
ACM '81, November 9-11, 1981 Reviewed Paper

AN ADA~COMPATIBLE SPECIFICATION LANGUAGE

N.C.L. Beale - S.L. Peyton Jones

Beale Electronic Systems Ltd.,
Wraysbury, Berks, England.

ABSTRACT

This paper describes a notation for the formal
specification of software packages. The main
influences are the guarded commands of Dijkstra
and the Algebraic Semantics of Guttag. However, a
novel operator denoted by % is introduced, which
allows algorithms to be abstracted in a
specification, thereby creating a true
specification language rather than another higher
level language. The notation, called ADL/I, is
desired to be used in conjunction with ADA~ but
is equally suitable for other languages, and has
been used for real time software written in
Assembler and in a PASCAL-like language.

I. INTRODUCTION

The purpose of this paper is to describe work that
we have been doing at Beale Electronic Systems
Ltd. on a practical notation for specifying
software packages. This work represents a logical
extension of ADA's approach to some of the
problems of progrsmming in the large. In ADA a
package is thought of as being a package
specification and a package body. We are
describing a notation for writing a semantic
specification which describes the intended
semantics without describing the implementation.
We call our notationADL/1.

Using this, we have built some real software such
as a real time distributed multi-tanking operating
system (written in Z80 Assembly language) and two
programs written in a PASCAL-like language: an
industrial data handling system and a plant data
acquisition and control package. Thus we are
describing a notation which has been used on
medium sized practical problems. We have also
found ADL/I a useful tool for specifying fragments
of program.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

@1981 ACM 0-89791-049-4/81/1100-0139 $00.75

In this paper we begin by describing how to
specify functions and program fra~nents. We move
on to specifying packages and finally indicate how
to specify tasks. We end with some conclusions.
The paper assumes a basic familiarity with the ADA
report.

2. SPECIFYING FRAGM~TS AND FUNCTIONS

2. I Guarded Commands

The basic construct of ADL/I is that of the
~uarded command, [Dijkstra 19761. If PI..Pn are
predicates and CLI..CLn are lists of com~nds then

if PI -> CLI [P2-> CL2

or equivalently

(PI -> CLI I P2-> CL2

end if

means:

if all the Pi are false then abort but if there
exists sn i such that Pi is true then execute CLi.

and
do PI -> CLI I P2 -> CL2 ', ... end do

means:

if all the Pi are false then do nothing (null) but
if there exists an i such that Pi is t'~- then
execute CLi and repeat.

Note that if more than one Pi is true the choice
is arbitrary. The predicates PI..Pn are called
~uards, and the set

PI -> CLI I P2 -> CL2 ',... Z Pn-> CLn

is called a ~uarded qommand set. We use else as a
pronoun to stand for the negation of all the
previous guards in a guarded command set.

~ADA and Ada are trademarks of the U.S.
Department of Defense.

139

ACM '81, November 9-11, 1!)81 Reviewed Paper

2.2 Predicates and the % operation.

Predicates in ADL/I must not have side effects but
are generally like ADA boolean expressions.
However the power of predicates is greatly
extended by the distinctive new operation of
ADL/I, the percent operation. ADL/I allows new
free variables to be introduced in a predicate by
prefixing them with a % sign.

The construct:

P(%x) -> command list

means:

if x can be found such that P(x) is satisfied,
then execute the command list. The scope of
the newly bound variable x--is the rest of the
guard, together with the command list which it
guards.

The % symbol is use~ on the first occurrence of
the new variable only. It can be qualified with
min or max, and the variable can be declared to be
of a given type in the usual wsy. The syntax is:

[rain I max]%VariableName[:TypeDeclaration]

For example:

P(max%x) -> command list

chooses a maximumx which satisfies P(x).

If there is more than one min or max in a
predicate then values for all t~-variables are
chosen simultaneously to satisfy the predicate (if
possible), the leftmost min or max tskingpriority
over the second and so on.

It should be noted that this percent operation is
possible only in specification languages.
Consider, for example, the following specification
of a square root program, which carefully gives no
clues as to implementation:

(ABS(%x ** 2 - n) <= EPSILON * x->
return x

I else -> raise NUMERIC ERROR)

2.3 Choice Constructs.

Percent Variables csn appear in a guard in any
place t~at avariable could appear, but they can
also appear in a Choice Construct of the form:

([Choice_Qualifier] Choice ~,Choice}::Predicate)

where

Choice Qualifier ::= all I is I set
ChoiceT:= Percent_Var'~51e "[TNS~Expression]

examples are:

(%x::P(x))
(min%f1,%y in SY ::
Tmax~f2, x~IN SX :: f2=F(x,y)) AND f1=f2)
(all-~::P(x)=>Q(x))
(i~y::R(y))

The first example chooses an x to satisfy P(x),
and so is equivalent to P(%x). However the
Choice Construct mskes explicit the range of
possibTlities over which the choice is to be made,
and exactly what predicate is to be chosen.

The second example is the standard MiniMax
problem, where the inner maximisation is free to
choose f2 and x for a given value of y.

The third and fourth examples are the standard
universal and existential quantifiers, and mean:

For all x such that P(x) we have Q(x)

and

There is a y such that R(y)

respectively.

2.4 Sets and strinG.

ADL/I makes extensive
strings. Objects can
strings as follows:

use of sets and (general)
be declared as sets or

~X,SY:set of INTEGER
S~ l ,Se-~ :~ r in~ o_f REAL

and the operators '=', '&', '*' are extended to
mean set equality, union and intersection.

Sets and string can
Choice Constructs of the form:

(set %X IN SX :: X < 99)
(strin~ %X IN SX :: x < 99)

be created by

These are read as "The set of X in SX such that X
< 99" and "A string of X in SX such that X < 99"
respect ively.

The operator rem, standing for remove (overloading
ADA's rein) works with sets and string as
follows :-

e:I~,I~MENT --some type
: set of ET,~,MENT;

T: strin45 of RJ,EMENT;
k: INTEGER;

S rem e means (set %y in S :: y /= e)
T rem e means (_~/~_~in T :: y /= e)

rem T means (str~%y in T ::
" T (: ~ -) - ~ ~ d - 7 /= k)

In these, the scope of the new free variables is

140

ACM '81, November 9-11, 1981 Reviewed Paper

restricted to the Choice Construct, whereas in an
unqualified Choice Constr~ct the new variables are
visible for the re~t of the predicate and for the
command list which it guards.

2.5 Examples

The following three examples illustrate some of
the concepts used so far:-

procedure Schedule is
if max % n :: Pri~ity (%p) = n

and Status(p)=Ready -> Run(p)
I else LS-IRun (Diagnostics)
end if;

en.__dSch'edule;

function F Inverse (x:outtype) return intype is
---~)=~-> return y I return null)
end F Inverse;

~Queen is ar~ (I..2) of I..8;
predicate Threae~ (ql,q2:~een) is

(i_s - %i :: q1(i) = q2(i))
or ABS (q1(1)-q2(1)) = ABS (q1(2)-q2(2))

fbncti~F return set of Queen is
if ~A:se~of Queen)'N = 8 and'--
--(all q~,q~-'i._q A : :

Threatens(ql,q2) => q1=q2 -> return A
end if

en_dF;

);

3. SPECIFYING PACKAGES

A package is a group of related entities such as
types, objects and subprograms , whose inner
workings are concealed and protected from their
users. The state of a package is the direct
product of its visible state and its internal
state, which is not accessible to the outside
world. Our semantic specification must define the
internal state and the intended semantics of any
subprograms. We do this by defining an abstract
~L~_~which has the same specification as the
xntended package body but whose internal data
structures and algorithms are much simpler than
the intended implementation. This abstract
packsge has a set of possible behaviours, and a
package body satisfies the specification if its
behaviour set is a subset of the possible
behaviours defined by the abstract package.

We call the procedures and functions which a
package makes available to the outside world its
wO1~srS p. An operation is an operator together

arameters.

3.1 The abstract state ($)

ADL/I represents the internal state of a package
by a string or set of operations, denoted by $.

The ADL/I specification of a package describes:

a) What the possible internal states of the
abstract packa~ are

b) How the state of the abstract package changes

as operations are applied to the abstract
package.

c) How the out-parameters are related to the
state and the in-parameters

3.2 Defining the internal state $

The internal state space of a package is defined
as follows:

$ i_p_ Lset]
Operator Declaration
l;Operat~r_Declarationl

end $

For example in:

$ is
PUSH: INTEGER
SIZE:RANGE O..I 0000

end $;

'±wo possible values of $ are:

PUSH(3),PUSH(4),SIZE(99)
and PVSH(3),PUSH(4),PUSH(3),PUSH(20),SIZE(77)

$ is a string unless it has the qualifier set in
which case it is a set.

3.3 Operations to chsn~e the current state

$ is a string or a set. It is therefore possible
to use the operations defined in section 2.4 to
modify $. We have found it convenient to
introduce some notations to make these
modifications easier to write, and these are
described in this section. In the definitions
that follow

Op stands for some operator
Opn stands for some operation
OpT stands for some operationtemplate

An operation template being an operator some of
whose parameters may be free variables (with % s)
or replaced by ? A ? is equivalent to
%newuniquename.

For example:

PUSH(%X), CREATE(?), PUSH(X), PUSH(4)

are operation_templates.

The basic way of obtaining information about the
current state is through the '$>' operator. The
predicate '$>0pT' (pronounced "$ contains OpT") is
equivalent to:

(%IT :: $(IT) = OpT)

if $ is a string, and

(%IT i._9q$:: IT = OpT)

if $ is a set.

141

ACM '81, November 9-11, "1981 Reviewed Paper

These are both true if and only if OpT in $ is
true, but they introduce the pronoun IT which can
be used later in the guard.

We can add an element to $ by writing

$&= 0pn -- equivalent to $:=$ & 0pn

We allow two further overloadings for rem :-

rem Opt is equivalent to $:= $ rem Opt
rem k is equivalent to $:= k~6~$

and we let

set Op(x,y) me~m
setl 0p(x,y) mean
se~0p(x,y,z) me~m

rem 0p(?,?); $&=0p(x,y)
rem 0p(x,?); $&=0p(x,y)
rem 0p(x,y,?);$&=0p(x,y,z)

3.4 Sl0ecification of Packages

We have described how the abstract state is
defined and modified. By using the notations of
section 2 we can define the intended effect of
Ikmctions and procedures. Exceptions, in so far
as they are visible to the user, can be raised
explicitly. Thus we are able with these concepts
to specify arbitrary Ada packages.

3.5 Example.

We are now ready to consider an example of an
ADL/I package specification. The example is taken
from the Ada manual LAda 1980], page 7.8.

-- We begin with the Ada package specification

package TableManager i__s
type Item i_s -
record

Order Num : INTEGER;
Item~ode : INTEGER;
Ite~Type : CHARACTER;
Quantity : INTEGER;

end record;
Null Item : constant Item :=

(O~der Num I Item Code I Quantity => O,
- Iten~Type--=> " ");

procedure Insert(New Item:in Item);
procedure Retrieve(}~rst I~m:out Item);
TableFull : exception; -- May'-~ raised by Insert
end;

-- Now the ADL/I specification

semantics Table Manager is
~ize: ~onsta~ := 2000~--

$ is set
±:Item
end $;
procedure Insert(n:It~n) is

($'N < Size-> $&= I(n)--
lelse->raise Table Full)

end Insert;
procedure Retrieve(out First:Item) i_s

($>I(min%o,%c,%t,~->rem IT;
First:== (o,c'~,'q)

lelse->First:= Nt~l Item)
end-~rieve

end Table_Manager;

It is instructive to compare this 14 line
specification with the 24 line partial package
body given in the Ada report.

4. FURTHER R~MAPXS

In this section we briefly discuss some further
implications of the work we are describing, which
cannot be developed fully in this paper due to
lack of space.

4. I Sl0ecifying Tasks

Using the Ada entry handling constructs we can
specify Ada tasks in ADL/I using only the
notations described above. However ADL/I can also
be used for specifying tssk semantics (not
necessarily of Ada tasks) in a more direct way.

To do this we extend the notion of Operation to
include a priority level.

n* Opn

denotes an operation which is Opn at priority
level n.

We can now consider a task as performing a
sequence of atomic (that is, indivisible)
operations, which are executed by the following
procedure (called an axiom grinder).

do $> max%n * %0pn ->
-- rem IT; Perform (0pn)
else -> null --infinite loop
end do

By including commands of the form

$&= 3*Opn

in the command list for performing the operations,
it is possible to specify chains of operations
without overspecifying them.

4.2 Mathematical Foundation

The theoretical foundations of ADL/I are the
not ion of a string, assignment, the guarded
comms~Id and the % operator. The semantics of
assignment and the guarded command are given in
[Dijkstra 1976] in terms of weakest preconditions.

If C is a commsnd and P a predicate then

(c,P)

is the weakest predicate such that if w]2(C,P) is
true and C is executed then C will terminate and P
will be true.

In this notation, the fundamental semantic rule
for % is:

~(G(%x) -> C, P) =

(is%y :: G(y)) and G(x)=> w]2(C,P)

This is not circular because the %y is only our
notation for the standard existential quantifier.

142

ACM '81, November 9-11, 1981 Reviewed Paper

The % operator is in fact closely related to the
Tau operator of [Bourbaki 1968], which is used to
develop the whole foundations of mathematics.

4.3 Ada Commpatibility

ADL/I is designed to be compatible with Ada, and
thus to provide a unified notation for writing
specifications, programs and predicates.

We have added $ and % to the basic characters and

-> , Ec= and ::

to the compound symbols.

The ADL/I words

max , min , set , semantics and strin~

are all used in contexts where identifiers cannot
appear, and thus do not have to be new reserved
words.

5. CONCLUSION

We have described the basic syntsx and semantics
of ADL/I, and provided an example of its
application.

The use of the % operator permits algorithm
abstraction analagous to the data abstraction
facilities in many modern languages.

ADL/I has sufficient facilities for
non-determinacy to specify software without
over-specifying it.

One problem with most specification languages is
that they become unwieldy for large programs, a
property they share with programming languages
themselves. ADL/I suffers much less from this
than most languages. For instance, a three page
ADL/I specification specifies about 2000 lines of
a PASCAL-like language. ADL/I is significantly
more compact that OBJ [Gougen 1979], which is one
of the best published specification languages we
have seen.

By providing an integrated Ada compatible notation
for specifying and reasoning about programs, it
has proved to be helpful to us in medium scale
industrial control software. We believe it is a
useful tool for any software within the Ada
application domain.

ACKNOWLEG]~ENTS

This work has benefited particularly from
conversations with Martin Besle, Veronique
Donzeau-Gouge, MannyLehmann and Maurice Sloman.
The comments of the referees have also been most
helpful.

REFERENCES

LADA 19m] Reference Manual for the Ada
ProgrAmming Language.
US DoD July 1980

[Bourbski 1968] Bourbski N Theory of sets
Addison Wesley 1968

[Dijkstra 1976] Dijkstra E. W.
A Discipline of Programming
Prentice Hall 1976

LGougen 1979] Gou@en J.A. An Introduction
to 0BJ Proc. IEEE/ACM Symposium
Specification of Reliable
Software 1979 PP 170-I 89.

LGuttag 1978] Guttag J.V. et al Abstract Data
Types and Software Validation.
Comm ACM Vol 21 No 12 [Dec. 1978]
pp 1048-1064

The programs written with the aid of ADL/I are
described in the following:

S.L. Peyton Jones and N.C.L. Beale An Advanced
Concurrent Processing Operating System for
Multiple Microcomputers. Unpublished paper.

BPMS Batch Production Monitoring System Manual

PVM Process Variable Manager Data Sheet

Available from the authors.

143

