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ABSTRACT

We investigate the dependence of Bayesian error bars

on the distribution of data in input space. For gen-

eralized linear regression models we derive an upper

bound on the error bars which shows that, in the

neighbourhood of the data points, the error bars are

substantially reduced from their prior values. For

regions of high data density we also show that the

contribution to the output variance due to the uncer-

tainty in the weights can exhibit an approximate in-

verse proportionality to the probability density. Em-

pirical results support these conclusions.

1 INTRODUCTION

When given a prediction, it is also very useful to

be given some idea of the \error bars" associated

with that prediction. Error bars arise naturally in a

Bayesian treatment of neural networks and are made

up of two terms, one due to the posterior weight un-

certainty, and the other due to the intrinsic noise in

the data
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. As the two contributions are independent,

we have
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(x) (1)

where �

2

w

(x) is the variance of the output due to

weight uncertainty and �

2

�

(x) is the variance of the

intrinsic noise.

Under the assumption that the posterior in weight

space can be approximated by a Gaussian (MacKay

(1)), we have
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(x)A

�1
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where A is the Hessian matrix of the model and

g(x) = @y(x;w)=@w is the vector of the derivatives

of the output with respect to the weight parameters

in the network. A contains contributions from both

the prior distribution on the weights and the e�ect

of the training data.

Although the weight uncertainty component of the

error bar is given by equation 2, the dependence of

this quantity on the location of the training points

is not at all obvious. Intuitively we would expect

1

If the network used is not the correct generative model

for the data there will be a third component due to model

mis-speci�cation; we do not discuss this further in this paper.

the error bars from the prior (i.e. before any data

is seen) to be quite large, and that the e�ect of the

training data would be to reduce the magnitude of

the error bars for those regions of the input space

close to the data points, while leaving large error

bars further away. The purpose of this paper is to

provide theoretical insights to support this intuition.

In particular, our analysis focusses on generalized lin-

ear regression (such as radial basis function networks

with �xed basis function parameters) and allows us

to quantify the extent of the reduction and the length

scale over which it occurs.

We also show that the relationship �

2

w

(x) '

�

2

�

[Np(x)V (x)]

�1

holds approximately, where p(x)

is the density of the data in the input space, N is

the number of data points in the training set and

V (x) is a function of x that measures a volume in

the input space. This relationship pertains to the

\high-data" limit where the e�ect of the data over-

whelms the prior in the Hessian.

2 GENERALIZED LINEAR

REGRESSION

Consider a generalized linear regression (GLR)

model of the form

y(x) = �

T

(x)w =

m

X
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w
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(x) (3)

where j = 1; :::;m labels the basis functions

f�

j

g of the model. Given a data set D =

((x
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)), a squared error

function with noise variance
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and a reg-

ularizer of the form �w

T

Sw=2, the posterior mean

value of the weights ŵ is the choice of w that mini-

mizes the quadratic form
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so that ŵ is the solution of

(�B + �S)ŵ = ��

T

t (5)

2

In this section we assume that �

2

�

is independent of x.

This assumption can be easily relaxed, but at the expense of

somewhat more complicated notation.
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where � is the n�m design matrix
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B = �

T

� and t is the vector of targets. Writing

A = �B + �S, we �nd

ŷ(x) = �

T

(x)ŵ = ��

T

(x)A

�1

�

T

t

def

= k

T

(x)t (7)

where ŷ(x) is the function obtained from equation

3 using ŵ as the weight vector. Equation 7 de�nes

the e�ective kernel k(x) and makes it clear that ŷ(x)

can be written as a linear combination of the target

values, i.e. it is a linear smoother (see, e.g. Hastie

and Tibshirani (2)).

The contribution of the uncertainty of the weights to

the variance of the prediction is given from equation

2 by

�

2

w

(x) = �

T

(x)A

�1

�(x) (8)

Note that for generalized linear regression this ex-

pression is exact, and that the error bars (given �

2

�

)

are independent of the targets.

3 ERROR BARS FOR GLR

+

prior
noise level

posterior

Figure 1: A schematic illustration of the e�ect of one data

point on �

2

y

(x). The posterior variance is reduced from its

prior level in the neighbourhood of the data point (+), but

remains above the noise level.

In this section we analyze the response of the prior

variance to the addition of the data points. In par-

ticular we show that the e�ect of a single data point

is to pull the �

2

y

(x) surface down to a value less than

2�

2

�

(x)

3

at and nearby to the data point, and that

3

The analysis in this section permits the noise level to vary

as a function of x.

the length scale over which this e�ect operates is de-

termined by the prior covariance function

C(x;x

0

) = �

T

(x)A

�1

0

�(x

0

) (9)

where A

0

= �S.

The main tool used in this analysis is the e�ect of

adding just one data point. A schematic illustration

of this e�ect is shown in Figure 1. The variance due

to the prior is quite large (and roughly constant over

x-space). Adding a single data point pulls down the

variance in its neighbourhood (but not as far as the

�

2

�

limit).

Figure 1 is relevant because we can show (see Ap-

pendix A.1) that �

2

y

(x), when all data points are

used to compute the Hessian, is never greater than

�

2

y

(x) when any subset of the data points are used,

and hence the surface pertaining to any particular

data point is an upper bound on the overall surface.

To obtain a bound on the depth of the dip, con-

sider the case when there is only one data point

(at x = x

i

), so that the Hessian is given by A =

A

0

+ �(x

i

)�(x

i

)�

T
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i

). Using the identity
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it is easy to show that
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where �

2

wjx

i

denotes the posterior weight uncertainty

surface due to a data point at x

i

and

r
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i.e. r

i

is the ratio of the prior to noise variances at the

point x

i

. For any positive value of z, the function

z=(1 + z) lies between 0 and 1, hence we see that

the �

2

w

contribution to the error bars must always be

less than �

2

�

(x) at a data point. Typically the noise

variance is much smaller than the prior variance, so

r

i

� 1.

Further evidence that �

2

w

at any data point is of the

order of �

2

�

(x) is provided by the calculation in ap-

pendix A.2 which shows that the average of �

2

w

(x

i

)

at the data points is less than �

2

�

m=N , where m is

the number of weights in the model and N is the

number of data points.

For a single data point at x

i

, we can use equation 10

to show that
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i

(x) = C(x;x) �

(C(x;x
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2
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(13)

Hence the width of the depression in the variance sur-

face is related to the characteristic length scale of the
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prior covariance function C(x;x

0

). It is also possible

to show that if a test point x has zero covariance

C(x;x

i

) with all of the training points fx

i

g, then

its posterior variance will be equal its prior variance.

We are currently exploring the properties of C(x;x

0

)

for di�erent weight priors and choices of basis func-

tions. However, we note that a simple diagonal prior

S = I as used by some authors is not in general a

very sensible prior, because if the type of basis func-

tions used (e.g. Gaussians, tanh functions etc.) is

changed, then the covariance structure of the prior

also changes. More sensibly, the weight prior should

be chosen so as to approximate some desired prior

covariance function C(x;x

0

).

4 DENSITY DEPENDENCE OF

�

2

w

(x)

As we have already noted, error bars on network pre-

dictions would be expected to be relatively large in

regions of input space for which there is little data,

and smaller in regions of high data density. In this

section, we establish an approximate proportionality

between the variance due to weight uncertainty and

the inverse of the probability density of training data,

valid in regions of high data density. A relationship

of this kind was conjectured in Bishop (3).

We �rst consider a special case of the class of general-

ized linear models where the basis functions are non-

overlapping bin (or \top-hat") activation functions

4

.

Let the i

th

basis function have height h

i

and a d-

dimensional \base area" of V

i

, where d is the dimen-

sionality of x. If we choose a diagonal prior (S = I)

then the Hessian is diagonal and thus easy to invert.
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if i = j

0 otherwise

(14)

where n

i

is the number of data points falling in bin

i. From equation (8) the error bars associated with

a point x which falls into the i

th

bin are given by

�

2

w

(x) =

1

�=h

2

i

+ �n

i

(15)

As usual, the e�ect of the prior is to reduce the size

of error bar compared to the case where it is not

present. In the limit of �! 0 we have

�
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i

p̂(x)

(16)

where N is the total number of data points and p̂(x)

is the histogram estimate of the density inside the bin

containing x. Equation (16) demonstrates that for

4

This analysis can easily be extended to arbitrary non-

constant basis functions as long as they do not overlap.

this kind of model the error bars are inversely propor-

tional to the input density and to the volume factor

V

i

. It also shows that we can understand the reduc-

tion in the variance �

2

y

(x) in regions of high density

as the 1=n

i

e�ect for the variance of the mean of n

i

(iid) Gaussian variables each of which has variance

�

2

�

.

The aim of the remainder of this section is to show

how results similar to those for the bin basis func-

tions can be obtained, in certain circumstances, for

generalized linear regression models, i.e. that the er-

ror bars will be inversely proportional to p(x) and

an area factor V (x). The key idea needed is that of

an e�ective kernel, which we now describe.

As noted in equation 7, we can write ŷ(x) = k

T

(x)t,

where k(x) is the e�ective kernel. To take this

analysis further it is helpful to think of ŷ(x) =

k

T

(x)t =

P

i

k

i

t

i

as an approximation to the integral

ŷ(x) =

R

K(z;x)t(z)dz, where K(z;x) (regarded as

a function of z) is the e�ective kernel for the point

x and t(z) is a \target function".

Following similar reasoning we obtain

B =

N

X

q=1

�(x

q

)�

T

(x

q

) ' N

Z

p(x)�(x)�

T

(x) dx

(17)

If the original basis functions � are linearly com-

bined to produce a new set

~

� = C�, then the matrix

C can be chosen so that
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ij

,

where �

ij

is the Kronecker delta. From now on it is

assumed that we are working with the orthonormal

basis functions (i.e. the tildes are omitted) and that

B = NI . Ignoring the weight prior we obtain

ŵ = �A
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�

T
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t (18)

However,
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(z)p(z)t(z)dz
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and so

ŷ(x) =

1

N

�

T

(x)�

T

t (20)

=

Z

(

X

i
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i

(x)�

i

(z)p(z)

)

t(z)dz (21)

=

Z

K(z;x)t(z)dz (22)

We can also show that K(z;x) is the projection of

the delta function onto the basis space f 

i

g, where

 

i

(x) = �

i

(x)p(x), and that if a constant (bias)

function is one of the original basis functions (before

orthonormalization), then

R

K(z;x)dz = 1. The

fact that K(z;x) is an approximation to the delta
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function suggests that as the number of basis func-

tions increases the e�ective kernel should become

more tightly peaked and concentrated around x.

We now turn to the variance of the generalized linear

model. Using orthonormal basis functions, the error

bar at x is given by �

2

y

(x) =

�

2

�

N

�

T

(x)�(x)

5

. How-

ever, this can be rewritten in terms of the e�ective

kernel

�
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w

(x) =

�

2

�

N

Z

K

2

(z;x)

p(z)

dz (23)

using the orthonormality properties. If K(z;x) is

sharply peaked around x (i.e. it looks something

like a Gaussian) then the p(z) in the denomina-

tor can be pulled through the integral sign as p(x).

Also,

R

K

2

(z;x)dz measures the inverse base area

of K(z;x); for example, for a one dimensional Gaus-

sian with standard deviation � centered at x we �nd

that

R

K

2

(z;x)dz = 1=(2�

p
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Z

K

2

(z;x)dz

def
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V (x)

(24)

we can write
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Np(x)V (x)

(25)

By extending the analysis of appendix A.2 to the

continuous case we obtain

Z

�

2

w

(x)p(x)dx =

�
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�
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 (26)

where 
 is the e�ective number of parameters in the

model (1), showing that we would expect �

2

w

(x) to

be larger for a model with more parameters.

Under the assumption thatK(z;x) is sharply peaked

about x we have obtained a result in equation 25 sim-

ilar to equation 16 for the bin basis functions. We

will now present evidence to show that this relation-

ship holds experimentally.

The �rst experiment has a one dimensional input

space. The probability density form which the data

was drawn is shown in Figure 2(A). Figure 2(B)

shows that for a range of GLR models (and for a

two-layer perceptron) there is a close relationship be-

tween 1=�

2

w

(x) and the density, indicating that V (x)

is roughly constant in the high density regions for

these models. This conclusion is backed up by Fig-

ure 4, which plots 1=V (x) =

R

K

2

(z;x)dz against

x. The log-log plot in Figure 3 also indicates that

the relationship �

2

w

(x) / p

�1

(x) holds quite reliably,

especially for areas with high data density.

5

It is interesting to note that the error bar �

2

w

(x) can also

be obtained from the �nite-dimensional e�ectivekernel de�ned

by ŷ(x) = k

T

(x)t. Using the assumption that each t

i

has inde-

pendent, zero-mean noise of variance�

2

�

, we �nd that the vari-

ance of the linear combination ŷ(x) is �

2

w

(x) = �

2

�

k

T

k, which

can easily be shown to be equivalent to �

2

w

(x) = �

2

�

�

T

�=N

for � = 0.
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Figure 2: (A) A mixture of two Gaussian densities, from

which data points were drawn for the experiments. (B) shows

the (scaled) inverse variance against x for three generalized

linear regression (GLR) models and a neural network. The

GLR models used Gaussian, sigmoid and polynomial basis

functions respectively, and each model consisted of 16 basis

functions and a bias and was trained on 1000 data points. (B)

also shows the inverse variance for a two layer perceptronwith

two hidden units. The net was trained on a data set consisting

of 200 data points with inputs drawn from the density shown

in panel (A) and targets generated from sin(x) with added

zero-mean Gaussian noise of standard deviation 0.1. For all

four models the similarity between the inverse variance for

these models and the plot of the density is striking.

Figure 2(B) also shows that the dependence of the

overall magnitude of �

2

w

on the number of e�ective

parameters described in equation 26 holds; the two-

layer perceptron, which has only seven weights com-

pared to the 16 in the GLR models, has a corre-

spondingly larger inverse variance.

Some e�ective kernels for the GLR model with a bias

and 16 Gaussian basis functions of standard devia-

tion 0:5, spaced equally between �5:0 and 4:0 are

shown in Figures 5 and 6

6

. The kernels in Figure

5 correspond to areas of high density and show a

strong, narrow single peak. For regions of low density

Figure 6 shows that the kernels are much wider and

more oscillatory, indicating that target values from a

wide range of x values are used to compute ŷ(x). As

the widths of the kernels in the low density regions

6

Similar f�

i

g and kernels are obtained for sigmoidal and

polynomial basis functions.
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Figure 3: Plot of the log inverse density of the input data

against the log of �

2

w

(x) for a generalized linear model with

16 Gaussian basis functions. Note that the points lie close to

the line with slope 1, indicating that �

2

w

(x) / p

�1

(x).
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Figure 4: Plot of 1=V (x) =

R

K

2

(z; x)dz against x for a

GLR model with 16 Gaussian basis functions spaced equally

between�5:0 and 4:0, and a bias. Note that the plot is roughly

constant in regions of high density.

are greater than the length scale of the variation of

the density, we would expect the approximation used

in equation 25 to break down at this point.

We have conducted several other experiments with

one and two dimensional input spaces which produce

similar results to those shown in the log-log plot, Fig-

ure 3, including a two-layer perceptron which learned

to approximate a function of two inputs.

While this relationship between �

2

w

(x) and the input

data density is interesting, it should be noted that

its validity is limited at best to regions of high data

density. Furthermore, in such regions the contribu-

tion to the error bars from �

2

w

(x) is dwarfed by that

from the noise term �

2

�

. This can be seen in the case

of non-overlapping basis functions from equation 16.

More generally we can consider the extension of the

result 11 to the case of n

i

data points all located at

x

i

. This leads to

�

2

wjn

i

x

i

(x

i

) = �

2

�

r

i

1 + n

i

r

i

' �

2

�

=n

i

(27)
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Figure 5: E�ective kernels at x = 1:0 and �2:0, correspond-

ing to high density regions, as shown in �gure 2(A). See text

for further discussion.

again indicating that for regions of high data density

the noise term will dominate.

5 DISCUSSION

In this paper we have analyzed the behaviour of the

Bayesian error bars for generalized linear regression

models. For the case of a single isolated data point

we have shown that the error bar is pulled down

close to the noise level, and that the length scale

over which this e�ect occurs is characterized by the

prior covariance function. We have also shown the-

oretically that, in regions of high data density, the

contribution to the output variance due to the un-

certainty in the weights can exhibit an approximate

inverse proportionality to the data density. These

�ndings have been supported by numerical simula-

tion. Also, we have noted that, in such high-density

regions, this contribution to the variance will be in-

signi�cant compared to the contribution arising from

the noise term.

Although much of the theoretical analysis has been

performed for generalized linear regression models,

there is empirical evidence that similar results hold

also for multi-layer networks. Furthermore, if the

outputs of the network have linear activation func-

tions, then under least-squares training it is e�ec-

tively a generalized linear regression model with

adaptive basis functions. It is therefore a linear

smoother with ŷ(x) = k

T

(x)t, and hence the result

that �

2

w

= k

T

k�

2

�

will still hold. Other results, in-

cluding the expression 36 derived in Appendix A.2,

also hold for general non-linear networks, provided

we make the usual Gaussian approximation for the

posterior weight distribution, and the outer-product

approximation to the Hessian.

One potentially important limitation of the models
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Figure 6: E�ective kernels at x = �0:5 and 3:0 correspond-

ing to low density regions of the input space, as shown in

�gure 2(A). Note that the density function seems to de�ne an

\envelope" for the lower kernel; even though x may be in a

low density region, the magnitude of K(z;x) is largest in the

high density regions. See text for further discussion.

considered in this paper (and indeed of the models

considered by most authors) is that the noise vari-

ance �

2

�

is assumed to be a constant, independent of

x. To understand why this assumption may be par-

ticularly restrictive, consider the situation in which

there is a lot of data in one region of input space

and a single data point in another region. The es-

timate of the noise variance, which we shall assume

to be relatively small, will be dominated by the high

density region. However, as we have seen, the er-

ror bar will be pulled down to less than 2�

2

�

in the

neighbourhood of the isolated data point. The model

is therefore highly con�dent of the regression func-

tion (i.e. the most probable interpolant) in this re-

gion even though there is only a single data point

present! If, however, we relax the assumption of a

constant �

2

�

then we see that there in the neighbour-

hood of the isolated data point there is little evidence

to suggest a small value of �

2

�

and so we would expect

much larger error bars. We are currently investigat-

ing models in which �

2

�

(x) is adapted to the data.
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6 APPENDICES

A.1

In this appendix we show that for generalized linear re-

gression, �

2

yjD

(x) � �

2

yjT

(x), where D is the full data set

((x

1

; t

1

); : : : ; (x

N

; t

N

)) and T is a subset of this data set.

We �rst note that as �

2

�

(x) is equal in both cases, we are

only concerned about the relative contributions from the

weight uncertainty to the overall variance. The key to

the proof is to decompose the Hessian A into two parts,

A

1

and A

2

, where

A

1

= A

0

+

X

q2T

�

q

�

q

�

T

q

A

2

=

X

q 62T

�

q

�

q

�

T

q

(28)

and A

0

= �S. Note that A

1

and A

2

are symmetric non-

negative de�nite, and hence A

�1

1

and A

�1

2

are also (using

the Moore-Penrose pseudo-inverse if necessary). The ma-

trix identity

(A

1

+ A

2

)

�1

= A

�1

1

�A

�1

1

(A

�1

1

+A

�1

2

)

�1

A

�1

1

(29)

implies that for any vector v

v

T

(A

1

+A

2

)

�1

v = (30)

v

T

A

�1

1

v � (A

�1

1

v)

T

(A

�1

1

+ A

�1

2

)

�1

(A

�1

1

v)

From non-negative de�nite condition we see that the sec-

ond term in equation 31 is always non-negative, and

hence

v

T

A

�1

1

v � v

T

(A

1

+A

2

)

�1

v (31)

Substituting �(x) for v completes the proof.

A.2

In this appendix we show that




�

2

w

�

, the average value

of �

2

w

(x) evaluated at the data points, is equal to �

2

�


=N ,

where 
 (� m) is the e�ective number of parameters in

the model (1).




�

2

w

�

=

1

N

N

X

i

�

2

w

(x

i

) (32)

=

1

N

X

i

�

T

i

A

�1

�

i

(33)

=

1

N

tr[(

X

i

�

i

�

T

i

)A

�1

] (34)

=

�

2

�

N

tr(�BA

�1

) (35)

=

�

2

�

N


 (36)
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