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1. INTRODUCTION

It is now very nearly as easy to build a parallel computer
as to build a sequential one, and there are strong
incentives to do so: parallelism seems to offer the
opportunity to improve both the absolute performance
level and the cost/performance ratio of our machines. It
is important to improve both factors. Mass-produced
8-bit microprocessors offer excellent performance for
their cost, but their absolute level of performance is too
low for most applications. On the other hand, very few
applications are prepared to ignore cost altogether in
their search for performance.

A large number of multiprocessors are now com-
mercially available, including bus-based shared-memory
architectures (such as Sequent’s Symmetry), loosely-
coupled distributed-memory ensembles (such as trans-
puter systems or the Intel Hypercube), and even a hybrid
of the two (such as the Meiko Computing Surface).

Alas, in stark contrast with these developments in
hardware, programming a parallel machine seems to be
very much harder than programming a sequential one,
except for relatively simple algorithms. One of the most
attractive features of functional programming languages
is their suitability for programming parallel computers.
This paper is devoted to a discussion of this claim.

First of all, we discuss parallel functional programming
from the programmer’s point of view. Assuming that the
reader has some knowledge of graph reduction on which
most parallel functional language implementations are
based, we proceed to a discussion of some imple-
mentation issues raised by graph reduction. (The paper
by Augustsson and Johnsson earlier in this issue gives an
introduction to graph reduction.) The paper concludes
with a case study of a particular parallel graph reduction
machine, a brief survey of other similar machines.

2. PARALLEL FUNCTIONAL
PROGRAMMING

2.1 Why programming in parallel imperative languages
is hard

Writing a large imperative program is quite difficult,
even for a sequential computer. It is more difficult still if

it has to take advantage of a parallel system, for reasons
which include the following:

(1) The programmer has to conceive of a parallel
algorithm which meets the specification.

(2) The algorithm then has to be mapped onto the
abstractions provided by the programming language.
This entails

@ identifying a number (often a fixed number) of
sequential activities, called tasks or processes,
which will be run concurrently;

@ defining interfaces between these tasks, which
allow them to synchronise and communicate
without hazards.

Any data shared between tasks has to be specially
protected by the programmer to prevent hazards.
Some systems prevent all such sharing, in which case
information has to be shared by explicit data
transmission between tasks.

(3) In some systems (e.g. Occam on transputers), the
programmer is also responsible for mapping each
task, T, onto a processor, and ensuring that the
processor is physically connected to all processors
running tasks with which the task T communicates.

(4) One detail to which the programmer does not
generally have access is the scheduling policy, by
which each processor determines which task it will
run next. Whilst this leaves more freedom for the
implementation, the programmer is responsible for
establishing that the resulting ensemble of tasks is
free from deadlock, and meets the original speci-
fication wunder all possible interleavings of task
execution. This proof of correctness may be very
considerably harder than the corresponding sequen-
tial case (which is already very difficult in general).
Nevertheless, it appears to be easier than requiring
the programmer to specify a precise execution
schedule and prove correctness with respect to this.

2.2 Why programming in parallel functional languages
is easier.

Of these considerations, only the first applies to parallel
functional programming. To illustrate this claim, consider
the following parallel functional program:
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par_sum n=dsum 1 n
dsum lo hi = if (hi = lo) then hi
else (dsum lo mid)
+
(dsum (mid+1) hi)
where
mid = (lo+hi)/2

The function par_sum is defined in terms of dsum
(short for ‘doubly-recursive sum’). The latter function
works by splitting the problem in half, and computing
each half separately, before combining the result to-
gether: a classic divide-and-conquer algorithm.

The slightly surprising feature of this program is that
it contains no overt reference to a parallel execution
strategy. What, then, makes is a parallel program? The
difference becomes clear when par_sum is contrasted
with a sequential version of the same program:

seg_sum n=if(n=1)
then 1
else n+ (seg_sum (n—1))

This version of sum can only be executed sequentially,
because the data dependencies within the expression
being evaluated force the additions to take place one
after the other. In other words, par_sum is a parallel
program because the data dependencies within it permit the
concurrent evaluation of several parts of the expression.

As in any programming language, a parallel algorithm
is essential. There is simply no substitute for the creative
work of a programmer in algorithm development.
(Actually, in the example, it is conceivable that a clever
compiler could make the transformation from seq_sum
to par_sum, but almost all real problems are harder than
this.)

Notice, however, that in contrast to parallel imperative
programming:

(1) No new language constructs are required to express
parallelism, or synchronisation and communication
between concurrent tasks. The concurrency is entirely
implicit, and new tasks can be spawned dynamically
if the machine has spare capacity to execute them.

(2) No special measures need be taken to protect data
shared by concurrent tasks. For example, the ex-
pression mid is safely shared by the two operands of
the multiplication in dsum. In this case mid would
probably be computed before the concurrent tasks
began, but no special measures would be required
even if the shared object was itself the result of a
large computation carried out concurrently.

(3) It is no more complicated to reason about the
correctness of a parallel functional program than of a
sequential one, because all the same techniques work,
and no new constructs have been added to the
language. Furthermore, deadlock cannot arise,
except as a result of self-dependency (for example:
let a=a+1 in a). Expressions which depend on
their own value are meaningless, and can often be
detected by a compiler.

(4) The results of the program are determinate that is, it
is not possible for the results to vary from run to run,
depending on extraneous factors such as scheduling
policies.

In summary, we suggest that functional programming
languages offer a medium in which the programmer can

express the essential features of a parallel algorithm,
without simultaneously having to detail the solution to a
number of lower-level problems.

2.3 Resource allocation and scheduling: the crucial issue

How can we characterise the essential differences between
a parallel imperative program and a parallel functional
program? Here is one attempt:

a parallel imperative program specifies in detail
many resource-allocation decisions which the parallel
functional program does not mention at all.

Examples of such resource-allocation issues have
already been mentioned, such as: the placement of tasks
and data over the processors and memory provided by
the machine; the communication mechanisms between
tasks; the dynamic generation and control of new tasks;
storage allocation and reclamation.

This list suggests analogies in the history of computer
science. For example, in the beginning all programs were
written in assembly language, and compilers were
distrusted because they were unlikely to do as good a job
of register allocation as a human programmer. Now we
recognise that

@ the performance penalty of automatic register allo-
cation is relatively slight;

@ progamming at a higher level of abstraction (arbitrary
numbers of named storage locations rather than a
fixed number of volatile registers) allows us to build
vastly more complex programs than we would other-
wise be able to contemplate.

To take another example, overlays were invented to
allow programs to be executed which could not fit
completely in memory at one time. The programmer was
responsible for bringing in overlays as required, laying
them over code that was no longer needed. Nowadays we
take paged virtual memory systems for granted, again
tolerating slight performance loss in return for a higher
level of abstraction (a large virtual memory space).
Actually, the complexity of today’s systems is such that
one could imagine a paging system outperforming a
manual overlay system, particularly if the processor and
memory is being shared by more than one user.

A large majority of research in parallel processing
focuses (quite properly) on developments of the low-level
imperative programming technology. Much of this
research is directed towards developing classes of
algorithms for which it is possible to pre-determine the
resource allocation decisions, and extremely effective
parallel systems have been demonstrated. A recent
example is the 1000-1023 factor speedups achieved for
scientific applications by the Sandia National Labora-
tories on a 1024-processor hypercube.!

Other work is directed towards the development of
better programming abstractions (for example: a trans-
puter which provides transparent routing messages
between tasks regardless of physical connectivity), in
exchange for some loss in performance.

Functional programming languages start at the other
end of the spectrum, and offer a very higher level of
abstraction to the parallel programmer. At present, so
few parallel implementations of functional languages
exist that it is impossible to offer a clear experimental
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basis for claims of expressiveness and performance, but
this situation is changing. Nevertheless, history suggests
that performance costs become less and less important
while the benefits of abstraction become more and more
evident.

2.4 Annotations

The high level of abstraction offered by functional
languages places heavy demands on the compile-time
and run-time strategies by which the mchine allocates it
resources. Apart from developing good automatic re-
source-allocation strategies, it is natural to ask whether
it is possible to provide the parallel functional pro-
grammer with the ability to control some of the
resource—management decisions. One popular proposal
for achieving this is by means of annotations.

An annotation is a meaning-preserving decoration of
the program text; that is, the program would deliver the
same results even if all the annotations were deleted. An
annotation constitutes a piece of advice from the
programmer to the compiler about some aspect of
resource allocation.

Thus, annotations provide an opportunity to improve
(or degrade!) the performance of the proram without the
danger of introducing bugs. Unlike the program itself,
appropriate annotations are likely to depend on the
particular system architecture which is being used to
execute the program.

As an example of a possible form of annotation,
consider the following version of dsum:

dsum lo hi = if (hi = lo) then hi
else (dsum lo mid)
{+ {1
(dsum (mid+1) hi)
where
mid = (lo+hi)/2

Here, the annotation {!} expresses the programmer’s
intention that the arguments of the + may be computer
in parallel. (If this is the default behaviour for +, then an
annotation may be provided to inhibit parallel evaluation.
Reasons why this might be useful will be discussed
later.)

Hudak describes an annotation-based programming
methodology recent article in Computer.?

3. PARALLEL GRAPH REDUCTION

We have already seen that functional programming
languages allow programs to be written, in which the
parallelism is implicit in the data dependencies of the
program. How should we implement a parallel functional
language?

Graph reduction is a particularly attractive execution
model for parallel systems, for the following reasons.

@ There is no sequential concept of ‘program counter’
in the model. Graph reduction is by its very nature
decentralised and distributed.

@ Reductions can take place concurrently in many
places in the program graph, and the relative order in
which reduction are scheduled cannot affect the result
that is delivered.

@ All communication and synchronisation between
concurrent activities is mediated through the graph.

At any stage, the current state of the computation is
represented by the state of the graph.

A parallel graph reduction implementation is naturally
more complicated than a sequential one, and we discuss
the issues raised by parallel graph reduction in the
following sections. (The paper by Augustsson and
Johnsson earlier in this issue gives an introduction to
graph reduction.)

3.1 The underlying architecture

We assume a MIMD multiprocessor architecture with a
number of processors and memories connected together
with some kind of communication network. The mem-
ories hold the graph, and together provide a global
virtual address space, so that any part of the graph can be
accessed from any processor.

MIMD machines are typically divided into closely-
coupled shared-memory architectures and loosely coup-
led distributed-memory architectures. Both, however, are
able to support a global address space for the graph so,
from the point of view of graph reduction, the only
difference between the two is the distribution of access
latency to different parts of the address space. For the
purposes of this paper we will therefore treat both
uniformly. The only extra assumption we make is that
each processor has some local memory to which it can
make particularly rapid access, which holds for almost
all parallel architectures.

The access latency distribution can be visualised
conveniently using a latency diagram in which memory
access latency is plotted on the horizontal axis, and
memory size on the vertical axis. Figure 1 gives a
possible latency diagram for a bus-based multiprocessor,
in which a small amount of memory is available with a
short latency, while all the rest is available with a longer
latency. Figure 2 shows a possible latency diagram for a
hypercube-connected network, in which the amount of
accessible memory increases exponentially with latency,
until the ‘waist’ of the cube is reached, when it decreases
exponentially again. Latency diagrams allow some of the
salient characteristics of a multiprocessor to be expressed
in a compact and easily assimilated form. Other crucial
characteristics, such as network bandwidth, remain to be
expressed separately.

Memory size

Memory access latency

Figure 1. Typical latency diagram for a bus-based multi-
processor.
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Memory size

o

Figure 2. Typical latency diagram for a hypercube multi-
processor.

Memory access latency

3.2 The parallel graph reduction model

A task is a sequential computation whose purpose is to
reduce a particular sub-graph to normal form. At any
moment there may be many tasks running in a parallel
graph reduction machine; this collection of tasks is called
the task pool. A processor in search of work fetches a new
task from the task pool and executes it. A particular
physical processor may execute a single task at a time, or
may split its time between a number of tasks; tasks can
be thought of as virtual processors.

Initially there is only one task, whose job is to evaluate
the whole program. During its execution, this task may
encounter a sub-graph whose value will be required in
the future. In this case it may place a pointer to the sub-
graph in the task pool, where it is available for execution
by other processors; we call this sparking a child task.

If the parent task requires the value of the sparked
sub-graph while the child task is computing it, the parent
becomes blocked. When the child task completes the
evaluation of the sub-graph, the parent task is resumed.

There are two ways of organising the blocking/
resumption process. In the notification model, the parent
is blocked if the child task has not completed when the
parent requires its value, or if it has not started work
(presumably because no processor was free to execute it).
When the child task completes it notifies the parent,
which causes the parent to be resumed. The same applies
to any other task which is by then awaiting the value of
the sub-graph. The advantage of this model is that a
parent can go to sleep with a notification count, awaiting
notification from several children before it is resumed.

In the evaluate-and-die model, when the parent requires
the value of a sub-graph which it has sparked a child to
evaluate, the parent simple evaluates the sub-graph just as
if it had never created the child. There are then three cases
to consider:

@ The child has completed its work, and the sub-graph _

is now in normal form. In this case the parent’s
evaluation is rather fast, since it degenerates to a
fetch of the value.

@ The child is currently evaluating the sub-graph. In
this case the parent is blocked, and resumed when the
child completes evaluation. Upon resumption the
parent sees the sub-graph in its normal form, and
continues as in the previous case.

@ The child has not started work yet. In this case there
is no point in blocking the parent, and it can proceed
to evaluate the sub-graph. The child task is still in the
task pool, but it has become an orphan, and can be
discarded.

The advantage of this model is that blocking only occurs
when the parent and child actually collide. In all other
cases, the parent’s execution continues unhindered.

Notice that in either case the blocking/resumption
mechanism is the only form of inter-task communication
and synchronisation. Once an expression has been
evaluated to normal form, then arbitrarily many tasks
can inspect it simultaneously without contention.

3.3 Storage management

Any graph-reduction machine requires a storage-
management system which allocates storage for new
graph nodes, and reclaims store which is no longer
referenced by the graph. Parallel machines present a
particular challenge for such garbage-collection tech-
niques. Parallel garbage collection is a subject beyond the
scope of this paper, but there is a wide and continuing
literature on the subject (to give some recent examples,
Appel® deals with closely-coupled systems; Deb* and
Rudalics® deal with distributed systems. Cohen® gives a
survey).

4. GENERATING AND CONTROLLING
PARALLELISM

In a parallel machine it is natural to be concerned about
whether enough parallelism will be generated. In practice,
it seems that a more serious problem is that of getting
swamped in parallelism.” Consider a divide-and-conquer
algorithm, such as dsum above. If the system is capable
of evaluating the two recursive calls concurrently, the
number of tasks may then explode exponentially, and the
machine’s store may overflow with partially-completed
computations.

In other words, there is an important resource-
management problem that is concerned with deciding
when a new task should be sparked and run. There are
several questions to be answered here:

@ will the result of the task be useful?

@ is the computation large enough to justify the
administration associated with a task?

@ is there enough spare capacity to run the task in
parallel ?

@ which task from the pool should an idle processor

choose to run next?

4.1 Is the task useful?

Some tasks are more useful than others, but there is a
particularly important distinction between tasks whose
results will cerzainly be needed and tasks whose results
may be needed. This distinction is elaborated in the
following sections.

4.1.1 Conservative and speculative parallelism

Sometimes it is clear that the value of a sub-graph will
certainly be useful in the future, and there is no risk of

178 THE COMPUTER JOURNAL, VOL. 32, NO. 2, 1989



PARALLEL IMPLEMENTATIONS OF FUNCTIONAL PROGRAMMING

wasting computing resources if we always spark a task to
evaluate such sub-graphs. For example, if a task is
evaluating the expression (E, + E,), where E, and E, are
arbitrary expressions, it may choose to evaluate E, itself,
and to spark a child task to evaluate E,, whose value will
certainly be needed later. We call this conservative
parallelism.

Under a conservative parallelism regime, it is possible
to spark a task whenever a function is applied to an
argument whose value will certainly be required. A
considerable amount of research has been focused on
compile-time analysis techniques, called strictness analysis
methods, which automatically derive this information for
each function from the program text. In the case of first-
order languages with no data structures, effective
methods of strictness analysis have been known for some
while,® but recent work has extended these methods to
higher-order languages or data structures.®*!

For some programming paradigms, it may be useful to
be able to start parallel computations whose results may
or may not be useful. For example, a search program may
try several alternatives in parallel, and pick the first to
terminate. The work done on the other alternatives is
wasted, but there is no way to tell which alternative is the
useful one at the outset. We call this speculative
parallelism, because parallel activities are initiated on the
basis of speculation about the usefulness of their results.

Certain language constructs make speculation un-
avoidable. An example is the bottom-avoiding non-
deterministic choice operator, amb, which takes two
arguments, evaluates them in parallel, and returns the
first one to terminate. It is called ‘bottom-avoiding’
because if one of its arguments fails to terminate but the
other does terminate, the terminating argument will be
returned. (In the jargon of programming language
semantics, the value of a non-terminating computation is
called ‘bottom’.) If both arguments terminate, then it is
clearly indeterminate which will terminate first, because
it depends on the machine’s scheduling policy. The amb
operator makes speculation unavoidable, because once
one argument of amb has terminated, the other turns out
to have been speculative. Unfortunately, it is impossible
to predict which of the two tasks is the speculative one
until after the event!

Speculation can be desirable even in completely
deterministic contexts. Suppose one function is producing
a list whose initial segment is consumed by another. The
producer does not know how many list elements will be
consumed, so the only conservative strategy is to produce
just one element at a time, when it is demanded by the
consumer. Unfortunately, this is a completely sequential
strategy. To gain parallelism, the producer could
speculatively evaluate some elements ahead of the
consumer, but these speculative tasks will then have to be
killed when the consumer finally discards the rest of the
list (remember, we are supposing that the consumer uses
only an initial segment of the list).

Another example of the need for speculation concerns
language support for interrupts. If a functional operating
system begins evaluation of an expression, and the user
presses the interrupt key, the evaluation of the program
turns out to have been speculative.

Itis clear that some support for speculation is desirable.
Unfortunately it is also expensive, as the next section
shows.

4.1.2 The perils of speculation

Speculative parallelism is considerably harder to im-
plement than conservative parallelism.

@ Conservative tasks should always be run in preference
to speculative tasks. For example, in the conditional
expression if E, then E, else E; the expression E,
and E, could be sparked speculatively whilst the
condition E, was evaluated. This certainly gains
parallelism, but if the machine spends all its resources
evaluating E, and E, it will never make progress!
Clearly the conservative task evaluating E, should be
run at a higher priority.

@ Speculative tasks may become conservative. For
example, if E, evaluated to True, then the speculative
task evaluating E, would now be conservative, and
its priority should be increased to reflect this fact.
Furthermore, the priority of some of the tasks it has
spawned should also be increased, namely those ones
whose evaluation is essential for the evaluation of E, ;
and so on.

@ Speculative tasks may become irrelevant, such as the
task evaluating E, in the example. Such irrelevant
tasks should be killed; and their children, and their
children, and so on.

@ Speculative tasks should be scheduled fairly so that,
for example, a search program explores all the
alternatives at roughly equal rates. This requirement
significantly complicates the scheduler, and adds run-
time overhead.

To suggest how hard some of these priority-changing
operations are, consider the special case of killing
irrelevant tasks, which amounts to reducing their priority
to zero. Killing irrelevant tasks may at first appear to be
a similar problem to that of garbage collection of
memory, but it is much more difficult for several reasons.*?

Firstly, an irrelevant task is not merely passively
harmful like unreferenced storage. It is actively perni-
cious, consuming processing resources, allocating more
store, and (worst of all) spawning further irrelevant
tasks. There is an obvious danger that it will breed new
tasks faster than the task-killer can kill them off.

Secondly, the possibility of sharing in the graph
complicates matters. Suppose that a conservative task is
blocked awaiting the evaluation of a sub-graph which
just happened to be shared by a speculative task which
got there first; then if the speculative task is killed the
conservative task will wait for ever.

A promising approach to the problem is to link the
killing of irrelevant tasks with the ordinary garbage
collector. Any task which is evaluating a garbage graph
node (that is, a node unreachable from the root of the
original graph) must certainly be irrelevant, and can be
killed.*® Unfortunately, this does not identify all irrele-
vant tasks. There are at least two possible reasons why
an irrelevant task might be evaluating a non-garbage
node:

@ It may be that the subgraph is being retained for
possible later evaluation; though it is possible to
argue in this case that the task is not entirely
irrelevant after all.

@ Alternatively, it may be that the subgraph is still
attached via a space leak, such as an unevaluated
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expression of the form (fst (E,, E,)). In this
expression, E, is garbage since the selector fst selects
the first element of the pair, but the garbage collector
will not usually realise this fact.’

There are a number of further objections to this task-
deletion mechanism. Firstly, there may be a considerable
delay between a piece of data becoming garbage and its
identification as such, during which the irrelevant task
can proceed unchecked. Secondly, the method does not
generalise to handle other changes of priority, such as a
priority upgrade. Thirdly, garbage data cannot be re-
allocated until all irrelevant tasks which might refer to it
have been killed.

An obstacle for more sophisticated schemes is that
there is no direct reference from a task to those it has
spawned, so the task-deletion mechanism has no direct
way of finding the irrelevant children. Hudak'® proposes
a scheme which addresses this issue directly, by attaching
to each graph node a list of all the nodes which it has
sparked. His method thereby solves all of the difficulties
mentioned above, with the exception of the ‘space leak’
problem, but the complexity and overheads involved are
quite substantial, and the algorithm has not been
implemented.

4.1.3 Conclusion

It seems clear that speculative parallelism is sometimes
desirable, but it is not at all clear how best to implement
it.

One approach, taken by Henderson and Jones in their
work on functional operating systems,'® is to ignore the
problem! They gave speculative tasks the same priority
as conservative tasks, and made no attempt to kill
irrelevant tasks. Their non-deterministic construct was a
bottom-avoiding list-merging operator, so that the
alternative discarded by one non-deterministic selection
would always be one of the alternatives in the next
selection. As a result, an irrelevant task would invariably
become speculative again, and hence the fact that it had
never been killed off did not matter.

A similar approach is taken by the MIT dataflow
group. Speculative tasks are always allowed to run to
completion, regardless of whether their results are
actually required or not: ‘on our dataflow machine this
phenomenon is reflected in the sometimes unnerving
behaviour that an answer may be printed long before
termination is reported’.'” (In their case, though, it is
essential to complete even the speculative tasks, in case
two assignments are made to the same element of an
I-structure, indicating a run-time error.)

These solutions are hardly general, and it seems
inevitable that substantially increased overheads are
associated with general speculative parallelism. This is an
area where further work is required.

Some systems allow the programmer to control the
generation of new tasks by means of annotations, rather
than relying entirely on automatic inferencing techniques.
This may have to be carried out with some care, since the
system may assume that such tasks are conservative. If
the programmer inadvertently initiates a speculative
task which turns out to be irrelevant, the machine may
deliver the results more slowly, or even run out of space
before completion. Annotations may not be entirely
benign!

4.2 Is the task big enough?

There is always some administrative overhead associated
with the creation of a task, so it would be desirable to
avoid creating tasks which only perform a very small
amount of computation. Furthermore, the more tasks
there are, the greater the amount of (expensive) com-
munication and synchronisation that will take place.
This is saying no more than the common observation
that large-grain parallelism is easier to implement
efficiently than fine-grain parallelism.

The two main strategies that have been suggested to
address this problem are compile-time analysis and
programmer annotation.

4.2.1 Compile-time complexity analysis

Under this approach, the compiler tries to analyse the
program to determine how much work is involved in
evaluating each part, and only generates code to create
new tasks when the work involved is sufficient to justify
it. In general this is impossible, since the answers may
depend on the input data.

Nevertheless, some simple approximations may elimin-
ate the worst offenders. For example, the approach taken
by Goldberg'® to estimate the execution cost of evaluating
an expression is as follows:

@ if the expression is a simple arithmetic expression,
then its cost can be computed rather simply;

@ if the expression involves a call to a known function,
then inspection of the function body can yield the
execution cost provided that the function is
non-recursive, and calls only known non-recursive
functions, and so on;

@ if the expression involves a call to a known recursive
function it is hard to find a compile-time bound for
the evaluation cost, so assume an infinite cost;

@ similarly, if the expression involves a call to a
function which is a free variable of the expression, the
evaluation cost will depend on the function bound to
this variable, so assume an infinite cost.

The approximations are rather coarse, and most ex-
pressions encountered in practice are attributed an
infinite cost.

Better estimates may be possible, but they are likely to
carry some run-time overhead. For example, the cost of
adding up the elements of a list is proportional to the
length of the list. Even if the compiler can figure out this
fact, how is the run-time system to find the length of the
list? Either every list has to carry round its length in an
easily accessible place, or the length of the list has to be
computed dynamically. Each carries such heavy over-
heads that the whole exercise is unlikely to improve the
overall performance.

It seems unreasonable to expect very substantial
progress in this area, but solid experimental evidence is
lacking.

4.2.2 Programmer annotations

Alternatively, programmer annotations can supply direc-
tives to the compiler that particular expressions are or are
not of sufficient size to merit a task, possibly based on a
criterion computed at run-time. For example, consider

180 THE COMPUTER JOURNAL, VOL. 32, NO. 2, 1989



PARALLEL IMPLEMENTATIONS OF FUNCTIONAL PROGRAMMING

the dsum function from Section 2.2. At each stage the
problem is divided in two, and initially is is sensible for
new tasks to be generated. Nevertheless, when the
difference between the arguments becomes sufficiently
small, it would be better to refrain entirely from sparking
new tasks, even if there were still idle processors available.

For example, consider the following version of the
dsum example.

dsum lo hi
= if (hi = lo) then hi
else (dsum lo mid)
+ {! worth_sparking}
(dsum (mid+1) hi)
where
mid = (lo+hi)/2
worth_sparking = (hi—lo) > 50

The annotation {! worth_sparking} is intended to in-
dicate to the run-time system that it is worth sparking a
subtask for the second argument of the +if the value of
worth_sparking is true, that is if the difference between
hi and lo is sufficiently large. When the difference becomes
small enough, no further tasks are sparked.

The point at which sparking should be stopped depends
on the value of the arguments in a way which it would be
ambitious to expect the compiler to figure out. There
appears to be no substitute for some programmer insight
here, together with some fine tuning based on per-
formance measurements.

It is possible to take this idea even further. A good
compiler can produce near-optimal sequential machine
code for functions such as dsum, so further improve-
ments could be made by compiling two versions of
dsum, one which sparked new tasks, and one which was
compiled as for a sequential machine. Which of the two
is used could depend, as before, on a programmer
annotation which took into account the values of the
parameters.

4.3 Is there any spare capacity?

There is no point in sparking a new task if the machine
is already saturated with work. An ideal situation would
be for the problem to break into one independent task
for each processor, each of which is executed sequentially
in the processor’s local memory, before the results are
finally combined together. Whilst the run-time scheduling
system is unlikely to achieve this ideal in practice, it does
suggest that the system should refrain from creating new
tasks when the machine load is greater than some
threshold.

Such a strategy has a number of desirable effects.
Firstly, it reduces the resources required to add and
remove tasks from the task pool. Secondly, it makes
collisions between tasks less likely because once the
machine has become sufficiently loaded tasks cease
creating children with which they may subsequently
collide. Thirdly, it increases locality, because tasks cease
creating children which may be executed on another
processor. In effect, the grain size is dynamically
increased.

It is worth noting that the evaluate-and-die model of
synchronisation (see Section 4.1) can easily accommodate
this strategy, whereas matters are more complicated for
the notification model. If the notification model is used,

and a potentially sparkable sub-graph is not sparked
because the machine load is high, this decision has to be
communicated to the code which consumes the value of
the sub-graph. If not, the parent task may indefinitely
await notification from a child task that does not exist. If
the evaluate-and-die model is used, sparks may freely be
discarded without informing the consumer at all.

Limiting the machine load in this way depends on each
processor having a reasonable measure of the current
machine load. Possible measures include the size of the
task pool, the utilisation of memory, and the utilisation
of the processors over the recent past. Unfortunately,
none of these measures necessarily relate directly to the
amount of work required to process all the tasks in the
local pool. For example, the machine could appear to
have plenty of work in the task pool, but it might largely
consist of small tasks.

The load information can either be computed centrally
by a system management process and broadcast to all
processors (as is done in the GRIP multiprocessor,
described below), or computed in a distributed way. In
the Flagship machine, for example, the load average is
computed at an extremely low level, in the inter-
connection network itself.'®

Alternatively, each processor can use an estimate its
own load to control whether or not it creates new tasks,
relying on a separate mechanism to reduce its load if
other processors are idle by migrating its tasks to
them.

Even given a good measure of load, the load-limiting
strategy can lead to the following undesirable situation:
a task may refrain from creating a sub-task when the
machine is loaded but, if the machine subsequently runs
out of work, the sub-task might have proved very
useful.

This is another area in which careful experiments are
required to discover effective strategies.

4.4 Effect of scheduling strategy

At any moment there may be many tasks awaiting
execution, and only a finite number of processors
available to execute them. Which task should be
scheduled first, and how important is this decision?

To a first approximation, assuming conservative
parallelism, it makes no difference which task is selected
for execution, since all tasks are doing essential work.
Nevertheless, scheduling policy does have some im-
portant effects when the number of tasks exceeds the
number of processors available to execute them:

@ Execution of long sequential task might be postponed
until near the end of the computation, whereas it
would be better to overlap its execution with other
tasks by starting it earlier.

@ Some strategies may breed sub-tasks faster than
others. Fast-breeder strategies are good when the
machine is unloaded, and bad when the load increases.

Eager et al. * elegantly demonstrate that, assuming
conservative parallelism, under any scheduling policy the
processor utilisation for N processors must be larger than
A/(N+ A—1), where A is the speed-up factor that would
be obtained by executing the same program with an
unbounded number of processors. If 4 > N this lower
bound approaches 1, which reassures us that scheduling
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policy is comparatively unimportant for programs with a
high average level of parallelism. Furthermore, provided
A > N, the processor utilisation must be greater than
50%, which provides a surprisingly good bound for
programs whose average level of parallelism is as small as
the number of processors.

Using an idea proposed by Burton and Sleep,?' the
Manchester dataflow group have discovered an effective
strategy for controlling the explosion of parallelism in
divide-and-conquer algorithms.” If the task scheduled
next for execution is the most recently created task, then
the tree of tasks is explored in a depth-first manner. In
contrast, scheduling the least recently created task first
gives rise to breadth-first exploration of the tree. The
depth-first strategy minimises the number of partially-
completed tasks, and hence optimises for space usage,
while the breadth-first strategy seeks maximum paral-
lelism. The Manchester group advocate dynamically
changing the scheduling strategy depending on the load
of the machine, using breadth-first when the load is low,
and depth-first when the load increases. They call this
mechanism a throttle.

5. LOCALITY AND THE PLACEMENT OF
TASKS

Having now considered how parallelism is generated and
controlled, we now move on to discuss issues raised by
the underlying physical machine architecture.

In considering how to map a parallel implementation
of graph reduction onto a given parallel architecture, one
issue dominates all the others: how can a high degree of
spatial locality be achieved simultaneously with a high
degree of processor utilisation? In order to reduce the
communication bandwidth required to manageable pro-
portions it is essential that as much communication as
possible is very local, namely between a processor and its
local memory. There is of course one trivial way to
achieve perfect locality, by executing all tasks on one
processor, an observation which points out the tension
between locality and processor utilisation.

Three major strategies influence the achievable locality
and processor utilisation, which will be discussed in turn
in the succeeding sections:

@ Data placement strategy.
@ Task placement strategy.
@ Caching strategy.

For sufficiently well-behaved problems it is in principle
possible for the programmer or compiler to plan a static
task and data placement strategy. For many parallel
computers (such as array processors and systolic archi-
tectures), this is an absolute requirement. However, as
Section 2 has discussed, the attraction of parallel
functional programming is exactly that this sort of static
planning is not required, and indeed it would often
be an impossibly complex (and input-data-dependent)
problem.

Hence we concern ourselves exclusively with adaptive
policies, which take decisions on the basis of information
about the current system state, rather than being decided
statically in advance. There is a wide range of possible
strategies, ranging from very simple ones based on
limited information, to complex policies which attempt

to make near-optimal decisions based on detailed
information about the system state.

It may also be possible to use programmer annotations
to control data and task placement decisions.?

5.1 Data placement

The simplest data placement strategy is to allocate new
data objects locally to the processor doing the allocation.

In principle, a more sophisticated scheme might
allocate data on a processor which was subsequently
going to work on that data, but this requires prior
knowledge of the task placement strategy, which itself
may vary in response to run-time factors. This kind of
prediction seems impossibly hard to achieve, so we
assume a straightforward local allocation strategy
only.

5.2 Task placement

Each processor holds a pool of executable tasks, and
together these pools form the global task pool. The task
placement strategy has two conflicting goals:

® To achieve good processor utilisation, tasks must
migrate from busy processors to idle processors.

@ To achieve good locality, tasks should not migrate
far from the graph which they are supposed to
evaluate.

Notice that to achieve optimal processor utilisation it
is only necessary that all processors should be busy so
long as there is any work to be done; that is, if there is
any idle processor then all the task pools are empty. It is
not necessary, for example, that all task pools are of
equal size, which is an implicit assumption of many
proposed schemes. Hence we use the term load sharing
rather than load balancing.

Eager et al.* have obtained encouraging results from
studies of adaptive strategies for task migration in a
rather general context, though their results are only
partially applicable to parallel graph reduction. They
concern themselves exclusivly with the situation when
tasks are being generated at a slower average rate than
the agregate task execution rate of the whole system. If
tasks are generated faster than this, all the task pools will
rapidly fill up, and there is no need for task migration.
They also assume that new tasks are generated uniformly
across processors, and they do not include the effects of
spatial locality.

In all the policies they studied, a processor attempts to
export tasks when its task pool exceeds a certain fixed
size. In the simplest policy, an exporting processor
unilaterally sends any task it wishes to export to a
random destination processor. To prevent thrashing, a
task can only be exported a fixed maximum number of
times, after which it is no longer eligible for export. Even
this very simple strategy gave surprisingly good per-
formance. After trying a number of more elaborate
policies, they conclude that very simple strategies give
near-optimal performance, over a wide range of system
parameters.

Eager et al. only consider stategies in which the
exporting processor plays the dominant role. Another
alternative is that processors with small task pools could
solicit work from other processors (starting perhaps with
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those nearby). A combination of the two, designed for
systems in which processors can only communicate
directly with a small number of neighbours, is called
diffusion scheduling. Each processor maintains an esti-
mate own workload and communicates this to its
neighbours. If the processor believes its workload to be
significantly higher than that of some neighbour, it tries
to balance the load by exporting some tasks to that
neighbour. In this way, work ‘diffuses’ across the
machine from busy parts towards less busy parts.

Diffusion scheduling has two particularly attractive
characteristics, both of which tend to reduce long-range
communication:

@ Only local system state information is required.

@ Since tasks do not ‘jump’ right across the machine,
there is some hope that tasks will tend to access data
held in nearby memories.

Diffusion scheduling has been simulated in the
Rediflow architecture® and implemented by Goldberg in
the Alfalfa compiler on the Intel iPSC hypercube.®
Goldberg experimented with a variety of variants on
diffusion scheduling, and his results strongly support
those of Eager et al., namely that the simplest strategies
often perform very nearly as well as (and occasionally
better than) more complex ones.

5.3 Caching stategy

One of the most fruitful ways of improving locality in
computer systems is data caching. In terms of graph
reduction, this means that each processors caches local
copies of some remote graph nodes. Typically, remote
nodes will be fetched when they are first referred to, and
thereafter cached until they have to be removed from the
cache to make space for new nodes.

Whenever two or more separate caches hold distinct
copies of the same data item, there is a danger that one
processor will modify the data item in its cache, and the
others will then be left holding stale data. This leads to
the notorious problem of maintaining cache coherence,
the requirement that every cache accurately reflects the
true state of the memory, so that no processor can access
stale data. There is a substantial literature on mechanisms
for maintaining cache coherence in a multiprocessor
system, but such schemes are invariably restricted to bus-
based systems.

A very attractive feature of graph reduction is that it
eliminates essentially all the problems of cache coherence
in multiprocessors :

@® When a graph node is unevaluated, the blocking
mechanism prevents more than one task from acces-
sing it, so that it can freely be cached by the unique
processor which succeeds in accessing it.

@® When evaluation of the graph node is complete, it is
overwritten with its evaluated form, which causes any
tasks which were blocked on the node to be resumed.
The node cannot now change any further (since it is
fully evaluated), so an arbitrary number of processors
can cache it without fearing loss of coherence.

In other words, graph nodes can freely be cached
regardless of whether they are evaluated or not. The
absence of side effects in a functional language imple-
mentation has paid off with an important architectural

benefit. The caches should, incidentally, implement a
write-through policy, so that as soon as a node is
updated with its evaluated form the original copy is also
updated, thus freeing any blocked tasks.

There are a number of differences from conventional
caches:

@® The unit of caching is a graph node, whose size may
not necessarily be fixed. This requires a more flexible
cache structure than the usual fixed-size cache slots.
Indeed, it may be most sensible to use the processor’s
local heap (which is already capable of allocating
graph nodes) for cached data, together with an
addressing mechanism to translate virtual to local
addresses. This is exactly the scheme proposed for
Flagship.'®

@® Conventional caches often fetch a small block of
storage around the addressed word, on the grounds
that the nearby store locations are relatively likely to
be accessed in the near future (this can be seen as a
form of prefetching). In a graph-reduction system,
there may not be any relationship between graph
nodes which happen to be adjacent in the virtual
address space. If prefetching is implemented, it
probably makes sense to fetch nodes pointed to by the
addressed node, rather than nodes adjacent 1o it.

@® The latency incurred on a cache miss may be
substantial, depending on the machine architecture.
If so, the latency must be hidden by running other
tasks while waiting for the remote fetch to be
performed. This imposes a fairly stringent require-
ment for rapid context-switching.?

6. A CASE STUDY: THE GRIP
ARCHITECTURE

GRIP is a multiprocessor developed under Alvey funding
to execute functional and logic languages. This section
describes GRIP and its graph reduction mechanisms, to
serve as a focus for the preceeding general discussion.

6.1 Architectural overview

GRIP consists of up to 20 printed circuit boards, each of
which contains four processors and one Intelligent
Memory Unit (IMU). The boards are interconnected
using a fast packet-switched bus, and the whole machine
is attached to a UNix host. A bus was chosen specifically
to make the locality issue less pressing. GRIP still allows
us to study locality, but does not require us to solve the
locality problem before being able to produce a con-
vincingly fast implementation.

Each processor consists of a M68020 CPU, a floating-
point coprocessor, and 1 Mbyte of private memory
which is inaccessible to other processors.

The IMUs collectively constitute the global address
space, and hold the graph. They each contain 1 M words
of 40 bits, together with a microprogrammable data
engine. The microcode interprets incoming requests from
the bus, services them and dispatches a reply to the bus.
In this way, The IMUs can support a variety of memory
operations, rather than the simple READ and WRITE
operations supported by conventional memories.

The following range of operations is supported by our
current microcode:
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@ Variable-sized graph nodes may be allocated and
initialised.

@® Garbage collection is performed autonomously by
the IMUs in parallel with graph reduction, using a
variant of Baker’s real-time collector.?

@® Each IMU maintains a pool of executable tasks. Idle
processors poll the IMUs in search of these tasks.

® Synchronised access to graph nodes is supported. A
lock bit is associated with each unevaluated node,
which is set when the node is first fetched. Any
subsequent attempt to fetch it is refused, and a
descriptor for the fetching task is automatically
attached to the node.

When the node is overwritten with its evaluated
form (using another IMU operation), any task
descriptors attached to the node are automatically
put in the task pool by the IMU.

The IMUs are the most innovative feature of the
GRIP architecture, offering a fast implementation of
low-level memory operations. A separate project, called
BRAVE, is writing different microcode to support
Prolog on the same hardware base.

6.2 Graph reduction on GRIP

We start from the belief that parallel graph reduction will
only be competitive if it can take advantage of all the
compiler technology that has been developed for
sequential graph-reduction implementations.*®* Our
intention is that, provided a task does not refer to remote
graph nodes, it should be executed exactly as on
sequential system, including memory allocation and
garbage collection.

We implement this idea on GRIP in the following way.
Each processor uses its private memory as a local heap,
in which it allocates new graph nodes. There are no
pointers into this memory from outside the processor, so
it can be garbage-collected independently of the rest of
the system.

There are four main reasons why a processor may need
to make non-local accesses, namely: fetching non-local
nodes, updating non-local nodes, making new tasks
available to other processors, and acquiring new tasks
made available by other processors.

Fetching non-local nodes. When a processor needs a
non-local node, it fetches it from the appropriate IMU,
and caches a copy in its local heap. These cached copies
are discarded when the local heap gets too full. (The
fetch latency is such that it is not worth the overhead of
context-switching while waiting for the result.)

Updating non-local nodes. When a processor completes
evaluation of a global node, it updates it with the
evaluated form. This is relatively expensive because, in
order to maintain the invariant that there are no external
pointers into a processor’s private memory, the entire
subgraph accessible from the updated node has to be
moved into global memory (at least, those parts which
are not already there).

Making tasks global. Each processor maintains a
private task pool of tasks which it has sparked. If the
system load is low enough, it exports part of this pool to
an IMU, remembering again to move into global
memory the entire subgraph thereby made accessible.
Again, the cost is a necessary one: tasks which are being

made public must be moved into a publicly visible
place.

Nevertheless, this cost is only incurred when the
system load is low. When the system fills up with tasks,
each processor simply runs locally. When the local task
pool is full, the processor refrains from sparking any new
tasks, as discussed earlier. This is easily implemented
because we use the evaluate-and-die model of task
synchronisation.

Getting new tasks. When a processor runs out of local
tasks, it polls the IMUs until it finds some new ones to
do. (It starts this process with the IMU on its own board,
of course.)

It is clearly desirable to avoid performing updates if
the node being updated is not shared. This is true in a
sequential implementation but the cost of performing
global updates makes it even more important in a
parallel machine. Happily, recent advances in sequential
compiler technology have shown how to use compile-
time analysis to identify some of the nodes which are not
shared, and how to avoid performing updates for such
nodes.?”**® We are incorporating these ideas into our
implementation.

Only conservative parallelism is supported at present.

6.3 System management

Each processor can run a number of processes, under a
lightweight operating system. Most processors run
exactly one process, which performs graph reduction,
but some processors run system management processes
which a relatively low duty cycle, and therefore do not
merit a processor to themselves.

A single System Manager process, running on a
particular processor, is responsible for polling the
processors and IMUs in the system, assessing the overall
system load, and informing the processors whether they
should seek to export tasks or not. The System Manager
is also responsible for synchronising global system state-
changes, such as occur during garbage collection.

Other processes are responsible for performance
monitoring, system loading, and input/output.

6.4 Current status

An interpretative implementation of graph reduction is
running on this hardware, and a compiled imple-
mentation is currently in the late stages of development.
Funding is now being sought to develop real applications
on this system, in order to test the claims of this paper,
and to provide a realistic setting in which to develop
effective resource-allocation strategies.

7. OTHER ARCHITECTURES

There are very few operational parallel implementations
of functional languages, and we briefly review them in
this section.

7.1 MIMID architectures

The ALICE machine was probably the first parallel
implementation of a functional programming language.*®
It consists of up to 40 processing agents and packet pool
segments (a form of intelligent memory), connected with
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multistage switching network. Each agent and memory
board was built from transputers, programmed in
Occam. Two machines exist, one at Imperial College and
one at AIAI in Edinburgh.

The Zapp machine, developed at the University of
East Anglia, consists of a network of transputers con-
nected in a virtual tree (not dissimilar to a hypercube).*
It has demonstrated very high speed-ups (for example,
a speed-up of 39.9 on a 40-transputer Zapp), but it is
limited to a simple divide-and-conquer programming
methodology. It is clearly not a general-purpose graph-
reduction machine, and is programmed in Occam rather
than a functional language, but serious attempts were
made to generate the sort of code which could be
generated by a functional-language compiler.

The Flagship project is much more ambitious follow-
up to ALICE.** The project addresses the issues of
parallel declarative programming in the large, including
non-determinism, transaction processing, security, and a
host of related problems. A parallel architecture forms
part of the project, and a multiprocessor emulator exists,
based on 68020 boards.

Goldberg has implemented a parallel functional
language using compiled graph reduction on both the
Intel iPSC hypercube, and the Encore Multimax shared-
memory machine, and reports in detail on his work in his
thesis, which is an extremely useful source.'®

Based on their original work on the G-machine,
Johnsson and Augustsson have developed a model for
parallel evaluation which they call the v-G-machine.
They are now developing a compiler targeted for the
Sequent Symmetry shared-memory multiprocessor.*

7.2 SIMD architectures

Rather surprisingly, it has turned out to be possible to
perform graph reduction on a SIMD architecture.?*
The idea is to break the program up into the composition
of a small fixed set of operators. One operator is chosen
by the control processor and all its instances executed
simultaneously, while all the other operators are quie-
scent. Then the control processor selects a new operator
for execution, and so on.

Another approach, on a tree-structured SIMD
machine is suggested by O’Donnell et al.*®

7.3 Dataflow architectures

So far this paper has focussed on implementation
techniques based on graph reduction. A completely
different approach to the parallel implementation of
functional languages is exemplified by dataflow archi-
tectures.*® The main groups active in this area are at
MIT, Manchester and the Electrotechnical Laboratory
in Japan; Arvind and Culler give a good survey.*

Dataflow is based on the principle of data items (or
tokens) flowing along arcs between elementary computa-
tional units, which await all their input tokens before
firing and producing an output token. In practice it has
turned out that this simple idea requires quite complex
implementations when non-strict data structures, recur-
sive functions, and higher-order functions are included.
The solutions to these problems, based on tagged-token
dataflow and [I-structures, are now quite well under-
stood.*?

Dataflow seems at first to be an extremely radical, fine
grain form of parallel execution, inherently incapable of
taking advantage of advances in conventional von
Neumann computer architecture. Recently, however,
ways of combining von Neumann and dataflow archi-
tectures have been proposed, which should lead to
interesting new developments.*!-42

7.4 Implications for architecture

Functional programming languages and their imple-
mentations look at first like excellent candidates for
special-purpose machine architectures. Whilst there have
been some attempts to build such machines,??" the
reality seems to be more prosaic: the gains that special-
purpose machines can deliver can be substantially
surpassed by the application of good compiler tech-
nology. For the most part, functional programs can be
compiled to run efficiently on conventional hardware.

If anything, a strongly-typed functional language has
less need for hardware support than a Lisp system,
because the compile-time type-checking obviates the
need for the run-time checks which Lisp has to perform.
There is, nevertheless, scope for carefully-targeted hard-
ware support in the areas of memory management,
garbage collection, and task synchronisation. For ex-
ample, Kieburtz has made extensive measurements of the
run-time behaviour of G-machine-style implementations,
as a basis for the design of a processor intended
specifically for functional programming.*®

8. CONCLUSION

Parallel functional programming is a technology that is
in its adolescence. Its potential is enormous, but it needs
to be tried out in practice on real applications before it
can command wide credibility. Fortunately imple-
mentations are now becomming available which are able
to support real applications, and we can expect to see a
substantial increase in the use of functional programming
in the next few years.

As this paper has demonstrated, the very factors which
make functional programs attractive are exactly those
which place heavy demands on the compiler and run-
time resource management system. However, as imple-
mentations improve, the costs of functional programming
should become increasingly neglible; and as software
becomes more complex, the benefits should become
increasingly valuable.
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