
Eight ACM SIGOPS European Workshop, September 1998, Sintra, Portugal.

MMLite: A Highly Componentized System Architecture

Johannes Helander and Alessandro Forin
Microsoft Research

Abstract
MMLite is a modular system architecture that is

suitable for a wide variety of hardware and applications.
The system provides a selection of object-based
components that are dynamically assembled into a full
application system. Amongst these components is a
namespace, which supports a new programming model,
where components are automatically loaded on demand.
The virtual memory manager is optional and is loaded on
demand. Components can be easily replaced and
reimplemented. A third party independently replaced the
real-time scheduler with a different implementation.
Componentization reduced the development time and led
to a flexible and understandable system.

MMLite is efficient, portable, and has a very small
memory footprint. It runs on several microprocessors,
including two VLIW processors. It is being used on
processors that are embedded in a number of multimedia
DirectX accelerator boards.

1 Introduction
The progressive computerization of our society involves a
number of diverse computing platforms beside the
general-purpose computer:

• Embedded control systems, including consumer
devices, intelligent sensors and smart home controls.
• Communication-oriented devices such as digital cell
phones and networking infrastructure.
• Programmable peripherals and microcontrollers.

In all these cases, the general-purpose platform
approach is either not applicable, or it is prohibitively
expensive. The microprocessor might be a DSP, a VLIW,
or a micro-controller; the memory budget is severely
restricted; there might be no MMU; the network
connection might be sporadic; and real-time is essential.

Current operating systems are either inflexible, big,
lack real-time support, have complex hardware
requirements, or are so specialized that good development
tools are unavailable and code reusability is low.

In this paper we present MMLite, a system
architecture that is suitable for a wide range of
applications. Our strategy is to build a system out of
minimal but flexible components. Instead of mandating a
fixed set of operating system services and hardware
requirements, we provide a menu of well-defined
components that can be chosen to compose a complete
system depending on hardware capabilities, security

needs, and application requirements. Components can be
selected at compile time, link time, and run-time.
Components can be transparently replaced while in use,
via a mechanism we call mutation.

The componentization makes it easier to change the
implementation of a component without affecting the rest
of the system. Minimalism makes it possible to use the
system with severely restricted hardware budgets. It also
forces the system to be understandable and adaptable.
Software components, when possible, are not tied to a
particular layer of the system, but can be reused. For
example, the same code that implements the system
physical memory heap is used to provide application
heaps over virtual memory.

We componentize the system more aggressively than
any previous system. This includes the virtual memory
system, IPC, and the scheduler in addition to filesystems,
networking, drivers, and security policies.

The rest of the paper is organized as follows:
Section 2 describes the system architecture. Sections 3
and 4 describe the implementation of a few major
components. Results are presented in section 5, related
work in section 6, and conclusions in section 7.

2 Architecture
C++ and Java provide objects at a very fine

granularity level, and they are very successful with
application programmers. Unfortunately, both languages
confine their objects to a single address space. Object
Linking and Embedding (OLE) [Brockschmidt95],
CORBA [OMG98], and other similar systems extend
objects across address spaces and across machine
boundaries. OLE seamlessly integrates independently
developed components. When editing an Excel
spreadsheet inside a Word document it is in fact the Excel
process that operates on objects inside of Word’s address
space. Unfortunately, OLE only works for user mode
applications. MMLite takes an objects everywhere
approach, and extends object-orientation both across
address spaces and across protection levels.

2.1 Component Object Model
MMLite components contain code and other metadata

for classes of objects. When a component is loaded into
an address space it is instantiated. The instantiated
component creates object instances that communicate with
other objects, potentially in other components. The
objects expose their methods through Component Object

Eight ACM SIGOPS European Workshop, September 1998, Sintra, Portugal.

Model (COM) [Brockschmidt95] interfaces. MMLite
objects can be made available to other components by
registering them in a namespace. Namespaces are similar
to filesystem directories but are not limited to just files.
Threads execute code and synchronize through Mutexes
and Condition variables. System components are
typically written in C or C++ but there is no fundamental
bias towards any particular language.

Every COM object has a virtual method table and at
least the three methods derived from the base interface
(the IUnknown): QueryInterface for agreeing on the
interface protocols, and AddRef and Release for reference
counting. Specific interfaces have additional methods to
do the actual work. In addition, a constructor is usually
provided.

The object model enables late binding, version
compatibility and checking, transparency through proxies,
cross language support, and is reasonably lightweight and
efficient. Each object has a method table pointer and a
reference count. Each call adds one indirection for
fetching the actual method pointer.

Garbage collection is done through reference
counting. When Release is called for the last reference,
the implementation can finalize and deallocate the object.
Even if reference counting has its limitations, it is
convenient in a system environment due to its simplicity.
Interaction with objects using other garbage collection
models can be achieved through proxies that intercept the
IUnknown methods to update their root sets.

MMLite component implementations are rarely aware
of their intended system layer. The same code can be
used in different address spaces or contexts and can be
nested. A filesystem can be applied to a file provided by
another filesystem as well as to one provided by a disk
driver. A heap can be applied to any memory: physical
memory, memory allocated from another heap, or memory
provided by a virtual memory manager. The loader loads
modules into any address space.

2.2 Communication and Namespaces
If the object that is the target of a method is in a

different machine or a different address space, and thus
can not be called directly, a proxy is interposed for
delegation. Instead of calling the actual object, the client
will call the (local) proxy object. The proxy marshals the
parameters into a message and sends it where the actual
object is located. There the message is received and
dispatched to a stub object. The stub unmarshals the
parameters and calls the actual method. On the return
path the stub similarly marshals any return values and
sends them in a message back to the proxy that in turn
unmarshals and returns.

Aside from taking longer to execute, the remote
object call through a proxy looks exactly the same as a
local call directly to the actual object. Not only is the
implementation of the server transparent to the client, but
the location as well.

Namespaces are used to let applications gain access
to objects provided by other components. A namespace is
like a filesystem directory tree, except it can hold any kind
of objects, not just files. Namespaces can themselves be
implemented by different components, including a
filesystem that exports its directories as sub-namespaces,
and files as registered objects. Namespaces can be
registered into other namespaces, extending the directory
tree. Location transparency of all objects automatically
makes namespaces distributed. Namespaces can be
filtered for access control or for providing different views
to different applications. There is no limit as to the
number of namespaces. A component can gain access to
its namespace through a call to CurrentNamespace(). In a
minimal system all applications share the same boot
namespace.

When an application looks up a name in the
namespace, it obtains a reference to the object: a local
direct reference in case the object is local, or an
automatically created proxy if the object is remote. The
IPC system is responsible for creating proxies, handling
the delegation to remote objects, and reference counting.
A namespace is also free to create objects on demand, as
is the case for a filesystem. The namespace only needs to
handle the IUnknown interface. It is up to the application
to obtain the proper interface directly from the object,
using the QueryInterface method.

We implemented a demand-loading namespace that
supports the following new programming model. The
main() entry point for an image is a constructor that
returns an object. When an application tries to bind to a
name that does not exist, the namespace invokes the
loader, which looks for and instantiates a component with
the given name. The loader then invokes the component’s
entry point, registers the resulting object in the
namespace, and returns it to the application. When the
application releases its last reference to the component the
namespace can unload the component or choose to keep it
cached.

2.3 Execution Model
Components have code, static data, a stack and a

number of dynamic objects. A heap object allows
dynamic memory allocations. The stack is pointed to by
the stack pointer register; it is allocated from the heap. In
a physical memory system the initial size of the stack is
also the maximum size of the stack; every byte has to be
paid for by real memory. Thus in an embedded
application the stack size must be chosen carefully. Most
compilers can generate stack checks at function entry, to
guard against stack overflows. In a virtual memory
system, the stack does not have to be backed by real
memory, which can be allocated on demand. The stack
only consumes virtual address range and can thus be
allocated liberally. A real-time application might still
want to pre-allocate all memory in order to avoid time
fluctuations. In this case the existence of virtual memory
does not affect the stack.

Eight ACM SIGOPS European Workshop, September 1998, Sintra, Portugal.

Memory for code and static data is also allocated
from the heap. Code can be placed anywhere in memory if
it is either position-independent (pc-relative) or
relocatable. The Microsoft Visual C++ compiler, for
instance, creates a compressed relocation table that the
run-time loader uses to fix any references if the executable
was placed in a different place in memory than it was
linked for. All compilers for embedded use provide
similar functionality, although the specific image formats
and relocation schemes differ.

Unfortunately, we have found that most compilers do
not support reentrancy. If the code in an image is not
reentrant, it is still possible to execute multiple instances
of the same image in the same address space. The code
and data are simply loaded multiple times, each time
relocated differently.

If the relocation information is not present, and a
component virtually overlaps with another component it
cannot be executed in the same address space. In this case
a new address space is required, which in turn requires
virtual memory.

2.4 Mutation
An object consists of an interface, an instance

pointer, an implementation, and some state. The interface
is a list of methods. The instance pointers and interfaces
are exposed to other objects; the state and the
implementation are not. Worker threads execute
implementation code that accesses and modifies the state.
Once an object instance has been created, the instance
pointer, interface, and implementation are traditionally
immutable, only the state can be changed by method calls.

In MMLite we allow run-time changes to the
ordinarily immutable part of an object, even while the
object is being used. We call mutation the act of
atomically changing an ordinarily constant part of an
object, such as a method implementation. The thread
performing the mutation is called a mutator.

A mutator must translate the state of the object from
the representation expected by the old implementation to
the one expected by the new implementation. It must also
coordinate with worker threads and other mutators
through suitable synchronization mechanisms. Transition
functions capture the translations that are applied to the
object state and to the worker thread’s execution state. In
order to limit the amount of metadata, execution
transitions only happen between corresponding clean
points in the old and new implementations.

A number of mechanisms can be implemented using
mutation. Interposition is done via replacement of the
object with a filter object that points to a clone of the
original object. A dynamic software upgrade would
replace the incorrect implementation of a method with the
corrected one. Run-time code generation might use a stub
implementation as a trigger. Mutation can be used to
replace generic code with a specialized version that
exploits partial evaluation by treating ordinarily non-

constant state as immutable. Once the optimistic
conditions are no longer true, mutation allows reverting
back to the generic code. Execution profiling might
indicate that a different implementation would perform
better, and trigger a mutation. Object mobility is realized
by turning objects into proxies and vice versa.

 One example where we found mutation to be useful
was in device drivers. In one configuration on the x86 we
used minimal floppy and disk drivers that called BIOS
(ROM) functions to do the work. A loadable driver would
later take over and mutate the BIOS driver with a real
driver, transparently to the filesystem.

Object

Instance
pointer

State

V-table

Interface

Implement-
ation

Method

Figure 2: A run-time object representation.

The synchronization mechanisms suitable for
implementing mutation can be divided into three groups:

• Mutual exclusion: Mutation cannot happen while
workers are executing methods of the object to be
mutated. The implementation can be a read-write lock,
disabling preemption on a uniprocessor, or a holding tank
[Cowan96] with reference counting. Mutual exclusion is
simple in that there is no worker state associated with the
object when mutation is allowed to happen.
• Transactional: Roll back the workers that are
affected by mutation. Mutators and workers operate on an
object transactionally and can be aborted when necessary.
• Swizzling: Modify the state of the workers to reflect
mutation. Instead of waiting for workers to exit the object
or forcing them out, the third mechanisms just suspends
them. The mutator then modifies the state of each worker
to reflect the change in the object.

2.5 Nesting
The environment provided by MMLite can be viewed

as a virtual machine for C or C++ based COM programs.
These programs may include other virtual machines that
provide suitable environments for other languages or
different environments. In this way MMLite can provide
arbitrary virtual machine environments through nesting.
The nested virtual machines might employ type-safe
languages and software fault and trust insulation.
Alternatively nested virtual machines can be implemented
in terms of hardware by means of a virtual memory
system.

The nested virtual machines can be loaded on demand
into any other address space. Software solutions are the
only means of insulation in a system without hardware

Eight ACM SIGOPS European Workshop, September 1998, Sintra, Portugal.

protection. Even with hardware protection the software
solutions might sometimes win in performance by
avoiding expensive domain crossings.

Any virtual machine running in the MMLite
environment can make external objects available to its
nested applications via proxies, perhaps with security
filtering. It can similarly export its nested objects to the
outer world via stubs.

2.6 Selection of System Components
What components should be part of a deployed

system depends on the applications themselves and their
interface requirements, application memory requirements,
security requirements, and the target hardware
capabilities. Flexible loading of modules was an
important design goal for our system. The loading of
components can be deferred until they are actually used by
an application. Device drivers and run-time services
typically fall into this category. Others can be loaded just
prior to running an application, such as virtual memory for
untrusted applications. Most services will terminate
themselves when they are no longer needed. The structure
of the system might change radically during execution due
to external events.

Drivers and virtual memory can not be used when the
hardware to support them is not present. An application
that tries to use them will look them up in the demand-
loading namespace. The lookup operation fails, either
because the driver is absent or it returns a NULL pointer
instead of a valid IUnknown during initialization.

LT
Library

Startup/Application
Timer/ICU

Null-SchedulerNull-Thread
Mutex/Condition

Figure 1: A minimal system configuration. Compo-
nents are loaded at link time (LT).

Figure 1 shows a minimal system configuration that
can be used in a watch. Figure 2 shows a larger system
configuration that can be used in a cell phone.
Applications can run within the physical address space,
within a separate address space, and within a virtual
machine. The IPC system uses the network and virtual
memory mappings as its transports.

2.7 Virtual Memory
Unlike most existing operating systems, in MMLite

the support for virtual memory is not an integral part of
the system. The system can function with or without it,
and it executes the same binaries. The virtual memory
manager is a component like any other, and is loaded
dynamically on demand.

Loading or unloading of the virtual memory system
does not interfere with applications already running, or
started later on in the physical memory space. Once the
virtual memory system has been started, new components

can be loaded into any address space. Component code
may be shared between different address spaces, as is the
case with shared libraries. For instance, any code loaded
into the physical memory space is made visible to
applications regardless of their address space. There is
nothing secret in the systems code, so there is no security
problem.

Virtual memory might be required for:

• Security reasons, when a program is not trusted. The
virtual memory system implements firewalls between
applications.
• Covering for common programming errors such as
NULL pointer references and memory leaks.
• Creating a sparse address space. Often leads to better
memory utilization with fragmented heaps.
• Paging: provides more memory than available,
working set adaptation, and mapped files.
• Safe and flexible memory sharing: Copy-on-write for
libraries, shared memory windows.
• Running non-relocatable executables as described
above.
• Implementing garbage collection and other protection
tricks.

VMem

Network

Drivers

IPCJava
VM

Thread
Mutex/Condition

Timer/ICU

Library

Applications

LT

RT

RT-Scheduler

RomFS Startup

Namespace
Loader

Heap

Figure 2: A sample system configuration. Link time
(LT), and run time (RT) loadable components.

2.8 Interprocess Communication
An IPC system is needed if applications are to be run

in separate address spaces. Otherwise the applications can
not talk to each other or to system services. An IPC
system allows:

• Communication between address spaces within a
machine.
• Communication between applications in different
machines in a distributed environment.
• Graceful termination and cleanup of applications
even within one address space.

Cleanup involves releasing the memory held by an
application. It also involves closing all references into and
out of the application’s objects. A level of indirection is
needed for bookkeeping and for providing a cutoff point.
This level of indirection is what an IPC system provides.

Eight ACM SIGOPS European Workshop, September 1998, Sintra, Portugal.

Our IPC system implements the COM model. It is
possible, however, to replace it with another
communication model for applications that expect a
different model. Components implementing various
communication paradigms can be loaded into the system
as needed.

3 System Components
This section describes the base menu of MMLite

system components. Other components are described in
section 4. All of them have been implemented and tested.
For sizes, see Table 1 in section 5.

• Heap: Implements (physical) memory management,
allowing dynamic memory allocations with specifiable
alignments. The constructor allows creating nested heaps
or heaps over virtual memory. Two different
implementations are provided.
• Loader: Used to load additional components into a
running system. Most embedded systems do not provide a
loader, and it can be eliminated at link time from our
system as well. Multiple image formats are supported.
The loader loads images into the same address space, or
given a flag and a virtual memory manager, it creates a
new address space and loads the image in there.

 We make no particular distinction between
executables and DLLs (shared libraries). An executable is
simply a DLL that exports no other entry points besides
main().

• Support Library, Machine Initialization: A shared
support library includes common base utilities like
memcpy, int64, AtomicAdd, CurrentThread, etc. It is
used by many system components and is available to all
components.

Basic machine initialization code is used at startup
and system reset. Most of the machine dependent code of
MMLite goes here.

• Timer and Interrupt Drivers: A driver for the timer
chip is used by the scheduler to keep track of time and for
thread pre-emption. A driver for the Interrupt Control
Unit (ICU) dispatches interrupts and keeps a registry of
interrupt routines, which can be installed and removed by
other components. The system has no particular notion of
a “device driver” per se. It does enforce strict limits as to
what an interrupt routine can do: wakeup a thread.
• Scheduler: A policy module that determines which
thread should run at any given time. Low-level
management of blocking and switching between threads is
handled by the thread and synchronization component.

The timer interrupt and thread and synchronization
modules call into the scheduler, possibly passing callback
functions as arguments.

Four schedulers have been implemented: the null
scheduler, a simple round robin scheduler, a constraint
based real-time scheduler, and another independently
implemented real-time scheduler. The null scheduler is
for systems that use only one thread. Constraint

scheduling is for consumer real-time applications and is
described in [Jones97].

• Threads and Synchronization: Basic thread support
and synchronization primitives. A thread is created in the
address space of the component in which it is started. If
there is no virtual memory, the address space is always the
physical address space. Threads can block on mutexes and
conditions. They can inform the scheduler of their time
constraints, but these calls will fail if the scheduler is not a
constraint scheduler. The constraint scheduler performs
priority inheritance when threads block on mutexes.
• Namespaces: A simple boot namespace where
applications register objects. A namespace that
cooperates with the loader in demand-loading and caching
of components. A namespace, used for displaying the
status (e.g. running threads) and performance parameters
(e.g. execution times) of a system during development.
Filesystems are also loadable namespaces.
• Filesystem: Used to load additional components
during run-time. We implemented RomFS for read-only
in-memory images (arbitrary files and the system can be
merged into one image) and FatFS for reading/writing
disks. NetFile is a simple network filesystem client built
on top of sockets.
• Network: The complete BSD4.4Lite network
protocol code, with minor adaptations. The interface is a
COM interface that provides sockets. The protocols
operate the network drivers through another interface.
• Startup Program: Started once the system has been
initialized. It can be a simple command interpreter that
configures the system and launches applications, or the
(only) application itself.
• A small Win32 compatibility library for making it
easier to use WindowsNT code in some of the drivers and
applications.
• Atomic queues and a DMA manager are useful to
device driver writers.
• Virtual Memory Implementation: Can be viewed
as a driver for MMU hardware. It creates virtual memory
mappings using physical memory and MMU hardware.
Loading and starting the virtual memory manager
executable does not interfere with applications already
running. Unloading can be done once all references to
objects provided by the manager are released. A new one
can be started if needed.

A virtual memory space looks like the physical
memory space, except it can be larger, doesn’t have to be
contiguous, can be paged, protected, replicated, and can
be (recursively) mapped to other objects.

Our virtual memory manager exports a number of
control interfaces that are used to create new address
spaces (VSpace), to map address spaces or files to address
spaces (VMap), to map address spaces to threads
(VView), and to control state and protections (VSpace).

Realistically, any MMU driver will need exclusive
control of the MMU hardware. However, other objects

Eight ACM SIGOPS European Workshop, September 1998, Sintra, Portugal.

implementing the virtual memory interfaces can be
interposed between an application and the MMU driver.
This way logical virtual memory systems can be
arbitrarily composed, for instance stacked like in the
Exokernel [Engler95].

The rest of the system is unaware of the virtual
memory component, with a few exceptions. A thread
must hold a pointer to its VView so that page faults can be
resolved within the correct context, and the context switch
path must check for a VView change. If the context
switch path detects an address space change, it calls a
VView method to synchronize the MMU hardware with
the change. The virtual memory server registers its trap
handler with the ICU driver. The Heap may choose to
modify its behavior when running over virtual memory.
The loader can only create new address spaces when a
virtual memory system is present. The IPC system may
utilize virtual memory mappings for data transfers.

4 Applications
Equator Technologies has ported MMLite to its

proprietary VLIW media processor, and is using it to run
multiple simultaneous multimedia applications, including
MPEG2 Decode, AC3, 3D Graphics (D3D) and tele-
communications.

The MMLite system has been used at Microsoft in a
prototype Talisman [Torborg96] 3D graphics and
multimedia card. This involved supporting DirectDraw
and Direct3D, DirectSound and a wavetable based
software MIDI synthesizer implementing the DLS level 1
specification. An interactive game (Doom) can also run
directly on the board, along with a number of other demo
programs and regression tests.

We will now look into some of these applications in
more detail.

4.1 DirectX
DirectDraw is an interface for a Windows platform

that lets applications efficiently create 2D graphics
without unnecessary operating system overhead.
Direct3D is the equivalent interface for 3D graphics. They
both use a combination of direct memory access and in-
kernel driver support to do their job. DirectSound is the
interface for audio I/O. Collectively, they are known as
DirectX.

The Talisman prototype implementation utilizes the
multimedia card (Figure 4) to do the bulk of the work.
The card contains a processor and local memory,
controlled by MMLite. On the card MMLite provides the
framework and basic services for the graphics and audio
engines.

Two components handle the communication over the
PCI bus: MMH on the NT side and MMD on the MMLite
side. They send packets to each other. The user
application on the workstation interfaces with the DirectX
library, which logically makes method calls to objects that
reside on the card. The MMH and MMD act as proxies

and stubs, and perform the necessary argument marshaling
and unmarshaling. A graphics component does the
rendering and writes the results into a frame buffer. An
audio component uses the on-board A/D converters.

PC workstation

PCI bus

3D card

MMLite

MMH
driver

NT kernel

DirectX
library

User application

MMD driver

Graphics
component

Audio

Figure 4: DirectX communication.

MMD uses the demand-loading namespace, and
exports this functionality to the MMH side as well. The
filesystem delegates any file requests back to MMH that
fetches them from the filesystem on the workstation.
Constraints are used to schedule computations and device
driver level work. Feedback to the graphics component
lets it adapt the rendering precision to time availability.

In this setup communication latency is important for
the performance of the application using DirectX. On a
90MHz PC we measured in excess of 7,800 RPC/second
between a user mode WindowsNT process and a MMLite
component, with time predominantly spent in NT.

D/A
AUDIO
driver

audio data
IN

SYNTH
MIDI

data A/D
MIXER

audio data
OUT

Figure 5: MIDI synthesizer components.

4.2 MIDI Synthesizer
Figure 5 depicts the structure of the MIDI synthesizer

components. The SYNTH thread runs periodically and
when new MIDI data arrives. It produces an output buffer
of 44KHz, 16bit, stereo audio samples. The MIXER
thread also runs periodically, and expects to find a new
buffer available on each of its input channels. If an input
buffer is not present, a buffer of silence data is used
instead. Buffers contain data in any number of formats;
the mixer adapts frequencies, stereo/mono, and number of
bits per sample. The result of the mixing is given to the
AUDIO driver. This thread awaits signals from the
interrupt routines, and switches buffers. Completed
buffers are returned to the mixer.

Eight ACM SIGOPS European Workshop, September 1998, Sintra, Portugal.

All of the audio components use time constraints and
can without interference run together with DirectDraw and
other applications. The overall CPU load when running
these components under MMLite on an 80MHz TriMedia
processor is 7% for the SYNTH component, and 3% for
the remaining audio components.

5 Results
The system currently runs on the x86, ARM, Philips

TriMedia, and Equator Technologies’ VLIW processors.
The Talisman Software Development Kit [SDK97]
contains the MMLite kit, and was first shipped in July
1996 to Talisman licensees.

Heap1 2635 Boot NS 1265

Heap2 3420 Dload NS 512

PE loader 4661 RomFS 1417

Library 3799 FatFS 8229

Machdep 2086 NetFile 6944

Timer 1205 Startup 118

ICU 1005 Network 84832

Null-sched 316 Win32Event 634

RR-sched 599 AtomicQueue 415

RT-sched 1228 MMD 1852

Thread 426 VM 17712

Synchro 1090 Doom 285696

Table 1: X86 components and their binary sizes in
bytes.

The size of the minimal system in Figure 1 is 10KB
on x86, excluding a boot stack. The size of the base
system (the LT box in Figure 2) is 26KB on x86, 20KB
on ARM. Table 1 lists the sizes of the components of
Section 3.

5.1 Development Experiences
In our experience at Microsoft, componentization

reduces development time and makes the system flexible
and understandable. Because not all components have to
be functional at once, porting and development can be
incremental. The system also makes little assumptions of
the hardware. The Philips TriMedia port was functional
in one week, of which five days were spent on learning
how to use the development tools. The VLIW architecture
of this microprocessor is quite new and different from the
ones that MMLite supported at the time.

Equator Technologies has ported the system to their
new microprocessor and platform. They told us their
experience also was favorable and that the system was
reasonably bug free. They used the demand-loading
namespace and programming model, and the MMH/MMD
pair. They found the separation of machine dependencies
was successful. They modified one of the existing loader
modules for their image format and implemented a new
real-time scheduling component.

6 Related Work
[Ford97] shows how a base set of system components

can be composed in different ways to build an operating
system kernel. The granularity is fairly coarse, and the
techniques are limited to static linking. Components that
should be of interest to OS researchers (VM, IPC,
scheduling, etc.) cannot be replaced or removed, neither
statically nor dynamically. The decomposition is
otherwise limited to the "OS" component; it is not meant
as a whole-system approach. This work bears similarity to
MMLite, but does not go as far in the componentization.
It provides a few convenient components, such as
bootstrap loader and filesystems, but is mostly concerned
in reusing existing device drivers and Unix code.
MMLite, on the other hand, componentizes the core
services and extends the paradigm to applications.

Chorus [Rozier88] is the only system we know of that
can be configured to use either a page-based or a segment-
based VM system. MMLite is the first one that can run
with or without VM, and dynamically load and unload it
— unless, of course, we look at MS-DOS in a very twisted
way.

Synthetix [Cowan96] employs a limited form of
object mutation for specialization. We have generalized
mutation and made it usable in a number of new contexts.
The synchronization mechanism presented in [Cowan96]
is a holding tank that keeps workers from entering an
object that is being mutated. The holding tank can be
viewed as an asymmetric read-write lock, but it does not
solve the problem of workers that have already entered
the object. We solved this problem, including cases
where the worker blocks.

Rialto [Jones96, Draves97] shows how the COM
model can be implemented in the presence of VM, and
argues for a unified programming model that is
independent of the privilege issue (no user versus kernel
distinction). We show how those same principles are
beneficial in scaling down a system to cope with resource
poor domains.

CORBA [OMG98] forces all calls to go through the
object request broker thus penalizing the local case.
Real-time support in CORBA is still at the research stage
[Yang98].

Componentization and location independence has
also been studied in the context of filesystems and
network protocols [Maeda93] and in a number of existing
embedded systems, such as pSOS [ISI95]. In a typical
embedded system there is no loader, components can only
be chosen at static link time when the load image is built.
Services are extremely limited, sometimes just to the
scheduling component. The number and priority of
threads might have to be specified statically as well.

Spin [Bershad95] addresses the issue of expensive
address space crossings by letting user code compiled by a
trusted compiler run inside the kernel. MMLite enables

Eight ACM SIGOPS European Workshop, September 1998, Sintra, Portugal.

equal functionality through loadable nested virtual
machines.

Modularity has always been an important paradigm in
software design. By breaking a complex system into
pieces, the complexity becomes more manageable.
Address spaces provide security by installing firewalls
between applications. These two issues are orthogonal,
but the distinction has been lost in systems research that
has been concentrating on so-called microkernels
[Black92, Cheriton94, Engler95, Hildebrand92, Julin91,
Young89].

[Liedtke95] argues that microkernels have failed
exclusively on performance grounds, and that poor
performance is their only cause for inflexibility. Our
argument is the opposite: inflexibility is inherent in the
design, and leads to unavoidable inefficiencies that can
only be mitigated by good implementations, never
eliminated. Where L3’s [Liedtke95] granularity is at the
address space level, ours is at the single object level
thanks to the COM’s model. We also prove by
construction that a modular system does not require VM,
contradicting the axioms in L3’s theoretical model.

7 Conclusions
Building an operating system for emerging computing

platforms out of components pays off in terms of
flexibility, minimalism, and adaptability. It naturally
leads to good software design, rapid implementation, and
good portability. COM is a good way of adding
transparency both to location and privilege level, without
too much overhead.

The MMLite system is efficient, portable, and has a
very small memory footprint that makes it suitable for
embedded use. It has successfully been used in several
multimedia devices.

 Acknowledgements
Thanks to Andy Raffman, Jerry Van Aken, and the

rest of the Talisman team for their invaluable help.

 References
 [Bershad95] Brian Bershad, S. Savage, P. Pardyak, E. G. Sirer, M.

Fiuczynski, D. Becker, S. Eggers, C. Chambers. Extensibility,
safety and performance in the Spin operating system. In 15th ACM
Symposium on Operating System Principles, pages 267-284,
Copper Mountain Resort, Colorado, December 1995.

[Black92] David Black, David Golub, Daniel Julin, Richard Rashid,
Richard Draves, Randall Dean, Alessandro Forin, Joseph Barrera,
Hideyuki Tokuda, Gerald Malan, David Bohman. Microkernel
Operating System Architecture and Mach. In 1st USENIX
Workshop on Micro-kernels and Other Kernel Architectures, pages
11-30, Seattle, April 1992.

[Brockschmidt95] K. Brockshmidt. Inside OLE, Second ed. Microsoft
Press, Redmond WA, 1995.

[Cheriton94] David Cheriton, Kenneth Duda. A Caching Model of
Operating System Kernel Functionality. In 1st Symposium on
Operating Systems Design and Implementation, Seattle, 1994.

[OMG98] CORBA/IIOP 2.2 Specification. Available from
http://www.omg.org/corba/corbiiop.htm.

[Cowan96] Crispin Cowan, Tito Autrey, Charles Krasic, Calton Pu, and
Jonathan Walpole. Fast Concurrent Dynamic Linking for an

Adaptive Operating System. In the proceedings of the
International Conference on Configurable Distributed Systems
(ICCDS’96), Annapolis MD, 1996.

[Draves97] Richard Draves, Scott Cutshall. Unifying the User and
Kernel Environments. Microsoft Research Technical Report
MSR-TR-97-10, 16 pages, March 1997. Available from
ftp://ftp.research.microsoft.com/pub/tr/tr-97-10.ps.

[Engler95] D. R. Engler, M. F. Kaashoek, J. O’Toole Jr. Exokernel: an
operating system architecture for application-specific resource
management. In 15th ACM Symposium on Operating System
Principles, pages 251-266, Copper Mountain Resort, Colorado,
December 1995.

[Ford97] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert
Lin, Olin Shivers. The Flux OSKit: A Substrate for Kernel and
Language Research. In Proceedings of the 16th ACM Symposium
on Operating Systems Principles, pages 38-51. ACM SIGOPS,
Saint-Malo, France, October 1997.

[Hildebrand92] D. Hildebrand. An architectural overview of QNX. In
1st USENIX Workshop on Micro-kernels and Other Kernel
Architectures, pages 113-126, Seattle, April 1992.

[ISI95] Integrated Systems Inc. pSOSystem System Concepts. Part No.
COL0011, May 1995, ISI, Sunnyvale CA.

[Jones96] Michael B. Jones, Joseph S. Barrera, III, Richard P. Draves,
Alessandro Forin, Paul J. Leach, Gilad Odinak. An Overview of
the Rialto Real Time Architecture. In Proceedings of the 7th ACM
SIGOPS European Workshop, pages 249-256, September 1996.

>-RQHV��@�0LFKDHO�%��-RQHV��'DQLHOD�5RúX��0DUFHO�& W OLQ�5RúX. CPU
Reservations and Time Constraints: Efficient, Predictable
Scheduling of Independent Activities. In Proceedings of the 16th
ACM Symposium on Operating Systems Principles, pages 198-
211. ACM SIGOPS, Saint-Malo, France, October 1997.

[Julin91] Daniel Julin, Jonathan Chew, Mark Stevenson, Paulo Guedes,
Paul Neves, Paul Roy. Generalized Emulation Services for Mach
3.0: Overview, Experiences and Current Status. In Proceedings of
the Usenix Mach Symposium, 1991.

[Liedtke95] Jochen Liedtke�� � 2Q� �NHUQHO� FRQVWUXFWLRQ. In 15th ACM
Symposium on Operating System Principles, pages 237-250,
Copper Mountain Resort, Colorado, December 1995.

[Maeda93] Chris Maeda and Brian Bershad. Protocol Service
Decomposition for High-Performance Networking. In 14th ACM
Symposium on Operating System Principles, pages 244-255, 1993.

[Rozier88] M. Rozier, A. Abrassimov, F. Armand, I. Boule, M. Gien,
M. Guillemont, F. Hermann, C. Kaiser, S. Langlois, P. Leonard,
W. Neuhauser. CHORUS distributed operating system. In
Computing Systems, pages 305-370, Vol. 1-4, 1988.

[SDK97] mailto:tmantech@microsoft.com.
[Torborg96] Jay Torborg and Jim Kajiya. Talisman: Commodity Real

Time 3d Graphics for the PC. In Proceedings of SIGGRAPH 96,
August 1996.

[Yang98] Zhonghua Yang and Chengzheng Sun. CORBA for Hard
Real Time Applications: Some Critical Issues. In Operating
Systems Review, pages 64-71, Vol. 32-3, 1998.

[Young89] Michael Wayne Young. Exporting a User Interface to
Memory Management from a Communication-Oriented Operating
System. Ph.D. Thesis CMU-CS-89-202, Carnegie Mellon
University, November 1989.

