
Typing a Multi-Language Intermediate CodeAndrew D. Gordon Don SymeDeember 2000Tehnial ReportMSR{TR{2000{106
Mirosoft ResearhMirosoft CorporationOne Mirosoft WayRedmond, WA 98052

A shortened version of this paper will appear in the proeedings of the 28thAnnual ACM SIGPLAN{SIGACT Symposium on Priniples of ProgrammingLanguages, London, January 17{19, 2001.

Typing a Multi-Language Intermediate CodeAndrew D. Gordon Don SymeDeember 2000AbstratThe Mirosoft .NET Framework is a new omputing arhiteturedesigned to support a variety of distributed appliations and web-based servies. .NET software omponents are typially distributedin an objet-oriented intermediate language, Mirosoft IL, exeutedby the Mirosoft Common Language Runtime. To allow onvenientmulti-language working, IL supports a wide variety of high-level lan-guage onstruts, inluding lass-based objets, inheritane, garbageolletion, and a seurity mehanism based on type safe exeution.This paper preisely desribes the type system for a substantialfragment of IL that inludes several novel features: ertain objetsmay be alloated either on the heap or on the stak; those on thestak may be boxed onto the heap, and those on the heap may beunboxed onto the stak; methods may reeive arguments and returnresults via typed pointers, whih an referene both the stak and theheap, inluding the interiors of objets on the heap. We present aformal semantis for the fragment. Our typing rules determine well-typed IL instrution sequenes that an be assembled and exeuted.Of partiular interest are rules to ensure no pointer into the stakoutlives its target. Our main theorem asserts type safety, that well-typed programs in our IL fragment do not lead to untrapped exeutionerrors.Our main theorem does not diretly apply to the produt. Still,the formal system of this paper is an abstration of informal and ex-eutable spei�ations we wrote for the full produt during its devel-opment. Our informal spei�ation beame the basis of the produtteam's working spei�ation of type-heking. The proess of writ-ing this spei�ation, deploying the exeutable spei�ation as a testorale, and applying theorem proving tehniques, helped us identifyseveral seurity ritial bugs during development.

Contents1 Introdution 12 A Formal Analysis of BIL, a Baby IL 42.1 Type Struture and Class Hierarhy 42.2 Syntax of Method Bodies . 92.3 Evaluating Method Bodies . 112.4 Typing Method Bodies . 162.5 Typing the Memory Model . 202.6 Evaluation Respets Typing 233 Variation: Allowing Pointers in Fields of Value Classes 234 IL Features Omitted From BIL 255 Related Work 266 Conlusions 27Referenes 28A Fats Needed in the Proof of Theorem 1 32A.1 Basi Lemmas . 32A.2 Another Formulation of Pointer Conformane 35A.3 Fats about Lookup and Update 37A.4 Proof of Type Safety . 43

1 IntrodutionThis paper desribes typing and evaluation rules, and a type safety theorem,for a substantial fragment of the intermediate language (IL) exeuted byMirosoft's Common Language Runtime. The rules are valuable beausethey suintly and preisely aount for some unusual and subtle featuresof the type system.Bakground: IL The Common Language Runtime is a new exeution en-vironment with a rih objet-oriented lass library through whih softwareomponents written in diverse languages may interoperate. Using the VisualStudio .NET development environment, .NET omponents an be written inthe new objet-oriented language C# [HW00℄, as well as Visual Basi, VisualC++, and the sripting languages VBSript and JSript. Furthermore, pro-totype .NET ompilers exist for COBOL, Component Pasal, Ei�el, Haskell,Merury, Oberon, Oaml, and Standard ML.Type-heking of .NET omponents implemented in IL has already proveduseful for �nding ode generation bugs. Moreover, the .NET seurity modelassumes type-safe behaviour; type-heking is therefore useful for handlinguntrusted omponents. Given these and other appliations, the IL type sys-tem is worthy of formal spei�ation.Bakground: Exeutable Spei�ations This paper is one outome ofa researh projet to evaluate and develop formal spei�ation tehniques fordesribing and analyzing type-hekers in general. Spei�ally, we appliedthese tehniques to the study of IL. We began by writing a detailed spei�a-tion of type-heking method bodies. This was an informal doument in thestyle of most language referenes. Eventually, this doument was adopted bythe produt team as the basis of their detailed spei�ation of type-heking.In parallel, following a methodology advoated by Syme [Sym98℄, we wroteformal spei�ations for various IL subsets suitable for omparative testingand formal proof. The exeutable part of these spei�ations is in a fun-tional fragment of ML, the rest in higher order logi (HOL). We an ompileand run the exeutable part as an IL type-heker. Sine it is purely fun-tional ode, we may also interpret it as HOL and use it for theorem provingin DECLARE [Sym98℄. In priniple, this strategy allows the same soureode to serve both as an orale for testing atual implementations and as amodel for formal validation. So far, we have built an ML type-heker fora largely omplete subset of the IL type system, but have formally veri�edonly a rather smaller fragment. 1

As is well known [Coh89℄, even formal proof annot guarantee the abseneof implementation defets, simply beause one has to abstrat from detailsof the environment when writing formal models. We found that develop-ing a test suite that used our formal model as an orale was an importantway of making our model onsistent with the runtime. Our suite inludedabout 30,000 automatially generated tests. Our experiene was that test-ing remains the only viable way of relating a spei�ation to software of theomplexity we were onsidering. One of our slogans: if you speify, you musttest. Writing a formal spei�ation without generating tests may be viableone a design has been frozen, but is simply not e�etive during the designof a new system. Eventually, we handed over our suite to the test team, whomaintain it, and who have found bugs using it.This Paper: An IL Fragment The main part of the paper onerns anIL fragment based on referene, value, and pointer types.At its ore, the fragment is a lass-based objet-oriented language with�eld update and simple imperative ontrol strutures. This ore is ompa-rable to the imperative objet alulus [AC96, GHL99℄ and to various frag-ments of Java [DE97, IPW99℄. An item of a referene type is a pointer to aheap-alloated objet.Moreover, our fragment inludes value and pointer types:� An item of a value type is a sequene of mahine words representingthe �elds of the type. Value types support the ompilation of C-stylestruts, for instane. Value types may be stak-alloated and passed byvalue. A box instrution turns a value type into a heap-alloated objetby opying, and an unbox instrution performs the inverse oerion.Hene, when onvenient, value types may be treated as ordinary heap-alloated objets.� An item of pointer type is a mahine address referring either to a heap-alloated objet or to a variable in the all stak or to an interior �eldof one of these. The main purpose of pointer types is to allow methodsto reeive arguments or return results by referene.We seleted these types beause they are new onstruts not previouslydesribed by formal typing rules, and beause their use needs to be arefullylimited to avoid type loopholes. In partiular, we must take are that stakpointers do not outlive their targets.For the sake of larity, our presentation of the semantis di�ers from theML ode in our exeutable spei�ations in two signi�ant ways:2

� First, we adopt the standard strategy of presenting the type systemas logial inferene rules. Suh rules are suint, but not diretlyexeutable; we found it better to write exeutable ML when we initiallywrote our spei�ations in order to help with testing. Still, typing rulesare better than ode for presenting a type system and for manual proof.� Seond, we adopt a new, non-standard strategy of assuming that eahmethod body has been parsed into a tree-strutured appliative ex-pression. Eah expression onsists of an IL instrution applied to thesubexpressions that need to be evaluated to ompute the instrution'sarguments. This tehnique allows us to onentrate on speifying thetyping onditions for eah instrution, and to suppress the algorithmidetails of how a type-heker would ompute the types of the argu-ments to eah instrution. These algorithmi details are important inany implementation, but they are largely irrelevant to speifying typesafety.Finally, in the spirit of writing spei�ations to support testing, ourappliative expressions use the standard IL assembler syntax. Hene, anymethod body that is well-typed aording to our typing rules an be assem-bled and tested on the running system.In summary, the prinipal tehnial ontributions made by this paper arethe following:� New typing and evaluation rules for value and pointer types, togetherwith a type safety result, Theorem 1.� The idea that the essene of a low-level intermediate language an bepresented in an appliative notation.Future Challenges: As we have disussed, this projet is a suessfuldemonstration of the value of writing exeutable, formal spei�ations duringprodut development.On the other hand, the main theorem of this paper does not apply to thefull produt; type safety bugs may well be disovered. An unful�lled ambi-tion of ours is to prove soundness of the typing rules for the full languagethrough mehanized theorem-proving. So a future hallenge is to furtherdevelop salable and maintainable tehniques for mehanized reasoning. Asoundness proof for the whole of IL would be an impressive ahievement. Toapply theorem proving during produt development, salability and main-tainability of proof sripts are important. Sripts should be salable in thesense that human e�ort is roughly linear in the size of the spei�ation (with3

a reasonable onstant fator), or else proof onstrution annot keep up withnew features as they are added. Sripts should be maintainable in the sensethat they are robust in the fae of minor hanges to the spei�ation, or elseproof onstrution annot keep up with the inevitable revisions of the design.In the meantime, another hallenge is to develop systemati tehniquesfor test ase generation.A third hallenge is to integrate exeutable spei�ations, suh as ourML type-heker, into the produt itself. The .NET Framework, like otheromponent models, itself ontributes to this goal, in that its support formulti-language working would easily allow a ritial omponent to be writtenin ML, say, even if the rest of the produt is not.The remainder of the paper proeeds as follows. Setion 2 presents thetyping and evaluation rules for our IL fragment, and states our main theorem.Setion 3 explains a potentially useful liberalisation of the type system. Se-tion 4 summarizes the omissions from our IL fragment. Setion 5 disussesrelated work. Setion 6 onludes.2 A Formal Analysis of BIL, a Baby ILThis setion makes the main tehnial ontributions of the paper. We presenta substantial fragment of IL that inludes enough detail to allow a formalanalysis of referene, value, and pointer types, but omits many features notrelated to these. We name this fragment Baby IL, or BIL for short.Setion 2.1 desribes the type struture of BIL. In Setion 2.2, we speifythe instrutions that may appear in method bodies of BIL, and explain theirinformal semantis. In Setion 2.3, we speify a formal memory model forBIL, and a formal semantis for the evaluation of method bodies. In Se-tion 2.4, we speify a formal type system for type-heking method bodies.Setion 2.5 introdues onformane relations that express when intermedi-ate states arising during evaluation are type-orret. Finally, Setion 2.6onludes this analysis by stating our Type Safety Theorem.2.1 Type Struture and Class HierarhyAll BIL methods run in an exeution environment that ontains a �xed setof lasses. Eah lass spei�es types for a set of �eld variables, and signa-tures for a set of methods. Eah objet belongs to a lass. The memoryoupied by eah objet onsists of values for eah �eld spei�ed by its lass.Methods are shared between all objets of a lass (and possibly other lasses).Objets of all lasses may be stored boxed in a heap, addressed by heap refer-4

enes. Objets of ertain lasses|known as value lasses|may additionallybe stored unboxed in the stak or as �elds embedded in other objets.Formally, we assume three sets, Class, Field , and Meth, the sets of lass,�eld, and method names, respetively, and a set ValueClass � Class of valuelass names. We assume a distinguished lass name System:Objet suh thatSystem:Objet =2 ValueClass.Classes, Fields, Methods: 2 Class lass namev 2 ValueClass � Class value lass nameSystem:Objet 2 Class � ValueClass root of hierarhyf 2 Field �eld name` 2 Meth method nameTypes desribe objets, the �elds of objets, the arguments and results ofmethods, and the intermediate results arising during evaluation of methodbodies.Types:A;B 2 Type ::= typevoid no bitsint32 32 bit signed integerlass boxed objetvalue lass v unboxed objetA& pointer to AThe type void desribes the absene of data, no bits; void is only usedfor the results of methods or parts of method bodies that return no atualresult.The type int32 desribes a 32 bit integer; BIL uses integers to repre-sent prediates for onditionals and while-loops but inludes no primitivearithmeti operations. (IL features a rih seletion of numeri types andarithmeti operations.)A referene type lass desribes a pointer to a boxed objet (heap-alloated, subjet to garbage olletion).A value type value lass v desribes an unboxed objet|a sequene ofwords representing the �elds of the value lass v, akin to a C strut. Theassoiated referene type, lass v desribes a pointer to a boxed objet|aheap-alloated representation of the �elds.5

Finally, a pointer type A& desribes a pointer to data of type A, whihmay be stored either in the heap or the stak.To avoid dangling pointers|pointers that outlive their targets|our typesystem restrits pointers as follows. An important use for pointers in ILis to allow arguments and results to be passed by referene. The followingare suÆient onditions to type-hek this motivating usage while preventingdangling pointers. The following are not neessary onditions; we explain auseful and safe liberalisation in Setion 3.BIL Pointer Con�nement Poliy:(1) No �eld may hold a pointer.(2) No method may return a pointer.(3) No pointer may be stored indiretly via another pointer.(IL itself follows a slightly striter poliy that bans pointers to pointersaltogether.) Eah of the onditions prevents a way of reating a danglingpointer. If a �eld ould hold a pointer, a method ould store a pointer intoits stak frame in an objet boxed on the heap. If a method ould returna pointer, a method ould simply return a pointer into its stak frame. Ifa pointer ould be stored indiretly, a method ould store a pointer into itsstak frame through a pointer to an objet boxed on the heap or to an earlierstak frame. In eah ase, the pointer would outlive its target as soon as themethod had returned.The following prediate identi�es types ontaining no pointers.Whether a Type Contains No Pointer:pointerFree(A), :(A = B& for some B)Next, a method signature B `(A1; : : : ; An) refers to a method named `that expets a vetor of arguments with types A1, . . . , An, and whose resulthas type B. No two methods in a given lass may share the same signature,though they may share the same method name.Method signature:sig 2 Sig ::= B `(A1; : : : ; An) method signatureWe assume the exeution environment organises lasses into an inheri-tane hierarhy. We write inherits 0 to mean that inherits from 0. Weindue a subtype relation, A <: B, from the inheritane hierarhy. Our typesystem supports subsumption: if A <: B an item of type A may be used6

in a ontext expeting an item of type B. The only non-trivial subtypingis between referene types. The subtype relation is the least to satisfy thefollowing rules.Subtype Relation: A <: B(Sub Re)A <: A (Sub Class) inherits 0lass <: lass 0We assume that the relation inherits 0 is transitive, and therefore so isthe relation A <: B.The IL assembler reognises a fairly standard notation for single inher-itane that allows a lass to inherit methods and �elds from a single su-perlass. One might de�ne the inheritane relation by formalizing suh asyntax and type-heking rules. Instead, sine our fous is type-heking theBIL instrution set, it is easier and more onise to simply axiomatize theintended properties of the hierarhy. (Although the IL syntax disallows mul-tiple inheritane, it happens that our axioms allow a lass to inherit from twosuperlasses that are inomparable aording to the inheritane relation.)Formally, we assume there is an exeution environment onsisting of threeomponents|a funtion �elds(), a funtion methods(), and an inheritanerelation inherits 0|that satisfy the following axioms:Exeution Environment: (�elds;methods; inherits)�elds 2 Class ! (Field �n! Type) �elds of a lassmethods 2 Class ! (Sig �n! Body) methods of a lassinherits � Class � Class lass hierarhy inherits (Hi Re) inherits 0 ^0 inherits 00) inherits 00 (Hi Trans) inherits 0 ^ 0 inherits) = 0 (Hi Antisymm) inherits System:Objet (Hi Root) inherits d ^ f 2 dom(�elds(d)))f 2 dom(�elds()) ^�elds()(f) = �elds(d)(f) (Hi �elds) inherits d)dom(methods(d)) � dom(methods()) (Hi methods) inherits v) = v (Hi Val)pointerFree(�elds()(f)) (Good �elds)7

B `(A1; : : : ; An) 2 dom(methods())) pointerFree(B) (Good methods)For any lass , �elds() 2 Field �n! Type, the set of �nite maps from �eldnames to types. If �elds() = fi 7! Ai i21::n, the lass has exatly the set of�elds named f1, . . . , fn with types A1, . . . , An, respetively.(The notation fi 7! Ai i21::n exempli�es our notation for �nite maps ingeneral. We let dom(fi 7! Ai i21::n) = ff1; : : : ; fng. We assume that the fiare distint. Let (fi 7! Ai i21::n)(f) = Ai if f = fi for some i 2 1::n, andotherwise be unde�ned.)For any lass , methods() 2 Sig �n! Body, the set of �nite maps frommethod signatures to method bodies. We de�ne the set Body of methodbodies|instrution sequenes|in the next setion. If methods() = sig i 7!bi i21::n, the lass has exatly methods with signatures sig1, . . . , sign, im-plemented by the bodies b1, . . . , bn, respetively.A binary relation on lasses, inherits, formalizes the inheritane hierarhy.Axioms (Hi Re) and (Hi Trans) guarantee it is reexive and transitive. (HiAntisymm) asserts it is anti-symmetri, that is, there are no yles in thehierarhy. Aording to (Hi Root), every lass inherits from System:Objet,the root of the hierarhy.Suppose that is a sublass of d, that is, inherits d. By subsumption,an objet of the sublass may be used in a ontext expeting an objet ofthe superlass d. Aordingly, (Hi �elds) asserts that every �eld spei�ed byd is also present in the sublass . The axiom (Hi methods) asserts that everymethod signature implemented by d is also implemented by the sublass ,though not neessarily by the same method body.In order to implement a method invoation on an objet, we need to knowthe lass of the objet. In general, we annot statially determine the lassof an objet from its type, sine by subsumption it may in fat be a sublassof the lass named in its type. Therefore, eah boxed objet is tagged inour formal memory model with the name of its lass. On the other hand,for the sake of spae eÆieny, unboxed objets inlude no type information.Therefore, we must rely on statially determining the lass of an unboxedobjet from its type. For this to be possible, axiom (Hi Val) prevents anyother lass from inheriting from a value lass. So the atual lass of anyunboxed objet is the same as the lass named in its type.Axioms (Good �elds) and (Good methods) implement points (1) and (2)of the Pointer Con�nement Poliy.We end this setion by exemplifying how value and pointer types providepossibly more eÆient alternatives to referene types for returning multiple8

results. Suppose there is a lass Point 2 ValueClass with �elds(Point) =x 7! int32; y 7! int32, that is, a lass with two integer �elds. Here are threealternative signatures for returning a Point from a method named mouse:� As a boxed objet: lass Point mouse ().� As an unboxed objet: value lass Point mouse ().� In a pre-alloated unboxed objet passed by referene:void mouse (value lass Point&).2.2 Syntax of Method BodiesBIL is a deterministi, single-threaded, lass-based objet-oriented language.For the sake of simpliity, we omit onstruts for error or exeption handling.This setion spei�es the instrution set as tree-strutured appliative expres-sions, most of whih represent an appliation of an instrution to a sequeneof argument expressions. Sine eah appliative expression is in a post�xnotation, it an also be read as a sequene of atomi instrutions. We havehosen our syntax arefully so that, subjet to very minor editing, this se-quene of atomi instrutions an be parsed by the IL assembler (as well asour own IL type-heker).We express the syntax of our onditional and iteration onstruts usingassembler labels, ranged over by L.A method referene B::`(A1; : : : ; An) refers to the method with signatureB `(A1; : : : ; An) in lass .Inspired by FJ [IPW99℄, we assume for simpliity that eah lass hasexatly one onstrutor, whose arguments are the initial values assumed bythe �elds of the new objet. The onstrutor referene for a lass takes theform void :::tor(A1; : : : ; An). Construtors are only alled to reate a newobjet; :tor =2 Meth.Method and Construtor Referenes:L assembler labelM ::= B ::`(A1; : : : ; An) method refereneK ::= void :::tor(A1; : : : ; An) onstrutor refereneAppliative Expressions for Method Bodies:i4 32 bit signed integera; b 2 Body ::= method bodyld:i4 i4 load integer9

a brtrue L1 b0 br L2 L1:b1 L2: onditionalL1: a brfalse L2 b br L1 L2: while-loopa b sequeninga ldind load indireta b stind store indiretldarga j load argument addressa starg j store into argumenta1 � � � an newobjK reate new objeta0 a1 � � � an allvirtM all on boxed objeta0 a1 � � � an all instaneM all on unboxed objeta ldflda A ::f load �eld addressa b stfld A ::f store into �elda box v opy value to heapa unbox v feth pointer to valueConditionals and while-loops are not primitive instrutions in IL, but itis worthwhile to make them primitive in BIL to allow a simple format forevaluation and typing rules. We have arefully hosen a syntax for theseonstruts by assembling suitable IL branh instrutions and labels. Weassume that the assembler labels in these expressions do not appear in anyof their subexpressions. The result is a syntax that is a little rypti butthat does produe IL instrution sequenes with the appropriate semantis.These abbreviations are more readable:Abbreviations for Conditionals and While-Loops:a b0 b1 ond �= a brtrue L1 b0 br L2 L1:b1 L2:a b while �= L1: a brfalse L2 b br L1 L2:The tehnique of representing assembly language in an appliative syntaxworks for this paper beause it an express all the operations on referene,value, and pointer types. We express strutured ontrol ow like onditionalsor while-loops in this style by treating an assembly of IL branh instrutionsas a primitive BIL instrution. Still, the tehnique may not sale well toexpress ontrol ow suh as arbitrary branhing within a method or exeptionhandling.IL inludes primitive instrutions ldfld and ldarg to load the ontentsof an objet �eld or an argument. Instead of taking these as primitives inBIL, we an derive them as follows: 10

Derived Instrutions:a ldfld A ::f �= a ldflda A ::f ldinda ldarg j �= a ldarga j ldind2.3 Evaluating Method BodiesThe memory model onsists of a heap of objets and a stak of methodinvoation frames, eah of whih is a vetor of arguments. Our semantisabstrats away from the details of evaluation staks or registers.We assume a olletion of heap referenes, p, q, pointing to boxed objetsin the heap.A pointer takes one of three forms. A pointer p refers to the boxed objetat p. A pointer (i; j) refers to argument j of stak frame i. A pointer ptr :frefers to �eld f of the objet referred to by ptr .A result is either void 0, an integer i4 , a pointer ptr , or an unboxedobjet fi 7! ui i21::n, a �nite map onsisting of a sequene of results u1, . . . ,un orresponding to the �elds f1, . . . , fn, respetively.Referenes, Pointers, Results:p; q heap refereneptr ::= pointerp pointer to boxed objet p(i; j) pointer to argument j of frame iptr :f pointer to �eld f of objet at ptru; v ::= result0 voidi4 integerptr pointerfi 7! ui i21::n value: unboxed objetNext, we formalize our memory model. A heap is a �nite map from ref-erenes to boxed objets, eah taking the form [fi 7! ui i21::n℄, where isthe lass of the objet, and fi 7! ui i21::n is its unboxed form. A frame, fr ,is a vetor of arguments writen as :args(u0; : : : ; un): u0 is the self param-eter; u1,. . . ,un are the omputed arguments. A stak, s, is a list of framesfr 1 � � � frn. Finally, a store is a heap paired with a stak.Memory Model:o ::= [fi 7! ui i21::n℄ boxed objet11

h ::= pi 7! oi i21::n heapfr ::= :args(u0; : : : ; un) frame: vetor of argumentss ::= fr1 � � � frn stak (grows left to right)� ::= (h; s) storeThe example heap h = p 7! [f1 7! 0; f2 7! (g 7! 1)℄ onsists of a singleboxed objet [f1 7! 0; f2 7! (g 7! 1)℄ at heap referene p. The boxed objetis of lass and onsists of �elds named f1 and f2. The �rst �eld ontainsthe integer 0. The seond �eld ontains the unboxed objet g 7! 1, whihitself onsists of a �eld named g ontaining the integer 1.The example stak s = :args(p; p:f2:g):args(p; (1; 1)) onsists of twoframes. The bottom of the stak is the frame :args(p; p:f2:g), onsistingof two arguments, a referene to the boxed objet at p, and a pointer to�eld g of �eld f2 of the same objet. The top of the stak is the frame:args(p; (1; 1)), onsisting of two arguments, a referene to the boxed objetat p, and the pointer (1; 1), whih refers to argument 1 of frame 1, that is,the pointer p:f2:g.We rely on two auxiliary partial funtions for dereferening and updatingpointers in a store:Auxiliary Funtions for Lookup and Update:lookup(�; ptr) lookup ptr in store �update(�; ptr ; v0) update store � at ptr with result v0We explain the intended meaning of store lookup and update by example.Let store � = (h; s) where h and s are the heap and stak examples introduedabove. Then lookup(�; (1; 0)) is the referene p stored in argument 0 of frame1, and lookup(�; p:f2:g) is the integer 1 stored in �eld g of the unboxed objetstored in �eld f2 of the boxed objet at p. The outome of update(�; (2; 0); 1)is to update � by replaing the referene p in argument 0 of frame 2 with 1.Similarly, the outome of update(�; p:f1:g; 0) is to update � by replaing theinteger 1 in �eld g of �eld f1 of the boxed objet at p with the integer 0.A little funtional programming suÆes to de�ne these two funtions; wegive the full de�nitions in the Appendix.Our operational semantis of method bodies is a formal judgment � `b ; v � �0 meaning that in an initial store �, the body b evaluates to theresult v, leaving �nal store �0. (A \judgment" is simply a prediate de�nedby a set of inferene rules.) 12

Evaluation Judgment:� ` b; v � �0 given �, body b returns v, leaving �0Our semantis takes the form of an interpreter. The rest of this setionpresents the formal rules for deriving evaluation judgments, interspersed withinformal explanations.Evaluation Rules for Control Flow:(Eval ld)� ` ld:i4 i4 ; i4 � � (Eval Seq)� ` a; u � �0 �0 ` b; v � �00� ` a b; v � �00(Eval Cond) (where j = 0 if i4 = 0, otherwise j = 1)� ` a; i4 � �0 �0 ` bj ; v � �00� ` a b0 b1 ond ; v � �00(Eval While 0)� ` a; 0 � �0� ` a b while ; 0 � �0(Eval While 1) (where i4 6= 0)� ` a; i4 � �0 �0 ` b; v � �00 �00 ` a b while ; u � �000� ` a b while ; u � �000The expression ld:i4 i4 evaluates to the integer i4 .The expression a b evaluates a, returning void (that is, nothing). Theresult of the whole expression is then the result of evaluating b.The expression a b0 b1 ond evaluates a to an integer i4 . The result of thewhole onditional is then the result of evaluating b0 if i4 = 0, and evaluatingb1 otherwise.The expression a bwhile evaluates a to an integer i4 . If i4 = 0 evaluationterminates, returning void. Otherwise, the body b is evaluated, returningvoid, and then evaluation of a b while repeats.Evaluation Rules for Pointer Types:(Eval ldind)� ` a; ptr � �0� ` a ldind; lookup(�0; ptr) � �0 13

(Eval stind)� ` a; ptr � �0 �0 ` b; v � �00� ` a b stind; 0 � update(�00; ptr ; v)The expression a ldind evaluates a to a pointer, and then returns theoutome of dereferening the pointer.The expression a b stind evaluates a to a pointer, stores the result ofevaluating b in the (heap or stak) loation addressed by the pointer, andreturns void.Evaluation Rules for Arguments:(Eval ldarga)� = (h; fr1 � � � fr i)� ` ldarga j ; (i; j) � �(Eval starg)� ` a; u � �0 �0 = (h0; fr 1 � � � fr i)� ` a starg j ; 0 � update(�0; (i; j); u)The expression ldarga j returns a pointer to argument j in the urrentstak frame.The expression a starg i evaluates a, stores the result in argument i inthe urrent stak frame, then returns void.Evaluation Rules for Referene Types Only:(Eval newobj) (where K = void :::tor(A01; : : : ; A0m)) =2 ValueClass�elds() = fi 7! Ai i21::n �i ` ai ; vi � �i+1 8i 2 1::n�n+1 = (h; s) p =2 dom(h) h0 = h; p 7! [fi 7! vi i21::n℄�1 ` a1 � � � an newobjK ; p � (h0; s)(Eval allvirt) (where M = B ::`(A1; : : : ; An))�0 ` a0 ; p0 � (h1; s1) h1(p0) = 0[fi 7! ui i21::m℄(hi; si) ` ai ; vi � (hi+1; si+1) 8i 2 1::nmethods(0)(B `(A1; : : : ; An)) = b(hn+1; sn+1:args(p0; v1; : : : ; vn)) ` b; v0 � (h0; s0 fr 0)�0 ` a0 a1 � � � an allvirtM ; v0 � (h0; s0)14

The expression a1 � � � an newobjK, where K is the onstrutor for a lass =2 ValueClass, alloates a boxed objet whose �elds ontain the results ofevaluating a1, . . . , an, and returns the new referene.The expression a0a1 � � � anallvirtM , whereM refers to B`(A1; : : : ; An)in lass , evaluates a0 to a referene to a boxed objet of lass 0 (expetedto inherit from), loates the method body for B `(A1; : : : ; An) in lass 0,and returns the result of evaluating this method body in a new stak framewhose argument vetor onsists of the referene to the boxed objet (the selfpointer) together with the results of a1, . . . , an. The result of this evaluationis the store (h0; s0 fr 0), where fr 0 is the �nal state of the new stak frame. Oneevaluation of the method is omplete, the stak is popped, to leave (h0; s0) asthe �nal store.Evaluation Rules for Referene and Value Types:(Eval ldflda)� ` a; ptr � �0� ` a ldflda A ::f ; ptr :f � �0(Eval stfld)� ` a; ptr � �0 �0 ` b; v � �00� ` a b stfld A ::f ; 0 � update(�00; ptr :f; v)The expression a ldflda A ::f evaluates a to a pointer to a boxed orunboxed objet, then returns a pointer to �eld f of this objet.The expression a b stfld A ::f evaluates a to a pointer to a boxed orunboxed objet, updates its �eld f with the result of evaluating b, and returnsvoid.Evaluation Rules for Value Types Only:(Eval newobj) (where K = void v:::tor(A01; : : : ; A0m))�elds(v) = fi 7! Ai i21::n �i ` ai ; vi � �i+1 8i 2 1::n�1 ` a1 � � � an newobjK ; (fi 7! vi i21::n) � �n+1(Eval all) (where M = B v::`(A1; : : : ; An))�0 ` a0 ; ptr � (h1; s1)(hi; si) ` ai ; vi � (hi+1; si+1) 8i 2 1::nmethods(v)(B `(A1; : : : ; An)) = b(hn+1; sn+1:args(ptr ; v1; : : : ; vn)) ` b; v0 � (h0; s0 fr 0)�0 ` a0 a1 � � � an all instaneM ; v0 � (h0; s0)15

(Eval box) (where p =2 dom(h0))� ` a; ptr � (h0; s0) lookup((h0; s0); ptr) = fi 7! vi i21::n� ` a box v; p � ((h0; p 7! v[fi 7! vi i21::n℄); s)(Eval unbox)� ` a; p � �0� ` a unbox v; p � �0The expression a1 � � � an newobj K, where K is the onstrutor for avalue lass v, returns an unboxed objet whose �elds ontain the results ofevaluating a1, . . . , an.The expression a0 a1 � � � an all instane M where M refers to thesignature B `(A1; : : : ; An) in value lass v, evaluates a0 to a pointer to anunboxed objet (expeted to be of lass v), loates the method body forB `(A1; : : : ; An) in lass v, and returns the result of evaluating this methodbody in a new stak frame whose argument vetor onsists of the pointer tothe unboxed objet (the self pointer) together with the results of a1, . . . , an.The expression a box evaluates a to a pointer to an unboxed objet,alloates it in boxed form in the heap, and returns the fresh heap referene.The expression aunbox evaluates a to a heap referene to a boxed objet,and returns this referene as its result.2.4 Typing Method BodiesThis setion desribes a type system for method bodies suh that evaluationof well-typed method bodies annot lead to an exeution error. What is per-haps most interesting here is the implementation of the Pointer Con�nementPoliy of Setion 2.1.Let a type frame, Fr , take the form :args(A0; : : : ; An), a desription of thetypes of the results in the urrent (top) stak frame. Our typing judgment,Fr ` b : B, means if the urrent stak frame mathes Fr , the body b evaluatesto a result of type B.Type Frames and Typing Judgment:Fr ::= :args(A0; : : : ; An) frame: types of argumentsFr ` b : B given Fr , body b returns type BWe make the additional assumption about our exeution environmentthat every method body (b below) onforms to its signature:16

Additional Assumptions: =2 ValueClass ^methods()(B `(A1; : : : ; An)) = b):args(lass ; A1; : : : ; An) ` b : B (Ref methods)v 2 ValueClass ^methods(v)(B `(A1; : : : ; An)) = b):args(value lass v&; A1; : : : ; An) ` b : B (Val methods)
Next, we give typing rules to de�ne Fr ` b : B.Typing Rule for Subsumption:(Body Subsum)Fr ` b : B B <: B0Fr ` b : B0This standard rule allows an expression of a subtype B to be used in aontext expeting a supertype B0.Typing Rules for Control Flow:(Body ld)Fr ` ld:i4 i4 : int32 (Body Seq)Fr ` a : void Fr ` b : BFr ` a b : B(Body Cond)Fr ` a : int32 Fr ` b0 : B Fr ` b1 : BFr ` a b0 b1 ond : B(Body While)Fr ` a : int32 Fr ` b : voidFr ` a b while : voidThe rule (Body Seq) uses the type void to guarantee that the �rst partof a sequential omposition returns no results.The rules (Body Cond) and (Body While) use the type int32 to guaranteethe prediate expression a returns an integer.

17

Typing Rules for Pointer Types:(Body ldind)Fr ` a : A&Fr ` a ldind : A (Body stind) (where pointerFree(A))Fr ` a1 : A& Fr ` a2 : AFr ` a1 a2 stind : voidThe rule (Body stind) implements rule (3) of the Pointer Con�nementPoliy; without the ondition pointerFree(A), stind ould opy a pointer tothe urrent stak frame further bak the stak.Typing Rules for Arguments:(Body ldarga)j 2 0::n:args(A0; : : : ; An) ` ldarga j : Aj&(Body starg):args(A0; : : : ; An) ` a : Aj j 2 0::n:args(A0; : : : ; An) ` a starg j : voidThese rules hek that the argument index j exists. Sine starg onlywrites within the urrent frame, we an safely allow Aj to be a pointer.Typing Rules for Referene Types:(Ref newobj) (where K = void :::tor(A1; : : : ; An)and �elds() = fi 7! Ai i21::n)Fr ` ai : Ai 8i 2 1::n =2 ValueClassFr ` a1 � � � an newobjK : lass (Ref allvirt) (where B `(A1; : : : ; An) 2 dom(methods()))Fr ` a0 : lass Fr ` ai : Ai 8i 2 1::nFr ` a0 a1 � � � an allvirt B ::`(A1; : : : ; An) : B(Ref ldflda) (where �elds() = fi 7! Ai i21::n)Fr ` a : lass j 2 1::nFr ` a ldflda Aj ::fj : Aj&(Ref stfld) (where �elds() = fi 7! Ai i21::nand pointerFree(Aj))Fr ` a : lass Fr ` b : Aj j 2 1::nFr ` a b stfld Aj ::fj : void 18

These are fairly standard rules for operations on boxed objets. Reallthat the axiom (Good �elds) guarantees every �eld is pointer-free. So thepointerFree(�) ondition on the rule (Ref stfld) is redundant. Still, it isnot redundant in a variation of our type system onsidered in Setion 3, thatallows value lasses to inlude pointers.Typing Rules for Value Types:(Val newobj) (where K = void v:::tor(A1; : : : ; An)and �elds(v) = fi 7! Ai i21::n)Fr ` ai : Ai 8i 2 1::nFr ` a1 � � � an newobjK : value lass v(Val all) (where B `(A1; : : : ; An) 2 dom(methods(v)))Fr ` a0 : value lass v& Fr ` ai : Ai 8i 2 1::nFr ` a0 a1 � � � an all instane B v::`(A1; : : : ; An) : B(Val ldflda) (where �elds(v) = fi 7! Ai i21::n)Fr ` a : value lass v& j 2 1::nFr ` a ldflda Aj v::fj : Aj&(Val stfld) (where �elds(v) = fi 7! Ai i21::nand pointerFree(Aj))Fr ` a : value lass v& Fr ` b : Aj j 2 1::nFr ` a b stfld Aj v::fj : void(Val box) (where pointerFree(value lass v))Fr ` a : value lass v&Fr ` a box v : lass v(Val unbox)Fr ` a : lass vFr ` a unbox v : value lass v&These are similar to the typing rules for operations on boxed objets,exept we refer to the objet via a pointer type instead of a referene type.Like (Ref stfld), the rules (Val stfld) and (Val box) bear pointerFree(�)onditions that are redundant in the urrent system, but not in the systemof Setion 3.
19

2.5 Typing the Memory ModelIn this setion, we present prediates, known as onformane judgments,that onfer types on our memory model. In the next, we show that theseprediates are invariants of omputation, that is, are preserved by methodevaluation.We begin by introduing types for the omponents of our memory model.A heap type pi 7! i i21::n determines the atual lass of eah boxed objet.A stak type Fr1 � � �Frn determines frame types for eah frame in the stak.A store type � = (H;S) determines a heap type H and stak type S.Heap, Stak, and Store Types:H ::= pi 7! i i21::n heap typeS ::= Fr1 � � �Frn stak type� ::= (H;S) store typeOur �rst onformane judgment, � j= u : A, means that in a store math-ing the store type �, the result u is well-formed and has type A. We de�newhat it means for a store to math a store type through other onformanejudgments, de�ned later.Conformane Judgment for Results (Inluding Pointers):� j= u : A in �, result u has type AConformane Rules for Referenes and Pointers:(Res Ref)H(p) = inherits 0(H;S) j= p : lass 0 (Ptr Ref) H(p) = v(H;S) j= p : value lass v&(Ptr Arg)i 2 1::m Fr i = :args(A0; : : : ; An) j 2 0::n(H;Fr1 � � �Frm) j= (i; j) : Aj&(Ptr Field) (where A = lass or A = value lass &)� j= ptr : A �elds() = fi 7! Ai i21::n j 2 1::n� j= ptr :fj : Aj&The rule (Res Ref) assigns a referene type lass 0 to a heap referenep, so long as 0 is a superlass of the atual lass of the objet referred to byp. 20

The rule (Ptr Ref) assigns a pointer type to a heap referene p that refersto a value that is boxed on the heap.These two rules an assign both a referene type and a pointer type toa heap referene to a value lass. If H(p) = v, then we have (H;S) j= p :lass by (Res Ref), but also (H;S) j= p : value lass & by (Ptr Ref).We need (Res Ref) to type referenes onstruted by the box instrution.We need (Ptr Ref) to type pointers onstruted by the unbox instrution.The rule (Ptr Arg) assigns a pointer type to a stak pointer (i; j) thatrefers to argument j of frame i.The rule (Ptr Field) assigns a pointer type to a pointer referring to the�eld fj of the objet referred to by ptr . The base pointer ptr may either beof type lass or valuelass &. The �rst ase is needed for a pointer to a�eld of a heap objet that is not in a value lass. The seond ase is neededfor a pointer to a �eld of a heap or stak objet in a value lass.Conformane Rules for Other Results:(Res Void)� j= 0 : void (Res Int)� j= i4 : int32(Res Value)�elds(v) = fi 7! Ai i21::n � j= vi : Ai 8i 2 1::n� j= fi 7! vi i21::n : value lass vThe rules (Res Void) and (Res Int) assign the void and int32 types tovoid and integer values, respetively.The rule (Res Value) assigns a value type value lass v to a value. Byaxiom (Hi Val), the inheritane hierarhy is at for value types. So (ResValue), unlike (Res Ref), does not allow v to be a proper superlass of theatual lass of the value.Other Conformane Judgments:H j= o : in H, objet o has lass H j= h heap h onforms to H� j= fr : Fr frame fr onforms to Fr� j= � store � onforms to �
21

Conformane Rule for Objets:(Con Objet) (where �elds() = fi 7! Ai i21::n)(H;?) j= vi : Ai 8i 2 1::nH j= [fi 7! vi i21::n℄ : This rule de�nes when a heap objet [fi 7! vi i21::n℄ is well-typed. Thepreonditions (H;?) ` vi : Ai require that the �elds vi be typed with anempty stak type. It follows that no �eld vi ontains a stak pointer, sinethe rule (Ptr Arg) for typing stak pointers assumes a non-empty stak type.Conformane Rule for Heaps:(Con Heap) (where H = pi 7! i i21::n)H j= oi : i 8i 2 1::nH j= pi 7! oi i21::nThis rule de�nes when a heap pi 7! oi i21::n onforms to the heap typepi 7! i i21::n. The heap type ontains the atual lass i of eah objet oi.Conformane Rule for Frames:(Con Frame)� j= ui : Ai 8i 2 0::n� j= :args(u0; : : : ; un) : :args(A0; : : : ; An)This rule de�nes when a frame onforms to a frame type.Conformane Rule for Stores:(Con Store)H j= h (H;Fr1 � � �Fr i) j= fr i : Fr i 8i 2 1::n(H;Fr1 � � �Frn) j= (h; fr1 � � � frn)This rule de�nes when a store (H;Fr1 � � �Frn) onforms to a store type(h; fr 1 � � � frn). It asks that the heap h onform to the heap type H, andthat eah stak frame fr i onform to the orresponding frame type Fr i, butafter removing from the store type any higher|shorter lived|stak frames.Hene, there may be pointers from a higher to a lower stak frame, but notthe other way round. 22

2.6 Evaluation Respets TypingWe use standard proof tehniques to show the onsisteny of the BIL evalu-ation semantis with its type system. The following is the main type safetyresult of the paper. If a program satis�es the restritions on type strutureimposed in Setion 2.1 and the typing rules for method bodies in Setion 2.4then its evaluation aording to the rules in Setion 2.3 an lead only toonformant intermediate states as de�ned in Setion 2.5. Let H � H 0 meanthat dom(H) � dom(H 0) and H(p) = H 0(p) for all p 2 dom(H).Theorem 1 If (H;S Fr) j= � and Fr ` b : B and � ` b ; v � �y thenthere exists a heap type Hy suh that H � Hy and (Hy; S Fr) j= v : B and(Hy; S Fr) j= �y.As usual, suh a theorem is vauous if there is no �y suh that � ` b ;v � �y holds, whih happens either beause the omputation would diverge,or beause it gets stuk (if there is no appliable evaluation rule). Stukstates orrespond to exeution errors, suh as alling a non-existent method,or attempting to de-referene an integer or a dangling pointer. As disussedby Abadi and Cardelli [AC96℄, we onjeture it would be straightforward toadapt the proof of Theorem 1 to show that no stuk state is reahable.3 Variation: Allowing Pointers in Fields ofValue ClassesTo avoid dangling pointers, the IL type system prevents the �elds of allobjets, whether boxed on the heap or unboxed on the stak, from holdingpointers. In fat, as pointed out by Fergus Henderson, a more liberal typesystem that allows unboxed objets to ontain pointers is useful for ompilingnested funtions.When ompiling a language with nested funtions (for example, Pasalor Ada), eah invoation of a nested funtion needs aess to the ativationreords (that is, the arguments and loal variables) of the lexially enlosingfuntions. A standard tehnique is to pass the funtion a display [ASU86℄, anarray of pointers to these ativation reords. One strategy is to implementan ativation reord (ontaining those arguments and loal variables referredto by nested funtions) as a value lass on the stak, and to implement thedisplay by pointers to the value lasses representing the ativation reords.Sine arguments may be passed by referene, this sheme works only if weallow value lasses to hold pointers. Otherwise, we need to pay the ost ofboxing these ativation reords on the heap.23

If we allow �elds of value lasses to hold pointers, the following moreliberal poliy still avoids dangling pointers.A More Liberal Pointer Con�nement Poliy:(1) No �eld of a boxed objet may hold a pointer.(2) No method may return a result ontaining a pointer.(3) No result ontaining a pointer may be stored indiretlyvia another pointer.Though this poliy helps ompile nested funtions, we lose the possiblyuseful fat that every value lass may be boxed, and hene treated as asubtype of lass System:Objet.To formalize this poliy, we amend BIL as follows.� Change the de�nition of pointerFree(A) to be the least relation with:(1) pointerFree(void)(2) pointerFree(int32)(3) pointerFree(lass)(4) pointerFree(valuelass v) if �elds(v) = fi 7! Ai i21::n andpointerFree(Ai) for eah i 2 1::n.� Change axiom (Good �elds) to read: =2 ValueClass) pointerFree(�elds()(f))(The only hange is the insertion of the =2 ValueClass preondition.)To see the e�et of these hanges, reall there are four typing rules thatmention the pointerFree(�) prediate: (Ref stfld), (Body stind), (Valstfld), and (Val box).Typing Rules Requiring Pointer-Free Types:(Ref stfld) (where �elds() = fi 7! Ai i21::nand pointerFree(Aj))Fr ` a : lass Fr ` b : Aj j 2 1::nFr ` a b stfld Aj ::fj : void(Body stind) (where pointerFree(A))Fr ` a1 : A& Fr ` a2 : AFr ` a1 a2 stind : void 24

(Val stfld) (where �elds(v) = fi 7! Ai i21::nand pointerFree(Aj))Fr ` a : value lass v& Fr ` b : Aj j 2 1::nFr ` a b stfld Aj v::fj : void(Val box) (where pointerFree(value lass v))Fr ` a : value lass v&Fr ` a box v : lass vPreviously, any value ould be stored via (Body stind), and the pointer-free onditions on the other three rules were redundant. Now, these rulesprevent the export of values ontaining pointers to the heap or further bakthe stak. Now, (Ref stfld) prevents a pointer being stored into a boxedvalue lass with a pointer �eld. In fat, no suh boxed value lasses an evenbe alloated, given the pointerFree(�) ondition on (Val box).Our proof of Theorem 1, outlined in the Appendix, is in fat for thismore liberal system. Type safety for the original system is a orollary oftype safety for this more liberal system, sine any method body typed by theoriginal system remains typable.Implementation of the new sheme remains future work.4 IL Features Omitted From BILTo give a avour of the full intermediate language, we briey enumerate themain features omitted from BIL. The IL Assembly Programmer's RefereneManual [Mi00℄ ontains a omplete informal desription of IL.We omit all disussion of IL metadata, suh as how lasses, stati dataand method headers are desribed. We omit any disussion of the on-diskformat, the spei�ation of linkage information, and assemblies, the unit ofsoftware deployment.Our objet model omits null objets, global �elds and methods, stati�elds and methods, non-virtual methods, single dimensional and multidi-mensional ovariant arrays, and objet interfaes. Our instrution set omitsloal variables, arithmeti instrutions, arbitrary branhing, jumping, andtail alls. Tail alls require are, beause the type system must preventpointers to the urrent stak frame being passed as arguments. The urrentIL poliy is to prevent the passing of any pointers via a tail all.We omit delegates (that is, built-in support for anonymous method invo-ation), typed referenes (that is, a pointer pakaged with its type, required25

for Visual Basi), attributes, native ode alling onventions, interoperabil-ity with COM, remoting (objet distribution) and multi-threading. We alsoomit exeption handling, a fairly elaborate model that permits a uni�ed viewof exeptions in C++, C#, and other high-level languages.5 Related WorkThe priniple of formalizing type-heking via logial inferene rules is along-standing topi in the study of progamming languages [Car97℄. Formaltyping rules have been developed for several high-level languages, inludingSML [MTHM97℄, Haskell [PW92℄, and for subsets of Java [DE97, IPW99℄.Formal typing rules have also been developed for several low-level languages,inluding TAL [MWCG99℄ and for subsets of the JVM [SA98, Qia99, Yel99,FM00℄. The properties established by proof-arrying ode [Ne97℄ an beviewed as typing derivations for native ode. The idea of formalizing atype system via an exeutable type-heker has reently been advoated forHaskell [Jon99℄. Our use of an exeutable spei�ation as an orale is aninstane of the standard software engineering priniple of multi-version pro-totyping. Proofs of soundness of several programming language type systemshave been partially mehanised in theorem provers [Van96, Nor98, Sym99,vN99℄.Several existing ompilers, inluding GHC [PHH+93℄, TIL [TMC+96℄,FLINT [Sha97℄, and MARMOT [FKR+00℄, use a typed intermediate lan-guage internally. One [MWCG99℄ in partiular translates all the way fromSystem F, a polymorphi �-alulus, down to a typed assembly language,TAL. The idea of writing a type-heker for a textual assembly format (likeour type-heker for IL) appears in onnetion with TAL: the TALx86 type-heker aepts input in a typed form of the IA32 assembly language thatan also be proessed by the standard MASM assembler.Referene types for heap-alloated data strutures akin to the referenetypes of the type system of Setion 2 appear in all of these intermediatelanguages. What is new about our type system is its inlusion of value andpointer types.� Value types desribe the unboxed stak-alloated form of a lass. Thebox and unbox instrutions oere between stak and heap forms of alass. Types for boxed and unboxed non-strit data strutures [PL91℄and automati type-based oerions between boxed and unboxed forms[Ler92℄ have been studied previously. Other approahes inlude regionanalysis [TT97℄ and esape analysis [PG92℄. Still, the idea and formal-26

ization of types to di�erentiate between unboxed and boxed forms oflass-based objets appears to be new.� Pointer types desribe pointers to either stak or heap alloated items.A risk with a stak pointer is that it may dangle, if its lifetime exeedsthe lifetime of its target. The stak-based form of TAL [MCGW98℄inludes a type onstrutor for desribing pointers into the stak; theparameter to the type onstrutor is a stak type that ensures thetarget is still live when the pointer is dereferened. Instead, the PointerCon�nement Poliy of Setion 2 avoids dangling pointers via varioussyntati restritions. IL's pointer types are easier to integrate withhigh-level languages like Visual Basi with rather simple type systemsthan a more sophistiated solution using stak types, as found in TAL.6 ConlusionsOne of the innovations in Mirosoft's Common Language Runtime is supportfor typed stak pointers, for passing arguments and results by referene,for example. We presented formal typing rules and a type safety resultfor a substantial fragment of the Common Language Runtime intermediatelanguage. Our treatment of value types and pointer types appears to benew. These rules were devised through our writing informal and exeutablespei�ations of the full intermediate language. This e�ort lari�ed the designand helped �nd bugs, but further researh is needed on mahine support forformal reasoning and on test ase generation. We exploited our formal modelto validate a liberalisation of the IL poliy that allows objet �elds to ontainstak pointers.Aknowledgements This paper is one outome of a ollaborative projetbetween Mirosoft Researh Cambridge and the .NET Common LanguageRuntime produt team. We thank the Common Language Runtime team,and espeially S. Dasan, J. Forbes, J. Miller, and V. Morrison, for theirhelp during our ollaboration. We thank our researh interns P. Hankin, J.Matthews, and C. Pither for their work on the projet. M. Abadi, C.A.R.Hoare, A. Je�rey, and C. Skalka suggested improvements to a draft of thispaper.
27

Referenes[AC96℄ M. Abadi and L. Cardelli. A Theory of Objets. Springer Verlag,1996.[ASU86℄ A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Priniples,Tehniques, and Tools. Addison-Wesley, 1986.[Car97℄ L. Cardelli. Type systems. In A.B. Tuker, editor, The ComputerSiene and Engineering Handbook, hapter 103, pages 2208{2236. CRC Press, 1997.[Coh89℄ A. Cohn. The notion of proof in hardware veri�ation. Journalof Automated Reasoning, 5(2):127{139, June 1989.[DE97℄ S. Drossopoulou and S. Eisenbah. Java is type safe|probably.In Proeedings ECOOP'97, June 1997.[FKR+00℄ R. Fitzgerald, T.B. Knoblok, E. Ruf, B. Steensgaard, andD. Tarditi. Marmot: An optimizing ompiler for Java. Soft-ware: Pratie and Experiene, 30(3), 2000.[FM00℄ S. Freund and J.C. Mithell. A type system for objet initial-ization in the Java byteode language. ACM Transations onProgramming Languages and Systems, 2000. To appear.[GHL99℄ A.D. Gordon, P.D. Hankin, and S.B. Lassen. Compilation andequivalene of imperative objets. Journal of Funtional Pro-gramming, 9(4):373{426, 1999.[GS00℄ A.D. Gordon and D. Syme. Typing a multi-language intermedi-ate ode. Tehnial Report MSR{TR{2000{106, Mirosoft Re-searh, 2000.[HW00℄ A. Hejlsberg and S. Wiltamuth. C# Language Referene. Avail-able at http://msdn.mirosoft.om/vstudio/nextgen/tehnology/sharpintro.asp, 2000.[IPW99℄ A. Igarashi, B. Piere, and P. Wadler. Featherweight Java: Aminimal ore alulus for Java and GJ. In Objet Oriented Pro-gramming: Systems, Languages, and Appliations (OOPSLA),Otober 1999.
28

[Jon99℄ M.P. Jones. Typing Haskell in Haskell. In Proeedings HaskellWorkshop, Paris, 1999. Available at http://www.se.ogi.edu/�mpj/thih.[Ler92℄ X. Leroy. Unboxed objets and polymorphi typing. In 19thACM SIGPLAN{SIGACT Symposium on Priniples of Pro-gramming Languages, pages 177{188. ACM Press, 1992.[MCGW98℄ G. Morrisett, K. Crary, N. Glew, and D. Walker. Stak-basedtyped assembly language. InWorkshop on Types in Compilation,volume 1473 of Leture Notes in Computer Siene, pages 28{52.Springer Verlag, 1998.[Mi00℄ Mirosoft Corporation. Mirosoft IL Assembly Programmer'sReferene Manual, July 2000. Part of the .NET FrameworkSoftware Development Kit, distributed on CD at the MirosoftProfessional Developers Conferene, Orlando, Florida, July 11{14, 2000.[MTHM97℄ R. Milner, M. Tofte, R. Harper, and D. MaQueen. The De�ni-tion of Standard ML (Revised). MIT Press, 1997.[MWCG99℄ G. Morrisett, D. Walker, K. Crary, and N. Glew. From SystemF to typed assembly language. ACM Transations on Program-ming Languages and Systems, 21(3):528{569, 1999.[Ne97℄ G. Neula. Proof-arrying ode. In 24th ACM SIGPLAN{SIGACT Symposium on Priniples of Programming Languages,pages 106{119. ACM Press, 1997.[Nor98℄ M. Norrish. C formalised in HOL. PhD thesis, University ofCambridge, 1998.[PG92℄ Y.G. Park and B. Goldberg. Esape analysis on lists. In ACMSIGPLAN Conferene on Programming Language Design andImplementation, pages 116{127. ACM Press, 1992.[PHH+93℄ S. Peyton Jones, C. Hall, K. Hammond, W. Partain, andP. Wadler. The Glasgow Haskell ompiler: a tehnial overview.In Proeedings UK Joint Framework for Information Tehnology(JFIT) Tehnial Conferene, pages 249{257. 1993.[PL91℄ S. Peyton Jones and J. Launhbury. Unboxed values as �rst lassitizens. In Funtional Programming Languages and Computer29

Arhiteture, volume 523 of Leture Notes in Computer Siene,pages 636{666. Springer Verlag, 1991.[PW92℄ S. Peyton Jones and P. Wadler. A stati semantis for Haskell.Unpublished draft, Department of Computing Siene, Uni-versity of Glasgow. Available at http://researh.mirosoft.om/users/simonpj, 1992.[Qia99℄ Z. Qian. A formal spei�ation of JavaTM virtual mahine in-strutions for objets, methods and subroutines. In J. Alves-Foss, editor, Formal Syntax and Semantis of Java, volume 1532of Leture Notes in Computer Siene, pages 271{312. SpringerVerlag, 1999.[SA98℄ R. Stata and M. Abadi. A type system for Java byteode sub-routines. In Proeedings POPL'98, pages 149{160. ACM Press,1998.[Sha97℄ Z. Shao. An overview of the FLINT/ML ompiler. In Pro. 1997ACM SIGPLAN Workshop on Types in Compilation (TIC'97),Amsterdam, The Netherlands, June 1997.[Sym98℄ D. Syme. Delarative Theorem Proving for Operational Seman-tis. PhD thesis, University of Cambridge, 1998.[Sym99℄ D. Syme. Proving Java type soundness. In J. Alves-Foss, editor,Formal Syntax and Semantis of Java, volume 1532 of LetureNotes in Computer Siene, pages 83{119. Springer Verlag, 1999.[TMC+96℄ D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, andP. Lee. TIL: A type-direted optimizing ompiler for ML. InPro. PLDI'96, pages 181{192, 1996.[TT97℄ M. Tofte and J.-P. Talpin. Region-based memory management.Information and Computation, 132(2):109{176, 1997.[Van96℄ M. VanInwegen. The Mahine-Assisted Proof of ProgrammingLanguage Properties. PhD thesis, Department of Computer andInformation Siene, University of Pennsylvania, May 1996.[vN99℄ D. von Oheimb and T. Nipkow. Mahine-heking the Java spe-i�ation: Proving type-safety. In J. Alves-Foss, editor, FormalSyntax and Semantis of Java, volume 1532 of Leture Notes inComputer Siene, pages 119{156. Springer Verlag, 1999.30

[Yel99℄ P.M. Yelland. A ompositional aount of the JavaTM Vir-tual Mahine. In 26th ACM SIGPLAN{SIGACT Symposiumon Priniples of Programming Languages, pages 57{69. ACMPress, 1999.

31

A Fats Needed in the Proof of Theorem 1This appendix enompasses the main lemmas needed in the proof of the maintype safety theorem of the paper. Our proofs are for the de�nitions of (Good�elds) and pointerFree(�) desribed in Setion 3. The proofs an triviallybe adapted for the original de�nitions in Setion 2. Appendix A.1 oversbasi lemmas about the subtype and onformane relations. Appendix A.2presents an alternative haraterisation of the pointer onformane judge-ment � j= ptr : A&. Finally, Appendix A.3 presents the de�nitions andtyping properties of the store lookup and update funtions.A.1 Basi LemmasWe begin with two lemmas about the subtype relation. Subtyping is trivialfor all types exept referene types. Only referene types an be supertypesof other referene types.Lemma 1 Assume B 6= lass for all . If A <: B or B <: A then A = B.Proof By assumption, the rule (Sub Class) annot derive either A <: Bor B <: A, so either A <: B or B <: A must have been derived by (SubRe). Hene, A = B. 2Lemma 2 If lass <: A then there exists 0 suh that A = lass 0 and inherits 0.Proof If lass <: A is derived by (Sub Re,) A = lass . Take 0 = and we get inherits 0 by (Hi Re). If lass <: A is derived by (SubClass), the result is immediate. 2Although a subsumption rule is not part of the de�nition of the resultonformane relation � j= v : A, it is derivable.Lemma 3 If � j= v : A and A <: A0 then � j= v : A0.Proof Either A takes the form lass or not. If not, by Lemma 1, A0 = A,so the result follows at one. Otherwise, by Lemma 2, there exists 0 suhthat A0 = lass 0 and inherits 0. Moreover, � j= v : lass an onlyhave been derived by (Res Ref), so that there exist H, S, p, 00 suh that� = (H;S) and v = p and H(p) = 00 suh that 00 inherits . By (Hi Trans),00 inherits and inherits 0 imply 00 inherits 0. By (Res Ref), H(p) = 00and 00 inherits 0 imply (H;S) j= p : lass 0, that is, � j= v : A0. 232

The next three lemmas onern how varying the size of the stak a�etsonformane.Lemma 4 states that a pointer-free result well-formed in a store type(H;S) is also well-formed in the store type (H;?). This justi�es movingpointer-free results from the urrent frame to the heap.Lemma 5 states that any result well-formed in a store type (H;S) is alsowell-formed in the store type (H;S Fr). This justi�es passing results fromthe urrent frame into the frame of a alled method.Lemma 6 states that a pointer-free result well-formed in a store type(H;SFr) is also well-formed in the store type (H;S). This justi�es returningpointer-free results from a alled frame to the previous frame.Lemmas 4 and 6 do not apply to pointer results beause if the result is apointer into the top stak frame it is not well-formed in a smaller stak.Lemma 4 If (H;S) j= v : A and pointerFree(A) then (H;?) j= v : A.Proof By indution on the derivation of (H;S) j= v : A. Beause ofpointerFree(A), none of the rules (Ptr Ref), (Ptr Arg), or (Ptr Field) anhave derived the judgment (H;S) j= v : A. Instead, this judgment must havebeen derived by (Res Void), (Res Int), (Res Ref), or (Res Value). In ases(Res Void), (Res Int), and (Res Ref), it is easy to see that (H;?) j= v : Amay also be derived.In ase (Res Value), we have (H;S) j= fi 7! vi i21::n : value lass vderived from �elds(v) = fi 7! Ai i21::n and (H;S) j= vi : Ai for eah i 2 1::n.By assumption, pointerFree(value lass v), and by de�nition, this meansthat pointerFree(Ai) for eah i 2 1::n. By indution hypothesis, for eahi 2 1::n, (H;S) j= vi : Ai and pointerFree(Ai) imply that (H;?) j= vi : Ai.By (Res Value), we get (H;?) j= fi 7! vi i21::n : value lass v. 2Lemma 5 If (H;S) j= v : A then (H;S Fr) j= v : A.Proof The proof is by inspetion of the rules for deriving the judgment(H;S) j= v : A. 2Lemma 6 If (H;S Fr) j= v : A and pointerFree(A) then (H;S) j= v : A.Proof By Lemma 4, (H;SFr) j= v : A and pointerFree(A) imply (H;?) j=v : A. By Lemma 5, repeatedly, this implies (H;S) j= v : A. 2Next, we have two lemmas onerned with method all and return.Lemma 7 says that a frame is well-formed in the store (H;S Fr) if it iswell-formed in the store (H;S). This justi�es passing an argument frame toa alled method. 33

Lemma 8 says that a store (h; s) onforms to the store type (H;S) if thestore (h; s fr) onforms to a store type (H;S Fr). This justi�es returningfrom a method.The proof of Lemma 8 depends on showing that no pointer in the �nalstore (h; s) refers to the frame fr .Lemma 7 If (H;S) j= fr : Fr then (H;S Fr) j= fr : Fr.Proof Suppose fr = :args(u0; : : : ; um) and Fr = :args(A0; : : : ; An). Byde�nition (Con Frame), (H;S) j= fr : Fr implies m = n and (H;S) j= ui : Aifor eah i 2 0::n. By Lemma 5, (H;S) j= ui : Ai implies (H;S Fr) j= ui : Aifor eah i 2 0::n. Hene, by (Con Frame), we obtain (H;S Fr) j= fr : Fr. 2Lemma 8 If (H;S Fr) j= (h; s fr) then (H;S) j= (h; s).Proof Suppose that S = Fr1 � � �Frm and s = fr1 � � � frn. By de�ni-tion (Con Store), (H;S Fr) j= (h; s fr) implies m = n and H j= h and(H;Fr1 � � �Fr i) j= fr i : Fr i for eah i 2 1::n and (H;S Fr) j= fr : Fr . By(Con Store), H j= h and (H;Fr1 � � �Fr i) j= fr i : Fr i for eah i 2 1::n implythe judgment (H;Fr1 � � �Frn) j= (h; fr1 � � � frn), that is, (H;S) j= (h; s). 2Reall that we state Theorem 1 in terms of a relation H � H 0 de�ned tomean that dom(H) � dom(H 0) and H(p) = H 0(p) for all p 2 dom(H). Wemay all this the heap extension relation. Heap extension is a partial order.Lemma 9 The relation H � H 0 is reexive and transitive (that is, for allH, H 0, and H 00, H � H, and, if H � H 0 and H 0 � H 00 then H � H 00).Proof Reexivity and transitivity follow at one. 2The next three lemmas state that heap extension preserves the onfor-mane relations for results, objets, and frames.Lemma 10 If (H;S) j= v : A and H � H 0 then (H 0; S) j= v : A.Proof The proof is an easy indution on the derivation of the onformanejudgment (H;S) j= v : A. 2Lemma 11 If H j= o : and H � H 0 then H 0 j= o : .Proof Suppose that o = [fi 7! vi i21::n℄. By de�nition (Con Objet), H j=o : implies �elds() = fi 7! Ai i21::n and (H;?) j= vi : Ai for eah i 2 1::n.By Lemma 10, (H;?) j= vi : Ai and H � H 0 implies (H 0;?) j= vi : Ai foreah i 2 1::n. Hene, by (Con Objet), we obtain H 0 j= o : , as desired. 234

Lemma 12 If (H;S) j= fr : Fr and H � H 0 then (H 0; S) j= fr : Fr.Proof Let fr = :args(u0; : : : ; um) and Fr = :args(A0; : : : ; An). By de�ni-tion (Con Frame), (H;S) j= fr : Fr implies that m = n and (H;S) j= ui : Aifor eah i 2 0::n. By Lemma 10, (H;S) j= ui : Ai and H � H 0 imply(H 0; S) j= ui : Ai, for eah i 2 0::n. By (Con Frame), (H 0; S) j= fr : Fr . 2The �nal lemma of this setion justi�es boxing of results. If the heap hand the objet o both onform to the heap type H, and p is a fresh referene,then the extended heap obtained by alloating o at p is well-formed.Lemma 13 If H j= h and p =2 dom(h) and H j= o : then H; p 7! j=h; p 7! o.Proof Suppose that h = pi 7! oi i21::n. By de�nition (Con Heap), H =pi 7! i i21::n and H j= oi : i for eah i 2 1::n. Let H 0 = H; p 7! so thatH � H 0. By Lemma 11, H j= o : and H � H 0 imply H 0 j= o : , andmoreover H j= oi : i and H � H 0 imply H 0 j= oi : i for eah i 2 1::n.Hene, by (Con Heap), we obtain H; p 7! j= h; p 7! o. 2A.2 Another Formulation of Pointer ConformaneIn the next setion we present the reursive de�nitions of the lookup andupdate funtions on pointers. To show properties of these funtions, it isonvenient to present in this setion a reformulation of the pointer onfor-mane relation � j= ptr : A&. Essentially, we show that every well-formedpointer takes the form of either (1) a pointer to an argument in a frame,followed by a possibly empty path of �eld seletions, or (2) a referene toa boxed objet of a value lass, followed by a possibly empty path of �eldseletions, or (3) a referene to a boxed objet (not neessarily of a valuelass) followed by a non-empty path of �eld seletions.This reformulation begins with a notion of a path, a possibly empty se-quene of �eld names.Path Within an Objet:~f ::= f1 � � �fn sequene of �elds (written � if n = 0)Next, we de�ne a relation A ~f=) B to mean that either the sequene ~f isempty and A = B, or that A is a value lass, and seleting the �elds in theseries ~f in order yields the type B. This is de�ned in terms of A f�! B, anauxiliary single step relation. 35

Ations of Fields on Types: A f�! B and A ~f=) BA f�! B if and only if A = value lass v and�elds(v) = fi 7! Ai i21::n and f = fj and B = Aj.A �=) B if and only if A = B.A f1���fn=) B if and only if A f1�!� � � fn�! B (where n > 0).Given these notations, we reformulate pointer onformane as follows.Lemma 14 The judgment � j= ptr : A& holds if and only if either:(1) there exist (i; j), ~f , and B suh that ptr = (i; j): ~f and � j= (i; j) : B&and B ~f=) A, or(2) there exist p, ~f , and v suh that ptr = p: ~f and � j= p : valuelassv&and value lass v ~f=) A, or(3) there exist p, fj, ~f , and suh that ptr = p:fj: ~f and � j= p : lass and Aj ~f=) A, where �elds() = fi 7! Ai i21::n and j 2 1::n.Proof For the bakwards diretion, it is easy to hek, by inspetion, thateah of the onditions (1), (2), and (3) implies that � j= ptr : A&.For the forwards diretion, we show by indution on the derivation of thejudgment � j= ptr : A& that it implies one of the three onditions.(Ptr Ref) We have (H;S) j= p : value lass v& derived from H(p) = v.We onlude ase (2) with ~f = � and (H;S) j= p : value lass v&and value lass v �=) value lass v.(Ptr Arg) We have (H;Fr1 � � �Frm) j= (i; j) : Aj& derived from i 2 1::mand Fri = :args(A0; : : : ; An) and j 2 0::n. We onlude ase (1) with~f = � and (H;Fr1 � � �Frm) j= (i; j) : Aj& and Aj �=) Aj.(Ptr Field) We have � j= ptr :fj : Aj& derived from � j= ptr : B and�elds() = fi 7! Ai i21::n and j 2 1::n and, either B = lass orB = value lass &.If B = lass , the judgment � j= ptr : lass an only have beenderived by (Res Ref) and hene there is a referene p suh that ptr = p.We onlude ase (3) with ~f = � and � j= p : lass and Aj ~f=) Aj,where �elds() = fi 7! Ai i21::n and j 2 1::n.36

Otherwise, B = valuelass&. By de�nition, �elds() = fi 7! Ai i21::nand j 2 1::n imply value lass fj�! Aj. By indution hypothesis,� j= ptr :fj : Aj& implies one of the three onditions:(1) There exist (i; j), ~g, and B suh that ptr = (i; j):~g and � j= (i; j) :B& andB ~g=) valuelass. The latter and valuelass fj�! Ajimply B ~g:fj=) Aj. We onlude ase (1) by taking ~f = ~g:fj.(2) There exist p, ~g, and v suh that ptr = p:~g and � j= p :value lass v& and value lass v ~g=) value lass . Thelatter and value lass fj�! Aj imply value lass v ~g:fj=) Aj.We onlude ase (2) by taking ~f = ~g:fj.(3) There exist p, f 0k, ~g, and suh that ptr = p:f 0k:~g and � j= p :lass and Ak ~g=) valuelass, where �elds() = f 0i 7! Ai i21::mand k 2 1::m. From Ak ~g=) value lass and value lass fj�!Aj we get Ak ~gfj=) Aj. We onlude ase (3) by taking ~f = ~g:fj.Beause A& is a pointer type, none of the rules (Res Void), (Res Int), (ResRef), or (Res Value) an have derived � j= ptr : A&. 2We use this lemma to prove the typing properties of store lookup andupdate funtions stated in the next setion.A.3 Fats about Lookup and UpdateWe omitted the de�nitions of funtions for store lookup lookup(�; ptr) andstore update update(�; ptr ; v0) from the main body of the paper.The store lookup funtion is de�ned in terms of an auxiliary funtion,result lookup lookup(v; f1 � � � fn), that given the result v, returns the outomeof applying eah of the �eld seletions f1, . . . , fn in turn. Here is the de�nitionof this auxiliary funtion, followed by a typing lemma.Result Lookup: lookup(v; f1 � � � fn)lookup(v; �) �= vlookup(fi 7! ui i21::n; fj ~f) �= lookup(uj; ~f) where j 2 1::nLemma 15 If � j= v : A and A ~f=) B then � j= lookup(v; ~f) : B.37

Proof By indution on the length of ~f . In the base ase ~f = � andlookup(v; ~f) = v. By de�nition, A �=) B implies A = B. Hene, � j= v : Aimplies � j= lookup(v; ~f) : B.In the indutive ase ~f = f ~g. Given A f ~g=) B, we have A f�! C andC ~g=) B. Given A f�! C, we have A = value lass v and �elds(v) =fi 7! Ai i21::n and f = fj and C = Aj with j 2 1::n. By de�nition (ResValue), � j= v : value lass v implies v = fi 7! vi i21::n and � j= vi : Aifor eah i 2 1::n. By de�nition, lookup(v; ~f) = lookup(fi 7! vi i21::n; fj~g) =lookup(vj; ~g). By indution hypothesis, � j= vj : Aj and Aj ~g=) B imply� j= lookup(vj; ~g) : B, that is, � j= lookup(v; ~f) : B. 2Next, we present the de�nition of store lookup, followed by a typinglemma.Store Lookup via Pointer: lookup(�; ptr)lookup((h; s); p: ~f) �= lookup(fi 7! ui i21::n; ~f)where h(p) = [fi 7! ui i21::n℄lookup((h; s); (i; j): ~f) �= lookup(vj; ~f)where s = fr 1 � � � fr i � � � frm with i 2 1::m,and fr i = :args(v0; : : : ; vn) with j 2 0::nLemma 16 If � j= � and � j= ptr : A& then � j= lookup(�; ptr) : A.Proof Let (h; s) = � so that � j= (h; s). Aording to Lemma 14, � j=ptr : A& implies one of three ases.In ase (1), there exist (i; j), ~f , and B suh that ptr = (i; j): ~f and� j= (i; j) : B& and B ~f=) A. By de�nition (Ptr Arg), � j= (i; j) : B& im-plies � = (H;Fr1 � � �Frm) and B = Aj and Fr i = :args(A0; : : : ; An) wherei 2 1::m and j 2 0::n. By de�nition (Con Store), (H;Fr1 � � �Frm) j= (h; s)implies that s = fr 1 � � � frm and that (H;Fr1 � � �Fr i) j= fr i : Fr i. By de�ni-tion (Con Frame), this implies fr i = :args(u0; : : : ; un) and (H;Fr1 � � �Fr i) j=uj : Aj. By de�nition, lookup(�; ptr) = lookup((h; s); ptr = (i; j): ~f) =lookup(uj; ~f). By Lemma 15, (H;Fr1 � � �Fr i) j= uj : Aj and Aj ~f=) A implies(H;Fr1 � � �Fr i) j= lookup(uj; ~f) : A. By Lemma 5, repeatedly, this impliesthat (H;Fr1 � � �Frm) j= lookup(uj; ~f) : A, that is, � j= lookup(�; ptr) : A.In ase (2), there exist p, ~f , and v suh that ptr = p: ~f and � j=p : value lass v& and value lass v ~f=) A. By de�nition (Ptr Ref),� j= p : value lass v& implies � = (H;S) and H(p) = v. By de�nition38

(Con Store), (H;S) j= (h; s) implies H j= h. By de�nitions (Con Heap) and(Con Objet), H j= h and H(p) = v imply that h(p) = v[fi 7! vi i21::n℄and H j= v[fi 7! vi i21::n℄ : v and (H;?) j= vi : Ai for eah i 2 1::n,where �elds(v) = fi 7! Ai i21::n. Let v = fi 7! vi i21::n. By de�ni-tion, lookup(�; ptr) = lookup((h; s); p: ~f) = lookup(v; ~f). By (Res Value),�elds(v) = fi 7! Ai i21::n and (H;?) j= vi : Ai for eah i 2 1::n im-ply (H;?) j= v : value lass v. By Lemma 5, repeatedly, this implies� j= v : value lass v. By Lemma 15, � j= v : value lass v andvaluelassv ~f=) A then � j= lookup(v; ~f) : A, that is, � j= lookup(�; ptr) :A. In ase (3), there exist p, fj, ~f , and suh that ptr = p:fj: ~f and � j=p : lass and Aj ~f=) A, where �elds() = fi 7! Ai i21::n and j 2 1::n.By de�nition (Res Ref), � j= p : lass implies � = (H;S) and H(p) = 0and 0 inherits . By de�nition (Con Store), (H;S) j= (h; s) implies H j=h. By axiom (Hi �elds), �elds() = fi 7! Ai i21::n and 0 inherits implythere exists m suh that �elds(0) = fi 7! Ai i21::n+m. By de�nitions (ConHeap) and (Con Objet), H j= h and H(p) = 0 imply that h(p) = 0[fi 7!vi i21::n+m℄ and H j= [fi 7! vi i21::n+m℄ : and (H;?) j= vi : Ai for eah i 21::n +m, where �elds() = fi 7! Ai i21::n+m. By de�nition, lookup(�; ptr) =lookup((h; s); p:fj: ~f) = lookup(fi 7! vi i21::n+m; fj: ~f) = lookup(vj; ~f). ByLemma 5, repeatedly, (H;?) j= vj : Aj implies � j= vj : Aj. By Lemma 15,� j= vj : Aj and Aj ~f=) A then � j= lookup(vj; ~f) : A, that is, � j=lookup(�; ptr) : A. 2The store update funtion is de�ned in terms of an auxiliary funtion,result update update(v; f1 � � � fn; v0), that given the result v, returns the out-ome of updating the �eld indiated by the �eld seletions f1, . . . , fn withthe result v0. Here is the de�nition, together with a typing lemma.Result Update: update(v; f1 � � �fn; v0)update(v; �; v0) �= v0update(fi 7! ui i21::n; fj ~f; v0) �=(fj 7! update(uj; ~f; v0); fi 7! ui i2(1::n)�fjg) for j 2 1::nLemma 17 If � j= u : A and A ~f=) B and � j= v : B then � j=update(u; ~f; v) : A. 39

Proof By indution on the length of ~f . In the base ase ~f = � andupdate(u; ~f; v) = v. By de�nition, A �=) B implies B = A. Hene, � j= v :A implies � j= update(u; ~f; v) : A.In the indutive ase ~f = f ~g. Given A f ~g=) B, we have A f�! C andC ~g=) B. Given A f�! C, we have A = valuelassv and �elds(v) = fi 7!Ai i21::n and f = fj and C = Aj with j 2 1::n. By de�nition (Res Value), � j=u : valuelass v implies u = fi 7! vi i21::n and � j= vi : Ai for eah i 2 1::n.By de�nition, update(u; ~f; v) = (fj 7! update(vj; ~g; v0); fi 7! vi i2(1::n)�fjg).By indution hypothesis, � j= vj : Aj and Aj ~g=) B and � j= v : B imply� j= update(vj; ~g; v) : Aj. By (Res Value), this and � j= vi : Ai for eahi 2 (1::n)� fjg and �elds(v) = fi 7! Ai i21::n imply � j= update(u; ~f; v). 2Given the previous auxiliary funtion, here is the de�nition of store up-date.Store Update via Pointer: update(�; ptr ; v0)update((h; s); p: ~f; v0) �=(((h� p); p 7! [update(fi 7! ui i21::n; ~f ; v0)℄); s)where h(p) = [fi 7! ui i21::n℄update((h; s); (i; j): ~f; v0) �=(h; fr1 � � � :args(v0; : : : ; update(vj; ~f; v0); : : : ; vn) � � � frm)where s = fr 1 � � � fr i � � � frm with i 2 1::m,and fr i = :args(v0; : : : ; vn) with j 2 0::nFinally, we state two typing lemmas for store update. They are essen-tial fats in the proof of type safety for BIL: the proof of Theorem 1 usesLemma 18 and Lemma 19 to show that evaluations of stind and starg,respetively, are type safe.Lemma 18 If � j= � and � j= ptr : A& and � j= v : A and pointerFree(A)then � j= update(�; ptr ; v).Proof Let (h; s) = � so that � j= (h; s). Aording to Lemma 14, � j=ptr : A& implies one of three ases.In ase (1), there exist (i; j), ~f , and B suh that ptr = (i; j): ~f and� j= (i; j) : B& and B ~f=) A. By de�nition (Ptr Arg), � j= (i; j) : B& im-plies � = (H;Fr1 � � �Frm) and B = Aj and Fr i = :args(A0; : : : ; An) wherei 2 1::m and j 2 0::n. By de�nition (Con Store), (H;Fr1 � � �Frm) j= (h; s)implies that s = fr 1 � � � frm H j= h and that (H;Fr1 � � �Fr i0) j= fr i0 :40

Fr i0 for eah i0 2 1::m. By de�nition (Con Frame), this implies fr i =:args(u0; : : : ; un) and (H;Fr1 � � �Fr i) j= uj0 : Aj0 for eah j 0 2 0::n. Byde�nition, update(�; ptr ; v) = update((h; fr1 � � � frm); (i; j): ~f ; v)= (h; fr 1 � � � fr 0i � � � frm)where fr 0i = :args(u0; : : : ; update(uj; ~f; v); : : : ; un). By Lemma 4, we havethat (H;Fr1 � � �Frm) j= v : A and pointerFree(A) imply (H;?) j= v :A. By Lemma 5, repeatedly, this implies (H;Fr1 � � �Fr i) j= v : A. ByLemma 17, (H;Fr1 � � �Fr i) j= uj : Aj and Aj ~f=) A and (H;Fr1 � � �Fr i) j=v : A imply (H;Fr1 � � �Fr i) j= update(uj; ~f; v) : Aj. By (Con Frame),this and (H;Fr1 � � �Fr i) j= uj0 : Aj0 for eah j 0 2 (0::n) � fjg imply that(H;Fr1 � � �Fr i) j= fr 0i : Fr i. By (Con Store), this, H j= h and (H;Fr1 � � �Fr i0)j= fr i0 : Fr i0 for eah i0 2 (1::m)� fig imply that � j= (h; fr 1 � � � fr 0i � � � frm),that is, � j= update(�; ptr ; v).In ase (2), there exist p, ~f , and v suh that ptr = p: ~f and � j= p :value lass v& and value lass v ~f=) A. By de�nition (Ptr Ref), � j=p : value lass v& implies � = (H;S) and H(p) = v. By de�nition(Con Store), (H;S) j= (h; s) implies H j= h and S = Fr1 � � �Frn0 and s =fr 1 � � � frn0 and (H;Fr1 � � �Frk) j= frk : Frk for eah k 2 1::n0. By de�nition(Con Heap), H j= h implies H = pi0 7! i0 i021::m and h = pi0 7! oi0 i021::m andH j= oi0 : i0 for eah i0 2 1::m. From H(p) = v, there exists i 2 1::m suhthat p = pi and v = i. By de�nition (Con Objet), H j= oi : v impliesoi = v[fj 7! vj j21::n℄ and �elds(v) = fj 7! Aj j21::n and (H;?) j= vj : Ajfor eah j 2 1::n. By de�nition,update(�; ptr ; v) = update((h; s); p: ~f; v)= (((h� pi) + pi 7! o0i); s)where o0i = v[update(fj 7! vj j21::n; ~f ; v)℄. By (Res Value), �elds(v) = fj 7!Aj j21::n and (H;?) j= vj : Aj for eah j 2 1::n imply (H;?) j= fj 7! vj j21::n :valuelass v. By Lemma 4, (H;S) j= v : A and pointerFree(A) imply that(H;?) j= v : A. By Lemma 17, (H;?) j= fj 7! vj j21::n : value lass vand value lass v ~f=) A and (H;?) j= v : A imply (H;?) j= update(fj 7!vj j21::n; ~f; v) : value lass v. By de�nition (Res Value), this implies by(Con Objet) that H j= o0i : v. By (Con Heap), this and H j= oi0 : i0 foreah i0 2 (1::m)� fig implies H j= (h� pi) + pi 7! o0i. By (Con Store), thisand (H;Fr1 � � �Frk) j= frk : Frk for eah k 2 1::n0 imply � j= (((h�pi)+pi 7!o0i); s), that is, � j= update(�; ptr ; v).41

In ase (3), there exist p, fj, ~f , and suh that ptr = p:fj: ~f and � j= p :lass and Aj ~f=) A, where �elds() = fj0 7! Aj0 j021::n and j 2 1::n. Byde�nition (Res Ref), � j= p : lass implies � = (H;S) and H(p) = 0 and0 inherits . By axiom (Hi �elds), �elds() = fj0 7! Aj0j021::n and 0 inherits imply there exists m suh that �elds(0) = fj0 7! Aj0 j021::n+m. By de�nition(Con Store), (H;S) j= (h; s) implies H j= h and S = Fr1 � � �Frn0 and s =fr 1 � � � frn0 and (H;Fr1 � � �Frk) j= frk : Frk for eah k 2 1::n0. By de�nition(Con Heap), H j= h implies H = pi0 7! i0 i021::m0 and h = pi0 7! oi0 i021::m0and H j= oi0 : i0 for eah i0 2 1::m0. From H(p) = 0, there exists i 2 1::m0suh that p = pi and 0 = i. By de�nition (Con Objet), H j= oi : 0 impliesoi = 0[fj0 7! vj0 j021::n+m℄ and (H;?) j= vj0 : Aj0 for eah j 0 2 1::n+m.By de�nition,update(�; ptr ; v) = update((h; s); pi:fj: ~f; v)= (((h� pi) + pi 7! o0i); s)where o0i = 0[update(fj0 7! vj0 j021::n+m; fj ~f; v)℄= 0[fj 7! update(vj; ~f; v); fj0 7! vj0 j021::(n+m)�fjg℄By Lemma 4, (H;S) j= v : A and pointerFree(A) imply (H;?) j= v : A.By Lemma 17, (H;?) j= vj : Aj and Aj ~f=) A and (H;?) j= v : A then(H;?) j= update(vj; ~f; v) : Aj. By (Con Objet), this and (H;?) j= vj0 : Aj0for eah j 0 2 1::(n +m)� fjg implies H j= o0i : i. By (Con Heap), this andH j= oi0 : i0 for eah i0 2 (1::m0)� fig implies H j= ((h� pi) + pi 7! o0i). By(Con Store), this and (H;Fr1 � � �Frk) j= frk : Frk for eah k 2 1::n0 imply� j= (((h� pi) + pi 7! o0i); s), that is, � j= update(�; ptr ; v). 2Lemma 19 If � j= � and � j= (i; j) : A& and � j= v : A and � =(h; fr 1 � � � fr i) then � j= update(�; (i; j); v).Proof By de�nition (Ptr Arg), � j= (i; j) : A& gives � = (H;Fr1 � � �Frm)and A = Aj where i 2 1::m and Fr i = :args(A0; : : : ; An) and j 2 0::n.By de�nition (Con Store), (H;Fr1 � � �Frm) j= (h; fr1 � � � fr i) implies i = mand H j= h and (H;Fr1 � � �Fr i0) j= fr i0 : Fr i0 for eah i0 2 1::i. Byde�nition (Con Frame), (H;Fr1 � � �Fr i) j= fr i : :args(A0; : : : ; An) impliesfr i = :args(u0; : : : ; un) and (H;Fr1 � � �Fr i) j= uj0 : Aj0 for eah j 0 2 0::n. Byde�nition:update(�; (i; j); v) = update((h; fr1 � � � fr i); (i; j); v)= (h; fr 1 � � � :args(u0; : : : ; v; : : : ; un))42

By (Con Frame), � j= uj0 : Aj0 for eah j 0 2 (0::n) � fjg and � j= v : Ajimply � j= :args(u0; : : : ; v; : : : ; un) : :args(A0; : : : ; An). By (Con Store),this and H j= h and (H;Fr1 � � �Fr i0) j= fr i0 : Fr i0 for eah i0 2 1::i � 1imply (H;Fr1 � � �Fr i) j= (h; fr1 � � � :args(u0; : : : ; v; : : : ; un)), that is, � j=update(�; (i; j); v). 2A.4 Proof of Type SafetyProof of Theorem 1 If (H;S Fr) j= � and Fr ` b : B and � ` b; v � �ythen there exists a heap type Hy suh that H � Hy and (Hy; S Fr) j= v : Band (Hy; S Fr) j= �y.Proof The proof is by indution on the derivation of � ` b; v ��0. Thereis a ase for eah of the rules of the operational semantis.(Eval ld)� ` ld:i4 i4 ; i4 � �By assumption, (H;S Fr) j= � and Fr ` ld:i4 i4 : B. Beause ofFr ` ld:i4 i : B, and Lemma 1, we must have B = int32. By(Res Int), (H;S Fr) j= i4 : int32. Take Hy = H. We onlude(Hy; S Fr) j= i4 : B and (Hy; S Fr) j= �.(Eval Seq)� ` a; u � �0 �0 ` b; v � �y� ` a b; v � �yBy assumption, (H;SFr) j= � and Fr ` ab : B. Beause of Fr ` ab : B,we must have Fr ` a : void and Fr ` b : B. By indution hypothesis,(H;S Fr) j= � and Fr ` a : void and � ` a ; u � �0 imply thereexists a heap type H 0 suh that H � H 0 and (H 0; S Fr) j= u : voidand (H 0; S Fr) j= �0. By indution hypothesis, (H 0; S Fr) j= �0 andFr ` b : B and �0 ` b ; v � �y imply there exists a heap type Hysuh that H 0 � Hy and (Hy; S Fr) j= v : B and (Hy; S Fr) j= �y. ByLemma 9, H � H 0 and H 0 � Hy imply H � Hy. We onlude H � Hyand (Hy; S Fr) j= v : B and (Hy; S Fr) j= �y.(Eval Cond)j = 0 if i4 = 0, otherwise j = 1� ` a; i4 � �0 �0 ` bj ; v � �y� ` a b0 b1 ond ; v � �y 43

By assumption, (H;S Fr) j= � and Fr ` a b0 b1 ond : B. Beause ofFr ` a b0 b1 ond : B, we must have Fr ` a : int32 and Fr ` bj : B,whether j = 0 or j = 1. By indution hypothesis, (H;S Fr) j= � andFr ` a : int32 and � ` a ; i4 � �0 imply there exists a heap type H 0suh that H � H 0 and (H 0; S Fr) j= i4 : int32 and (H 0; S Fr) j= �0.By indution hypothesis, (H 0; S Fr) j= �0 and Fr ` bj : B and � `bj ; v � �y imply there exists a heap type Hy suh that H 0 � Hy and(Hy; S Fr) j= v : B and (Hy; S Fr) j= �y. By Lemma 9, H � H 0 andH 0 � Hy imply H � Hy. We onlude H � Hy and (Hy; S Fr) j= v : Band (Hy; S Fr) j= �y.(Eval While 0)� ` a; 0 � �y� ` a b while ; 0 � �yBy assumption, (H;S Fr) j= � and Fr ` a b while : B. Beause ofFr ` a b while : B, we must have Fr ` a : int32 and Fr ` b : voidand void <: B. By Lemma 1, B = void. By indution hypothesis,(H;S Fr) j= � and Fr ` a : int32 and � ` a; 0 ��y imply there existsa heap type Hy suh that H � Hy and (Hy; S Fr) j= 0 : int32 and(Hy; S Fr) j= �y. By (Res Void), (Hy; S Fr) j= 0 : void. We onludeH � Hy and (Hy; S Fr) j= 0 : B and (Hy; S Fr) j= �y.(Eval While 1)� ` a; i4 � �0 i4 6= 0�0 ` b; v � �00�00 ` a b while ; u � �y� ` a b while ; u � �yBy assumption, (H;S Fr) j= � and Fr ` a b while : B. Beause ofFr ` a b while : B, we must have Fr ` a : int32 and Fr ` b : voidand void <: B. By Lemma 1, B = void. By indution hypothesis,(H;S Fr) j= � and Fr ` a : int32 and � ` a ; i4 � �y imply thereexists a heap type H 0 suh that H � H 0 and (H 0; S Fr) j= i4 : int32and (H 0; S Fr) j= �0. By indution hypothesis, (H 0; S Fr) j= �0 andFr ` b : void and � ` b ; v � �00 imply there exists a heap type H 00suh that H 0 � H 00 and (H 00; S Fr) j= v : void and (H 00; S Fr) j= �00.By indution hypothesis, (H 00; S Fr) j= �00 and Fr ` a b while : voidand �00 ` a b while ; u � �y imply there exists a heap type Hy suhthat H 00 � Hy and (Hy; S Fr) j= u : void and (Hy; S Fr) j= �y. ByLemma 9, H � H 0 and H 0 � H 00 and H 00 � Hy imply H � Hy. Weonlude H � Hy and (Hy; S Fr) j= u : B and (Hy; S Fr) j= �y.44

(Eval ldind) � ` a; ptr � �y� ` a ldind; lookup(�y; ptr) � �yBy assumption, (H;S Fr) j= � and Fr ` a ldind : B. Beause ofFr ` a ldind : B, we must have Fr ` a : By& for some By <: B.By indution hypothesis, sine (H;S Fr) j= � and Fr ` a : By&and � ` a ; ptr � �y there must exist a heap type Hy suh thatH � Hy and (Hy; S Fr) j= ptr : By& and (Hy; S Fr) j= �y. ByLemma 16, (Hy; S Fr) j= �y and (Hy; S Fr) j= ptr : By& imply(Hy; S Fr) j= lookup(�y; ptr) : By. By Lemma 3, this and By <: Bimply (Hy; S Fr) j= lookup(�y; ptr) : B. We onlude H � Hy and(Hy; S Fr) j= lookup(�y; ptr) : B and (Hy; S Fr) j= �y.(Eval stind)� ` a; ptr � �0 �0 ` b; v � �00� ` a b stind; 0 � update(�00; ptr ; v)By assumption, (H;S Fr) j= � and Fr ` a b stind : B. Beause ofFr ` a b stind : B, we must have Fr ` a : A& and Fr ` b : A forsome A with pointerFree(A) and void <: B. By Lemma 1, B = void.By indution hypothesis, sine (H;S Fr) j= � and Fr ` a : A& and� ` a; ptr ��0 there must exist a heap type H 0 suh that H � H 0 and(H 0; S Fr) j= ptr : A& and (H 0; S Fr) j= �0. By indution hypothesis,sine (H 0; S Fr) j= �0 and Fr ` b : A and �0 ` b ; v � �00 there mustexist a heap type Hy suh that H 0 � Hy and (Hy; S Fr) j= v : A and(Hy; S Fr) j= �00. By Lemma 10, (H 0; S Fr) j= ptr : A& and H 0 � Hyimply (Hy; S Fr) j= ptr : A&. By Lemma 18, (Hy; S Fr) j= �00 and(Hy; S Fr) j= ptr : A& and (Hy; S Fr) j= v : A imply (Hy; S Fr) j=update(�00; ptr ; v). By (Res Void), (Hy; S Fr) j= 0 : void. By Lemma 9,H � H 0 and H 0 � Hy imply H � Hy. We onlude H � Hy and(Hy; S Fr) j= 0 : B and (Hy; S Fr) j= update(�00; ptr ; v).(Eval ldarga)� = (h; fr1 � � � fr i)� ` ldarga j ; (i; j) � �By assumption, (H;S Fr) j= (h; fr 1 � � � fr i) and Fr ` ldarga j : B.Beause of Fr ` ldarga j : B, we must have j 2 0::n and Aj& <: Bwhere Fr = :args(A0; : : : ; An). Beause of (H;S Fr) j= (h; fr1 � � � fr i),we must have S = Fr1 � � �Fr i�1 and Fr = Fr i for some Fr1, . . . , Fr i.By (Ptr Arg), i 2 1::i and Fr i = :args(A0; : : : ; An) and j 2 0::n imply(H;Fr1 � � �Fr i) j= (i; j) : Aj&. By Lemma 3, this and Aj& <: B imply45

that (H;S Fr) j= (i; j) : B. Take Hy = H. By Lemma 9, H � Hy. Weonlude H � Hy and (Hy; S Fr) j= (i; j) : B and (Hy; S Fr) j= �.(Eval starg)� ` a; u � �0 �0 = (h0; fr 1 � � � fr i)� ` a starg j ; 0 � update(�0; (i; j); u)By assumption, (H;SFr) j= � and Fr ` astarg j : B. Beause of Fr `a starg j : B, we must have Fr = :args(A0; : : : ; An) and Fr ` a : Ajand j 2 0::n and void <: B. By indution hypothesis, (H;S Fr) j= �and Fr ` a : Aj and � ` a ; u � �0 imply there exists a heap typeHy suh that H � Hy and (Hy; S Fr) j= u : Aj and (Hy; S Fr) j= �0.Beause of (Hy; SFr) j= (h0; fr 1 � � � fr i), we must have S = Fr1 � � �Fr i�1and Fr = Fr i for some Fr1, . . . , Fr i. By (Ptr Arg), i 2 1::i and Fr i =:args(A0; : : : ; An) and j 2 0::n implies (Hy;Fr1 � � �Fr i) j= (i; j) : Aj&.By Lemma 19, (Hy; S Fr) j= (h0; fr 1 � � � fr i) and (Hy; S Fr) j= (i; j) :Aj& and (Hy; S Fr) j= u : Aj imply (Hy; S Fr) j= update(�0; (i; j); u).By (Res Void), (Hy; SFr) j= 0 : void, and then by Lemma 3, void <: Bimplies (Hy; S Fr) j= 0 : B. We onlude H � Hy and (Hy; S Fr) j=0 : B and (Hy; S Fr) j= update(�0; (i; j); u).(Eval newobj) =2 ValueClass K = void :::tor(A01; : : : ; A0m)�elds() = fi 7! Ai i21::n �i ` ai ; vi � �i+1 8i 2 1::n�n+1 = (h; s) p =2 dom(h) hy = h; p 7! [fi 7! vi i21::n℄�1 ` a1 � � � an newobjK ; p � (hy; s)By assumption, (H;SFr) j= �1 and Fr ` a1 � � � an newobjK : B. Sine =2 ValueClass, the rule (Ref newobj) but not the rule (Val newobj)must have derived the judgment Fr ` a1 � � � annewobjK : B. Therefore,K = void :::tor(A1; : : : ; An) (and hene m = n and Ai = A0i for eahi 2 1::n) and Fr ` ai : Ai for eah i 2 1::n and lass <: B. ByLemma 2, the latter implies there exists 0 suh that B = lass 0and inherits 0. Let H1 = H. By indution hypothesis, repeatedly,for eah i 2 1::n, (Hi; S Fr) j= �i and Fr ` ai : Ai and �i ` ai ;vi � �i+1 imply there exists a heap type Hi+1 suh that Hi � Hi+1 and(Hi+1; S Fr) j= vi : Ai and (Hi+1; S Fr) j= �i+1. From �n+1 = (h; s) weget that (Hn+1; S Fr) j= (h; s). Let Hy = Hn+1; p 7! . By de�nition,Hn+1 � Hy. We obtain Hi � Hy from Hi � Hi+1 for eah i 2 1::n withappeal to Lemma 9 and the de�nition of �. By (Res Ref), B = lass0and inherits 0 imply (Hy; S Fr) j= p : B. By Lemma 10, for eahi 2 1::n, (Hi+1; SFr) j= vi : Ai andHi+1 � Hn+1 implies (Hn+1; SFr) j=46

vi : Ai. Given =2 ValueClass, for eah i 2 1::n, the axiom (Good �elds)implies pointerFree(�elds()(fi)), that is, pointerFree(Ai), and hene,by Lemma 4, (Hn+1; S Fr) j= vi : Ai implies (Hn+1;?) j= vi : Ai. By(Con Objet), (Hn+1;?) j= vi : Ai for eah i 2 1::n implies Hn+1 j=[fi 7! vi i21::n℄ : . The judgment (Hn+1; S Fr) j= (h; s) must havebeen derived using (Con Store), so Hn+1 j= h and there are Fr1, . . . ,Fr r and fr1, . . . , fr r suh that S Fr = Fr1 � � �Fr r and s = fr 1 � � � fr rand (Hn+1;Fr1 � � �Fr i) j= fr i : Fr i for eah i 2 1::r. By Lemma 13,Hn+1 j= h and p =2 dom(h) and Hn+1 j= [fi 7! vi i21::n℄ : implyHy j= hy. By Lemma 12, (Hn+1;Fr1 � � �Fr i) j= fr i : Fr i and Hn+1 � Hyimply (Hy;Fr1 � � �Fr i) j= fr i : Fr i, for eah i 2 1::n. By (Con Store),this and Hy j= hy imply (Hy; S Fr) j= (hy; s). We onlude H � Hyand (Hy; S Fr) j= p : B and (Hy; S Fr) j= (hy; s).(Eval allvirt)M = B0 ::`(A1; : : : ; An)�0 ` a0 ; p0 � (h1; s1)h1(p0) = 0[fi 7! ui i21::m℄(hi; si) ` ai ; vi � (hi+1; si+1) 8i 2 1::nmethods(0)(B0 `(A1; : : : ; An)) = b(hn+1; sn+1:args(p0; v1; : : : ; vn)) ` b; v0 � (h0; s0 fr 0)�0 ` a0 a1 � � � an allvirtM ; v0 � (h0; s0)By assumption, (H;S Fr) j= �0 and Fr ` a0 a1 � � � an allvirtM : B.Beause of Fr ` a0a1 � � � anallvirtM : B, we have B0`(A1; : : : ; An) 2dom(methods()) and Fr ` a0 : lass and Fr ` ai : Ai for alli 2 1::n and B0 <: B. By indution hypothesis, (H;S Fr) j= �0 andFr ` a0 : lass and �0 ` a0 ; p0 � (h1; s1) imply there exists aheap type H1 suh that H � H1 and (H1; S Fr) j= p0 : lass and(H1; S Fr) j= (h1; s1). From the latter, it follows that H1 j= h1. Sineonly (Res Ref) an derive (H1; S Fr) j= p0 : lass , there exists 00suh that H1(p) = 00 and 00 inherits . From H1 j= h1 and h1(p0) =0[fi 7! ui i21::m℄ and H1(p) = 00 it follows that 0 = 00, and henethat 0 inherits and that (H1; S Fr) j= p0 : lass 0. By indutionhypothesis, repeatedly, for eah i 2 1::n, (Hi; S Fr) j= (hi; si) andFr ` ai : Ai and (hi; si) ` ai ; vi � (hi+1; si+1) imply there exists aheap type Hi+1 suh that Hi � Hi+1 and (Hi+1; S Fr) j= vi : Ai and(Hi+1; S Fr) j= (hi+1; si+1). By Lemma 9, we get that Hi � Hn+1 foreah i 2 1::n.Next, we argue separately, based on whether or not 0 is a value lass.� First, we suppose that 0 =2 ValueClass. Let Fr 0 = :args(lass 0;47

A1; : : : ; An) and fr 0 = :args(p0; v1; : : : ; vn). By (Ref methods),methods(0)(B0 `(A1; : : : ; An)) = b implies that Fr 0 ` b : B0. GivenHi � Hn+1 for eah i 2 1::n, by Lemma 10, (H1; S Fr) j= p0 :lass0 implies that (Hn+1; SFr) j= p0 : lass0, and for eah i 21::n, (Hi+1; SFr) j= vi : Ai implies that (Hn+1; SFr) j= vi : Ai. By(Con Frame), (Hn+1; SFr) j= p0 : lass 0 and (Hn+1; SFr) j= vi :Ai for eah i 2 1::n imply (Hn+1; S Fr) j= fr 0 : Fr 0. By Lemma 7,this implies that (Hn+1; S Fr Fr 0) j= fr 0 : Fr 0. By (Con Store),this and (Hn+1; S Fr) j= (hn+1; sn+1) imply (Hn+1; S Fr Fr 0) j=(hn+1; sn+1 fr 0).� Seond, suppose 0 2 ValueClass. Let fr 0 = :args(p0; v1; : : : ; vn)and Fr 0 = :args(valuelass 0&; A1; : : : ; An). By (Val methods),methods(0)(B0 `(A1; : : : ; An)) = b implies that Fr 0 ` b : B0. By(Ptr Ref),H1(p0) = 0 and 0 2 ValueClass imply that (H1; SFr) j=p0 : value lass 0&. Given Hi � Hn+1 for eah i 2 1::n,by Lemma 10, (H1; S Fr) j= p0 : value lass 0& implies that(Hn+1; S Fr) j= p0 : value lass 0&, and for eah i 2 1::n,(Hi+1; SFr) j= vi : Ai implies that (Hn+1; SFr) j= vi : Ai. By (ConFrame), (Hn+1; S Fr) j= p0 : value lass 0& and (Hn+1; S Fr) j=vi : Ai for eah i 2 1::n imply (Hn+1; S Fr) j= fr 0 : Fr 0. ByLemma 7, this implies that (Hn+1; S Fr Fr 0) j= fr 0 : Fr 0. By (ConStore), this and (Hn+1; SFr) j= (hn+1; sn+1) imply (Hn+1; SFrFr 0)j= (hn+1; sn+1 fr 0).The rest of the argument is the same in either ase. By indutionhypothesis, (Hn+1; S Fr Fr 0) j= (hn+1; sn+1 fr 0) and Fr 0 ` b : B0 and(hn+1; sn+1 fr 0) ` b ; v0 � (h0; s0 fr 0) imply there exists a heap type Hysuh that Hn+1 � Hy and (Hy; SFr Fr 0) j= v0 : B0 and (Hy; S Fr Fr 0) j=(h0; s0fr 0). By Lemma 9, H � H1 andH1 � Hn+1 andHn+1 � Hy implyH � Hy. By axiom (Good methods), B0 `(A1; : : : ; An) 2 methods(0)implies pointerFree(B0). By Lemma 6, (Hy; S Fr Fr 0) j= v0 : B0 andpointerFree(B0) imply (Hy; S Fr) j= v0 : B0. By Lemma 3, this andB0 <: B imply (Hy; S Fr) j= v0 : B. By Lemma 8, (Hy; S Fr Fr 0) j=(h0; s0 fr 0) implies (Hy; S Fr) j= (h0; s0). We onlude H � Hy and(Hy; S Fr) j= v0 : B and (Hy; S Fr) j= (h0; s0).(Eval ldflda)� ` a; ptr � �y� ` a ldflda A ::f ; ptr :f � �yBy assumption, (H;S Fr) j= � and Fr ` a ldflda A ::f : B. Either(Ref ldflda) or (Val ldflda) an have derived Fr ` aldfldaA::f : B.48

In ase (Ref ldflda), we have Fr ` a : lass and �elds() = fi 7!Ai i21::n and f = fj with j 2 1::n, and Aj& <: B. By Lemma 1,B = Aj&. By indution hypothesis, (H;SFr) j= � and Fr ` a : lassand � ` a ; ptr � �y imply there exists a heap type Hy suh thatH � Hy and (Hy; S Fr) j= ptr : lass and (Hy; S Fr) j= �y. By (PtrField), (Hy; S Fr) j= ptr : lass and �elds() = fi 7! Ai i21::n andj 2 1::n imply that (Hy; S Fr) j= ptr :f : Aj&.In ase (Val ldflda), we have Fr ` a : valuelassv& and �elds(v) =fi 7! Ai i21::n and f = fj with j 2 1::n, and Aj& <: B. By Lemma 1,B = Aj&. By indution hypothesis, (H;S Fr) j= � and Fr ` a :value lass v& and � ` a ; ptr � �y imply there exists a heap typeHy suh that H � Hy and (Hy; S Fr) j= ptr : value lass v& and(Hy; S Fr) j= �y. By (Ptr Field), (Hy; S Fr) j= ptr : value lass v&and �elds(v) = fi 7! Ai i21::n and j 2 1::n imply that (Hy; S Fr) j=ptr :f : Aj&.In either ase, we onlude H � Hy and (Hy; S Fr) j= ptr :f : B and(Hy; S Fr) j= �y.(Eval stfld)� ` a; ptr � �0 �0 ` b; v � �00� ` a b stfld A ::f ; 0 � update(�00; ptr :f; v)By assumption, (H;S Fr) j= � and Fr ` a b stfld A ::f : B. Either(Ref stfld) or (Val stfld) an have derived Fr ` a b stfldA ::f : B.In ase (Ref stfld), we have Fr ` a : lass and Fr ` b : Aj and�elds() = fi 7! Aii21::n with j 2 1::n and pointerFree(Aj), and void <:B. By Lemma 1, B = void. By indution hypothesis, (H;S Fr) j= �and Fr ` a : lass and � ` a ; ptr � �0 imply there exists aheap type H 0 suh that H � H 0 and (H 0; S Fr) j= ptr : lass and(H 0; S Fr) j= �0. By indution hypothesis, (H 0; S Fr) j= �0 and Fr `b : Aj and �0 ` b; v � �00 imply there exists a heap type Hy suh thatH 0 � Hy and (Hy; S Fr) j= v : Aj and (Hy; S Fr) j= �00. By Lemma 10,(H 0; S Fr) j= ptr : lass and H 0 � Hy imply (Hy; S Fr) j= ptr :lass . By (Ptr Field), this implies (Hy; S Fr) j= ptr :fj : Aj&.In ase (Val stfld), we have Fr ` a : value lass v& and Fr ` b : Ajand �elds(v) = fi 7! Ai i21::n with j 2 1::n and pointerFree(Aj),and void <: B. By Lemma 1, B = void. By indution hypothesis,(H;S Fr) j= � and Fr ` a : value lass v& and � ` a ; ptr � �0imply there exists a heap type H 0 suh that H � H 0 and (H 0; S Fr) j=ptr : value lass v& and (H 0; S Fr) j= �0. By indution hypothesis,49

(H 0; S Fr) j= �0 and Fr ` b : Aj and �0 ` b ; v � �00 imply thereexists a heap type Hy suh that H 0 � Hy and (Hy; S Fr) j= v : Aj and(Hy; S Fr) j= �00. By Lemma 10, (H 0; S Fr) j= ptr : value lass v&and H 0 � Hy imply (Hy; S Fr) j= ptr : value lass v&. By (PtrField), this implies (Hy; S Fr) j= ptr :fj : Aj&.In either ase, (Res Void) implies (Hy; S Fr) j= 0 : void. By Lemma 9,H � H 0 and H 0 � Hy imply H � Hy. By Lemma 18, (Hy; S Fr) j=�00 and (Hy; S Fr) j= ptr :fj : Aj& and (Hy; S Fr) j= v : Aj andpointerFree(Aj) imply (Hy; S Fr) j= update(�00; ptr :fj; v). We onludeH � Hy, (Hy; SFr) j= 0 : void, and (Hy; SFr) j= update(�00; ptr :fj; v).(Eval newobj)K = void v:::tor(A01; : : : ; A0m)�elds(v) = fi 7! Ai i21::n�i ` ai ; vi � �i+1 8i 2 1::n�1 ` a1 � � � an newobjK ; (fi 7! vi i21::n) � �n+1By assumption, (H;SFr) j= �1 and Fr ` a1 � � � an newobjK : B. Sinev 2 ValueClass, the rule (Val newobj) but not the rule (Ref newobj)must have derived the judgment Fr ` a1 � � � annewobjK : B. Therefore,K = voidv:::tor(A1; : : : ; An) (and henem = n and Ai = A0i for eahi 2 1::n) and Fr ` ai : Ai for eah i 2 1::n and valuelassv <: B. ByLemma 1, B = valuelass v. Let H1 = H. By indution hypothesis,repeatedly, for eah i 2 1::n, (Hi; S Fr) j= �i and Fr ` ai : Ai and�i ` ai ; vi � �i+1 imply there exists a heap type Hi+1 suh thatHi � Hi+1 and (Hi+1; S Fr) j= vi : Ai and (Hi+1; S Fr) j= �i+1. LetHy = Hn+1. We obtain Hi � Hy for eah i 2 1::n + 1 with appealto Lemma 9. By Lemma 10, for eah i 2 1::n, (Hi+1; S Fr) j= vi :Ai and Hi+1 � Hy implies (Hy; S Fr) j= vi : Ai. By (Res Value),�elds(v) = fi 7! Ai i21::n and (Hy; S Fr) j= vi : Ai for eah i 2 1::nimplies (Hy; S Fr) j= fi 7! vi i21::n : value lass v. We onludeH � Hy and (Hy; S Fr) j= fi 7! vi i21::n : B and (Hy; S Fr) j= �n+1.(Eval all)M = B0 v::`(A1; : : : ; An)�0 ` a0 ; ptr � (h1; s1)(hi; si) ` ai ; vi � (hi+1; si+1) 8i 2 1::nmethods(v)(B0 `(A1; : : : ; An)) = b(hn+1; sn+1:args(ptr ; v1; : : : ; vn)) ` b; v0 � (h0; s0 fr 0)�0 ` a0 a1 � � � an all instaneM ; v0 � (h0; s0)By assumption, (H;SFr) j= �0 and Fr ` a0a1 � � � anallinstaneM :50

B. Beause of Fr ` a0 a1 � � � an all instane M : B, we haveB0 `(A1; : : : ; An) 2 dom(methods(v)) and Fr ` a0 : value lass v&and Fr ` ai : Ai for all i 2 1::n and B0 <: B. By indution hypoth-esis, (H;S Fr) j= �0 and Fr ` a0 : value lass v& and �0 ` a0 ;ptr � (h1; s1) imply there exists a heap type H1 suh that H � H1 and(H1; S Fr) j= ptr : value lass v& and (H1; S Fr) j= (h1; s1). By in-dution hypothesis, repeatedly, for eah i 2 1::n, (Hi; S Fr) j= (hi; si),Fr ` ai : Ai, and (hi; si) ` ai ; vi � (hi+1; si+1) imply there existsa heap type Hi+1 with Hi � Hi+1 and (Hi+1; S Fr) j= vi : Ai and(Hi+1; S Fr) j= (hi+1; si+1). By Lemma 9, we get Hi � Hn+1 for eahi 2 1::n. Let Fr 0 = :args(value lass v&; A1; : : : ; An) and fr 0 =:args(ptr ; v1; : : : ; vn). By (Valmethods), methods(v)(B0`(A1; : : : ; An))= b implies that Fr 0 ` b : B0. Sine we have Hi � Hn+1 for eahi 2 1::n, by Lemma 10, (H1; S Fr) j= ptr : value lass v& impliesthat (Hn+1; S Fr) j= ptr : value lass ptr&, and for eah i 2 1::n,(Hi+1; S Fr) j= vi : Ai implies that (Hn+1; S Fr) j= vi : Ai. By (ConFrame), (Hn+1; S Fr) j= ptr : value lass v& and (Hn+1; S Fr) j= vi :Ai for eah i 2 1::n imply (Hn+1; S Fr) j= fr 0 : Fr 0. By Lemma 7, thisimplies that (Hn+1; S Fr Fr 0) j= fr 0 : Fr 0. By (Con Store), this and(Hn+1; S Fr) j= (hn+1; sn+1) imply (Hn+1; S Fr Fr 0) j= (hn+1; sn+1 fr 0).By indution hypothesis, (Hn+1; S Fr Fr 0) j= (hn+1; sn+1 fr 0) and Fr 0 `b : B0 and (hn+1; sn+1 fr 0) ` b ; v0 � (h0; s0 fr 0) imply there existsa heap type Hy suh that Hn+1 � Hy and (Hy; S Fr Fr 0) j= v0 :B0 and (Hy; S Fr Fr 0) j= (h0; s0 fr 0). By Lemma 9, H � H1 andH1 � Hn+1 and Hn+1 � Hy imply H � Hy. By axiom (Goodmethods), B0 `(A1; : : : ; An) 2 methods(v) implies pointerFree(B0). ByLemma 4, this and (Hy; S Fr Fr 0) j= v0 : B0 imply (Hy;?) j= v0 : B0.By Lemma 5, repeatedly, this implies (Hy; S Fr) j= v0 : B0. ByLemma 3, this and B0 <: B imply (Hy; S Fr) j= v0 : B. By Lemma 8,(Hy; S Fr Fr 0) j= (h0; s0 fr 0). implies (Hy; S Fr) j= (h0; s0). We onludeH � Hy and (Hy; S Fr) j= v0 : B and (Hy; S Fr) j= (h0; s0).(Eval box)� ` a; ptr � (h0; s0)lookup((h0; s0); ptr) = fi 7! vi i21::np =2 dom(h0) o = v[fi 7! vi i21::n℄� ` a box v; p � ((h0; p 7! o); s)By assumption, (H;S Fr) j= � and Fr ` a box v : B. Beause ofFr ` a box v : B, we must have Fr ` a : value lass v& andpointerFree(valuelassv) and lassv <: B. By indution hypothe-51

sis, (H;SFr) j= � and Fr ` a : valuelassv& and � ` a; ptr �(h0; s0)imply there exists a heap type H 0 suh that H � H 0 and (H 0; S Fr) j=ptr : value lass v& and (H 0; S Fr) j= (h0; s0). The latter an onlyhave been derived using (Con Store), so we must have H 0 j= h0 and(H;Fr1 � � �Fr i) j= fr i : Fr i for eah i 2 1::n where S Fr = Fr1 � � �Frnand s = fr1 � � � frn for some Fr1, . . . , Frn and fr 1, . . . , frn. ByLemma 16, (H 0; SFr) j= (h0; s0) and (H 0; SFr) j= ptr : valuelassv&and lookup((h0; s0); ptr) = fi 7! vii21::n imply (H 0; SFr) j= fi 7! vii21::n :valuelassv. By Lemma 4, this and pointerFree(valuelassv) im-ply (H 0;?) j= fi 7! vi i21::n : value lass v. Beause of this, and (ResValue), we must have �elds(v) = fi 7! Ai i21::n and (H 0;?) j= vi : Aifor all i 2 1::n. By (Con Objet), (H 0;?) j= vi : Ai for all i 2 1::nimplies H 0 j= o : v. By Lemma 13, H 0 j= h0 and p =2 dom(h0) andH 0 j= o : v imply H 0; p 7! v j= h0; p 7! o. Take Hy = H 0; p 7! v. Byde�nition H 0 � Hy. By Lemma 9, this and H � H 0 imply H � Hy. ByLemma 12, for eah i 2 1::n, (H;Fr1 � � �Fr i) j= fr i : Fr i and H � Hyimply (Hy;Fr1 � � �Fr i) j= fr i : Fr i. By (Con Store), Hy j= h0; p 7! oand (Hy;Fr1 � � �Fr i) j= fr i : Fr i for all i 2 1::n imply (Hy; S Fr) j=(h0; p 7! o; s). By (Res Ref), (Hy; S Fr) j= p : lass v. By Lemma 3,this and lassv <: B imply (Hy; SFr) j= p : B. We onlude H � Hyand (Hy; S Fr) j= p : B and (Hy; S Fr) j= ((h0; p 7! o); s).(Eval unbox)� ` a; p � �y� ` a unbox v; p � �yBy assumption, (H;SFr) j= � and Fr ` aunboxv : B. Beause of Fr `aunboxv : B, we must have Fr ` a : lassv and valuelassv& <:B. By indution hypothesis, (H;S Fr) j= � and Fr ` a : lass v and� ` a; p ��y imply there exists a heap type Hy suh that H � Hy and(Hy; SFr) j= p : lassv and (Hy; SFr) j= �y. Beause of (Hy; SFr) j=p : lass v there must be a lass name suh that inherits v andHy(p) = . By the axiom (Hi Val), inherits v implies = v. By(Ptr Ref), Hy(p) = v implies (Hy; S Fr) j= p : value lass v&. ByLemma 3, this and value lass v& <: B imply (Hy; S Fr) j= p : B.We onlude H � Hy and (Hy; S Fr) j= p : B and (Hy; S Fr) j= �y. 2
52

