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ABSTRACT

In this paper we present a new approach for estimating the inter-
polation parameters of language models (LM) which are used as
classifiers. With the classical maximum likelihood (ML) estima-
tion theoretically one needs to have a huge amount of data andthe
fundamental density assumption has to be correct. Usually one of
these conditions is violated, so different optimization techniques
like maximum mutual information (MMI) and minimum classifi-
cation error (MCE) can be used instead, where the interpolation
parameters are not optimized on its own but in considerationof
all models together. In this paper we present how MCE and MMI
techniques can be applied to two different kind of interpolation
strategies: the linear interpolation, which is the standard interpola-
tion method and the rational interpolation. We compare ML, MCE
and MMI on the German part of theVerbmobil corpus, where we
get a reduction of 3% of classification error when discriminating
between 18 dialog act classes.

1. INTRODUCTION

Language models (LM) are very important for automatic speech
recognition systems; they are widely used in word recognizers to
estimate the probability of a word chain in order to reduce the num-
ber of possible paths in forward decoding or to find the best word
chain in a word hypotheses graph or lattice. If LM are trained
class dependent and run in parallel, they can serve as classifiers
for tasks like topic spotting, language identification and dialog act
(DA) classification. LM work on every kind of symbol sequence
with a finite vocabulary, e.g. word sequences, phoneme sequences,
or codebook class sequences; they are thus applicable to many do-
mains, even if there is no word information available.

We use LM classifiers in the task of topic spotting on the
Switchboard-corpus with codebook classes or phonemes as ba-
sic symbol [9]. Furthermore, we perform language identification
using codebook class sequences produced by one or more vector
quantizer and decide for one language on the scores computedby
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our LM classifiers [4]. Within the speech-to-speech translation
project Verbmobil [2] we use language models to classify and
segment incoming turns in units of DA for the shallow processing
module which uses a template based translation as fall strategy if
the deep linguistic analysis fails. DA are, e.g., “greeting”, “con-
firmation of a date”, “suggestion of a place”. For our experiments
we use the 18 DA from the first phase ofVerbmobil which were
defined based on their illocutionary force [5].

To address the problem of sparse data, often language mod-
els use interpolation strategies to get reliable performance even
when there is not enough data available. The classical approach
is to have a certain kind of interpolation strategy and to optimize
the free interpolation parameters using maximum likelihood (ML)
estimation. According to [7] this method is optimal when thefun-
damental density assumption is valid and enough data is available.
At least one of these conditions is violated, so we will not get the
optimal classifier. In [1] maximum mutual information (MMI)es-
timation was proposed as an alternative to ML estimation. MMIE
training tries to find the parameter set maximizing the a posteri-
ori probability of training data, which tends to be more reason-
able since classification is usually performed by finding themodel
with the highest a posteriori probability. Another non-parametric
approach is minimum classification error training, which tries to
minimize a representation of error rate directly [6].

2. STOCHASTIC LANGUAGE MODELS

In most cases language models are used to calculate the probabil-
ity of a word sequencew = w1 : : : wT in a given language or
context. We use ourpolygram language models[11] which are a
special kind ofstochasticn-gram model to estimate the probabil-
ity of every kind ofsymbol sequencewhere a symbol could be a
word, phoneme or a codebook class.

2.1. Maximum Likelihood Estimation

Using polygrams the probability of the symbol sequencew1 : : : wT
can be approximated with aN symbol history:P (w) = TYj=1P (wj j wmax(1;j�N+1) : : : wj�1| {z }:=v ):



With this historyv we can estimate the conditional probabilitiesP (w j v) from a given training corpus simply by using the maxi-
mum likelihood (ML) estimation:P̂ k(wj jv) = #(vwj)#(v) ; with k =j wjv j;
where#(�) denotes the frequency of its argument in the training
data. Of course, one would like to choose a large number ofN
for the history length – the approximation made by a LM of higher
order gets closer to the real probability. Unfortunately, the num-
ber of parameters to estimate increases exponentially withthe size
of N , and thus the ML estimates become far from being reliable
because of the limited training data.

A compromise with respect to this conflict between the model
context sizeN and the training data volume can be made by intro-
ducing a weighted interpolation scheme.

2.2. Interpolation

The basic idea of applying interpolation methods is to fall back
on the probability estimation of subsequences shorter thanN. An
example is thelinear interpolationwhich uses all subsequences up
to the lengthN [8] :eP (wj j v) = �0 � 1L + �1 � P (wj) + �2 � P (wj j wj�1)+ NXn=3 �n � P (wj j wj�n+1 : : : wj�1):
The fraction1=L accounts for unseen sequences, whereL is the
number of words known to the LM, and ensures that no proba-
bilities are set to zero. The interpolation coefficients�n can be
estimated using theExpectation Maximization (EM)algorithm on
a given validation set if we perform ML optimization.

Another interpolation method is therational interpolation[11];
it gives a higher weight to thosen-grams which have been seen
more frequently in the training set using a weighting functiongk(v):eP(wj jv) =Xk �kgk(v)P̂ k(wj jv):
With the weighting functiongk(v) defined as a hyperbolistic func-
tion gk(v) = #(wj�k;j�1)#(wj�k;j�1) + C ;
with thebiasC we obtain the formulaeP(wj jv) = Pk �k #(wj�k;j )#(wj�k;j�1)+CPk �k #(wj�k;j�1)#(wj�k;j�1)+C = Pk �k�j;k(w)Pk �k j;k(w) :

The classification of an utterance is done by choosing the LM
which has the best a posteriori probability.

3. OPTIMIZATION METHODS

Before using the discriminative optimization techniques for esti-
mation of LM interpolation parameters we describe MMI and the
MCE approaches in more detail.

3.1. Maximum Mutual Information Estimation

The MMI approach is a discriminative extension of the maximum a
posteriori estimation (MAP)[1]. In contrast to ML the a posteriori
probability of one model is maximized under the assumption that
one pattern of this model was observed. The objective function to
maximize is the followingR(�) = IYi=1 P (Mq(i)jwi) = IYi=1 Pq(i)(wi)Pq(i)P (wi)
whereI is the number of sentences in the validation set,Q is the
number of considered language models,Pq is the a priori prob-
ability of modelMq andq(i) refers to the correct model for the
sentencei. For MMIE the denominatorP (wi) is written asR(�) = IYi=1 Pq(i)(wi)Pq(i)QPq=1Pq(wi)Pq ;
3.2. Minimum Classification Error

Another discriminative approach proposed in [3] is the minimum
classification error approach. It has been successfully used in the
domain of estimation of HMM parameters e.g. in [10]. The ba-
sic idea is the functional representation of the error function of the
classifier. It is based on theSigmoidfunction which is 1 for ev-
ery correctly classified phrase and 0 otherwise. Instead of the real
Sigmoid function an exponential approximation is used�̂(k; x) = 11 + exp(�kx)
One slightly difference from the classical version approach for the
MCE leads to the objective function which is to be constructed the
following way:� Choose criteriongq(�; wi) which is the basic score for the

underlying classifier; in our researches we apply the Bayes
classifier which leads togq(�; wi) = � logP (wijMq) + logP (Mq)� For every phrasewi find modelMr(i) such thatr(i) = argminq 6=q(i) gq(�; wi)
The modelMr(i) is hence the model with the highest prob-
ability of observationwi but not the correct one.� Build difference function� with�(�; wi) = gr(i)(�; wi)� gq(i)(�; wi)� The probability to perform a correct classification of phrasewi is written as Ri(�) = 11 + e��(�;wi)
which tends to zero ifP (wijMq(i)) � P (wijMr(i)) and
to one ifP (wijMq(i))� P (wijMr(i)).



The overall objective function for MCE can be written asR(�) = IYi=1Ri(�) = IYi=1 11 + e��(�;wi)
which can be interpreted as the probability for no classification
errors for the whole validation set. Supposed we use uniforma
priori distributionPq , this can be written asR(�) = IYi=1 11 + elog Pr(i)(wi)�log Pq(i)(wi)= IYi=1 Pq(i)(wi)Pq(i)(wi) + Pr(i)(wi) :

4. USING MCE AND MMI FOR LANGUAGE MODEL
INTERPOLATION

Estimation of the interpolation parameters as described insection 2
is done using theGeneral Probabilistic Descend(GPD)[6] algo-
rithm which implies the estimation of gradient vector for the ob-
jective functionx(l) = x(l�1) + �(l)rF (x(l�1));
The value of� is estimated using the standard Monte-Carlo algo-
rithm. Instead of optimizing of the interpolation parameters�kt we
substitute them by�kt = (�kt )2 for the linear interpolation and by�kt = (�kt )2Pi(�it)2
for the rational interpolation. This allows us to exclude the two
stochastic conditions imposed on the weights�kt .
The element of the gradient vector for the MMI algorithm can be
transformed to@ logR(�)@�st = IXi=1q(i)=t jwijXj=1 �ePt(wji jv)�0�stePt(wji jv)� IXi=1 (Pt(wi))0�si PtQPq=1Pq(wi)Pq :
and for the MCE algorithm to@ logR(�)@�st = IXi=1q(i)=t (Pt(wi))0�siPt(wi) + Pr(i)(wi) Pr(i)(wi)Pt(wi)� IXi=1r(i)=t (Pt(wi))0�siPt(wi) + Pq(i)(wi) :
For both objective functions we need the derivations of the model
related probabilitiesPq(w) andePq(wj jv) for the interpolation pa-
rameters�st . For the linear interpolation these are:�ePt(wj jv)�0�st = 2�stPm (�mt )2 �P̂ st (wj jv)� ePt(wj jv)�
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Figure 1: High correlation of the objective function and recogni-
tion rate on the validation set.

and(Pt(w))0�st = 2�stPm (�mt )2Pt(w) jwjXj=1 � P̂ st (wj jv)ePt(wj jv) � 1� :
and for the rational interpolation:�ePt(wj jv)�0�st = 2�sq 'j;st (w)�  j;st (w)ePt(wj jv)Pk(�kt )2 j;kt (w) ;(Pt(w))0�st = 2�stPq(w)jwjPj=1 0B@ 'j;st (w)Pk ��kt �2 'j;kt (w) �  j;st (w)Pk ��kt �2  j;kt (w)1CA

5. EXPERIMENTS AND RESULTS

Until now we tested the different optimization techniques on data
from theVerbmobil corpus for the task DA classification. We use
a training set with 19795 phrases and a test set with 2540 phrases
for the experiments with 18 DA classes with lexicon size of 4500
words. The validation set used for interpolation parameteropti-
mization contains 1980 phrases which we excluded from the train-
ing set.

To get a feeling of the methods efficiency it is necessary to
know how the applied objective function fits the recognitionrate
on the validation set during the iterations. In our experiments we
reached a high correlation of these two values for both optimiza-
tion methods (see Figure 1) which justifies the choice of the dis-
criminative techniques we have made.

Furthermore it is remarkable that the monotone growth of the
objective function does not implicate the permanent improvement
of the recognition rate not even on the validation set. Indeed the
resulting gradient vector composes of gradient vectors forevery
phrase of the validation set. This means that the general improve-
ment of the recognition quality can be accompanied by the partial
loss of the recognition rate owing those very phrases whose gradi-
ent direction has been suppressed by the majority of the set.
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Figure 2: Comparison of recognition rates for ML, MCE and MMI
estimations during interpolation process when using trigrams and
rational interpolation.

As it can be seen in Figure 2 the recognition rate on the test set
of MMIE is after a small number of interpolation iterations already
much better than for ML whereas recognition rates for MCE and
for ML are nearly the same. After 100 iterations we got a reduction
of error rate of more than 3 percent when comparing MMIE and
ML. Even MCE proved to be slightly better than ML. This makes
sense because MMI seems to be “more discriminative” than MCE.
In fact: on each iteration step of MMI optimization every phrase
from the validation set causes alteration of all models coefficients
whereas with MCE only parameter of two models (r(i) andq(i))
are to be modified.

Comparing our different interpolation strategies for bothopti-
mization techniques the rational interpolation outperforms the lin-
ear interpolation even if we use differentn-gram sizes (see Ta-
ble 1).

6. CONCLUSION AND FUTURE WORK

In [1] it was shown, that using discriminative optimizationtech-
niques for estimation of HMMs parameters improved recognition
rate. We applied MMI and the MCE techniques in order to es-
timate interpolation parameters of LM. We could show that dis-
criminative optimization techniques of interpolation coefficients
improve recognition results for the 18 class problem in the task
of dialog act classification. The best results we achieved using
the rational interpolation and MMI estimation which cuts our er-
ror by 3 percent in comparison to ML estimation. In the future
we are going to test the discriminative techniques in other tasks
like topic spotting on theSwitchboard-corpus and language iden-
tification. We would like to extend the estimation techniques to
different interpolation strategies and to estimate then-gram prob-
abilities themself using discriminative methods.
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