
Robust Segmentation of Japanese Text into a Lattice for Parsing
Gary Kacmarcik, Chris Brockett, Hisami Suzuki

Microsoft Research
One Microsoft Way

Redmond WA, 98052 USA
{garykac,chrisbkt,hisamis}@microsoft.com

Abstract

We describe a segmentation component that
utilizes minimal syntactic knowledge to produce a
lattice of word candidates for a broad coverage
Japanese NL parser. The segmenter is a finite
state morphological analyzer and text normalizer
designed to handle the orthographic variations
characteristic of written Japanese, including
alternate spellings, script variation, vowel
extensions and word-internal parenthetical
material. This architecture differs from con-
ventional Japanese wordbreakers in that it does
not attempt to simultaneously attack the problems
of identifying segmentation candidates and
choosing the most probable analysis. To minimize
duplication of effort between components and to
give the segmenter greater freedom to address
orthography issues, the task of choosing the best
analysis is handled by the parser, which has access
to a much richer set of linguistic information. By
maximizing recall in the segmenter and allowing a
precision of 34.7%, our parser currently achieves a
breaking accuracy of ~97% over a wide variety of
corpora.

Introduction

The task of segmenting Japanese text into word
units (or other units such as bunsetsu (≈phrases))
has been discussed at great length in Japanese NL
literature ([Kurohashi98], [Fuchi98], [Nagata94],
et al.). Japanese does not typically have spaces
between words, which means that a parser must
first have the input string broken into usable units
before it can analyze a sentence. Moreover, a
variety of issues complicate this operation, most
notably that potential word candidate records may
overlap (causing ambiguities for the parser) or
there may be gaps where no suitable record is
found (causing a broken span).

These difficulties are commonly addressed using
either heuristics or statistical methods to create a
model for identifying the best (or n-best) sequence

of records for a given input string. This is
typically done using a connective-cost model
([Hisamitsu90]), which is either maintained
laboriously by hand, or trained on large corpora.

Both of these approaches suffer from problems.
Handcrafted heuristics may become a maintenance
quagmire, and as [Kurohashi98] suggests in his
discussion of the JUMAN segmenter, statistical
models may become increasingly fragile as the
system grows and eventually reach a point where
side effects rule out further improvements. The
sparse data problem commonly encountered in
statistical methods is exacerbated in Japanese by
widespread orthographic variation (see §3).

Our system addresses these pitfalls by assigning
completely separate roles to the segmenter and the
parser to allow each to delve deeper into the
complexities inherent in its tasks.

Other NL systems ([Kitani93], [Kurohashi98])
have separated the segmentation and parsing
components. However, these dual-level systems
are prone to duplication of effort since many
segmentation ambiguities cannot be resolved
without invoking higher-level syntactic or
semantic knowledge. Our system avoids this
duplication by relaxing the requirement that the
segmenter identify the best path (or even n-best
paths) through the lattice of possible records. The
segmenter is responsible only for ensuring that a
correct set of records is present in its output. It is
the function of the parsing component to select the
best analysis from this lattice. With this model,
our system achieves roughly 97% recall/precision
(see [Suzuki00] for more details).

1 System Overview

Figure 1 shows a simple block diagram of our
Natural Language Understanding system for
Japanese, the goal of which is to robustly produce
syntactic and logical forms that allow automatic

extraction of semantic relationships (see
[Richardson98]) and support other linguistic
projects like information retrieval, NL interfaces
and dialog systems, auto-summarization and
machine translation.

The segmenter is the first level of processing. This
is a finite-state morphological analyzer responsible
for generating all possible word candidates into a
word lattice. It has a custom lexicon (auto-
matically derived from the main lexicon to ensure
consistency) that is designed to facilitate the
identification of orthographic variants.

Records representing words and morphemes are
handed off by the segmenter to the derivational
assembly component, which uses syntax-like rules
to generate additional derived forms that are then
used by the parser to create syntax trees and logical
forms. Many of the techniques here are similar to
what we use in our Chinese NL system (see
[Wu98] for more details).

The parser (described extensively in [Jensen93])
generates syntactic representations and logical
forms. This is a bottom-up chart parser with
binary rules within the Augmented Phrase
Structure Grammar formalism. The grammar rules
are language-specific while the core engine is
shared among 7 languages (Chinese, Japanese,
Korean, English, French, German, Spanish). The
Japanese parser is described in [Suzuki00].

2 Recall vs. Precision

In this architecture, data is fed forward from one
component to the next; hence, it is crucial that the
base components (like the segmenter) generate a
minimal number of omission errors.

Since segmentation errors may affect subsequent
components, it is convenient to divide these errors
into two types: recoverable and non-recoverable.
A non-recoverable error is one that prevents the

syntax (or any downstream) component from
arriving at a correct analysis (e.g., a missing
record). A recoverable error is one that does not
interfere with the operation of following
components. An example of the latter is the
inclusion of an extra record. This extra record
does not (theoretically) prevent the parser from
doing its job (although in practice it may since it
consumes resources).

Using standard definitions of recall (R) and
precision (P):

total

correct

Tag

Seg
R =

total

correct

Seg

Seg
P =

where Segcorrect and Segtotal are the number of “correct”
and total number of segments returned by the segmenter,
and Tagtotal is the total number of “correct” segments
from a tagged corpus,

we can see that recall measures non-recoverable
errors and precision measures recoverable errors.
Since our goal is to create a robust NL system, it
behooves us to maximize recall (i.e., make very
few non-recoverable errors) in open text while
keeping precision high enough that the extra
records (recoverable errors) do not interfere with
the parsing component.

Achieving near-100% recall might initially seem to
be a relatively straightforward task given a
sufficiently large lexicon – simply return every
possible record that is found in the input string. In
practice, the mixture of scripts and flexible
orthography rules of Japanese (in addition to the
inevitable non-lexicalized words) make the task of
identifying potential lexical boundaries an
interesting problem in its own right.

3 Japanese Orthographic Variation

Over the centuries, Japanese has evolved a
complex writing system that gives the writer a
great deal of flexibility when composing text.
Four scripts are in common use (kanji, hiragana,
katakana and roman), and can co-occur within
lexical entries (as shown in Table 1).

Some mixed-script entries could be handled as
syntactic compounds, for example, ID カード [ai
dii kaado=“ID card”] could be derived from
IDNOUN + カード NOUN. However, many such items
are preferably treated as lexical entries because

Word Segmentation ⇆
Orthography

Lexicon

⇊

Derivational Assembly ⇆

⇊

Syntactic Analysis ⇆

Syntax
Lexicon

⇊
Logical Form

Figure 1: Block diagram of Japanese NL system

they have non-compositional syntactic or semantic
attributes.

In addition, many Japanese verbs and adjectives
(and words derived from them) have a variety of
accepted spellings associated with okurigana,
optional characters representing inflectional
endings. For example, the present tense of 切り落
とす (kiriotosu = “to prune”) can be written as any
of: 切落す, 切り落す, 切落とす, 切りおとす, きりおとす
or even きり落とす,きり落す.

Matters become even more complex when one
script is substituted for another at the word or sub-
word level. This can occur for a variety of
reasons: to replace a rare or difficult kanji (ら致
[rachi=“kidnap”] instead of 拉致); to highlight a
word in a sentence (ヘンなかっこう [henna
kakkou = “strange appearance”]); or to indicate a
particular, often technical, sense (ワタって [watatte
=“crossing over”] instead of 渡って, to emphasize
the domain-specific sense of “connecting 2
groups” in Go literature).

More colloquial writing allows for a variety of
contracted forms like オレ達ゃ ≈ オレ達 + は [ore-
tacha ≈ ore-tachi + wa = “we” + TOPIC] and
phonological mutations as in でェーす ≈ です [dee–
su ≈ desu = “is”].

This is only a sampling of the orthographic issues
present in Japanese. Many of these variations pose
serious sparse-data problems, and lexicalization of
all variants is clearly out of the question.

4 Segmenter Design

Given the broad long-term goals for the overall
system, we address the issues of recall/precision
and orthographic variation by narrowly defining
the responsibilities of the segmenter as:

(1) Maximize recall

(2) Normalize word variants

4.1 Maximize Recall

Maximal recall is imperative. Any recall mistake
made in the segmenter prevents the parser from
reaching a successful analysis. Since the parser in
our NL system is designed to handle ambiguous
input in the form of a word lattice of potentially
overlapping records, we can accept lower precision
if that is what is necessary to achieve high recall.

Conversely, high precision is specifically not a
goal for the segmenter. While desirable, high
precision may be at odds with the primary goal of
maximizing recall. Note that the lower bound for
precision is constrained by the lexicon.

4.2 Normalize word variants

Given the extensive amount of orthographic
variability present in Japanese, some form of
normalization into a canonical form is a pre-
requisite for any higher-order linguistic processing.
The segmenter performs two basic kinds of
normalization: Lemmatization of inflected forms
and Orthographic Normalization.

Kanji-Hiragana
新しい [atarashii = “new”]
ほ乳類 [honyuurui = “mammal”]

Kanji-Katakana
歯ブラシ [haburashi = “toothbrush”]
ヒ素 [hiso = “arsenic”]

Kanji-Alpha CGS単位 [CGS tan’i = “CGS system”]

Kanji-Symbol
12月 [juunigatsu = “December”]
γ線 [ganma sen = “gamma rays”]

Mixed kana
おトイレ [otoire = “toilet”]
ダブる [daburu = “to double”]

Kana-Alpha
IDカード [aidii kaado = “ID card”]
メッセンジャーRNA [messenjaa RNA =

“messenger RNA”]

Kana-Symbol

ストロンチウム 90 [sutoronchiumu 90 =
“Strontium 90”]

ほえる 40°[hoeru yonjuu do = “roaring
forties”]

Other mixed

消しゴム [keshigomu = “eraser”]
αケンタウリ星 [arufa kentauri sei =

“Alpha Centauri”]
ト書き [togaki = “stage directions”]

Table 1: Mixed-script lexical entries

repeat
characters

時々刻々➜時時刻刻 [jijikokkoku = “every
moment”]

甲斐々々しい➜甲斐甲斐しい [kaigaishii =
“diligent”]

distribution of
voicing marks ヒ゛テ゛オ ➜ビデオ [bideo = “video”]

halfwidth &
fullwidth

ＦＭ放送➜ FM放送 [FM housou = “FM
broadcast”]

ﾀﾞｲﾔｸﾞﾗﾑ ➜ ダイヤグラム [daiyaguramu =
“diagram”]

composite
symbols

㌫➜パーセント [paasento = “percent”]
㍿➜株式会社 [kabushiki gaisha =

“incorporated”]
㏻➜２８日 [nijuuhachi nichi = “28th day of the

month”]

Table 2: Character type normalizations

4.2.1 Lemmatization

LEMMATIZATION in Japanese is the same as that
for any language with inflected forms – a lemma,
or dictionary form, is returned along with the
inflection attributes. So, a form like 食べた [tabeta
=“ate”] would return a lemma of 食べる [taberu =
“eat”] along with a PAST attribute.

Contracted forms are expanded and lemmatized
individually, so that 食べてっちゃった [tabe-
tecchatta = “has eaten and gone”] is returned as:
食 べ る GERUND + い く GERUND + し ま う PAST

[taberu=“eat” + iku=“go” + shimau=ASPECT].

4.2.2 Orthographic Normalization

ORTHOGRAPHIC NORMALIZATION smoothes out
orthographic variations so that words are returned
in a standardized form. This facilitates lexical
lookup and allows the system to map the variant
representations to a single lexicon entry.

We distinguish two classes of orthographic
normalization: character type normalization and
script normalization.

CHARACTER TYPE NORMALIZATION takes the
various representations allowed by the Unicode
specification and converts them into a single
consistent form. Table 2 summarizes this class of
normalization.

SCRIPT NORMALIZATION rewrites the word so that
it conforms to the script and spelling used in the

lexical entry. Examples are given in Table 3. Two
cases of special interest are okurigana and inline
yomi/kanji normalizations. The okurigana
normalization expands shortened forms into fully
specified forms (i.e., forms with all optional
characters present). The yomi/kanji handling takes
infixed parenthetical material and normalizes it out
(after using the parenthetical information to verify
segmentation accuracy).

5 Lexicon Structures

Several special lexicon structures were developed
to support these features. The most significant is
an orthography lattice* that concisely encapsulates
all orthographic variants for each lexicon entry and
implicitly specifies the normalized form. This has
the advantage of compactness and facilitates
lexicon maintenance since lexicographic inform-
ation is stored in one location.

The orthography lattice stores kana information
about each kanji or group of kanji in a word. For
example, the lattice for the verb 食べる [taberu =
“eat”] is [食:た]べる, because the first character
(ta) can be written as either kanji 食 or kana た. A
richer lattice is needed for entries with okurigana
variants, like 切り落とす [kiriotosu = “to prune”]
cited earlier: commas separate each okurigana
grouping. The lattice for kiriotosu is [切:き,り][落:
お,と]す. Table 4 contains more lattice examples.

Enabling all possible variants can proliferate
records and confuse the analyzer (see [Kurohashi
94]). We therefore suppress pathological variants
that cause confusion with more common words
and constructions. For example, 長居 [nagai = “a
long visit”] never occurs as 長い since this is
ambiguous with the highly frequent adjective 長い
[nagai = “long”]. Likewise, a word like 日本

* Not to be confused with the word lattice, which is the
set of records passed from the segmenter to the parser.

okurigana
詫状➜詫び状 [wabijou = “apology letter”]
吹ぬき➜吹き抜き [fukinuki = “drafty”]
 ➜吹き貫き [fukinuki = “a well-hole”]

non-standard
script

女のコ➜女の子 [onnanoko = “girl”]
でいすこ➜ディスコ [disuko = “disco”]

ヶヵ variants
一か月➜一ヶ月 [ikkagetsu = “one month”]
霞が関➜霞ヶ関 [kasumigaseki = “Kasumigaseki”]

numerals for
kanji

５輪➜五輪 [gorin = “Olympics”]
１人➜一人 [hitori = “one person”]

vowel
extensions

おにーさぁん➜おにいさん [oniisan = “older
brother”]

ファイトォ➜ファイト [faito = “fight”]

katakana
variants

ヴァイオリン➜バイオリン [baiorin = “violin”]
アラモード➜ア・ラ・モード [aramoode = “à la

mode”]

inline yomi
映(は)える➜映える [haeru = “to shine”]
爬虫(はちゅう)類➜爬虫類 [hachuurui =

“reptile”]
inline kanji げっ(齧)歯類➜齧歯類 [gesshirui = “rodent”]

Table 3: Script normalizations

たべる [食:た]べる taberu = “to eat”

かみあわせる [噛:か,み][合:あ,わ]せる
kamiawaseru = “to
engage (gears)”

みつもり [見:み][積:つ,も,り]
mitsumori = “an
estimate”

IDカード [I:アイ][D:ディー]カード aidii kaado = “ID card”

かぎタバコ [嗅:か,ぎ][煙草:タバコ]
kagi tabako = “snuff
tobacco”

ながい [長:なが][!居:い] nagai = “a long visit”

Table 4: Orthography lattices

[nihon = “Japan”] is constrained to inhibit invalid
variants like に本, which cause confusion with: に
POSP + 本 NOUN [ni=PARTICLE + hon =“book”].

We default to enabling all possible orthographies
for each entry and disable only those that are
required. This saves us from having to update the
lexicon whenever we encounter a novel
orthographic variant since the lattice anticipates all
possible variants.

6 Unknown Words

Unknown words pose a significant recall problem
in languages that don’t place spaces between
words. The inability to identify a word in the input
stream of characters can cause neighboring words
to be misidentified.

We have divided this problem space into six
categories: variants of lexical entries (e.g.,
okurigana variations, vowel extensions, et al.);
non-lexicalized proper nouns; derived forms;
foreign loanwords; mimetics; and typographical
errors. This allows us to devise focused heuristics
to attack each class of unfound words.

The first category, variants of lexical entries, has
been addressed through the script normalizations
discussed earlier.

Non-lexicalized proper nouns and derived words,
which account for the vast majority of unfound
words, are handled in the derivational assembly
component. This is where compounds like フラン
ス 語 [furansugo = “French (language)”] are
assembled from their base components フランス
[furansu = “France”] and 語 [go = “language”].

Unknown foreign loanwords are identified by a
simple maximal-katakana heuristic that returns the
longest run of katakana characters. Despite its
simplicity, this algorithm appears to work quite
reliably when used in conjunction with the other
mechanisms in our system.

Mimetic words in Japanese tend to follow simple
ABAB or ABCABC patterns in hiragana or
katakana, so we look for these patterns and
propose them as adverb records.

The last category, typographical errors, remains
mostly the subject for future work. Currently, we
only address basic 二 (kanji) ↔ ニ (katakana) and
へ (hiragana)↔ヘ (katakana) substitutions.

7 Evaluation

Our goal is to improve the parser coverage by
improving the recall in the segmenter. Evaluation
of this component is appropriately conducted in the
context of its impact on the entire system.

7.1 Parser Evaluation

Running on top of our segmenter, our current
parsing system reports ~71% coverage† (i.e., input
strings for which a complete and acceptable
sentential parse is obtained), and ~97% accuracy
for POS labeled breaking accuracy. A full
description of these results is given in [Suzuki00].

7.2 Segmenter Evaluation

Three criteria are relevant to segmenter per-
formance: recall, precision and speed.

7.2.1 Recall

Analysis of a randomly chosen set of tagged
sentences gives a recall of 99.91%. This result is
not surprising since maximizing recall was a
primary focus of our efforts.

The breakdown of the recall errors is as follows:
missing proper nouns = 47%, missing nouns =
15%, missing verbs/adjs = 15%, orthographic
idiosyncrasies = 15%, archaic inflections = 8%.

It is worth noting that for derived forms (those that

† Tested on a 15,000 sentence blind, balanced corpus.
See [Suzuki00] for details.

0%

10%

20%

30%

40%

50%

15 25 35 45 55 65 75 85 95 105 115

Japanese Chinese

Figure 2: Worst-case segmenter precision (y-axis) versus
sentence length (x-axis - in characters)

are handled in the derivational assembly com-
ponent), the segmenter is considered correct as
long as it produces the necessary base records
needed to build the derived form.

7.2.2 Precision

Since we focused our efforts on maximizing recall,
a valid concern is the impact of the extra records
on the parser, that is, the effect of lower segmenter
precision on the system as a whole.

Figure 2 shows the baseline segmenter precision
plotted against sentence length using the 3888
tagged sentences ‡ . For comparison, data for
Chinese§ is included. These are baseline values in
the sense they represent the number of records
looked up in the lexicon without application of any
heuristics to suppress invalid records. Thus, these
numbers represent worst-case segmenter precision.

The baseline precision for the Japanese segmenter
averages 24.8%, which means that a parser would
need to discard 3 records for each record it used in
the final parse. This value stays fairly constant as
the sentence length increases. The baseline
precision for Chinese averages 37.1%. The
disparity between the Japanese and Chinese worst-
case scenario is believed to reflect the greater
ambiguity inherent in the Japanese writing system,
owing to orthographic variation and the use of a
syllabic script.

‡ The tagging was obtained by using the results of the
parser on untagged sentences.
§ 3982 sentences tagged in a similar fashion using our
Chinese NLP system.

Using conservative pruning heuristics, we are able
to bring the precision up to 34.7% without
affecting parser recall. Primarily, these heuristics
work by suppressing the hiragana form of short,
ambiguous words (like き [ki=“tree, air, spirit,
season, record, yellow,…”], which is normally
written using kanji to identify the intended sense).

7.2.3 Speed

Another concern with lower precision values has to
do with performance measured in terms of speed.

Figure 3 summarizes characters-per-second per-
formance of the segmentation component and our
NL system as a whole (including the segmentation
component). As expected, the system takes more
time for longer sentences. Crucially, however, the
system slowdown is shown to be roughly linear.

Figure 4 shows how much time is spent in each
component during sentence analysis. As the sen-
tence length increases, lexical lookup, derivational
morphology and “other” stay approximately con-
stant while the percentage of time spent in the
parsing component increases.

Table 5 compares parse time performance for
tagged and untagged sentences. This table **

quantifies the potential speed improvement that the
parser could realize if the segmenter precision was
improved. Column A provides baseline lexical
lookup and parsing times based on untagged input.

** Note that segmenter time is not given this table
because it would not be comparable to the hypothetical
segmenters devised for columns B and C.

0

1000

2000

3000

4000

15 25 35 45 55 65 75 85 95 10
5

11
5

12
5

13
5

Figure 3: Characters/second (y-axis) vs. sentence
length (x-axis) for segmenter alone (upper curve)

and our NL system as a whole (lower curve)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

15 25 35 45 55 65 75 85 95 105 115 125 135

Segmenter Lexical Deriv Parser Other

Figure 4: Percentage of time spent in each component (y-
axis) vs. sentence length (x-axis)

Columns B and C give timings based on a
(hypothetical) segmenter that correctly identifies
all word boundaries (B) and one that identifies all
word boundaries and POS (C)††. C represents the
best-case parser performance since it assumes
perfect precision and recall in the segmenter. The
bottom portion of Table 5 restates these
improvements as percentages.

This table suggests that adding conservative
pruning to enhance segmenter precision may
improve overall system performance. It also
provides a metric for evaluating the impact of
heuristic rule candidates. The parse-time
improvements from a rule candidate can be
weighed against the cost of implementing this
additional code to determine the overall benefit to
the entire system.

8 Future

Planned near-term enhancements include adding
context-sensitive heuristic rules to the segmenter as
appropriate. In addition to the speed gains
quantified in Table 5, these heuristics can also be
expected to improve parser coverage by reducing
resource requirements.

Other areas for improvement are unfound word
models, particularly typographical error detection,
and addressing the issue of probabilities as they
apply to orthographic variants. Additionally, we
are experimenting with various lexicon formats to
more efficiently support Japanese.

†† For the hypothetical segmenters, our segmenter was
modified to return only the records consistent with a
tagged input set.

9 Conclusion

The complexities involved in segmenting Japanese
text make it beneficial to treat this task
independently from parsing. These separate tasks
are each simplified, facilitating the processing of a
wider range of phenomenon specific to their
respective domains. The gains in robustness
greatly outweigh the impact on parser performance
caused by the additional records. Our parsing
results demonstrate that this compartmentalized
approach works well, with overall parse times
increasing linearly with sentence length.

10 References
[Fuchi98] Fuchi,T., Takagi,S., “Japanese

Morphological Analyzer using Word Co-occurrence”,
ACL/COLING 98, pp409-413, 1998.

[Hisamitsu90] Hisamitsu,T., Nitta,Y.,
Morphological Analyis by Minimum Connective-Cost
Method”, SIGNLC 90-8, IEICE pp17-24, 1990 (in
Japanese).

[Jensen93] Jensen,K., Heidorn,G., Richardson,S.,
(eds.) “Natural Language Processing: The PLNLP
Approach”, Kluwer, Boston, 1993.

[Kitani93] Kitani,T., Mitamura,T., “A Japanese
Preprocessor for Syntactic and Semantic Parsing”, 9th

Conference on AI in Applications, pp86-92, 1993.

[Kurohashi94] Kurohashi,S., Nakamura,T.,
Matsumoto,Y., Nagao,M., “Improvements of Japanese
Morphological Analyzer JUMAN”, SNLR, pp22-28,
1994.

[Kurohashi98] Kurohashi,S., Nagao,M., “Building a
Japanese Parsed Corpus while Improving the Parsing
System”, First LREC Proceedings, pp719-724, 1998.

[Nagata94] Nagata,M., “A Stochastic Japanese
Morphological Analyzer Using a Forward-DP
Backward-A* N-Best Search Algorithm”, COLING,
pp201-207, 1994.

[Richardson98] Richardson,S.D., Dolan,W.B.,
Vanderwende,L., “MindNet: Acquiring and Structuring
Semantic Information from Text”, COLING/ACL 98,
pp1098-1102, 1998.

[Suzuki00] Suzuki,H., Brockett,C., Kacmarcik,G.,
“Using a broad-coverage parser for word-breaking in
Japanese”, COLING 2000.

[Wu98] Wu,A., Zixin,J., “Word Segmentation in
Sentence Analysis”, Microsoft Technical Report MSR-
TR-99-10, 1999.

A B C
Lexical processing 7.661 s 2.510 s 2.324 s

Parsing 13.480 s 8.865 s 7.179 s
Other 4.195 s 3.620 s 3.519 s
Total 25.336 s 14.995 s 13.022 s

Overall - 40.82% 48.60%
Lexical - 67.24% 69.66%
Parsing - 34.24% 46.74%

Percent
Improvement

Other - 13.71% 16.11%

Table 5: Summary of performance (speed)
experiment where untagged input (A) is compared

with space-broken input (B) and space-broken input
with POS tags (C).

