Future (Present?) of Machine Translation
It is quite easy to believe that the recently proposed approach to machine translation, called neural machine translation, is simply yet another approach to statistical machine translation. This belief may drive research effort toward (incrementally) improving the existing neural machine translation system to outperform, or perform comparably to, the existing variants of phrase-based systems. In this talk, I aim to convince you otherwise. I argue that neural machine translation is not here to compete against the existing translation systems, but to open new opportunities in the field of machine translation. I will discuss three opportunities; (1) sub-word-level translation, (2) larger-context translation and (3) multilingual translation.
- Séries:
- Microsoft Research Talks
- Date:
- Haut-parleurs:
- Kyunghyun Cho
- Affiliation:
- New York University
-
-
Will Lewis
Principal PM Architect
-
-
Taille: Microsoft Research Talks
-
Decoding the Human Brain – A Neurosurgeon’s Experience
Speakers:- Pascal Zinn,
- Ivan Tashev
-
-
-
-
Galea: The Bridge Between Mixed Reality and Neurotechnology
Speakers:- Eva Esteban,
- Conor Russomanno
-
Current and Future Application of BCIs
Speakers:- Christoph Guger
-
Challenges in Evolving a Successful Database Product (SQL Server) to a Cloud Service (SQL Azure)
Speakers:- Hanuma Kodavalla,
- Phil Bernstein
-
Improving text prediction accuracy using neurophysiology
Speakers:- Sophia Mehdizadeh
-
-
DIABLo: a Deep Individual-Agnostic Binaural Localizer
Speakers:- Shoken Kaneko
-
-
Recent Efforts Towards Efficient And Scalable Neural Waveform Coding
Speakers:- Kai Zhen
-
-
Audio-based Toxic Language Detection
Speakers:- Midia Yousefi
-
-
From SqueezeNet to SqueezeBERT: Developing Efficient Deep Neural Networks
Speakers:- Sujeeth Bharadwaj
-
Hope Speech and Help Speech: Surfacing Positivity Amidst Hate
Speakers:- Monojit Choudhury
-
-
-
-
-
'F' to 'A' on the N.Y. Regents Science Exams: An Overview of the Aristo Project
Speakers:- Peter Clark
-
Checkpointing the Un-checkpointable: the Split-Process Approach for MPI and Formal Verification
Speakers:- Gene Cooperman
-
Learning Structured Models for Safe Robot Control
Speakers:- Ashish Kapoor
-