s “conversational prior” (e.g., see
Figure 6 for GPT-4’s conversational prior).

To build intuition for how this taxonomy may serve both
purposes, note that πRLHF can be viewed as a hierarchical
probabilistic process in which the chatbot first samples a
latent response strategy, τ ∼ T , and then generates a natu-
ral language response conditioned on the response strategy,

uncertainty-
agnostic

uncertainty-
reducingRESPOND HEDGE CLARIFY INTERROGATE

Figure 5: Spectrum characterizing the response strate-
gies that a LLM-based chatbot can take. RLHF fine-tuning
encourages RESPOND and HEDGE, whereas CLARIFY may
be more appropriate when user queries are under-specified.

a | τ . Then, if πRLHF is found to be miscalibrated in its dis-
tribution over T , we can intervene via prompts to promote
desired response behavior(s).

We specifically consider a set of response strategies, T =
{REFUSE, RESPOND, HEDGE, CLARIFY, INTERROGATE}.
To motivate this choice, recall that in the PODP, the chatbot
cannot observe the user’s intent, θ, and must instead act
based on the belief state—i.e., Pr(θ | q, [a, o]∗). In this
context, possible response strategies lie along a spectrum
characterized by the relative absence or presence of
(belief)-uncertainty-reducing behavior(s) (Figure 5).

On the uncertainty-agnostic end of this spectrum, the chat-
bot may rely on its inductive prior to respond directly—i.e.,
despite uncertainty about the user’s preferences. Responding
directly relies on assumptions and/or potentially spurious
semantic correlations between the preferences the user does
express and those that the LLM-based chatbot must infer.
On the uncertainty-reducing end, a chatbot may ask an
unbounded number of questions before responding (Interro-
gate). This can allow the system to best approximate a user’s
fully specified intent but is completely irrational for the user
to engage with. As Figure 3 shows, any deviations from
the Respond response strategy must be done in a thoughtful
manner, lest the user have a worse cost-utility benefit even
as the system reduces uncertainty in its beliefs.

In a PODP, it is critical to balance information-seeking (ex-
ploration) against utility maximization (exploitation). In Sec-
tion 3, we demonstrate that πRLHF places too much weight
on response strategies that myopically maximize one-step
utility (i.e., RESPOND and HEDGE). In Section 4.1, we
demonstrate that a simple prompt is able to shift the distribu-
tion over response strategies toward CLARIFY when queries
are under-specified, and thereby improve the PODP policy.

3 MOTIVATING EXPERIMENTS

Here, we establish that: (1) query under-specification is
common in real-world human-chatbot conversations; and (2)
πRLHF can be sub-optimal when queries are under-specified.

3.1 QUERY UNDERSPECIFICATION IS COMMON

We annotated the OpenAssistant dataset [Köpf et al., 2023]
to explore how often users issue under-specified queries to
open-domain LLM-based chatbots. We restrict our study
to queries in English with at least 3 words (≈ 40% of over



10, 000 conversations) and subsample 600 queries uniformly
at random. We created an LLM-based classifier to map
each query to a predicted under-specification label, whose
accuracy we also validate on a synthetic corpus (see Ap-
pendix A.1). Class labels include:

• CRITICAL UNDER: One or more important factors upon
which an answer to this query might depend are not speci-
fied or are unknown; it is difficult to provide a high-quality
response without knowing these factors.

• MINOR UNDER: Less important factors that the query
might depend on are not specified or are unknown; how-
ever, it is possible to provide a high-quality response even
without knowing these factors.

• SUFFICIENT: All important factors upon which an answer
to this query might depend are sufficiently specified.

Figure 2 summarizes the results of this experiment, which
shows that query under-specification is prevalent. A few ex-
amples of critically under-specified queries are listed in Ta-
ble 1. Note also that many OpenAssistant users have experi-
ence with prompting, and we conjecture a higher prevalence
of under-specified queries from novice user populations.

Critically Under-specified Queries (Abridged)

Suggest me places near 72nd St where I can park my car.
What are some up and coming and high quality youtube channels
in science and technology that I have probably not heard of?
A friend of mine barely talks to me anymore and I don’t know why.

Table 1: Examples from the OpenAssistant dataset tagged
by our classifier (details in Appendix A.1).

3.2 LLM POLICIES CAN BE SUB-OPTIMAL
WHEN QUERIES ARE UNDER-SPECIFIED

When queries are under-specified, πRLHF has difficulties op-
timally trading-off information seeking with greedy, utility-
maximizing response tendencies. To study this, we define
seven broad categories for query responses in Table 2. We
use these definitions with an LLM-based classifier, which
we validate in Appendix A.2. Let τ be the predicted re-
sponse type of response a. Our experiments show that both
for real-world and synthetic queries, the current SoTA LLM,
GPT-4, prefers to either directly respond or hedge, instead
of clarifying via a short question.

3.2.1 Synthetic query corpus

The goal for the synthetic corpus is to have a full-
information setting where we can explicitly control the
degree of under-specification and measure the utility of
any given response. We generate queries for three differ-
ent recommendation domains (movies, gifts, plants) that
each have four constraint dimensions θi that can be active

Response type τ Response characteristics

REFUSE Contains an explicit or implicit refusal to answer.
DIRECT RESPONSE No questions or hedging; addresses query.
HEDGE Many answers, conditioned on uncertain factors.
CLARIFY Limited/prioritized set of questions (i.e., ≤ 3).
INTERROGATE Large/exhaustive number of questions (i.e., > 3).
MISSING The response is empty/blank.
MISCELLANEOUS Describes or follows query instructions.

Table 2: For the motivating experiments in Section 3, we
categorize LLM responses into seven response types.

(set to a specific value, e.g., θage = “25-35 years”), or in-
active, (e.g., θage = ∅). We base this setup on Radlinski
et al. [2019], who studied users’ preferences for movies
expressed in a conversational recommendation setting. The
user goal is then to get a recommendation that satisfies all
of these constraints. Constraint values and the number of
active dimensions are sampled via uniform sampling. After
determining the ground truth user goal θ, we generate a po-
tentially under-specified user query by sampling a subset of
active constraint dimensions to reveal. With a slight abuse
of notation, let q be the vector of revealed active constraints.
We categorize the resulting queries as:

q 7→


CRITICAL UNDER |q| ≤ 1,

SUFFICIENT |q| = |θ|,
MINOR UNDER otherwise.

(4)

Details can be found in Appendix C.1.

3.2.2 Sub-optimality of LLM in single-step interaction

For each query, we use GPT-4 with the default system mes-
sage to generate a natural language response a ∼ πRLHF

and assign it a response type label τ from Table 2 using our
LLM-based classifier.

Figure 6 shows the distribution over response strategies
(by corpus and under-specification severity) for πRLHF. We
observe that for both synthetic and real-world queries, us-
ing the uncertainty-agnostic DIRECT RESPONSE strategy
is preferred by a large margin across all under specifica-
tion buckets. While there is evidence that uncertainty-aware
response strategies (i.e., HEDGE, CLARIFY, and INTERRO-
GATE) are increasingly used when under-specification rises,
the sheer magnitudes still express a clear bias for πRLHF

to respond or hedge—rather than clarify—in the face of
under-specification. This indicates that there is headroom to
improve utility even over SoTA LLMs.

3.2.3 Sub-optimality of LLM in multi-step interactions

Intuitively, a policy asking a few relevant questions in the
beginning should be able to outperform πRLHF in many
cases since πRLHF often defaults to DIRECT RESPONSE.
The following two-step recommendation task shows this.



Figure 6: Even under severe levels of under-specification,
GPT-4 prefers to directly answer a user query.

We compare πRLHF with two simple static policies described
in Table 3. We use modified system messages to encourage
different behavior for the first response, and follow πRLHF as
the default policy after (for full prompts, see Appendix B).

Policy πp System prompt p0

πRLHF Default LLM system message (unmodified).
πClarify Ask about ≤ 3 of most relevant factors.
πHedge Condition on option(s) for each uncertain factor.

Table 3: We evaluated three different policies that encourage
different initial response strategies to show the possible
room for improvement in multi-step interactions.

We use the queries and ground truth user goals from the syn-
thetic query corpus outlined in Section 3.2.1, but focus on
the movie domain only, following Cheng et al. [2023]. Each
episode begins at t = 0 (denoted t0) with the user issuing
query q to ask for movie recommendations that satisfy their
true preferences θ. When the LLM-based chatbot provides
recommendations (i.e., chooses action types DIRECT RE-
SPONSE or HEDGE), we terminate the episode and compute
the utility of the recommendation. If the chatbot asks ques-
tions, we use another LLM as a user simulator, requiring the
latter to divulge information in a templatized format about
constraints θi only if explicitly asked (see Appendix C.4).

Item Utilities. We begin by measuring the utility of items
recommend by each π, operationalized as the fraction of
constraints (out of 4) that an item satisfies, averaged across
all items recommended to the user. Instead of comparing
individual policies, we compare response types τ to elim-
inate cases where setting the system message p did not
induce the desired response type. Figure 7 shows how multi-
step episode utilities develop when we group by the type of
the first system response, τ0. CLARIFY does not generate
any utility at time t0, since no recommendations have been
made, but does much better in the second time step t = 1,
especially for critically under-specified queries. When we
HEDGE in the beginning, we do get utility at t0, but generate
less than when we directly reply, since utility is averaged
over all (possibly irrelevant) recommendations.

These findings suggest that there is headroom for improve-
ment over πRLHF in multi-step interactions.

Figure 7: Distribution of accumulated item utilities U at
timesteps t = 0, 1; grouped by under-specification levels.

Costs. We now consider how the cost of capturing this
headroom—i.e., moving from an under-specified query to a
more fully specified version—varies over the uncertainty-
aware strategies that we consider—i.e., HEDGE and CLAR-
IFY. To proxy for the cognitive burden associated with read-
ing and answering clarification questions or parsing the
many cases or conditions mentioned in hedging responses,
we define a cost function, c : A → R≥0 := len(a) (mea-
sured by counting all unigrams in a).

Figure 8: Distribution of response cost at t = 0 for each
response strategy τ0; grouped by under-specification levels.

Figure 8 illustrates the benefit of CLARIFY – it carries a
relatively low cost in terms of output length. Interestingly,
the DIRECT RESPONSE action produces the longest answer
among all other response types when queries are critically
under-specified. Inspecting the produced responses, we see
that DIRECT RESPONSE produces long answers by adding
explanations or extended lists of recommendations. When
queries are sufficiently specified, HEDGE leads to the high-
est cost answers, as it still enumerates over many answer
options. Overall, we see that CLARIFY obtains the lowest
average cost across all under-specification buckets, suggest-
ing that a policy could achieve higher utility with lower
costs by considering the CLARIFY action more often.

4 ALGORITHMIC APPROACH

In this section, we outline two algorithmic interventions to
improve upon πRLHF in PODPs. The first intervention uses
a fixed prompt to an LLM-based policy πp that nudges the



LLM to prefer cost-aware uncertainty-reducing response
strategies like clarifications when appropriate. We saw in
Section 3 that this data-agnostic approach can be substan-
tially better than πRLHF when queries are under-specified
and users patiently respond to all clarifications. However,
real-world users may have varying propensities to engage
with clarifying questions. So, we devise a second interven-
tion in Section 4.2 that uses historical conversational logs to
fit an appropriate meta-policy β that can be more optimal
for the PODP.

4.1 DATA-AGNOSTIC INTERVENTIONS

We saw in Section 3 that LLM-based chatbots have suffi-
cient capabilities at detecting under-specified queries (Sec-
tion 3.1) and generating CLARIFY responses if prompted ex-
plicitly (Section 3.2.3). However, they do not appear to suf-
ficiently condition on their latent under-specification judg-
ments when generating responses in the absence of inter-
vention (i.e., when relying on the baseline system message
in πRLHF). Thus, we consider two approaches that explic-
itly emphasize the possibility of under-specification and the
benefits of clarification when appropriate and allow graceful
recovery of default system behavior when warranted—e.g.,
when queries are well-specified.

Approach 1: Chain of Thought (CoT). We evaluate a
chain-of-thought [Wei et al., 2022] intervention in the form
of a modified system message that encourages the LLM-
based chatbot to “ask yourself whether you have sufficient
information to provide a good answer, and then respond
accordingly” when responding to queries (see Appendix B).

Approach 2: Clarify When Appropriate (Clarify-Flex).
We also evaluate a more flexible, context-aware relaxation of
the “always clarify” system message that we experimented
with in Section 3.2.3. This modified system message in-
structs the LLM-based chatbot to ask clarifying questions
about important factors only if they have not been specified,
and to respond directly otherwise (see Appendix B).

Key Findings and Limitations. In order to compare our
data-agnostic interventions to πRLHF, we conduct a slightly
modified version of the two-step recommendation experi-
ment presented in Section 3.2. Here, we consider p0 values
∈ {BASELINE, COT, CLARIFYFLEX}, and sequential com-
binations ∈ {(p0,p1) | p1 = p0 ∨ p1 = BASELINE}.

We begin by using our LLM-based τ -classifier to map each
intervention to a distribution over response strategies, so as
to assess the extent to which highlighting uncertainty and
encouraging contextual awareness at response generation
time induces changes in response behavior relative to base-
line. As Figure 9 illustrates, while the COT intervention
behaves quite similarly to the BASELINE, CLARIFYFLEX
meaningfully diverges, favoring interrogation when queries

are critically under-specified, then shifting toward clarify,
and finally toward direct response (i.e., converging with
BASELINE) as the degree of specification increases.

Figure 9: Distribution of the response strate-
gies τ̂0 induced by the three prompts =
{BASELINE, COT, CLARIFYFLEX}; grouped by under-
specification levels.

Next, we examine the distribution over the average utility
of recommended items for each sequential combination of
(p0,p1). As Figure 10 illustrates, (CLARIFYFLEX, BASE-
LINE) is the best-performing sequential combination when
queries are critically under-specified, with relative advan-
tage diminishing as specification increases. When queries
are sufficiently specified, (CLARIFYFLEX, BASELINE) and
(COT, BASELINE) obtain slightly higher median Ū than
(BASELINE, BASELINE), but we generally see convergence
due to the fact that both baseline and interventions tend
toward direct response in this setting.

Figure 10: Distribution of Ū for each (p0,p1) sequence;
grouped by under-specification levels.

From this analysis, we conclude that among the data-
agnostic interventions we consider, CLARIFYFLEX is best
able to improve upon the baseline πRLHF when queries are
critically under-specified, while maintaining the flexibility
to converge to direct response as specification increases. In
summary, through Figures 9,10, we see that in a synthetic
user model (that provides templatized answers to clarifica-
tion questions), it is possible to improve upon the perfor-
mance of the baseline LLM—i.e., CLARIFYFLEX performs
better than πRLHF when evaluated in the PODP.

4.2 DATA-BASED INTERVENTION

Here, we introduce an intervention that leverages collected
conversation logs to learn when and how to improve upon



πRLHF—i.e., by redistributing probability mass away from
uncertainty-agnostic direct response and cost-agnostic hedg-
ing toward cost- and context-aware response strategies such
as clarify when appropriate—in a way that is more tunable
and adaptive to different user populations than the data-
agnostic interventions we consider in Section 4.1.

We begin by considering meta-policies β as described in
Section 2.3. Remember that learning a mapping β : C 7→ p
is a different decision-making problem than the original
PODP policy. As described in Section 2.4, we will use the
taxonomy we developed in Table 2 to reduce the action
space of the meta-policies. Given a T with corresponding
prompts pτ : τ ∈ T , we consider the restricted set of
meta-policies β : C 7→ T . A PODP agent using β will,
at each timestep, first calculate τ̂ = β(C), look up the
corresponding prompt pτ̂ and finally query the LLM with
(pτ̂ , C) to produce an action in the PODP.

Conceptually, if we had the ability to simulate the PODP
environment, then we could learn a meta-policy β through
online Reinforcement Learning (RL): i.e., sample prompts
at each turn in the conversation from the current β, observe
the resulting conversation-level outcomes, and update the pa-
rameters of β using e.g., PPO. However, we typically cannot
simulate user-chatbot conversations with high fidelity, and
running online RL with users directly can be very sample
inefficient and result in a poor user experience.

Instead, we use an offline approach inspired by Asymmet-
ric Imitation Learning [Pinto et al., 2018]. We assume ac-
cess to a dataset D containing logs of user-chatbot dia-
logues along with conversation-level utility ratings, D =
{(C1, U1) . . . (Cn, Un)}. Such a dataset can be collected,
for example, from an already deployed chatbot. Notice
that the data contains signals about the true θi (i.e. Ui :=
U(θi, Ci)) beyond what can be inferred from Ci, but the
learner β does not have access to θi. Hence, imitating opti-
mal actions in D reduces to asymmetric imitation learning.

We use the τ -classifier developed in Section 3.2 to annotate
all of the chatbot responses in D with their response strat-
egy τ̂ . Consequently, we can estimate a Q-value function
Q(C, τ̂) on the annotated data as:

Q̂ = argmin
Q

∑
i∈D

∑
aj∈Ci

(Q(Ci[: aj ], τ̂(aj))− Ui)
2,

where C[: a] denotes the conversation prefix upto the chat-
bot response indicated by a. The Q-value function Q̂(C, τ)
estimates the eventual utility the learner will receive if we
take action τ upon observing conversation C and then fol-
low the baseline system (i.e., πRLHF) at all future timesteps.

When new conversations arrive, we evaluate the predicted
Q values for each τ ∈ T and choose the argmax:

β(C) = argmax
τ∈T

Q̂(C, τ). (5)

We empirically evaluate this Q-value estimation approach in
the synthetic recommendation experiment. We operational-
ize reward as the average utility (i.e., alignment between
an item’s features and the user’s true preferences) over the
set of recommended items. In the synthetic setup, we can
generate responses (and eventual conversation rewards) for
all possible τ ∈ T for each query seen in the dataset D.
So we compute Q∗ for all queries seen in D. However we
need to estimate Q for new queries as they arrive so as to
implement Equation 5.

We construct a regressor to estimate Q∗ as follows: we use
a pre-trained SentenceTransformer model [HuggingFace,
2024] to encode a stratified sample of our synthetic corpus
(we stratify by the degree of under-specification so that the
resulting distribution over labels mimics the OpenAssistant
results we report in Figure 2).

Then, for new conversation histories, e.g. q, we encode it
using the same embedding model and retrieve its k-nearest
neighbors, with k = 5. We then retrieve each neighbor’s
Q∗ and corresponding τ . We can then predict the Q-value
of each candidate τ as the average of the Q∗(τ) values
contributed by neighbors. This is akin to an asymmetric im-
itation learning baseline [Sinclair et al., 2023]. We greedily
choose the argmax τ at t0, simulate user answers to LLM
responses containing questions as in Section 3.2.3, follow
πRLHF at t1, and report the resulting episode-level rewards
(i.e., average utility over items in the rec set). We present
empirical results for this approach in Figure 11, and ob-
serve that our learned meta-policy achieves higher reward
relative to baseline. The empirical results demonstrate that
both strategies we evaluate—i.e., designing good prompts
(Section 4.1), and learning meta-policies (Section 4.2) can
be better than πRLHF. We observe in Figure 11 that the meta-
policy is slightly preferred over CLARIFYFLEX, however
this ordering may not be universal: when historical data is
not representative of future conversations, we may prefer
CLARIFYFLEX over learning a meta-policy.

Figure 11: Our learned meta-policy outperforms baseline
across all under-specification buckets, especially when
queries are critically under-specified. And it converges to
baseline when queries are sufficiently specified.



5 RELATED WORK

Even though LLMs are powerful conversationalists and
recommenders [He et al., 2023], they have many failure
modes [Borji, 2023] such as generating hallucinations or
failing to complete more complex reasoning tasks [Bubeck
et al., 2023] (Section 8). Regarding LLM-powered conversa-
tions that require stronger collaboration between two parties,
Lin et al. [2023] introduce the concept of “decision-oriented
dialogues” and show that current LLMs still are far from
human performance. In this paper, we investigate a specific
cause (query under-specification) and show how we can
improve LLMs for them.

We conjecture that query under-specification is an artifact
introduced or amplified during post-training and alignment
workflows such as reinforcement learning from human feed-
back (RLHF) [Ouyang et al., 2022]. In RLHF, LLMs are
fine-tuned to output results that align with the preferences
of annotators. Status quo approaches focus on pairwise com-
parisons of single-step responses to a given input query.
As such, well-specified and/or simpler queries that admit
multiple possible, high-quality responses without the need
for clarification questions may be over-represented during
fine-tuning. Additionally, when annotators do encounter
under-specified queries, their preferences about how to han-
dle ambiguity may differ in meaningful ways from those of
end-users, skewing the learned policy. For example, Singhal
et al. [2023] observe that annotators tend to prefer longer
responses—which help to “cover all bases” when queries
are under-specified—relative to end-users, who must bear
the cognitive cost of LLM verbosity. Annotators may also
provide feedback they feel is “expected” of them that di-
verges from their true conversational preferences (due to the
Hawthorne effect; see McCambridge et al. [2014]).

Query under-specification has been studied and addressed
in information retrieval [Dang and Croft, 2010, Azad and
Deepak, 2019]. There are two broad approaches: algorithmic
or user-centric techniques. Algorithmic approaches include
query expansion [Azad and Deepak, 2019], query reformula-
tion [Dang and Croft, 2010] etc. User-centric approaches fo-
cus on asking good clarifications [Rao and Daumé III, 2018,
Majumder et al., 2021]. Hybrid approaches are possible: for
instance, Diao et al. [2023] use active learning to determine
what questions to ask in an LLM’s context window so as to
improve its reasoning. We take a user-centric approach of
seeking clarification, and rely on a suitably prompted LLM
(rather than a separate active learning policy) to discover
appropriate questions to ask.

We showed that LLMs are misaligned when queries are
under-specified. Others have shown misalignment for other
reasons (e.g. toxicity [Bai et al., 2022]) and studied better
ways to align LLMs. There are two kinds of approaches to
align LLMs better: fine-tuning (e.g., DPO [Rafailov et al.,
2023], KTO [Ethayarajh et al., 2024], RLHF [Ouyang et al.,

2022], etc.) and prompt injection (e.g., Constitutional A,
I [Bai et al., 2022], meta-prompting [Qin and Eisner, 2021]).
We take the latter approach and extend the meta-prompting
of Qin and Eisner [2021] to work not only with soft-prompts
but with natural language prompts and black-box LLMs.

Our proposed interventions rely on asking users clarification
questions. User studies conducted with search engines [Za-
mani et al., 2020] and pre-LLM conversation systems [Chris-
takopoulou et al., 2016] demonstrated that users do engage
with clarifying questions in those contexts. Conducting user
studies in LLM-based chatbots to assess users’ propensity
to answer questions is an exciting avenue for future work.

We frame the conversation between a user and chatbot as
a PODP, which is mathematically equivalent to a partially
observable Markov Decision Process (POMDP) [Littman,
2009]. Others have framed the interactions as multiple
rounds of bandit interactions [Zuo et al., 2022], but as we ar-
gued before, single-turn utility maximization is too myopic
for multi-turn conversational outcomes. Thus, we adapt so-
lution concepts from POMDP like Q-learning [Watkins and
Dayan, 1992], information-gathering [Sadigh et al., 2016]
for use with LLM-induced policies.

6 LIMITATIONS

While our empirical results demonstrate that both of our
proposed interventions improve expected conversation-level
utility when queries are under-specified, it is worth noting
some limitations associated with the way we have modeled
user-chatbot interactions. First, we note that our model relies
on the assumption that users are both willing and able to
answer clarification questions when asked—that is, that
they will (1) “tolerate” the questions with high probability
(i.e., will not defect by exiting the conversation), and (2)
truthfully reveal their preferences. In practice, the propensity
and ability to answer will vary among users and over query
intent domains (e.g., due to personal preferences, epistemic
uncertainty regarding a specific topic, etc.).

In our empirical results, the optimistic nature of these as-
sumptions is offset by the conservative nature of the informa-
tion gain we consider: oftentimes, LLM questions will ask
for more granularity about already-revealed θs, and while
real users would often be able to provide such detail, our
lossy, parameterized approximation cannot. As such, any im-
provement in expected reward associated with sequential re-
sponse strategies that incorporate uncertainty reduction at t0
may be underestimated. We have focused on undiscounted
expected utility maximization, but the incorporation of a
discount rate would be one way to incorporate heterogeneity
with respect to question tolerance. Human validation of our
proposed interventions will also be critical: while the inter-
ventions are well-motivated from an information-theoretic
perspective, for some users, the marginal improvement in



expected utility may not outweigh the cognitive cost associ-
ated with having to answer questions.

Additionally, we note that while we have relied on helper
LLMs to classify queries and responses (i.e., with respect to
under-specification, and response strategy), human valida-
tion of these classifiers is an important next step. We have
considered a relatively restricted intent domain, but in more
general settings, reasonable annotators may disagree about
whether a query is under-specified when they do not have
access to ground-truth θ. Relatedly, we have focused on a
recommendation setting (i.e., movie recs) that admits ob-
jective computation of utility; extension of our approach to
intents characterized by more subjective evaluation criteria
may require alternative approaches to modeling utility.

In the data-based intervention outlined in Section 4.2, we
have assumed that historical conversation logs are repre-
sentative of the user population and joint distribution over
users and queries seen in the online setting. This assump-
tion may be violated in practice, with potentially negative
consequences for meta-policy performance. Our estimates
regarding the prevalence of query underspecification may
also contain artifacts—e.g., due to small sample size, and
non-stationarity of the user population.

Finally, we have made assumptions regarding the prompt-
based steerability of LLMs, along with the ability of LLMs
to select “good” clarification questions when prompted to
clarify. Empirical validation of these assumptions on a broad
set of LLMs, along with studying the generation and selec-
tion of marginal information-gain maximizing questions,
are important directions for future work.

7 CONCLUSION

This paper explores how user underspecification affects the
behavior of LLM-based chatbots that are fine-tuned with
human feedback. We show that chatbots have difficulty han-
dling vague user requests and explain how this issue stems
from the annotation process of LLMs. Our study of a pub-
lic chat logs dataset confirms that this problem is common
– over 25% of the queries are highly underspecified. We
formulate the problem of underspecification as a partially
observable decision process (PODP) and generate synthetic
data from a recommendation scenario with hidden item
values for experimental evaluation. Our experiments show
that pre-trained LLMs perform poorly on underspecified
user queries and propose a method to adjust LLMs through
prompting (with learned control messages). We demonstrate
that our lightweight learning method can effectively lever-
age previous conversation data to improve the response
behavior of LLM-based chatbots for recommendation tasks.
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A HELPER LLM-BASED CLASSIFIERS

In this section, we provide descriptions, system messages, and validation results for each of the helper-LLM-based classifiers
that we rely on throughout the paper.

A.1 LLM-BASED QUERY UNDERSPECIFICATION CLASSIFIER

Task description: We use a helper LLM to map queries from our synthetic and real-world corpora to
a set of class labels that describe the extent to which a given query is (or is not) under-specified, i.e.,
{CRITICAL UNDER, MINOR UNDER, SUFFICIENT}. We introduce these labels in Section 3.1, where we discuss them
within the context of the labels we (i.e., human annotators) manually assign to a randomly sampled subset of the OpenAs-
sistant corpus, but they also apply when the helper LLM is asked to classify queries. For convenience, we repeat them
below:

• CRITICAL UNDER: One or more important factors upon which an answer to this query might depend are not specified or
are unknown; (annotators agree that) it is difficult to provide a high-quality response without knowing these factors.

• MINOR UNDER: Less important factors that the query might depend on are not specified or are unknown; however, it is
possible to provide a high-quality response even without knowing these factors.

• SUFFICIENT: All important factors upon which an answer to this query might depend are sufficiently specified.

Helper LLM prompt The prompt that we provide to the helper LLM for this task is shown below; it is also included
within the helper_task_system_messages.json file contained within our supplemental materials.

1 {
2 "classify_queries_multiclass": "For each query in this list <list>{{input.question}}</

list>, assign exactly one of the following labels:\n
3 - sufficient: All important factors upon which an answer to this query might

depend are sufficiently specified.\n
4 - minor_under: One or more less important factors upon which an answer to this

query might depend are not specified or are unknown; however, it is possible
to provide a high-quality response even without knowing these factors.\n

5 - critical_under: One or more important factors upon which an answer to this
query might depend are not specified or are unknown; it is difficult to
provide a high-quality response without knowing these factors.\n

6 You MUST assign EXACTLY ONE label from the list above.\n
7 Return your answer as a string.\n
8 DO NOT answer any questions contained in the query, or include any expository text.\n
9 The result should be DIRECTLY parsable in Python."

10 }

mailto:<cherlihy@umd.edu>
mailto:<adswamin@microsoft.com>


Helper LLM configuration: We use GPT-4 [Achiam et al., 2023] for all query underspecification classification calls.

Validation: We use our synthetic query corpus to validate our use of this LLM-based underspecification classifier. As we
describe in Section 3.2.1 and detail in Appendix C.1, by virtue of how we construct these queries, we control the number
of attributes that are revealed. As such, we have access to ground-truth underspecification labels defined in terms of the
number of revealed attributes, referred to (with slight abuse of notation) as |q| in the mapping shown below. Note that |q|
takes values in {0, . . . , |θ| − 1} for masked queries, and will be equal to |θ| for sufficiently specified queries, where |θ|
refers to the cardinality of the intent-specific attribute space.

q 7→


CRITICAL UNDER |q| ≤ 1,

SUFFICIENT |q| = |θ|,
MINOR UNDER otherwise.

We evaluate our LLM-based query underspecification classifier on our synthetic query corpus, which contains 600 queries
split across the following intent domains: movie recommendation, gift recommendation, and plant recommendation. We
report performance metrics and confusion matrices over all synthetic queries, and broken down by intent-specific queries
below.

precision recall f1-score support

critical_under 0.583 0.139 0.224 202
minor_under 0.443 0.472 0.457 398
sufficient 0.720 0.873 0.789 600
accuracy 0.617 1200
macro avg 0.582 0.495 0.490 1200
weighted avg 0.605 0.617 0.584 1200

Table 4: Classifier performance: over all intents

Figure 12: Confusion matrix: all intents



precision recall f1-score support

critical_under 0.059 0.010 0.017 99
minor_under 0.284 0.214 0.244 196
sufficient 0.642 0.925 0.758 295
accuracy 0.536 590
macro avg 0.328 0.383 0.340 590
weighted avg 0.425 0.536 0.463 590

Table 5: Classifier performance: movie recommendation queries

Figure 13: Confusion matrix: movie recommendation queries

precision recall f1-score support

critical_under 0.852 0.371 0.517 62
minor_under 0.652 0.861 0.742 122
sufficient 0.928 0.908 0.918 184
accuracy 0.802 368
macro avg 0.811 0.713 0.725 368
weighted avg 0.824 0.802 0.792 368

Table 6: Classifier performance: gift recommendation queries

precision recall f1-score support

critical_under 1.000 0.098 0.178 41
minor_under 0.357 0.512 0.421 80
sufficient 0.683 0.694 0.689 121
accuracy 0.533 242
macro avg 0.680 0.435 0.429 242
weighted avg 0.629 0.533 0.513 242

Table 7: Classifier performance: plant recommendation queries



Figure 14: Confusion matrix: gift recommendation queries

Figure 15: Confusion matrix: plant recommendation queries

A.2 LLM-BASED RESPONSE STRATEGY CLASSIFIER

Task description: We use a helper-LLM-based τ classifier to map chatbot natural language responses to a set of labels
intended to characterize a given response’s syntactic and semantic contents. We primarily use this classifier as a way of
assessing whether and to what extent the behaviors we seek to induce via modified system messages actually produce
observable effects in the intended direction(s) and/or converge with the behavior of πRLHF.

The label set we use for this classifier includes the set of response strategies that we refer to as
T throughout the paper—i.e., {INTERROGATE, CLARIFY, HEDGE},and also includes additional options—i.e.,
{DIRECT RESPONSE, REFUSE, MISCELLANEOUS, MISSING}. While we do not explicitly induce this latter set of be-
haviors, we need the DIRECT RESPONSE option to characterize the baseline system behavior and (more broadly) uncertainty-
agnostic LLM responses in general. The REFUSE, MISCELLANEOUS, and MISSING options are needed to characterize
the behavior of πRLHF in open-domain settings such as the OpenAssistant corpus we consider, as well as to handle rare
parsing/extraction errors that result in inadvertently blank LLM responses. The defining characteristics of each response
strategy are presented/contained within the task system message in the next section.



Helper LLM prompt: The prompt that we provide to the helper LLM for this task is shown below; it is also included
within the helper_task_system_messages.json file contained within our supplemental materials.

1 {
2 "sm_map_llmr_to_tau": str = "For each (query,response) in this list <list>{{input.pair

}}</list>, map the response to exactly one of the following labels:\n
3

4 - interrogate: The response contains a large number (i.e., more than 3) of follow-
up questions and and does NOT contain plausible responses conditioned on
possible answers to these questions.\n

5 - clarify: The response contains a limited number (i.e., 3 or less) of follow-up
questions and does NOT contain plausible responses conditioned on possible
answers to these questions.\n

6 - hedging: The response does not commit to one specific answer but instead
provides many plausible/possible/qualified answers, options, or conditions
under which certain answers/options may or may not hold. It may also discuss (
potentially conflicting) different view points without taking a definitive
stance.\n

7 - direct_response: The response does NOT contain questions. The response does NOT
contain multiple plausible answers, with corresponding descriptions of
conditions or criteria under which each response would be suitable.\n

8 - refuse: The response contains an explicit or implicit refusal to answer. It may
mention criteria which would be needed in order to provide an answer, but it
does NOT contain plausible responses conditioned on these criteria.\n

9 - misc: The response may describe, summarize, or try to explain the query, or
appear to follow instructions provided in the query (rather than answer an
information-seeking request or ask clarifying questions).\n

10 - missing_response: The response is empty or blank.\n
11

12 You MUST assign exactly one label from the list above.\n
13 Return your answer as a string.\n
14 DO NOT answer any questions contained in the response, or include any expository text

.\n
15 The result should be DIRECTLY parsable in Python."
16 }

Helper LLM configuration: We use GPT-4 [Achiam et al., 2023] for all query underspecification classification calls.

Validation: We manually annotate πRLHF responses to a subset of the OpenAssistant corpus that we consider, and use
these human-annotator assigned ground-truth τs to validate our helper LLM-based τ classifier. We note that some of our τs
of interest are not sufficiently represented amongst the πRLHF responses (i.e., CLARIFY, HEDGE, INTERROGATE). We thus
use our system-message-based interventions to induce responses for these strategies and include them (unlabeled) in our
manually annotated subset. We report classification performance metrics and a confusion matrix below.

precision recall f1-score support

clarify 0.763 0.935 0.841 31
direct_response 0.822 0.903 0.861 154
hedging 0.925 0.649 0.763 57
interrogate 1.000 0.680 0.810 25
misc 0.154 0.250 0.190 8
refuse 0.667 0.400 0.500 5
accuracy 0.807 280
macro avg 0.722 0.636 0.661 280
weighted avg 0.831 0.807 0.808 280

Table 8: τ -classifier performance on human-annotated LLM responses to OpenAssistant queries



Figure 16: Confusion matrix: annotated OpenAssistant query responses

B RESPONSE-STRATEGY SYSTEM MESSAGES

In this section, we report the system messages used to operationalize each response strategy τ ∈ T that we consider in the
main paper, along with the data-agnostic interventions discussed in Section 4.1.

1 {
2 "response strategies":
3 {
4 "baseline": "None",
5 "interrogate": "When you receive a query, always interrogate the user about all

factors upon which the answer might depend---but that have not been specified---
so that you will be able to produce a good answer.",

6 "clarify": "When you receive a query, always ask the user about up to 3 most
relevant factors upon which the answer might depend---but that have not been
specified---so that you will be able to produce a good answer.",

7 "hedge": "When you receive a query, always identify important factors upon which the
answer might depend---but that have not been specified---and then provide a

plausible response conditioned on each of these factors.",
8 }
9 "data-agnostic interventions":

10 {
11 "CoT": "When you receive a query, ask yourself whether you have sufficient information

to provide a good answer, and then respond accordingly.",
12 "clarify_flex": "When you receive a query, if the query depends on a set of important

factors that have not been specified, ask the user about the most relevant factors
that have not been specified so that you will be able to produce a good answer;

otherwise, respond directly."
13 }
14 }



C MOTIVATING EXPERIMENTS

C.1 SYNTHETIC DATASET CONSTRUCTION

We follow the synthetic query construction process outlined in Section 3.2.1 and formalized in Algorithm 1, along with
the parameterized templates shown in Appendix C.2 to generate a corpus of sufficiently specified queries. Then, for each
sufficiently specified query, we approximate a partially specified version by randomly selecting the number of attributes to
omit, n ∈ {1, . . . , |Θi|}. We keep the intent-declaring first sentence unchanged, shuffle the remaining attribute-sentences,
draw a subset of sentences to omit—i.e., with cardinality n— and concatenate the remaining sentences.

Algorithm 1 GENERATE SYNTHETIC QUERY

1: function GenQuery(I,Θ(·))
2: i ∼ I {Draw intent}
3: for θ ∈ Θi do
4: selected option(s)← X ′ ∼ Xθ

5: templatei ← templatei ∪ selected option(s)
6: end for
7: qs ← templatei {Sufficient query := filled-in template}
8: n ∼ U({1, . . . , |Θi|}) {Draw # of attrs to mask}
9: Θm

i ∼ U(Sn(Θi)) {Draw n masked attrs}
10: Θr

i := Θi \Θm
i {Determine revealed attrs}

11: qm ← concat(Θr
i ) {Build masked version of qs}

12: return qs, qm {Return sufficient & masked queries}

C.2 SYNTHETIC QUERY TEMPLATES AND PARAMETER OPTIONS

We use the intent-specific templates and parameter category-option mappings shown below in conjunction with the query
construction procedure outlined in Appendix C.1 to generate our synthetic queries:

Intent-specific query templates:

1 {
2 "movie_rec": {
3 "value": "I am looking for a movie recommendation.\n
4 The genre should be \"{param_0}\".\n
5 It should have been released \"{param_1}\".\n
6 The intended audience includes \"{param_2}\".\n
7 The runtime should be \"{param_3}\".\n
8 Please provide movie recommendations that satisfy all of my requirements."
9 },

10

11 "gift_rec": {
12 "value": "I am looking for a gift recommendation.\n
13 The recipient likes \"{param_0}\".\n
14 The recipient is \"{param_1}\" years old.\n
15 The recipient prefers gifts to be \"{param_2}\" in nature.\n
16 My budget to purchase the recipient a gift is in the \"{param_3}\" range.\n
17 Please provide gift recommendations that satisfy all of my requirements."
18 },
19

20 "plant_rec": {
21 "value": "I am looking for a house plant recommendation.\n
22 I prefer a plant that \"{param_0}\".\n
23 I’m willing to expend a \"{param_1}\" amount of effort to care for the plant.\n
24 My house gets a \"{param_2}\" amount of natural light.\n
25 I live \"{param_3}\".\n
26 Please provide house plant recommendations that satisfy all of my requirements."



27 }
28 }

Intent-specific query parameter category-option mappings:

1 {
2 "movie_rec": {
3 "param_0": {"cat": "genre",
4 "opts": ["Action", "Adventure", "Animation", "Biography", "Comedy", "

Crime", "Documentary", "Drama", "Fantasy", "Film Noir", "History",
"Horror", "Musical", "Mystery", "Romance", "Sci-Fi", "Sport", "

Superhero", "Thriller", "War", "Western"],
5 "max_sel_allowed": 2,
6 "pref_constraint_type": "set_valued"},
7 "param_1": {"cat": "release date",
8 "opts": ["in the 1980s", "in the 1990s", "in the 2000s", "in the past

few years"],
9 "max_sel_allowed":1,

10 "pref_constraint_type": "numeric_range"},
11 "param_2": {"cat": "who will be watching",
12 "opts": ["children", "adults and children", "teenagers younger than 17

", "adults only"],
13 "max_sel_allowed": 1,
14 "pref_constraint_type": "set_valued"},
15 "param_3": {"cat": "runtime",
16 "opts": ["less than 90 minutes", "90-104 minutes", "105-119 minutes",

"120 minutes or more"],
17 "max_sel_allowed": 1,
18 "pref_constraint_type": "set_valued"}
19 },
20

21 "gift_rec": {
22 "param_0": {"cat": "recipient interests",
23 "opts": ["outdoors", "crafts", "technology", "books", "active play/

sports/fitness", "food/cooking", "music and arts", "apparel/
fashion/style"],

24 "max_sel_allowed": 2,
25 "pref_constraint_type": "set_valued"},
26 "param_1": {"cat": "recipient age range",
27 "opts": ["3-5", "6-12", "13-17", "18-40", "41-60", "61+"],
28 "max_sel_allowed": 1,
29 "pref_constraint_type": "numeric_range"},
30 "param_2": {"cat": "recipient preferred gift type",
31 "opts": ["practical and everyday", "personalized and sentimental", "

adventurous and experience-driven", "luxurious and pampering", "
high-tech and innovative", "creative and artistic", "sustainable
and eco-friendly"],

32 "max_sel_allowed": 1,
33 "pref_constraint_type": "set_valued"},
34 "param_3": {"cat": "giver budget",
35 "opts": ["less than $20", "$20-49", "$50-99", "$100-199", "$200+"],
36 "max_sel_allowed": 1,
37 "pref_constraint_type": "numeric_range"}
38 },
39

40 "plant_rec": {
41 "param_0": {"cat": "plant physical attributes",
42 "opts": ["has light green leaves", "has dark green leaves", "has multi

-colored leaves", "yields edible produce", "produces a single
bloom", "produces multiple blooms", "is short in stature", "is
tall in stature"],



43 "max_sel_allowed": 2,
44 "pref_constraint_type": "set_valued"},
45 "param_1": {"cat": "level of effort",
46 "opts": ["low", "moderate", "high"],
47 "max_sel_allowed": 1,
48 "pref_constraint_type": "set_valued"},
49 "param_2": {"cat": "amount of natural light",
50 "opts": ["low", "indirect", "moderate", "bright"],
51 "max_sel_allowed": 1,
52 "pref_constraint_type": "set_valued"},
53 "param_3": {"cat": "household members",
54 "opts": ["by myself", "with young children", "with pets", "with a

roommate with seasonal allergies"],
55 "max_sel_allowed": 1,
56 "pref_constraint_type": "set_valued"}
57 }
58 }



C.3 STABLE DIFFUSION EXAMPLE: POLICY-INDUCED RESPONSES

Here, we present a query from the OpenAssistant dataset [Köpf et al., 2023] as an example of a situation where CLARIFY
may be preferred over DIRECT RESPONSE and HEDGE. Table 9 presents the policy-induced responses generated by πRLHF,
HEDGE, and CLARIFY.

Query text: “Please give me a prompt for stable diffusion to generate a good-looking image.”

Response strategy τ ∈ T Response text

baseline "Create an image that visually represents the process of stable diffusion, showcasing
the gradual and even spread of particles throughout a medium. Use a color gradient to
highlight the movement and distribution of particles, and ensure the overall aesthetic is
pleasing and balanced."

hedge The query is asking for a prompt to generate a good-looking image using stable
diffusion. However, the important factors that are not specified include:
1. The type of image or subject matter desired (e.g., landscape, portrait, abstract, etc.)
2. The style or aesthetic the user prefers (e.g., realistic, surreal, impressionistic, etc.) 3.
The color scheme or palette the user prefers (e.g., warm, cool, monochromatic, etc.)
Given these factors, here are some plausible responses:
1. If the user wants a landscape image in a realistic style with a warm color scheme, a
possible prompt could be: "Generate a sunset over a serene lake with autumn foliage
using stable diffusion." 2. If the user prefers a portrait in a surreal style with a cool
color scheme, a possible prompt could be: "Generate a portrait of a woman with
flowing blue hair and eyes that mirror the ocean using stable diffusion." 3. If the user is
interested in an abstract image in a monochromatic color scheme, a possible prompt
could be: "Generate an abstract image using stable diffusion that represents the concept
of tranquility in shades of blue."

clarify 1. What type of image are you looking to create? (e.g., abstract, realistic, geometric) 2.
Are there any specific colors or color schemes you would like to incorporate into the
image? 3. Do you have any specific themes or elements you want to be included in the
image? (e.g., nature, space, patterns)

Table 9: Policy-induced responses to the stable diffusion example query.

C.4 SIMULATING USER RESPONSES TO LLM QUESTIONS

In Section 3.2.3, we discuss how we leverage a series of helper LLM calls to construct templatized responses to LLM
questions based on the overlap (or lack thereof) between the questions and the user’s true preferences, θ. Here we provide
the system messages used in these helper calls. The first system message is for the extraction of recommended items and/or
questions from LLM responses. The second system message helps us to construct a mapping from the LLM’s questions to
the user’s true preferences, θ, such that we can determine what subset of previously masked attributes can be “revealed” in
the templatized user response we construct.

1 {"extract_recs_and_questions":
2

3 "For each response in this list <list>{{input.""" + f’{field_to_use}’ +"""}}</list>,
read the response carefully and:\n

4

5 1. Extract the titles of each and every movie recommendation that appears;
they may show up as a list of titles.\n

6 Do not extract any additional metadata but DO extract any mentioned titles
; represent each title as a string.\n

7

8 Format your answer for task 1 as shown below:\n
9



10 ["rec" for rec in recommended movies] OR [], ONLY if NO movie
recommendations appear.

11

12 2. Extract any questions that appear; they may be prefaced with a request to
specify preferences, and/or show up as a list of questions.\n

13 DO extract ANY mentioned questions; represent each question as a string.
14

15 Format your answer for task 2 as shown below:\n
16

17 ["question" for question in questions] OR [], ONLY if NO questions appear
.\n

18

19 Return your results as a dict:\n
20

21 {"recs": [response to task 1], "questions": [response to task 2]} \n
22

23 DO NOT answer any questions contained in the response, or include ANY
expository text.\n

24 The result should be DIRECTLY parsable as a valid dict in Python.""""
25 }

1 {
2 "map_questions_to_thetas":
3

4 "You will receive a list containing sets of questions.\n
5 Each question is issued by an assistant to a user, in response to a movie

recommendation request submitted by the user.\n
6 For each set of questions in this list <list>{{input.questions}}</list>,\n
7 You have the ability to ask the user about their preferences for each of the

following movie attributes:
8 [genre, release date, who will be watching, runtime].\n
9 Note that ’who will be watching’ is related to the user’s preferences for the

movie’s rating.
10 For each set of questions, map each question to one of these attributes IF asking

about this specific attribute would allow you to answer the question.\n
11 If none of the attributes would give you the information you need to answer a

given question, map that question to "None".\n
12 Format your response as a list of strings, as shown in the example below:\n
13 [’genre’, ’release date’, ’None’] \n
14 DO NOT answer any questions contained in the response, or include any expository

text.\n
15 The result should be DIRECTLY parsable as a list of strings in Python."
16 }
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