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Abstract 

Boltzmann machines are undirected graph­
ical models with two-state stochastic vari­
ables, in which the logarithms of the clique 
potentials are quadratic functions of the node 
states. They have been widely studied in the 
neural computing literature, although their 
practical applicability has been limited by 
the difficulty of finding an effective learning 
algorithm. One well-established approach, 
known as mean field theory, represents the 
stochastic distribution using a factorized ap­
proximation. However, the corresponding 
learning algorithm often fails to find a good 
solution. We conjecture that this is due to 
the implicit uni-modality of the mean field 
approximation which is therefore unable to 
capture multi-modality in the true distribu­
tion. In this paper we use variational meth­
ods to approximate the stochastic distribu­
tion using multi-modal mixtures of factorized 
distributions. We present results for both in­
ference and learning to demonstrate the ef­
fectiveness of this approach. 

the form 

P(S) = 
exp( -E(S)/T) 

z 
(1) 

in which S = { si} denotes the set of stochastic vari­
ables, and E(S) denotes the energy of a particular con­
figuration given by a quadratic function of the states 

Here Wij = 0 for nodes which are not neighbours on 
the graph. Throughout this paper we shall choose 
Si E { -1, 1}, and we shall also absorb the 'bias' param­
eters WiO into the 'weight parameters' Wij by introduc­
ing an additional variable s0 = 1. The 'temperature' 
parameter T in (1) is in principle redundant since it 
can be absorbed into the weights. However, in prac­
tice it can play a useful role through 'annealing', as 
discussed in Section 2, although for the moment we 
set T = 1. The normalization factor z-1 in (1) is 
called the partition function in statistical physics ter­
minology, and is given by marginalizing the numerator 
over all configurations of states 

Z = L exp( -E(S)). (3) 
s 

1 Introduction 
If there are L variables in the network, the number of 
configurations of states is 2£, and so evaluation of Z 
may require exponential time (e.g. for fully connected 
models) and hence is, in the worst case, computation­
ally intractable. 

The Boltzmann machine (Ackley et al., 1985) is an 
undirected graphical model whose nodes correspond to 
two-state stochastic variables, with a particular choice 
of clique potentials. Specifically, the joint distribution 
over all states is given by a Boltzmann distribution of 

The Boltzmann machine is generally used to learn the 
probability distribution of a set of variables. We there­
fore partition the variables into a visible set V = {Vi} 
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whose values are observed, and a hidden set H= {hi} 
whose values are unobserved. The marginal probabil­
ity of the observed states is obtained by summing over 
the hidden variables to give 

P(V) = L P(H, V) (4) 
H 

which can be viewed as a function of the parameters 
{ Wij} in which case it represents a likelihood function. 
A data set then consists of a set of instantiations of 
the visible variables Vi, . . .  , V N, where it is assumed 
that these observations are drawn independently from 
the same distribution. In this case the log likelihood 
becomes a sum over patterns 

In P(V) = f; In { � P(Hn, Vn)} . (5) 

Here we are implicitly assuming that it is the same 
set of variables which are observed in each pattern. 
The formalism is easily generalized to allow arbitrary 
combinations of missing and observed variables. From 
now on we suppress the summations over n to avoid 
cluttering the notation. 

Learning in the Boltzmann machine is achieved by 
maximizing the log likelihood (5) with respect to the 
parameters { Wij} using gradient methods. Differenti­
ating (5) and using (1) and (2) we obtain 

(6) 

where ( · )c denotes an expectation with respect to the 
clamped distribution P(HIV) while ( · )F denotes ex­
pectation with respect to the free distribution P(H, V) 
so that, for some arbitrary G(H, V), 

(G(H, V))c L G(H, V)P(HIV) (7) 
H 

(G(H, V))F = L L G(H, V)P(H, V). (8) 
V H 

In the case of the clamped expectation, each Si in (6) 
corresponding to a visible variable is set to its observed 
value. 

Evaluation of the expectations in (6) requires summing 
over exponentially many states, and so is intractable 
for densely conneted models. The original learning al­
gorithm for Boltzmann machines made use of Gibbs 
sampling to generate separate samples from the joint 
and marginal distributions over states, and used these 
to evaluate the required gradients. A serious limita­
tion of this approach, however, is that the gradient is 
expressed as the difference between two Monte Carlo 

estimates and is thus very prone to sampling error. 
This results in a very slow learning algorithm. 

In an attempt to resolve these difficulties, there has 
been considerable interest in approximating the ex­
pectations in (6) using deterministic methods based 
on mean field theory (Peterson and Anderson, 1987; 
Hinton, 1989). Although in principle this leads to a rel­
atively fast algorithm, it often fails to find satisfactory 
solutions for many problems of practical interest. In 
Section 2 we review the variational framework for ap­
proximate inference in graphical models, in which we 
seek to approximate the true distribution over states 
with some parametric class of approximating distribu­
tions. We show that mean field theory can be derived 
within this framework by using an approximating dis­
tribution which is assumed to be fully factorized. It 
is this severe approximation which is believed to lie 
at the heart of the difficulties with mean field the­
ory in Boltzmann machines (Galland, 1993). One of 
its consequences is that the approximating distribu­
tion is constrained to be uni-modal, and is therefore 
unable to capture multiple modes in the true distri­
bution. As a solution to this problem we introduce 
mixtures of factorized distributions in Section 3, and 
derive the corresponding algorithms for inference and 
learning. Experimental results on toy problems, and 
on a problem involving hand-written digits, are pre­
sented in Sections 4 and 5. Conclusions are presented 
in Section 6. 

2 Variational Inference 

We have seen that, for the probability distribution 
defined by the Boltzmann machine, standard opera­
tions such as normalization, or the evaluation of expec­
tations, involve intractable computations for densely. 
conneted graphs. A general framework for making 
controlled approximations in such cases is provided 
by variational methods (Jordan et al., 1998). Con­
sider the conditional distribution P(HIV) of the hid­
den variables given values for the visible variables. 
Since it is intractable to work directly with this distri­
bution we consider some family of simpler distributions 
Qc(HIV, 0), where the suffix C denotes 'clamped', gov­
erned by a set of parameters 0. We can define the clos­
est approximation within this family to be that which 
minimizes the Kullback-Leibler (KL) divergence 

{ P(HIV) } 
KL( Qc liP) = - � Qc (HIV, 0) ln 

Qc (HIV, O) 
(9) 

with respect to 0. The KL divergence satisfies 
KL(QIIP) 2: 0, with equality if and only if Q = P. One 
motivation for this definition is that it corresponds to 
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a lower bound on the log likelihood, since we can write 

lnP (V) = 

= 

> 

� 

lnLP(H, V )  
H 

P (H, V)  
ln � Qc(HIV, 0) 

Qc (HIV, O )  

P (H, V )  � Qc (HIV, 0) ln 
Qc(HIV, O )  

c (10) 

where we have used Jensen's inequality. The difference 
between the left and right hand sides of (10) is given by 
the KL divergence (9). By maximizing C with respect 
to 0 we obtain the highest lower bound achievable with 
the family of distributions Qc (HIV, 0). 

The goal in choosing a form for the distribution 
Qc (HIV, 0) is to use a sufficiently rich family of ap­
proximating distributions that a good approximation 
to the true distribution can be found, while still ensur­
ing that the family is sufficiently simple that inference 
remains tractable. 

In the case of the Boltzmann machine, we have to deal 
with the joint distribution P (H, V )  and also with the 
conditional distributions P(Hn iVn) for each pattern n 

in the data set. If we approximate the conditional 
distributions using variational methods, from (10) we 
have (and again suppressing the sum over n for conve­
nience) 

£= £c -lnZ (11) 

where we have defined 

Cc = -L Qc (HIV, O )E (H, V )  
H 

-LQc (HIV, O) lnQc (HIV, O). (12) 
H 

By careful choice of the Qc distribution, we can ar­
range for the summations over H in the first two terms 
to be tractable. 

The use of a lower bound for learning is particularly 
attractive since if we adjust the parameters so as to 
increase the bound this must increase the true log 
likelihood and/or modify the true conditional distri­
bution to be closer to the approximating distribu­
tion (in the sense of KL divergence) thereby making 
the approximation more accurate. This can be inter­
preted as a generalized E-step in an EM (expectation­
maximization) algorithm (Neal and Hinton, 1998) in 
which the subsequent optimization of the model pa­
rameters corresponds to the M-step. If we allowed 
arbitrary distributions Qc instead of restricting at­
tention to a parametric family, we would recover the 

conventional E-step of the standard EM algorithm 
(Dempster et al., 1977). 

Unfortunately, the term -ln Z involving the partition 
function involves summing over exponentially many 
configurations of the variables and hence remains in­
tractable. We therefore apply the variational frame­
work to this term also by introducing an approxi­
mating distribution QF(H, V Ic/> )  over the joint space, 
where cf> denotes a vector of parameters. In this case 
we obtain an upper bound on - ln Z of the form 

- lnZ = - ln { �� exp(-E(H, V ))} 
< L L QF(H, Vlcf>)E (H, V )  

H V 

H V 

However, the combination of upper and lower bound is 
not itself a bound. The absence of a rigorous bound is 
a consequence of the use of an undirected graph, since 
the ln Z term does not arise in the case of directed 
graphs (Bayesian networks). 

2.1 Mean Field Theory 

Mean field theory for Boltzmann machines (Peterson 
and Anderson, 1987; Hinton, 1989) can be formulated 
within the variational framework by choosing varia­
tional distributions Q which are completely factorized 
over the corresponding variables. The most general 
factorized distribution is obtained by allowing each 
marginal distribution to be governed by its own in­
dependent mean field parameter, which we denote by 
f..L = {Jti} in the case of the conditional distribution, 
and m = {mi} in the case of the joint distribution. 
Thus we consider 

(14) 

� l-si 

QF(H, VIm )= )J c +2mi) 2 (1-2mi) 2 

�EH,V 

(15) 



Mixture Representations for Boltzmann Machines 323 

Using (2), (12) and (13) we then obtain the following 
approximation to the log likelihood 

.Cmrt = .Cc + .Cp 

� L
>. 

Wij f.lif.lj + L H ( 1 � f.li ) 
• J • • 

- � L
>. 

Wijmimj - L H ( 1 +
2 
mi ) (16) 

• J • • 

where f.li is defined to be equal to the observed value 
in the case of clamped units. Here we have defined the 
binary entropy given by 

H(m) = -plnp- (1- p) ln(1-p). (17) 

Note how the assumption of a factorized distribution 
has allowed the summations over the exponentially 
many terms to be expressed in terms of a polynomial 
sum. 

We can now optimize the mean field parameters by 
finding the stationary points of (16) with respect to f.li 
and mi, leading to the following fixed point equations 

"' � tanh ( �>·;";) (18) 

m; � tanh ( � w;;m} (19) 

which can be solved iteratively. 

Once the mean field parameters have been determined 
we can update the model parameters using gradient­
based optimization techniques. This requires evalua­
tion of the derivatives of the objective function, given 
by 

(20) 

Thus we see that the gradients have been expressed 
in terms of simple products of mean field parameters, 
which themselves can be determined by iterative solu­
tion of deterministic equations. The resulting learn­
ing algorithm is computationally efficient compared 
with stochastic optimization of the true log likelihood. 
Comparison of (20) with (6) shows how the expecta­
tions have been replaced with deterministic approxi­
mations. 

In a practical setting it is often useful to introduce a 
temperature parameter as in (1). For large values of 

T the true distribution of the parameters is smoothed 
out and the variational optimization is simplified. The 
value ofT can then be slowly reduced toT= 1 (this is 
called annealing) while continuing to update the mean 

field parameters. This helps the variational approxi­
mation to find better solutions by avoiding locally op­
timal, but globally suboptimal, solutions . 

3 Mixture Representations 

We have already noted that mean field theory, while 
computationally tractable, frequently fails to find sat­
isfactory solutions (Galland, 1993). The origin of the 
difficulty lies in the rather drastic assumption underly­
ing mean field theory of a fully factorized distribution. 
One consequence is that mean field theory is only able 
to approximate uni-modal distributions with any accu­
racy. In practice we will often expect the true distribu­
tions to be multi-modal, particularly in the case of the 
joint distribution corresponding to the 'free' phase. If, 
for example, the data set consists of sub-populations, 
or clusters, then the joint distribution will necessar­
ily be multi-modal. However, it may be the case that 
each of the conditional distributions can be well ap­
proximated by a uni-modal distribution (so that only 
one hidden 'cause' is required to explain each observa­
tion). Indeed, this will trivially be the case for models 
with no hidden variables. Thus we expect the prob­
lems with mean field theory to arise primarily in its ap­
proximation to the statistics of the unclampled phase. 

We address this difficulty by introducing a variational 
approximation consisting of a mixture of factorized 
distributions (Jaakkola and Jordan, 1997; Bishop et 
al. ,  1997). This is used to approximate the free 
phase, while standard mean field theory is used for 
the clamped phase1. We therefore consider an approx­
imating distribution of the form 

L 

Qmix(S) = L aiQF(Sil) 
1=1 

(21) 

where each of the components Qp(Sil) is a factorized 
distribution with its own variational parameters 

(22) 

The mixing coefficients a1 satisfy a1 2:: 0 and L.:1 a1 = 

1. Using the variational distribution (21) we can ex­
press .CF from (13) in the form (Jaakkola and Jordan, 
1997) 

L 

.Cp(Qmix) = L at.Cp(Qp(Sil)) + I(l , S) (23) 
1=1 

1It is straightforward to extend the procedure to use 
mixture distributions for the clamped phase also, if this is 
thought necessary in some particular application. 
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where I(l, S) is the mutual information between the 
component label l and the variables S given by 

{ Qp(Sil) } 
I(l, S) = � � azQp(Sil) ln 

Qmix(S) 
. (24) 

The first term is simply a linear combination of mean 
field contributions, and as such it provides no improve­
ment over the simple mean field bound (since the op­
timal bound would be obtained by setting all of the 
az to zero except for the one corresponding to the 
Qp(Sil) giving the tightest bound, thereby recovering 
standard mean field theory). It is the second, mu­
tual information, term which allows the mixture rep­
resentation to give an improved relative to mean field 
theory. However, the mutual information again in­
volves an intractable summation over the states of the 
variables. In order to be able to treat it efficiently 
we first introduce a set of 'smoothing' distributions 
R(Sil), and rewrite the mutual information (24) in the 
form 

l,S 

It is easily verified that (25) is equivalent to (24) for 
arbitrary R(Sil). We next make use of the following 
inequality 

-lnx � -Ax+lnA+1 (26) 

to replace the logarithm in the third term in (25) with 
a linear function (conditionally on the component label 
l). This yields a lower bound on the mutual informa­
tion given by I(l, S) � h(l, S) where 

h,.(l, S) = L LazQ(Sil) lnR(Sil) - L:azlnat 
s 

- L Az L R(Sil)Qmix(S) 
l s 

+ L a1ln At + 1. 
t 

(27) 

The summations over configurations S in (27) can be 
performed analytically if we assume that the smooth­
ing distributions �(Sil) factorize. 

In order to obtain the tightest bound within the class 
of approximating distributions, we can maximize the 
bound with respect to the variational parameters m!i, 
the mixing coefficients a1, the smoothing distributions 
R(Sil) and the variational parameters At. This yields 
straightforward re-estimation equations, for which the 
details can be found in Jaakkola and Jordan (1997). 

Once the variational approximations to the joint and 
conditional distributions have been optimized, the 
derivatives of the cost function are evaluated using 

(28) 

These derivatives are then used to update the weights 
using a gradient-based optimization algorithm. The 
learning algorithm then alternates between optimiza­
tion of the variational approximation (analogous to an 
E-step) and optimization of the weights (analogous to 
an M-step). 

4 Results: Inference 

Our variational framework allows expectations of the 
form (sisj} to be approximated by deterministic ex­
pressions involving variational parameters, of the form 

2:::1 atm!imtj, in which standard mean field theory cor­
responds to the case of just one component in the mix­
ture. We now investigate how well this approach is 
able to approximate the true expectations, and how 
the approximation improves as the number of compo­
nents in the mixture is increased. 

For this purpose we consider small networks such that 
the (exponentially large) summation over states can 
be performed exactly, thereby allowing us to compare 
the variational approximation to the true expectation. 
The networks have ten variables and are fully inter­
connected, and hence have 55 independent parame­
ters including biases. None of the units are clamped. 
Evaluation of the expectations involves summing over 
210 = 1024 configurations. We have generated 100 net­
works at random in which the weights and biases have 
been chosen from a uniform distribution over (-1, 1). 
For each network we approximate the joint distribu­
tion of variables using mixture distributions involving 
L components, where L = 1, . . .  , 10, and the tempera­
ture parameter T was annealed in 8 steps from T = 60 
to T = 1. In Figure 1 we show plots of the histograms 
of the differences between the approximate and exact 
expectations, given by 

L 

L: atm!imti- (sisj}, 
t=1 

(29) 

together with a summary of the behaviour of the sum­
of-squares of the differences (summed over all 100 net­
works) versus the number L of components in the mix­
ture. We see that there is a clear and systematic im­
provement in the accuracy with which the expectations 
are approximated as the number of components in the 
mixture is increased. 
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Figure 1: Histograms of the differences between true and 
approximate expectations for 100 randomly generated net­
works each having 55 independent parameters, for different 
numbers L of components in the mixture approximation, 
together with a summary of the dependence of the sum-of­
squares of the differences on L. 

5 Results: Learning 

In the previous section we have seen how the use of 
mixture representations can lead to improved accuracy 
of inference compared with standard mean field the­
ory. We now investigate the extent to which improved 
inference leads to improved learning. For simplicity 
we use simple gradient ascent learning, with gradients 
evaluated using (20) or (28). In Section 5.1 we consider 
a simple toy problem designed to have a multi-modal 
unconditional distribution, and then in Section 5.2 we 
apply our approach to a problem involving images of 
hand-written digits. 

5.1 Toy Problem 

As a simple example of a problem leading to a multi­
modal distribution we follow Kappen and Rodriguez 
(1998) and consider a network consisting of just two 
visible nodes, together with a data set consisting of 
two copies of the pattern (1, 1) and one copy of the 
pattern (-1, -1). In this case the distribution in the 
undamped phase needs to be bimodal for the network 
to have learned a solution to the problem. Due to 
the small size of the network, comparison with exact 
results is straightforward. We apply standard mean 
field theory, and compare it with a mixture model 
having two components, and with learning using the 
exact log likelihood gradient. In the inference stage, 
the variational parameters are iteratively updated un­
til the cost function LF changes by no more than 0.01% 
(up to a maximum of 20 iterations). No annealing 

(a) Jo• �Jr� �� �� I� j � 
� o\lf�l�P � � 

0 20 40 60 
iter��ons 

80 

4r-------------� 

"' it • • •  • 
.. . : . : • 
' -� •• �� \ 'i "' 

• 

-4�������� 0 20 40 60 80 
iterations 

(b) 
6�------------� 

4 ·····•···· ······· 

_ ... :············· 

0o 20 40 60 80 
iter�ns 

4�------------� 

-4o��2�0--�4�0--�6�0---J80 
iterations 

Figure 2: Results from learning in the toy problem. (a) 
The KL divergence between the true distribution of the 
training data and the distribution represented by the net­
work as a function of the number of iterations of learn­
ing. The results from mean field theory (dotted curve) are 
wildly unstable whereas the results obtained using a mix­
ture model (dashed curve) are well behaved and almost 
indistinguishable from those found using the true log like­
lihood (solid curve). The remaining figures show the cor­
responding evolution of the weight parameter (b) and the 
two bias parameters (c) and (d) for the three approaches. 

was used. The network is initialized using parameters 
drawn from a zero-mean Gaussian distribution having 
a standard deviation of 0.1, and learning is by gradi­
ent ascent with a learning rate parameter of 0.25. The 
results are shown in Figure 2. 

Mean field theory seen to be quite unstable during 
learning. In particular, the bias parameters undergo 
systematic oscillations. To investigate this further we 
plot an expanded region of the training curve from 
Figure 2 (c) in Figure 3 together with the mean field 
parameters at each learning step. We see that the uni­
modal approximating distribution of mean field theory 
is oscillating between the two potential modes of the 
joint distribution, as the algorithm tries to solve this 
multi-modal problem. 

This phenomenon can be analysed in terms of the sta­
bility structure of the mean field solutions. We find 
that, for the first few iterations of the learning algo­
rithm when the weight value is small, the mean field 
equations (18) exhibit a single, stable solution with 
small values of the mean field parameters. However, 
once the weight value grows beyond a critical value, 
two stable solutions (and one unstable solution) ap­
pear whose values depend on the bias parameters. 
Evolution of the bias parameters modifies the shape 
of the stability diagram and causes the mean field so-
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-5 15 20 25 
iterations 

30 35 

Figure 3: Expanded plot of the evolution of one of the bias 
parameters during training with mean field theory. Also 
shown are plots of the mean field parameters, represented 
as 'Hinton' diagrams in which each of the two parameters 
is denoted by a square whose area is proportional to the 
parameter value and white denotes negative values, while 
grey denotes positive values. 

lution to oscillate between the two stable solutions, as 
the parameter vector repeatedly 'falls off' the edges of 
the cusp bifurcation (Parisi, 1988). 

5.2 Handwritten Digits 

As a second example of learning we turn to a more 
realistic problem involving hand-written digits2 which 
have been pre-processed to give 8 x 8 binary images. 
We extracted a data set consisting of 700 examples 
of each of the digits 0 through 9. Examples of the 
training data are shown in Figure 4. 

Figure 4: Examples of the hand-written digits from the 
training set. 

The networks consisted of 64 visible nodes in an 8 x 8 
grid, with each visible node connected to its neigh­
bours on both diagonals and in the horizontal and 
vertical directions. The network also had ten hidden 
nodes which are fully connected with each other and 
with all the visible nodes. Additionally all nodes had 

2 Available on the CEDAR CDROM from the U.S. 
Postal Service Office of Advanced Technology. 

an associated bias. An annealing schedule was used 
during the inference steps involving 7 successive val­
ues of the temperature parameter going from T = 100 
down toT= 1. Learning was achieved through 30 it­
erations of gradient ascent in the parameters Wij, with 
a learning rate of 0.1/N where N = 7, 000 is the total 
number of patterns in the training set. 

Due to the size of the network it is no longer possible 
to perform exact calculations for the undamped dis­
tribution. We therefore compare standard mean field 
theory with a mixture distribution having ten compo­
nents. Figure 5 shows the evolution of the cost func­
tions .Cmft and .Cmix· Again we see that mean field 
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Figure 5: Evolution of the cost functions .Cmft (dotted 
curve) and .Cmix (dashed curve) for the digits problem. 

theory is relatively unstable compared to the mixture 
model. 

Figure 6 shows the evolution of the variational param­
eters from the undamped phase (plotted for the visible 
units only), as this provides insight into the behaviour 
of the algorithm. We see that simple mean field theory 
exhibits substantial 'mode hopping', while the compo­
nents of the mixture distribution are much more stable 
(although some tendancy to mode hop is still evident, 
suggesting that a larger number of components in the 
distribution may be desirable). 

6 Discussion 

In this paper we have shown how the fundamental lim­
itations of mean field theory for Boltzmann machines 
can be overcome by using variational inference based 
on mixture distributions. Preliminary results indicate 
a significant improvement over standard mean field 
theory for problems in which the joint distribution over 
visible and hidden units is multi-modal. 
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Figure 6: Variational parameters from Qp(H, V) in which 
successive rows correspond to successive iterations of learn­
ing running from 1 to 20. The right most column corre­
sponds to mean field theory while the first ten columns 
correspond to the ten components in the mixture model. 
In each case only the parameters corresponding to the vis­
ible variables are shown. 

Although the use of mixtures is somewhat more 
costly computationally than standard mean field the­
ory (scaling roughly linearly in the number of compo­
nents in the mixture) it should be remembered that the 
optimization of the corresponding Q distribution has 
to be done only once for each pass through the data 
set, while a separate optimization has to be done for 
each clamped distribution corresponding to every data 
point. For moderate to large data sets, the overall in­
crease in computational cost compared with standard 
mean field theory will therefore be negligible. One 
consequence it that it is possible to run this algorithm 
with a very large number of components in the mixture 
distribution while still incurring little computational 
penalty compared with standard mean field theory. 

Our experimental results have also revealed an inter­
esting phenomenon whereby the uni-modal distribu­
tion of mean field theory appears to oscillate between 

modes in the joint distribution during learning . 
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