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speech samples from both the training and testing environmentsABSTRACT
at each SNR of speech in the testing environment.  At high SNRs,

As automatic speech recognition systems are finding their way this correction vector primarily compensates for differences in
into practical applications it is becoming increasingly clear that spectral tilt between the training and testing environments (in a
they must be able to accommodate a variety of acoustical en- manner similar to the blind deconvolution procedure first
vironments. This paper describes two algorithms that provide proposed by Stockham et al. [4]), while at low SNRs the vector
robustness for automatic speech recognition systems in a fashion provides a form of noise subtraction (in a manner similar to the
that is suitable for real-time environmental normalization for spectral subtraction algorithm first proposed by Boll [5]). The
workstations of moderate size.  The first algorithm is a modifica- SDCN algorithm is simple and effective, but for every new
tion of the previously-described SDCN and FCDCN algorithms, acoustical environment encountered it must be calibrated with a
except that unlike these algorithms it provides computationally- new stereo database that contains samples of speech simul-
efficient environmental normalization without prior knowledge of taneously recorded in the training and testing environments.  In
the acoustical characteristics of the environment in which the many situations such a database is impractical or unobtainable,
system will be operated.  The second algorithm is a modification and SDCN is clearly not able to model a non-stationary environ-
of the more complex CDCN algorithm that enables it to perform ment since only long-term averages are used.
environmental compensation in better than real time.  We com-

The second compensation algorithm, Codeword-Dependentpare the recognition accuracy, computational complexity, and
Cepstral Normalization (CDCN), uses EM techniques to computeamount of training data needed to adapt to new acoustical en-
ML estimates of the parameters characterizing the contributionsvironments using these algorithms with several different types of
of additive noise and linear filtering that when applied in inverseheadset-mounted and desktop microphones.
fashion to the cepstra of an incoming utterance produce an en-

1. INTRODUCTION semble of cepstral coefficients that best match (in the ML sense)
the cepstral coefficients of the incoming speech in the testingResults of several studies have demonstrated that even automatic
environment to the locations of VQ codewords in the trainingspeech recognition systems that are designed to be speaker inde-
environment. Use of the CDCN algorithm improved the recog-pendent can perform very poorly when they are tested using a
nition accuracy obtained when training on the CLSTLKdifferent type of microphone or acoustical environment from the
microphone and testing with the PZM6FS to the level observedone with which they were trained (e.g. [1, 2, 3]). For example,
when the system is both trained and tested on the PZM6FS.  Thethe recognition accuracy of the SPHINX speech recognition system
CDCN algorithm has the advantage that it does not require aon a speaker-independent alphanumeric task dropped from 85%
priori knowledge of the testing environment (in the form ofcorrect to less than 20% correct when the close-talking Sen-
stereo training data in the training and testing environments), butnheiser HMD-414 microphone (CLSTLK) used in training was
it is much more computationally demanding than the SDCNreplaced by the omnidirectional Crown PZM6FS desktop
algorithm. Compared to the SDCN algorithm, the CDCN algo-microphone (PZM6FS) [1].
rithm uses a greater amount of structural knowledge about the

We have found that two major factors that degrade the perfor- nature of the degradations to the speech signal in order to achieve
mance of speech recognition systems using desktop microphones good recognition accuracy.  The SDCN algorithm, on the other
in normal office environments are additive noise and unknown hand, derives its compensation vectors entirely from empirical
linear filtering.  We showed in [1] that simultaneous joint com- observations of differences between data obtained from the train-
pensation for the effects of additive noise and linear filtering is ing and testing environments.
needed to achieve maximal robustness with respect to acoustical

More recently we presented, along with several other algorithms,differences between the training and testing environments of a
the fixed CDCN (FCDCN) algorithm [6]. FCDCN combinesspeech recognition system.  We described in [1] two algorithms
some of the more attractive features of the CDCN and SDCNthat can perform such joint compensation, based on additive
algorithms: like SDCN, the correction factor equals the dif-corrections to the cepstral coefficients of the speech waveform.
ference in cepstra between the training and testing environments,

The first compensation algorithm, SNR-Dependent Cepstral but like CDCN, the correction factor is different for different VQ
Normalization (SDCN), applies an additive correction in the codewords as well.  This algorithm is also simple and efficient,
cepstral domain that depends exclusively on the instantaneous and it can achieve a level of recognition accuracy comparable to
SNR of the signal.  This correction vector equals the average that of CDCN. Unfortunately, FCDCN (like SDCN) also requires
difference in cepstra between simultaneous "stereo" recordings of the use of a training database of simultaneously-recorded speech



samples in the training and testing environments. Hence, the series expansion of ln P ( ω ), ln P ( ω ), ln P ( ω ) andx n y
FCDCN algorithm also cannot adapt to unknown environments. 2ln | H( ω ) | respectively, Eq. (1) can be rewritten as
Table 1 compares the environmental specificity, computational y = x + q + r (x, n, q) (2)
complexity, and recognition accuracy of these algorithms when

where the correction vector r (x, n, q) is given byevaluated on the alphanumeric database described in [1]. Recog-
DFT [n − q − x]nition accuracy is somewhat greater than the figures reported in r (x, n, q) = IDFT {ln (1 + e )} (3)

[1] and [6] because the current version of SPHINX incorporates a
∧fourth codebook which describes the second-order difference We can obtain an estimate P ( ω ) of the PSD P ( ω ) from ay ycepstrum for each speech frame. In addition, the current version sample function of the process y [ m] (i.e. a frame of degraded

of SPHINX includes between-word triphones in the phonetic speech that is assumed to be locally stationary). If z represents
models [7], while previous evaluations used a recognition system ∧

the Fourier expansion of ln P ( f), our goal is to estimate thethat included only within-word models. y
uncorrupted vectors X = x ,...x of an utterance given the0 N − 1

ALGORITHM ENVIRN. COM- ACCU- observations Z = z ,...z .0 N − 1SPECIFIC? PLEXITY RACY
In the original SDCN algorithm, it was assumed that the correc-

NONE NO NONE 31.4% tion vector depends only on z [0] − n [0] (i.e. that we can apply an
average correction to all spectral shapes with the same SNR), andSDCN YES MINIMAL 72.4%

∧
an estimate for x was obtained by the expressionCDCN NO MAJOR 75.7%

∧FCDCN YES MINIMAL 78.6% x = z − w(SNR) (4)

This procedure subtracts from the observed vector z a correction
w that depends only on the instantaneous SNR of the observedTable 1: Comparison of recognition accuracy of SPHINX with no
signal, z [0] − n [0]. In the original SDCN algorithm these com-processing and the CDCN, SDCN, and FCDCN algorithms. In
pensation vectors w(SNR) were estimated by computing theeach case the system was trained using the CLSTLK microphone
average difference between cepstral vectors from the training andand tested using the PZM6FS microphone. Training and testing
testing environments, and they must be "calibrated" by collectingon the CLSTLK produces a recognition accuracy of 86.9%, while
long-term statistics from a database containing thesetraining and testing on the PZM6FS produces 76.2%
simultaneously-recorded speech samples.

2.1. The Blind SDCN Algorithm
The ultimate goal of a robust speech recognition system is to be In the BSDCN algorithm the need for stereophonic data is cir-
able to adapt to new environments with high recognition ac- cumvented by lumping all data at each SNR together. A cor-
curacy, with low computational complexity, and without respondence is established between SNRs in the training and
environment-specific training. The CDCN, SDCN, and FCDCN testing environments by use of traditional nonlinear warping
algorithms all fall short in at least one of these attributes, as the techniques [8] on histograms of SNRs from each of the two
SDCN and FCDCN algorithms require environment-specific environments. The histograms of SNR values are first normal-
training and the CDCN algorithm is more computationally com- ized for equal area, to avoid having the mapping be dominated by
plex. In this paper we describe a new algorithm, the blind SDCN the environment from which more data had been collected. The
algorithm (BSDCN), which performs a cepstral normalization minimum and maximum slopes of the warping path are limited to
very similar to that of the SDCN algorithm, except without the 0.2 dB/dB and 5 dB/dB, respectively, and the warping procedure
need for specfic a priori training to each new microphone or seeks to minimize the Euclidean distance between the two his-
acoustical environment. We then describe a new implementation tograms.
of the CDCN algorithm that permits the environmental compen-

The SNR-warping procedure is illustrated in schematic form insation to take place in real time, while the environmental
Fig. 1. The left and lower panels of Fig. 1 show typical his-parameters used to perform the compensation are computed in the
tograms of SNRs of speech collected using the PZM6FS andbackground during time intervals between utterances.  We com-
CLSTLK microphones, respectively.  The central panel of Fig. 1pare the performance of the BSDCN algorithm and that of the
shows the warping path used to match SNRs from the two"real-time" implementation of the CDCN algorithm in terms of
microphones. As can be seen in Fig. 1, the mode in the SNRrecognition accuracy and the amount of environment-specific
histogram for the CLSTLK microphone at 26 dB is ap-testing data needed to perform the compensation effectively.
proximately matched to the mode in the SNR histogram for the
PZM6FS microphone which actually occurs at 9 dB.2. THE BSDCN ALGORITHM
Since the alignment obtained by dynamically warping the his-As in our previous work on environmental compensation [1, 6],
tograms of the training and the testing data is not perfect, we havewe assume that the speech signal x [m] is passed through an
found that it is beneficial to smooth the correction vectors usingunknown linear filter h [m] whose output is then corrupted by
the simple functionuncorrelated additive noise n [m]. We characterize the power

spectral density (PSD) of the processes involved as Smoothed v(SNR) = .40 v(SNR) + .24 v(SNR+1) +
2 + .24 v(SNR−1) + .06 v(SNR+2) + .06 v(SNR−2)P ( ω ) = P ( ω ) | H ( ω ) | + P ( ω ) (1)y x n

where v refers to an arbitrary cepstral vector from either environ-If we let the cepstral vectors x, n, y and q represent the Fourier
ment, and SNR is in dB.  Applying the above smoothing function



speech samples were used from those used to compile Tables 1
and 2.)  The system was trained with speech from the CLSTLK
microphone in all cases. We found again that accuracy obtained
using the environment-independent BSDCN algorithm was com-
parable to that of the environment-dependent SDCN algorithm.
The environment-dependent FCDCN algorithm produces greater
recognition accuracy, especially for microphones such as the
PZM6FS, which provides a lower intrinsic SNR. This is to be
expected, since the value of the optimal cepstral correction vector
varies much more from one VQ codeword to the next when the
SNR is low. We are currently working to develop a Blind
FCDCN algorithm (BFCDCN) that is similar in philosophy to the
BSDCN algorithm, but that can also exploit the additional infor-
mation that is made available by allowing for the compensation
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vectors to vary for different VQ codewords at each SNR, as in
FCDCN.

Figure 1: Nonlinear mapping of SNRs for the CLSTLK and
PZM6FS microphones based on histograms of SNR values.  The
unlabeled graphs along the horizontal and vertical axes indicate
the relative likelihood of observing various SNRs for the two
microphones. The central panel indicates the warping path that
best matches the two functions.

to cepstra from both the training and testing data, we have
reduced recognition error rate by an average of about 10 percent.

Once a correspondence is established between the SNRs in the
training and testing environments, correction vectors are com-
puted as the difference between average cepstra for every SNR in
the testing environment and its corresponding SNR in the training
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2.2. Experimental Results
Figure 2: Comparison of recognition accuracy for SPHINX on the

Table 2 compares the recognition accuracy obtained when the alphanumeric task using four microphones and the BSDCN and
BSDCN algorithm is evaluated using the alphanumeric census FCDCN algorithms. The system was trained using speech from
database described in [1]. We note that the environment- the CLSTLK microphone.
independent BSDCN algorithm achieves a level of recognition
accuracy when trained on the CLSTLK microphone and tested on
the PZM6FS microphone that is approximately equal to the 3. REAL-TIME IMPLEMENTATION OF THE
recognition accuracy achieved by the environment-dependent CDCN ALGORITHM
SDCN algorithm on the same task.

We have also produced a real-time implementation of the original
CDCN algorithm. As described in [1], the CDCN algorithm com-TEST CLSTLK PZM6FS
pensates for unknown additive noise and linear filtering by use of

BASE 86.9% 31.4% a parametric model of environmental distortion, rather than by
direct estimation of cepstral vectors, as is done with the SDCN,BSDCN 86.4 70.0%
FCDCN, and similar algorithms. Although the CDCN algorithm

SDCN N/A 72.4% is intrinsically more computationally costly than either the SDCN
or FCDCN algorithms, we integrated a version of this algorithmCDCN 85.7% 75.7%
into a real-time spoken language system [9] without any apparent

FCDCN N/A 78.6% additional processing time to the user.  This was accomplished in
two ways. First, the compensation and normalization parameters

Table 2: Performance of the BSDCN  algorithm compared with n and q are computed in the background during the silent inter-
the baseline, SDCN, and CDCN algorithms, using testing data vals between the speaker’s utterances.  (This computation
from two microphones. The system was trained using speech presently takes approximately 15 seconds on a 15-MIPS NeXT
from the CLSTLK microphone. workstation.) Second, compensation of the incoming speech is

expedited by normalizing only the first several cepstral coef-
ficients rather than the entire vector, and by computing cepstralFigure 2 compares the recognition accuracy obtained using the
distances only for those codewords that are most similar to theBSDCN, SDCN, and FCDCN algorithms for four microphones:
incoming speech vector.  The actual cepstral compensation isthe omnidirectional desktop PZM6FS, the Crown PCC160 car-
presently accomplished in better than real time using thedioid desktop microphone (PCC160), the Sennheiser ME80 su-
Motorola 56001 DSP chip on the NeXT workstation.percardioid electret microphone (ME80), and the Sennheiser 518

handheld dynamic cardioid microphone (SE518).  (Different Figure 3 shows how the recognition accuracy of the BSDCN



algorithm and the real-time implementation of the CDCN algo- vironments on a frame-by-frame basis.  The second algorithm
rithm depend on the amount of environment-specific speech data discussed was an implementation of the more complex CDCN
available for adaptation.  The recognition accuracy of the real- algorithm, which estimates compensation parameters in the back-
time CDCN algorithm converges with only about 2 seconds of ground on an ongoing basis, and then applies the compensation
adapting speech, while the BSDCN algorithm requires at least 60 vectors in better than real time.  The BSDCN algorithm is simpler
seconds of adapting speech to reach asymptotic levels of recog- and provides good speech recognition accuracy, even when the
nition accuracy. This is consistent with intuition, as the CDCN acoustical characteristics of the training and testing environments
algorithm imposes more structure on the compensation process are quite different. The "real-time" CDCN algorithm is more
(from knowledge of how speech is likely to be degraded), while computationally complex, but it is able to exploit a priori struc-
the BSDCN algorithm is entirely data driven. tural knowledge about the nature of the acoustical degradation to

estimate compensation parameters on the basis of far less speech
from the unknown testing environment.
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